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DUAL APPROXIMATIONS IN OPTIMAL CONTROL*

WILLIAM W. HAGERt AND GEORGE D. IANCULESCU

Abstract. We analyze a dual approximation for the solution to an optimal control problem. The
differential equation is handled with a Lagrange multiplier while other constraints are treated explicitly.
An algorithm for solving the dual problem is presented.
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1. Introduction. In computing the solution to an optimal control problem, most
of the difficulty centers around the differential equation. In this paper, we consider a
dual approach where the differential equation is handled with a Lagrange multiplier,
while other constraints are treated explicitly. This scheme was first studied by Rockafel-
lar [47], who establishes existence results and optimality conditions for primal and
dual solutions. We now analyze the following numerical aspects of the dual procedure:

(1) Existence of finite dimensional approximations.
(2) Regularity of dual solutions.
(3) Relations between dual multipliers and primal solutions.
(4) Error estimates for piecewise polynomial approximation.
(5) Techniques for solving the dual problem.
The first error estimate for a dual approximation to a control problem is given

by Bosarge and Johnson [5], who study unconstrained problems with quadratic cost
and linear system dynamics. For piecewise polynomials of degree k, they show that
the ,Q92 error in the approximating control and state is order k. In [14] we introduce
linear inequality state and control constraints, and analyze a full dual scheme where
multipliers are attached to each constraint. The dual optimization is related to an
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contributed by the first author. The four numerical examples are contributed by the second author.
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424 WILLIAM W. HAGER AND GEORGE D. IANCULESCU

energy projection, and the error is at best order 1.5 due to discontinuities in the
control’s derivative, Later 16] our estimates are extended to general convex problems,
and examples are analyzed in [20]. Mathis and Reddien [32] notice that Bosarge and
Johnson’s estimate for the control error is not optimal, and sharpen this bound using
a duality argument [37]. Some dual approximations to systems described by partial
differential equations are developed by Mossino [35], [36] and Bosarge, Johnson and
Smith [6].

Other techniques for constrained control problems are contained in [54], [25],
[3], [10], [24], [56] and [39]. Penalty methods for variational problems were introduced
by Courant [9], and applied to control problems by Russell [54], Lasdon, Warren and
Rice [25], and others [3], [10]. These methods have wide applicability, although the
penalized problem is ill-conditioned as the penalty growsnsee Luenberger [29].
Jacobson and Lele [24] note that some state constraints can be removed by Valentine’s
device [57]. Thompson and Volz [56] show that control problems with linear dynamics,
quadratic cost and a single linear inequality state constraint can be solved using a
nonsymmetric Riccati equation. Pironneau and Polak [39] present a dual method of
centers for problems with inequality endpoint constraints and affine inequality control
constraints.

Advantages of the dual scheme are its speed and generality; problems with
endpoint, control and state constraints can be handled. Although our convergence
theory assumes that the system dynamics is linear, the scheme applies to nonlinear
systems. Unfortunately, there are cases [31], [46] where the dual does not solve the
primal. A cure for "duality gaps" is the multiplier methods [4], [21], [41], [48], [49]
which combine penalty and duality techniques.

2. The method. A control problem is the constrained minimization of a functional
C(x, u) over a collection of controls

u:R
and a collection of states

x: -R
where R denotes the real numbers and R is the n-fold Cartesian product R x R .
R. For convenience, let us assume that ff is the interval [0, 1]c R. Throughout this
paper, Lebesgue measure is used for if, and measurable functions are equal if they
are equal almost everywhere. Let denote the set of pairs (x, u) where x is absolutely
continuous and u is summable.

The admissible set for the control problem is described by two types of constraints.
First there is the system dynamics M(x,u)=O where M:- is a differential
operator which we assume is linear"

M(x, u)(t):= x’(t)-A(t)x(t)-B(t)u(t);

here w is the space of summable functions f: ff R n, A(t) is an n x n matrix for each- whose individual elements are summable, and B(t) is an n x rn matrix for every
whose elements are essentially bounded. Second, there may be constraints such

as

x(0) a (initial condition),

x(1) b (target),

u(t)l--< 2 (control constraint), or

x(t) >= 0 (state constraint).
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DUAL APPROXIMATIONS IN OPTIMAL CONTROL 425

We assume these conditions are embedded in the cost functional by setting C(x, u)
when the constraint is violated. This convention is discussed in Rockafellar’s paper
[52]. Hence C" Y--> R where R is the extended reals R t3 {oo}, and the control problem
takes the form

minimize C(z)
(1)

subject to M(z)=0, z

Of course, z denotes the pair (x, u). Since the cost is minimized, we are only concerned
with those z for which C(z) is finite. The effective domain of C is given by

dom C := {z

It is assumed that C proper and there exists a feasible function for (P); that is, the
effective domain of C is nonempty and there exists z e dom C such that M(z)= O.

Now we formulate the dual of (P). Letting oo be the space of essentially bounded
functions f: ---> R n, the dual functional L" G--> R t.J {-oo} is defined by

L(p) inf {C(z)+(p,M(z))" z

where (.,.) is the usual 2 inner product"

(f, g):= f f(t) g(t) dt

for all measurable f, g" ---> R n. Here is the Euclidean dot product. The dual problem
becomes"

maximize L(p)
(D)

subject to P o.
Since L is maximized, the effective domain of the dual functional is given by

dom L {p: L(p) > -oo}.

Clearly, from the definition of L,

(2.1) sup {L(p): p }<=inf {C(z): zY,M(z)=O}.

This inequality is sometimes called weak duality [31]. The stronger statement, "There
exists a solution to (D) and (2.1) is an equality," follows from the

BOUNDEDNESS ASSUMPTION. There exists p > 0 such that

inf C(z) < oosup
wGt, z

Ilwllel--<p M(z)=w

where

Ilwl]l I w(t)[ dt

and l" is the Euclidean norm.
THEOREM 2.1. If C is convex and the boundedness hypothesis is satisfied, then

there exists a solution p to the dual problem, and

L(p) =inf {C(z)" z ,M(z)=0}.
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426 WILLIAM W. HAGER AND GEORGE D. IANCULESCU

Notice that the dual problem has a solution even though the primal problem may have
no solution. Theorem 2.1 is an elementary application of general duality principles
(see Theorem A.3 in Appendix 1).

If p solves the dual problem, any solution to the primal problem minimizes

(2.2) C(z)+(p,M(z))

over z Lr. Thus, to solve the primal problem, we can first solve the dual and then
find those z which attain the minimum in (2.2). This procedure is modified for
numerical computations. We replace the dual feasible set by a closed subset 6eh Of a
finite dimensional space giving us the approximation:

maximize L(p)
(Dh)

subject to p 6eh.
An important issue is whether there exists a solution to (Dh). By Theorem 2.2 below,
the boundedness hypothesis assures existence. If Ph solves (Dh), we take as an approxi-
mation to a primal solution any Zh for which

L( ph) C( Zh) + p, M(z)).

The paper’s main focus is the second issue" Is Zh "close" to a primal solution? Under
a uniform convexity hypothesis, the answer is yes.

These convergence properties are related to the smoothness of dual solutions. If
an optimal p lies just in , the dual problem may be hard since the approximation
of essentially bounded functions using standard 6eh is not easy. In the following sections,
we observe that p has some smoothness. This section concludes with an existence
theorem for (Dh). Appendix 1 proves a more general result.

THEOREM 2.2. Suppose that h C .x where h is also a closed subset of a finite
dimensional space. If the boundedness hypothesis holds, then (Dh) has a solution.

3. Bounded variation. Under appropriate assumptions, the classical minimum
principle [40], [26] for the control problem

minimize f f x u t) dt

subjectto M(x,u)=O, (x,u)eY, x(O)=a,

u(t) U c R almost everywhere,

states that an optimal solution satisfies

where

and

h(u(t), t) =min {h(v, t): ve U} almost everywhere

h(v, t)=f(x(t), v, t)+q(t)B(t)v

q’(t)=-A(t)Tq(t)-Vxf(X(t), u(t), t) T almost everywhere,

q(1) =0.

Above, T denotes transpose, V is the gradient with respect to the state argument,
and q is called the costate.
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DUAL APPROXIMATIONS IN OPTIMAL CONTROL 427

We expect that dual solutions are related to the costate, but observe that q is
ditterentiable while dom L . However, a fairly weak hypothesis guarantees some
smoothness for elements in dom L. Let c be the subspace of infinitely ditterenti-
able functions. We introduce the sets

’=(y**:llYll_-<y}, g={y:y(O)=y(1)=O},
where

Ilyll =sup {lY(t)l: if},
and the

INTERIORITY ASSUMPTION. There exist 2 ($, ft) Y{ and y > 0 such that

sup {C(g’+ q, a): q, } < c.

Finally, recall that elements of oo are equivalence classes of functions equal
almost everywhere, and let denote the subspace of functions with bounded
variation that are right continuous on (0, 1).

THEOREM 3.1. If p dom L and the interiority assumption holds, then p f’) is
nonempty.

Proof. Inserting z (-q, a) into the relation

C(z) +(p, M(z)) >- L(p)

and utilizing the interiority hypothesis, we have

(3.1) sup {(p, q/): q e ’v} < o.

Given 5 and f e 1, let us define

f*(5) sup {(f, 0’>: q 5}.

Hence, p+(+)< by (3.1). Any fi0 can be written as

=q+6

where 6 is the linear function agreeing with 4(t) at t=0 and 1, and

q (6-) .
Since ll6’ll--< 2, it follows that

(P, ’) -< (P,

and taking the supremum over fia yields

p+( 1)__< p,( ,z)+ 211 pll:e

The next lemma completes the proof.
LZMMA 3.2. If f and f+(fiOa) <, then f f3 is nonempty.
Proof. Let c be the space of continuous functions y" R" and define A: c R

by A() (f, ’). Since

a() <= f*( 1)11 11
A can be extended to a continuous linear functional A" c R. By the Riesz representa-
tion theorem, there exists g e such that g(1)= 0 and

/() (t). dg(t) V e c.
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428 WILLIAM W. HAGER AND GEORGE D. IANCULESCU

In particular, if b c and 4(0)= 0, integration by parts gives us

(6) =-(g, 6’)= A(6)=(f, 6’).

Therefore, f(t) -g(t) almost everywhere.

4. Absolute continuity, I. Although there exist dual solutions with bounded
variation, the following example, called the obstacle problem, shows that a continuous
dual solution may not exist:

minimize

subject to

u(t) dt

x’(t) u(t) almost everywhere

x(t)>=a(t) for all teff,

x(O)--x(1)--O, (x, u)Y,

where a s is given data. It turns out that the optimal state is the profile of an elastic
string lying in the (t, x) plane with ends fastened at (0, 0) and (1, 0) and stretched
over the obstacle a(t); moreover, a solution to the dual problem is the derivative of
the optimal state. Hence, a dual solution can be discontinuous when the obstacle has
discontinuous derivatives.

For problems with "smooth" data, we have already established the existence of
a Lipschitz continuous dual solution [15]. On the other hand, the next section refines
our earlier work [19] and shows that combinations of multipliers are absolutely
continuous even if the data is rough. In this section, the existence of absolutely
continuous solutions is established for control constrained problems. We say that the
sequence {qk} c converges pointwise to q if

lim qk (t) q(t) almost everywhere
k

and the essential supremum of qk over - is bounded independently of k. In particular,
the sequence is called a O-sequence if q- 0. A functional F defined on c is
O-stable on if there exists N < oo such that

lim F(q) <N
k

for each 0-sequence {qk}C . Here limk is an abbreviation for lim SUpk-. Finally,
let us introduce the

0-STABILrrv ASSt3MPTION. For some 2 (, ) , C( +., ) is O-stable on .
Letting be the subspace of functions that are continuous .at 0 and 1,

we have"
THEOREM 4.1. If p 3 fq dom L and the O-stability hypothesis is satisfied, then

p is absolutely continuous.
By Remark 1 in 8, absolute continuity for a dual solution is also deduced from

[47, Thm. 4] in some cases. In his proof of [47, Thm. 4], Rockafellar uses both an
"attainability" and an "integrability" assumption. Attainability is related to, but weaker
than, our boundedness condition, while integrability implies that the cost functional
satisfies a growth condition, a requirement not present in our analysis.
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DUAL APPROXIMATIONS IN OPTIMAL CONTROL 429

Now let us prove the theorem. Inserting z (2-Ok, a) into the relation

C(z) +(p, M(z)) >= L(p)
and invoking the 0-stability hypothesis,

(4.1) lim (p, q’)<=N-L(p)-(p,M())
k

for all 0-sequences { qk} c . Moreover, if c is a scalar, { C6k} is a 0-sequence satisfying
(4.1). Since c is arbitrary,

(4.2) lim (p, q,) 0.
k

For convenience, let us assume that n 1 and let A be the regular Borel measure
corresponding to p [53, Thm. 8.14]. We show that A is absolutely continuous with
respect to Lebesgue measure/x; that is, A (E)= 0 for every Lebesgue measurable set
E such that tz(E) =0. Given a closed set E c (0, 1), it is well known [22, p. 4] that
there exists a sequence {6k} C g such that 0-<_ qk--<--1 and

lim k(X) KE(X)
k

for every x - where KE is the characteristic function of E. Of course, {qk} is a
0-sequence if tz (E) 0. By the dominated convergence theorem,

lim / ,(t) dA(t)= A(E).

On the other hand, integrating (4.2) by parts,

(4.3) lim f qk(t) dh(t)=0
k ,

for all 0-sequences {q,k} c . Since , is a regular Borel measure, we conclude that
is absolutely continuous with respect to z and hence p is absolutely continuous [53,
Thm. 8.16]. [3

Defining the Stieltjes integral

(p, f) [ f(t) dp(t)
d

for f e and p e 3, observe that (4.3) is equivalent to the statement, "(p, ) is 0-stable
on ," so we have"

COROLLARY 4.2. If peY3 and (p,.) is O-stable on g, then p is absolutely
continuous.

5. Absolute continuity, II. Now let us characterize the feasible dual functions for
state constrained problems. If D:’ R and 5e is a set of states, we say that (Se, D) is
an extension of C if C D on dom C and

dom C {(x, u) dom D" x

For example, in the obstacle problem,

6f {x " x(t) >= a(t) lt ’}
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430 WILLIAM W. HAGER AND GEORGE D. IANCULESCU

where 1 c is the subspace of absolutely continuous functions and

[(u, u) if x(O)= x(1)=0,
D(x, U)

oo otherwise

is an extension of C.
The following theorem introduces a multiplier for 5e. Defining the norm

Ilxll -Ix(0)l / [ [x’(t)l dt for x ,
observe that and R nx1 are isomorphic with elements in the respective spaces
related by the rule

x -, (x(O), x’).

Hence, any f *, the space of bounded linear functionals on , can be expressed in
the form

f(x) c. x(0) +(,0, x’):= ((c, ,o),

where c R" and w w.
THEOREM 5.1. Suppose that p dom L, and (, D) is an extension of C where S

and D are convex, and ol has nonempty interior. Then there exists y (c, w)
R" such that

(5.1) D(z)+(p,M(z))+(y,x-y)>=L(p)

for all z (x, u) and y . Furthermore, if D satisfies the O-stability hypothesis and
p + w) , then p + oo is absolutely continuous.

Since D(z)<= C(z) for all z , (5.1) implies that

(5.2) C(z)+(p, M(z))+(r, x- y)a >- L(p)

for all z (x, u) Y and y 5e. The existence of 3’ satisfying (5.1) follows directly from
Fenchel’s duality theorem [46], [28] and the fact that

L(p) =inf {D(z)+(p, M(z)): z (x, u) , x }.

If D satisfies the 0-stability hypothesis and (p+w), it is easy to deduce from
(5.1) that (p + w,. is 0-stable on . By Corollary 4.2, p + o is absolutely continuous.

If x" - R", we write x <= 0 if xi(t) -<_ 0 for every and i. Similarly, x is nondecreas-
ing if x( t) x( s) <= 0 for all t-< s. Recall that spaces like and M consist of functions

f: ff R". To denote the corresponding space of functions f: -R s, we attach the
subscript s to the space.

LEMMA 5.2. Suppose that K M is convex and define the set

5={x C: K(x)<=O}.

If there exists sg such that K()i(t) < 0 for every and i, then ]:or each 3’ *, them
is a nondecreasing u Yd such that

(5.3) (u, K(x)) inf {(y, x-y): y S}

for all x
Combining Theorem 5.1 and Lemma 5.2,

(5.4) C(z) +(p, M(z))+(u, K(x)) >= L(p)
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DUAL APPROXIMATIONS IN OPTIMAL CONTROL 431

for all z (x, u) ’. To prove the lemma, we apply Theorem A.3 from Appendix 1
to the problem

maximize (y, y)

subject to K(y) =<6, yM.

Hence, there exists u s satisfying (5.3) and

(5.5)

for all nonnegative f cos. If A is the regular Borel measure corresponding to ,, (5.5)
implies that A is positive or

In the last lemma, we generated u for given y. Now, let us produce y for given ,.
PROPOSITION 5.3. Assume that K: M % is convex and differentiable, C is convex,

is nondecreasing, and (5.4) holds for some p dom L. If (, a) has the
property that C() + (p, M()) L(p) and

then the y M* defined by

6:= {x M" K(x) <-O},

satisfies (5.2).
Proof. Under our hypotheses, the functional f(. := (u, K(. )) is differentiable on

M and

f’[x](y) ,, K’[x]y).
Since 5e and , is nondecreasing, it also follows that f()-<_ 0. The inequality (5.4)
and the relations C()+(p,M())=L(p) and f()-<_0 imply that f()=0 and
minimizes C(z) + (p, M(z)) +f(x) over z (x, u) ’. Applying Lions’ characterization
[27, p. 12] for the minimizer of the sum of convex and differentiable functions gives us:

(5.6) C(z)+(p,M(z))+f’[](x-)>-L(p)

for all z (x, u) . Since , is nondecreasing, f is convex and we have the standard
inequality [31, p. 84]"

(5.7) f(y) >- f(x) +f’[x](y- x)

for all x, y M. Inserting x= and recalling that f()=0, (5.7) yields

f’[](y ) -<_ 0 Vy St.

Relation (5.6) completes the proof.
In some cases, the y produced by Proposition 5.3 can be described more precisely.

Suppose that G(t) is an s n matrix for each e if, and define Gx" R by

(Gx)(t) G(t)x(t)

where x" 3- R n.
LEMMA 5.4. If the elements of G are absolutely continuous and , , then

(u, Gx)=(GTI, x)e-(G’x, ’)

for every x M. Hence, for suitable b and c R , we have

(,, Gx) c. x(O)+(a,, x’) Vx
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432 WILLIAM W. HAGER AND GEORGE D. IANCULESCU

where

o)(t) b-G(t)Tv(t)+ G’(cr)Tv(r) dcr.

These identities are left for exercises. Given more information about the con-
straints, feasible dual functions can be described more precisely. For example, if the
states are unconstrained at 1, then p(1) + w(1) 0 under the hypotheses of Theorem
5.1. Of course, a dual solution may be smoother than a typical feasible element. In
an earlier paper [15] we show that when the cost is strictly convex in the control and
constraints are smooth enough, there exist optimal Lipschitz continuous functions p,
w, u, x and u. Moreover, x and p+ w have Lipschitz continuous derivatives. (To be
more precise, u is only Lipschitz continuous on the open interval (0, 1).)

The analysis of primal and dual solutions is different from the arguments in. 3-5.
In 15] we start with the control minimum principal and adjoint equation, and use the
implicit function theorem to estimate Iv(tl)-v(t2)l and [tt(tl)-u(t2)l in terms of
smoother variables, x and p+ w. Greater smoothness for v and u implies better
regularity for x and p+ o. Malanowski [30] extends these results to problems with
nonlinear system dynamics. Returning to the question concerning the relation between
p and the costate, we show in [19] that p+ w corresponds to the usual costate.

Interiority. Suppose that

5e={x : x(t)X(t) Vt 3-}

where X(t)c R for each 3-. A map such as X from 3- to subsets of another space
is called a multifunction [51]. If X(t) is convex for every 3-, we say that X is
convex-valued. In this section, properties of b are studied under the

POINTWISE INTERIORITY ASSUMPTION. The interior ofX( t) is nonempty for every
3- and the set

’:= {(t, x)" t 3-, xintX(t)}c 3-xR

is open.
Above, "int" denotes interior.
Rockafellar [45, Lemma 2] shows that X is lower semicontinuous when X is

convex-valued and pointwise interiority holds, and in proving [45, Thm. 5], it is seen
that has nonempty interior. Rockafellar’s development utilizes a continuous selection
theorem of Michael [34, Thm. 3.2]. The fact that 5e has nonempty interior is also
deduced from an appropriate partition of unity, as we now demonstrate.

The support of a function f: 3- R is defined by

supp f closure { 3-: f(t) # 0}.

Given a collection 6 of open sets whose union is 3-, there exists [1, p. 51] a finite set
c q of nonnegative functions such that

and for every

E b(t)=l vte3-,

supp 4’ U
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DUAL APPROXIMATIONS IN OPTIMAL CONTROL 433

for some U (7. The set is called an infinitely differentiable partition of unity subordin-
ate to 6. Defining the set

57={x : (t, x(t))Vt },

we have:
LEMMA 6.1. If X is convex-valued and pointwise interiority holds, then 5? is

nonempty.
Proof Given f: E R", define

6i {t : f(t) int X(t)}.

By pointwise interiority, 6I is open when f is continuous. If cg is the collection
of constant functions, then

f

Let be a partition of unity subordinate to {6: f }. For each q , there exists
f(q) such that

Observe that x given by

supp ,
x(t)= Y f(d/)(t)

is a convex combination of points in the interior of X(t) for every
LEMMA 6.2. If pointwise interiority holds, x c, and x( t) int X( t) for each 5r,

then there exists p > 0 such that

{ye g": ]y-x(t)l<=p}= X(t)

for every ft.
X, the complement of , and {(t, x(t))" .t if} are disjoint closedProof. Since "c

sets, the distance between them is positive.
Lemmas 6.1 and 6.2 and the inequality

imply that 5e has nonempty interior when X is convex-valued and pointwise interiority
holds. Defining the set

5e {x e: x(t) e X(t) almost everywhere},

we have:
THEOREM 6.3. If pointwise interiority holds and X is convex-valued, then for each

x b, there exists a sequence {Xk} converging pointwise to x. Moreover, for any
finite set {(tj, aj)} where the ti are distinct, it can be arranged so that Xk(t) a for
every ] and k. (Pointwise convergence is defined in 4.)

Proof. Given x e and e > 0, we exhibit w e S such that

(6.1) /z{t : Iw(t)-x(t)l>

where/x is Lebesgue measure and IIw[l is bounded independently of e. To simplify
notation, let x also denote a particular element in its equivalence class for which

x(t)X(t) Vt ,-
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434 WILLIAM W. HAGER AND GEORGE D. IANCULESCU

and Ilxll is finite. By Lusin’s theorem and regularity properties of Borel measure [53,
Thms. 2.23 and 2.17], there exist y and a closed set K c 3- such that z(K c) _<- e,
IlYll --< Ilxll, and

x(t)=y(t) VtK.

Recalling Lemmas 6.1 and 6.2 and the fact that is a dense subset of % there
is z o such that

IlY- zl[ _-< e,

and z(t) int X(t) for every K. By pointwise interiority, the set

={t : z(t)intX(t)}

is open. Let {1, ’2} be a partition of unity subordinate to {, K c} and define

w(t) i]/l(t)z(t) + b2(t)2(t)

where . Since z(t) int X(t) on supp ’1, and I]/1 "- I]/2 is identically 1, it follows
that w 5. Since ’1 1 on K, (6.1) is established.

Next, given (or, a), let cff be an open interval containing r such that
/x() _-< e and

x{a}c J.
Letting { 4, 42} be a partition of unity subordinate to {if, {o’}C}, define

V(t) abl (t) + w(t) 2(t).

Observe that v 6, v(o-)= a, and v(t)= w(t) except on a set of measure <=e. The
second part of the theorem follows almost immediately.

7. Pointwise minimization. The next section provides a convenient representation
for the dual functional when the cost and the constraints assume a special form. Here
we review some theorems on measurability, drawing on Rockafellar’s work [51], and
develop preliminary results. Let us consider the following problem:

inf {I(x): x

where I: --> R is defined by

I(x) | f(x(t), t) dt
d

for some f:Rnx 3---> R. We assume that I is proper, and the integrand is measurable
and majorizes a summable function whenever x e.

Classically, f(x(. ),. is measurable when x(. is measurable if the Carathodory
conditions hold; that is, f(., t) is continuous for each fixed t e 3- and f(x,. is measurable
for each fixed x e R n. On the other hand, we may wish to embed constraints in the
cost functional. For example, the constraint

x(t)X(t)

almost everywhere can be incorporated in the cost through the definition

f(x, t)=c ifxC_X(t).

The normal integrand, introduced by Rockafellar [51], is a natural one-sided extension
of the Carath6odory integrand. The integrand f’Rnx 3---> R is normal if f(x, t) is
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DUAL APPROXIMATIONS IN OPTIMAL CONTROL 435

lower semicontinuous in x for each fixed if, and f is measurable on Rn 8- with
respect to the it-algebra generated by products of Borel sets in R and Lebesgue sets
in ft. Therefore, it follows that f(x(. ),. is measurable whenever x(. is measurable.
An important property of normal integrands is contained in the following lemma, an
immediate consequence of [51, Thm. 2K]:

LEMMA 7.1. If f is a normal integrand on R x , then

inf {I(x)" x } f inf {f(x, t)" x R} dt

and the integrand above is measurable. Furthermore, there exists a measurable function
x" 8- R such that

x(t) arg min {f(x, t)" x R}

wherever the minimum is attained.
As noted earlier, constraints can be embedded in the cost. Given X: 8- 2Rn, let

us define

(x, t) {x, t) if x X(t),otherwise.
By [51, Props., 2H and 2L], f is normal provided f is normal and X is closed-valued
and measurable; that is, X(t) is closed for each 5r and for all closed sets K c R n,

{ 8": X(t) f3 K is nonempty}

is measurable. If X is closed-valued and convex-valued, then X is measurable under
the pointwise interiority hypothesis. This follows from Theorem 6.3 and Castaing’s
characterization of a closed-valued measurable multifunction in terms of the closure
of a countable collection of measurable functions [7], [51].

Now consider the problem

=inf {E(x)+I(x)" x

where E"cR and for some finite set f c -,
E(x)=E(y)

whenever x, y c and x(t)=y(t) for each tf. For example, E(x) might be
expressed in terms of x(1). Let us define

X(t) (x R". f(x, t) < },

and let S? and 0 be the sets defined in 6.
LEMMA 7.2. Suppose that X is convex-valued, pointwise interiority holds,

(7.1) inf {E(x)" x S?} inf {E(x)" x 5ef"1 c},

and

(7.2) I(x) likm I(xk)
for each sequence {x k} c 5 converging pointwise to some x dom L Then

t =inf {E(x)" x S?} +inf {I(x)’ x }.

Proof. Since l(x)=o if x 5e,
=inf {E(x) + I(x)" x SC f3 }.
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436 WILLIAM W. HAGER AND GEORGE D. IANCULESCU

Given x 6 and y 5, Theorem 6.3 provides a sequence {xk} c fie converging point-
wise to x and

If x dom L
(7.3)

xk(t)=y(t) Vtf.

E(y) + I(x) likm {E(xk) + I(xk)} >= inf {E(x) + I(x)" x fie}.

Combining (7.1) and (7.3),

inf {E(y)" y 5fq }+inf {I(x)" x 5}

=inf {E(y)" y 5}+inf {I(x)"x}

=>inf {E(x)+I(x)" x fie}

>=inf{E(x)+Z(x)" x5f3} t.
Since the reverse inequalities are trivial, the proof is complete.

If E(y)=e(y(1)) where e:R-R, then (7.1) is satisfied if domecintX(1).
Moreover, under these hypotheses,

inf {E(x)" x 5} inf {e(a)" a R}.

Relation (7.2) holds if f(., t) is continuous on X(t) and if for each/9 > 0 there is a
summable function g" ff- R such that

g(t)>=lf(x,t)[

whenever x X(t) and Ix] -< p. If f is a normal integrand on R x , Lemma 7.1 gives
us

inf {I(x)" x } f inf {f(x, t)" x Rn}.dt.
./

8. Dual formulations. Let us evaluate the dual functional when the primal cost
has the form

C(x, u)=e(x(O),x(l))+ f(x(t), u(t), t) dt

where e’RZ" and f’R"+’x- is a normal integrand which majorizes a
summable function whenever x is essentially bounded and u is summable, and the
integral is finite for some (x, u) x. We define

H(a, q, z)= e(x(O), x(1))-ao x(0)-al x(1)+ f [f(z(t), t)-q(t), z(t)] dt

where z (x, u) lm, q wl,, m, and a (a0, a) R" R ". Corresponding
to e and f, we have the conjugate functions e*(a)-inf {e(b)-a. b" bR+’} and

f*(q) f inf {f(z, t) q(t). z" z R "+"} dt.

The integrand of f* is measurable by Lemma 7.1 and the fact that the sum of normal
and Carath6odory integrands is normal [51, Prop. 2M]. By these definitions, the
following inequalities are clearly satisfied"

e*(a) +f*(q) <- inf {H(a, q, z)" z Y} _-<inf {H(a, q, x, u)" x c, u }.
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DUAL APPROXIMATIONS IN OPTIMAL CONTROL 437

Now set E(x)=e(x(O),x(1))-ao. x(0)-al, x(1) and for fixedu define

I(x) f f(x(t), u(t), t) at.
J

We assume that for each fixed u where the domain of I in is nonempty,
there exists an element of u’s equivalence class such that the hypotheses of Lemma
7.2 are satisfied. Referring to the discussion after Lemma 7.2, it is also assumed that
for this element of u’s equivalence class, we have the identity inf {E(x)" x 5?} e*(a).
Then Lemmas 7.1 and 7.2 give us:

inf {H(a, q, x, u)" x c, u }= e*(a) +inf {H(a, q, x, u)" x &eT, u }

=e*(a)+f*(q).

Combining these relations, it follows that

e*(a)+f*(q)=inf {H(a,q, z)" zY}.

We say that (P) has a pointwise representation if this equality holds for every a R2n

and q ,1 x.
LEMMA 8.1. If (P) has a pointwise representation, then for all p ,

L(p)=e*(a)+f*(q)(8.1)

where

(8.2)

and

q(t) (P’(t) + A(t) rp(t))B(t)rp(t)

p(0)a=
-p(1)]

Proof. Starting with the definition of L and integrating by parts,

L(p) =inf {H(a, q, z)" z 9f}

where a and q are given above. The conclusion follows immediately.
Remark 1. Rockafellar [47] uses (8.1) to define L(p) when p is absolutely

continuous. Since the dual solution may be discontinuous, he shows that the dual
function can be extended to the space of functions with bounded variation.

We now examine four problems which will be solved in 11.
Problem I.

minimize [x(t)2 + u( t) 2] dt

subject to

x’(t) u(t), u(t)<- a almost everywhere,

x(0)=c, (x, u)Y.

Here a and c are given scalars. Defining the functions f:R2 ff/ and e:R2 by

f(x, u, t)= {1/2(x2+ u2) if u =< a,
ifu>a
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438 WILLIAM W. HAGER AND GEORGE D. IANCULESCU

and

we can write Problem I as

minimize

subject to

j0 if x c,
e(x, Y)

ifxc,

e(x(O), x(1))+ I f(x(t), u(t), t) dt

x’(t) u(t) almost everywhere.

If ao and a are given scalars and u is a fixed element of , let us define

E(x)=e(x(O),x(1))-ao. x(O)-a,, x(1),
and

I(x) | f(x(t), u(t), t) dr.
3-

If the domain of I is nonempty, then there exists an element of u’s equivalence class
such that X(t)= R for every e ff where X(t) is introduced in 7. Hence (7.1) and
the pointwise interiority assumption are satisfied trivially. Likewise, (7.2) holds since
f(.,., t) is continuous on its effective domain. Finally, it is easy to check that
inf {E(x): x e 5}=e*(a). Therefore, by the discussion at the start of this section,
Problem I has a pointwise representation, and by Lemma 8.1, the dual function is

L(p) e*(p(O),-p(1))+ f*(p’, p)

for every p s. The conjugate functions e* and f* are easily evaluated"

e*(x, y)= {-cx if Y 0- if y s 0,

f*(p’, p) f l(p’(t), p(t), t) dt,
.I

l(x, y, t) 1/2[x2 + y2] if y =< a,
[-[x2+ a(2y- a)] if y > a.

Although the dual problem is to maximize L(p) over pc, Theorems 3.1 and 4.1
tell us that we only need consider p . Since e*(x, y) =- when y 0, we can also
impose the explicit dual constraint p(1)= 0. In summary, the dual of Problem I can
be written

maximize -{cp(0)+ I l(p’(t),p(t),t)dt}
Next let us consider

Problem II.

minimize

subject to

subject to p(1) 0, p e .
Ix(t)2 + u(t) 2] dt

x’(t) u(t), u(t) <- a almost everywhere,

x(t)<=b forallte-,x(O)=c,(x,u)eY;
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DUAL APPROXIMATIONS IN OPTIMAL CONTROL 439

where c < b. Again, defining the functions f" R 2 X ff" --/ and e" R 2 ...)/ by

f(x, U, t) !!X2+ if u <-_ a and x <= b,
if u> a or x> b

and

e(x, y) {O if x c and y <= b,
if x c or y> b,

we can cast Problem II in the form

minimize e(x(O), x.(1))+ f f(x(t), u(t), t) dt
,I

subject to x’(t) u(t) almost everywhere.

Let us define E and I as we did for Problem I. If the domain of I is nonempty,
then there exists an element of u’s equivalence class such that X(t) ={x R: x=< b}
for every t. Since ={(t,x)SrR’x<b} is an open subset of -xR, the
pointwise interiority assumption holds. To verify (7.1), suppose that x , x(0)= c,
and x(t)<= b for each . Then the sequence {Xk} defined by

(t) x(t)

lies in 5z and lim E(Xk)= E(x). Hence (7.1) holds. Since f(.,., t) is continuous on
its effective domain, (7.2) is satisfied. Again, it is easy to see that inf {E(x)’x 5}
e*(a). By the discussion at the start of this section, Problem II has a pointwise
representation. Applying Lemma 8.1, the dual function can be expressed

L(p) e*( p(O), -p(1)) +f*(p’, p)
for each p 1 where

y)=-(cx+by) if y=>0,e*(x,
if y<O,

f*(p’, p) f [lx(p’(t), p(t), t)+ lu(p’(t), p(t), t)] dt,
.I

1/2X
lx(x, y, t)= 1/2b(2x- b)

l,(x, y, t) 1/2a(2y- a)

if x _-< b,
ifx> b,

if y<-a,
if y>a.

Although the dual maximization is over p o, it follows from our regularity analysis
15] that there exists a Lipschitz continuous dual solution to Problem II. Consequently,
the dual problem reduces to

maximize -{cp(0)- bp(1)+ f [Ix(p’(t), p(t), t)+ l=(p’(t), p(t), t)] dt}
.I

subject to p(1)_-<0 p

The derivation of the dual for the final two examples is similar to Problems I and
II so we just summarize the conclusions. The primal version of the next problem is
found in [24] and [33].
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440 WILLIAM W. HAGER AND GEORGE D. IANCULESCU

Problem III.

minimize

subject to

o’
[X t) + x(t) + .OOS u( t)]

x (t)= x2(t), x(t) =-xz(t)+ u(t) almost everywhere,

xl(0) =0, xz(0) =-1, (xl, x2, u) E Y.

In addition, two different state constraints are considered:

Case A. Xz(t) _-<

Case B. x.( t) <=
where a(t)--2(1-2t)2-1/2 (see Figs. 1 and 2). In Case A the dual is

maximize (p2(O)+p2(1)- f l(p’(t), p(t), t) dt}
subject to pa(1) 0, p2(1) =< 0, p (pl, P2)

where

50z2+ +a(t)(fl-a(t))

and/3 x + y-z. In Case B the dual is

where

if/3 <= 2a(t),
if/3 > 2a(t)

maximize

subject to

{p2(O)+p(1)- f l(p’(t), p(t), t)dt}
Pa(1) =<0, p2(1) =0, P=(Pl, P2)

l(w,x, y, z, t)= {50z2+-](w2+2)50z +1/4t + (t)(w- (t))

and =x+ y-z.

if w -< 2a (t),
if w > 2a(t)

b.i

_.i B’0

4-0

b.l

,5.,, II ,’.,. ,’ ," .’.o
..i \

-.2 ’ t</i- ’,, /
’)

I-- -.6

i!

FIG. 1. Solution to Problem IIIA. FIG. 2. Solution to Problem IIIB.
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DUAL APPROXIMATIONS IN OPTIMAL CONTROL 441

The primal version of the following problem is found in [56] (see Fig. 3).
Problem IV.

1{ )2 fOrminimize X2(1 + [Xl(t)2+ U(I)2] dt

subject to x (t) Xz(t), x. (t) u(t) almost everywhere,

x,(O) =-1, x(O) o,
x2(t)=<o forallt, (x,x2, u).

The dual is

maximize

subject to

-{b(p2( 1))-pl(O) + fz" l(p’(t), p(t), t) dr}
pl(1) O, Pa (t) +p (t) -> 0 almost everywhere,

P (Pa, P2)

where

l(w, x, y, z, t)=1/2[w2+ z2+.O5(x + y)],

1/2x2 if X > 20,6(x) [-o(X+o) if x< 20"

FIG. 3. Solution to Problem IV.

To conclude this section, let us examine the relations between solutions to the
primal and the dual problems. If q is related to pc through (8.2), and z:
is a measurable function such that

f(z(t), t)-q(t) z(t)=rain {f(z, t)-q(t) z: z e R "+m}

almost everywhere, we say that (p, z) is a rain-pair.
THEOREM 8.2. Ifp,Z=(X,U) is feasible in (P), and L(p)=C(z), then p is

optimal in the dual problem and z is optimal in the primal problem. Moreover, if p sg
and (P) has a pointwise representation, then (p, z) is a rain-pair and

(8.3)
-p(1) x(1)
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442 WILLIAM W. HAGER AND GEORGE D. IANCULESCU

Proof. The first part of the theorem, the optimality of p and z, is a standard
property of the dual functional. Let us consider the second half. Since M(z)= 0 and
(P) has a pointwise representation, Lemma 8.1 gives us:

e*(a)+f*(q) L(p) C(z) C(z)+(p, M(z)) H(a, q, z)

where the last equality comes from integrating by parts. Examining the definition of
H, (p, z) in a min-pair and (8.3) is satisfied. [3

If z is optimal in the primal problem, p is optimal in the dual problem, and
L(p)= C(z), then we say that (p, z) is an optimal pair. Hence the preceding theorem
states that an optimal pair (p, z) with pc M is a min-pair when (P) has a pointwise
representation. For p and w e M, 16t us define

q’(t) =q(t)+(w’(t))0
where q is given by (8.2).

THEOREM 8.3. If (P) has a pointwise representation, p and w M, and

(8.4) z=argmin{C()+(p,M())+((c,w),x): sc (x, u) e }

for some c R ", then

(8.5) f(z(t), t)-q’(t) z(t) =inf {f(, t)-q’(t) : R "+m}
almost everywhere.

Proof. Since (P) has a pointwise representation, we integrate by parts to get

min {C()+(p,M())+((c,w),x)a" sc (x, u)eY}=e*(a)+f*(q)

for some a R 2n. Since z attains the minimum, (8.5) holds.

9. Fundamental inequalities. Observe that estimating the error in Zh, the approxi-
mation to a primal solution introduced in 2, is essentially a parametric programming
problem in the parameter p . Defining

O(p) ={z e " L(p)=C(z)+(p,M(z))},

we hope that f(p) approaches a primal solution as p approaches a dual solution.
Fiacco and Hutzler 11 and Guddat 13] give good surveys of recent work on parametric
programs. Exploiting the structure of the dual functional, we now obtain an estimate
for the ,.2 error in Zh when the cost is strictly convex.

First, let us consider parametric programs in finite dimensions. We say that a
functional h:R .. R is uniformly convex if h is convex and there is an a > 0 with the
following property" For each x dom h, there exists z R such that

(9.1) h(w+x)>=h(x)+z w+ lwl2 VwR"

and

h(x+sw)-h(x)(9.2) lim z. w
s,O S

whenever (x + w) dom h. The scalar a is called the modulus of convexity, and we let
h’(x) denote any z satisfying the relations above. Suppose that {g" h A} is a collection
of lower semicontinuous proper functions where g’R

_
is uniformly convex with
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DUAL APPROXIMATIONS IN OPTIMAL CONTROL 443

modulus of convexity a independent of A A. Under these hypotheses, there is a
unique so(A) R" for which

g,(sc(A)) inf {g, (so): seeR "}

whenever A A.
LEMMA 9.1. Assume that A and I A. If x :- so(A), then

(9.3) alx- yl 2 -<_ g (y)- g (x)

for every y R". Conversely, if y := s() e dom ga, then

1
(9.4) gx (y)- ga(x) <--alg’ (y)- g (y)l 2

for each x dom g,.
Proof. Taking w y x, (9.1) implies that

(9.5) g(y)-g(x)>-_g’ (x) w+alwl2.

Let us assume that y e dom gx since (9.3) is trivial otherwise. Recalling that x minimizes
gx(. ), we have the standard inequality [28, p. 178]:

g, (x). (y- x) ->_ 0.

Hence (9.3) follows from (9.5).
Now consider (9.4). Since y minimizes g,(.) and xdom g,, we also have the

relation

g’(y)(x-y)>-O,

or equivalently,

(9.6) g (y). w-<_ (g, (y)-g (y)). w

where w- y-x. Interchanging y and x in (9.5) and combining with (9.6)gives us

g,(y)-gx(x)<- g’ (y) w-,lwl(g’ (y)-g’(y)) w-lwl.
Finally, utilizing the inequality

we get (9.4).

a. b <llal=/ lbl =,
=4a

Let us return to the cost functional defined at the start of 8, and impose the
following condition on the integrand:

UNIFORM CONVEXITY ASSUMPTION. For each -, f(., t) is uniformly convex
with modulus of convexity a independent of t.

We define a function g:Re(n/m) x -/ by the rule

(9.7) g(, A, t)= f(, t)- A .
Lemma 7.1 and the uniform convexity hypothesis imply that for each q 1,+,,, there
is a measurable function z" ff R"/" such that

g(z(t), q(t), t) =min {g(z, q(t), t): z R "+"}
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444 WILLIAM W. HAGER AND GEORGE D. IANCULESCU

almost everywhere. If II" denotes the 2 norm defined by

Ilzll <z, z>1/2,
we have:

THEOREM 9.2. Suppose that (P) has a pointwise representation, the uniform con-
vexity hypothesis is satisfied, and (p, z) is an optimal pair where p 1. Then

llz-z[I=--<L(p)-L(

for all rain-pairs (p, z).
Proof. Since (P) has a pointwise representation, Lemma 8.1 yields

L(p) e*(a)+f*(q) and L(p)= e*(a)+f*(q).

Holding fixed, we apply Lemma 9.1 to g from (9.7) taking it =q(t) and/z =q(t).
Integrating (9.3) over and utilizing Theorem 8.2,

OgIIZ--ZhII2 f [g(z(t), qh(t), t)--g(zh(t), qh(t), t)] at
.I

f [g(z(t), q(t), t)--g(zh(t), qh(t), t)] dr+ f z(t). (q(t)--qh(t)) dt
.I

f*(q)-- f*(qh) +<Z, q--qh>.

Integrating the last term by parts,

(z, q--qh) x(O)" (ph(O)--p(O))--X(1)" (ph(1)--p(1))

since M(z) 0. By Theorem 8.2,

(Z, q--qh> <- e*(a)- e*(ah).

Combining these relations, the proof is complete. [-1

THEOREM 9.3. Under the hypotheses of Theorem 9.2, we have"

1
L(p) L(p) <- --a q qi[]2

for all p which agree with p(t) at 0 and 1 where q is given by (8.2) and

(9.8) ql(t)=(p(t)+A(t)Tp(t))B(t)Tp,(t)

Pro@ As in the last theorem’s proof, we hold fixed and apply Lemma 9.1 to
g(.,., t) taking ql(t) and/x q(t). Integrating (9.4) over 3- and utilizing Theorem
8.2,

1
4--gllq-q, ll2_> [g(z(t), ql(t), t)-g(zl(t), q(t), t)] dt

f*(q)-f*(qi) + (z, q- qi) f*(q)-f*(qi) g(p)- L(p).

The last step comes from Lemma 8.1 and the fact that p =p at the ends of 5r. The
preceding step utilizes the relation (Z, q-qt>=0, which is deduced from the identity
M(z) O. [q

Unfortunately, this upper bound from L(p)-L(p) is too coarse for the error
estimates in 10. Since p’ appears in the first component of q, and the derivative of
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DUAL APPROXIMATIONS IN OPTIMAL CONTROL 445

the optimal dual multiplier is often discontinuous for state constrained problems,

Ilq q, ll o(1)

when P1 lies in typical piecewise polynomial spaces. Hence the upper bound is expressed
in terms of the smoother variable q,O introduced in 8. Given K" R"x $-R and
x 0-- R ", let K(x) $- R be defined by

K(x)(t)=K(x(t),t).

THEOREM 9.4. Suppose that (P) has a pointwise representation, the uniform con-
vexity hypothesis holds, K is twice continuously differentiable onR if, and for each-, K(., t) is convex and

dom f(., t) c {y R: K(y, t) <- 0} x R".

If (p, z) is an optimal pair with p sg.and (8.4) holds for some to sg, then

1
(9.9) L(p)-L(pl)<--a llq-qTll2-(,,K(x))

for all PI that agree with p at the ends of if, and for all nondecreasing where

(9.10) q t) ql( t) ( G( t) ru’t t))0

G(t) VxK(x(t), t), and qi is defined in (9.8).
Proof. By Theorem 8.3,

(9.11) f(z(t),t)-q(t) z(t)=inf {f(,t)-q’(t) so: sCaR "+m}
almost everywhere. If (Pi, zi) is a min-pair, we have the trivial relation

(9.12) f(z,(t),t)-qT(t), z(t)>=inf{f(,t)-q"/(t) :: R"+"}

almost everywhere. Lemma 9.1 with , q’(t) and/z q’(t) gives us

inf {f(:, t)-qT(t), so: : Rn+"}-inf {f(, t)-q(t) :: :Rn+"}

1 12(9.13) >= (q’(t)-q"/ (t)) z(t)---4-dalq’(t)-q7 (t)

1 q 2=(q(t)-q,(t)). z(t)--a (t)-q, (t)l +(to (t)-to’(t)) x(t)

where to (t) := -G(t)7u (t). If 0 R" R is convex and differentiable and (y) -<_ 0
for some y R", the convexity inequality

(y) _-> (x) + ’[x](y- x)

implies that

(9.14) q(x) <= q’[x](x- y).

Subtracting (9.11) from (9.12), utilizing (9.13) and (9.14) and integrating over if, we
get

1
f*(q, )-f*(q) >= (q q,, z)+(uz, K x)) -dIIq q’ 2.
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446 WILLIAM W. HAGER AND GEORGE D. IANCULESCU

Integrating by parts, (q-qi, Z)"-0 since M(z)= 0 and Pl =P at the ends of 3-. Finally,
by Lemma 8.1,

L(p) L(pl) f*(q) f*(qz).

Collecting results, the proof is complete.
If Ph 5h eg and

we have the trivial relation

L(ph) =maximum {L(p): pc 5h},

L( i)) L( ph) <- L( p) L( pI

for all p1 9h and p e dom L. Therefore, if (p, z) is an optimal pair, and the hypotheses
of Theorems 9.2 and 9.4 hold,

(9.15)  llz- z ll2 L(p)- L(ph) _<-- 4-llq q’ 2- (,, K(x))

for all p1 e 5h which agree with p at the ends of 3-, and for all nondecreasing u1 e sgs.
Moreover, if

then

(9.16)

where

q" q( t) ( G( t) Tu’( t))0

{ 6q’(t) + G’(t) T 6u(t) + A(t) T 3p(t)q() q
B(t) T p( t)

6p(t)=p(t)--p(t), 6u(t)=u(t)--v,(t), 6q(t)=6p(t)--G(t)T6u(t).

10. Error estimates. We now estimate the error in piecewise polynomial approxi-
mation. Given an interval J c R, let k(j) be the space of polynomials defined on J
with degree at most k. Associated with a collection of points from fir:

0 t0< tl <’’’<iN’- 1,

we have the spacing parameter

h maximum { tj tj_l: ] 1, 2,. ., N},

and we let h denote the n-fold Cartesian product of sets of functions f" 3- R whose
restriction to each interval J=(t-l, t) lies in k(j). The points {to, fi,’", tu} are
called the mesh.

For any interval J c R, we let W’(J) denote the set of essentially bounded
functions f: J - R", and for k _-> 1, Wk’(J) W’(J) is the subspace of functions with
k-1 Lipschitz continuous derivatives. The space WS’(3-) is abbreviated W’. The
main results in this section are stated below:

THEOREM 10.1. Suppose that (p, z) is an optimal pair, u satisfies (5.4), and (9.15)
holds. If c f-) 1h 6fh, we have

llz- zll= L(p)-L(ph) O(h2)
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DUAL APPROXIMATIONS IN OPTIMAL CONTROL 447

provided the following conditions hold:
(i) x and p- GTu)
(ii) p W1’, u W1’ is nondecreasing;
(iii) K(x)e W2’ and K(x)<-O.
Earlier 14] we observe that an optimal pair is often quite smooth except at points

where constraints change between binding and nonbinding. Let I"k’ denote the
collection of functions f Wk-l’ for which there isM > 0 and scalars 0 So < sl <" <
SM 1 such that the restriction of f to each interval (sj-l, sj) has k-1 Lipschitz
continuous derivatives.

THEOREM 10.2. Suppose that (p, z) is an optimal pair, , satisfies (5.4) and (9.15)
holds. If c fq 2h c h, we have:

llz- ZhlI2<=L(p)--L(ph) O(h3)
provided the following conditions hold:

(i) x and p GT,) I7V3,, G V3’, A ;
(ii) p e ff2,, u is nondecreasing;
(iii) K(x)e W2’ and K(x)=<0;
(iv) the sets

T { 6 -: Ki(x(t), t) < 0}, j=l,2,...,s,

are each composed of a finite number of intervals, and there exists > 0 such that

u(t)>/3 VteTi, j=l,2,’",s.

These theorems are based on Lemmas 10.3, 10.4 and 10.5 appearing below. First,
let us recall a result concerning polynomial interpolation. For any interval J c R and
any f e W’(J), let Ifb denote the essential supremum of If(t)l over eJ. Then [8]
and [55] exhibit various linear maps I: W’ (J) k(j) for which

(10.1) <= ctx(J)s-mlf(s)b
J

whenever m<=s<=k+l and fe W’(J) where /./,(J) is the measure of J and c is a
constant independent of f and J. (Remember that the subscript 1 on the space WI’ (J)
means that the elements of the space map J to R .) Throughout this section, J is an
interval and c denotes a generic constant. The operator I is usually called the interpola-
tion operator, and we write fx rather than I( f); the function fi is called the interpolant
of f. For illustration, the following operator satisfies (10.1) when s >= 1: Let fx be the
unique polynomial of degree at most k that agrees with f at k + 1 evenly spaced points
on J.

Suppose that 0 to < 81 <" < tN 1 is a mesh on - and f: - R, and the
restriction of f to each interval J=[tj_, tj] lies in W’ (J). If I is an interpolation
operator satisfying (10.1), we let fI :3 R be the function composed of interpolants
of f over each interval J [t-l, t]. If fz W’’, (10.1) implies that

d
(10.2) -(f-f) <- ch-mlf()l-

whenever m < s < k + 1 and f W Finally, defining

(f, g),( _f, g(t) dr(t)

for g c and f , we have:
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448 WILLIAM W. HAGER AND GEORGE D. IANCULESCU

LEMMA 10.3. Suppose that J c R is an interval, f WI’ (J), g e W’ (J), g <- O,
and

(10.3) f’(t)g(t) =0 almost everywhere.

If the interpolation operator I satisfies (10.1), then

(f,, g)) <- clz(j)alf’)blg2b.
Moreover, if f W’ (J) and k 1,

(fz, g)(J) c(j)41f2)blg2)b.

Proof. If g(t) > 0 almost everywhere, (10.3) implies that f is constant. Thus, f f
by (10.1) and

(fl, g)(J)=O.

Now, let us suppose that g vanishes at in the interior of Z The relation g 0 implies
that g’()= 0. Expanding in a Taylor series about yields:

IglJ (J)21g2)lj.

Utilizing (10.3), we get"

(fz, g)J (fz f, g)J) (J)lf f’lJIglJ (J)31g2)lJIf f’lJ.
Relation (10.1) completes the proof.

LEMMA 10.4. Suppose that J R is an interval, and the interpolation operator I
acts on f J R to produce the polynomial of degree at most k that agrees with f at k + 1
distinct points on Z Then we have:

d k

Ifk+ldt[(fg)I-fg,] c(J) k+a- E -)lJIg )lJ
J i=0

whenever 0 <= m <= k + 1 and f’, g WI’ (J).
Proof Since the interpolant is expressed in terms of function values,

Hence (10.1) gives us:

t fgI fg,

By Leibniz’s formula

we see that

ct(J)+’-l(fg,)+’)b.
J

(fg)(m)
m!

f(i)
i=o i!(m- i)!"

g(m-i),

k+l

I(fg,)(+)lj <- c Y If(k+l-i)g]i)lj.
i=0

Since g W’, (10.1) implies that

Igi)b <= clg(i)b

for all O<=i=< k. Furthermore, gk+l) is identically zero since g is a polynomial of
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DUAL APPROXIMATIONS IN OPTIMAL CONTROL 449

degree at most k. These relations and the inequality

Ifgb <- If high
complete the proof, l

LMMA 10.5. If J R is a closed interal and f WI’ (J), then the quadratic
agreeing with f at the two ends and the midpoint of J is nondecreasing if

(J)lf"b2 minimum {f’(t): t6J}.

Proof Since a nontrivial interval can be mapped by an affine transformation onto

if, there is no loss of generality in assuming that J ft. Let I be the interpolation
operator described by the lemma. Since I is linear and g =g if g is constant, we can

also assume that f(0)= 0. In this case, observe that

ft (t) 4f()t(1 t) + f(1)t(Zt- 1).

The derivative of this quadratic is linear and nonnegative on ff if and only if it is

nonnegative at 0 and 1. Omitting the arithmetic, f; is nondecreasing if and only if

(10.4) f(1) f() f(1).
Since f is continuously differentiable, there exists e ff such that

f’() f(1).

Suppose that (the case > is treated in a similar manner). The identity
/

f,,(y()=ky()+ t) dtd,
d0

and the bound

I/2 I()r If"(t)l dt d <- lf I

imply that

(10.5) If(1/2)-1/2f( 1 )l < -1 f"l
Combining (10.4) and (10.5), fl is nondecreasing if

If"l<=2f(1)= 2f’(r),

a condition clearly satisfied under the lemma’s hypothesis. E]

Now, let us prove Theorem 10.1. Let (pl, ui) be the continuous piecewise linear
function which agrees with (p, ) at each mesh point (except that ui(0)= u(0/) and
ui(1)= u(1-)msee the remarks at the end of 5). Relation (5.4) and the identity

L(p) C(z) + (p, M(z))

imply that (u,K(x))>-_O. Since z, is nondecreasing and K(x)<=O, we conclude that

z,’(t). K (x(t), t) 0 almost everywhere.

Therefore, by Lemma 10.3 and the assumed smoothness properties,

(u,,K(x))<--O(he).
Furthermore, by (10.1),

Ipl O(h) la’l.
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450 WILLIAM W. I-lAGER AND GEORGE D. IANCULESCU

Finally, observe that q can be expressed as follows:

(10.6) 8q (p- GTu)--(p-- GT"v)z + GTvz -(GT"v)z.
Since the operator I is linear, Lemma 10.4 and the assumed regularity give us

16q’l O(h).

Relations (9.15) and (9.16) complete the proof. [-1

The proof of Theorem 10.2 is similar. Recall that the sets T defined earlier are
each composed of a finite number of intervals. Let {rl, r2," , rk} denote the union
over ] of boundary points in T, and let {rk/l, , rl} be the points separating intervals
where x3), (p- G)3), G3), p2) and v2) are essentially bounded. We form an inter-
polant (Pz, vI) by pasting together local interpolants of (p, u) over each grid interval
J where the local interpolants are defined as follows:

(1) If J f3 {rj} is nonempty, interpolate linearly between function values at the
ends of J.

(2) If J fq {rj} is empty, use quadratic interpolation based on function values at
the ends and middle of J.

By assumption,
uj(t) >fl >0 Vt

j=l,2,"" ,s. Hence, when h is small enough, Lemma 10.5 asserts that (vI)j is
nondecreasing on all mesh intervals which intersect the complement of T. On the
other hand, we observed in the proof of Theorem 10.1 that (v, K(x)) =0. Since v is
nondecreasing and K(x)=< 0, it follows that vj is constant on intervals contained in T.
Therefore, (uI)j vj on all mesh intervals contained in T, and vz is nondecreasing if h
is smallenough.

By (10.1) and the assumed smoothness properties,

16Pb O(h2) 16vb
for all mesh intervals J such that J f){rj} is empty, and

Ipb O(h) 181
otherwise. Similarly, the identity (10.6) and Lemma 10.4 give us

16q’b O(h2)
if J f3 {rj} is empty, and

18q’b O(h)

otherwise. And by Lemma 10.3,

if J f3 {rj} is empty, and

(//i, K(X)),(j) " ]j,(j)4

(vz, K(x))a) <- Cla,(J)

otherwise. Since the measure of mesh intervals intersecting {o)} is at most lh, relations
(9.15) and (9.16) complete the proof. 13

For problems without state constraints, the analysis is much easier. In [18] we
give a simple treatmeflt of quadratic cost problems with control constraints. Although
smoothness considerations limit the f2 convergence rate to 1.5, higher rates are
achieved when the grid points are free parameters in the optimization process--see 14].
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DUAL APPROXIMATIONS IN OPTIMAL CONTROL 451

11. Algorithms. Section 10 establishes the convergence of dual finite element
approximations to constrained control problems. We now consider the practical side:
How is the dual problem solved? When the dual optimization is unconstrained, steepest
descent, conjugate gradient and quasi-Newton methods can be applied, but the cost
functional is ill-conditioned, and computing time on an IBM 370 computer can be one
hour for simple problems! Our main objective in this section is to present a new
algorithm which quickly solves the dual problem. We also examine the tightness of
the error estimates that were established in 10.

To illustrate the conditioning problems that can arise when standard optimization
techniques are applied to the dual problem, the following experiment is cited: Consider
the approximation (Dh) to the dual of Problem II from 8 where the approximating
space 5h is a space of linear splines on a uniform mesh (see [8], [38], or [55] for a
discussion of piecewise polynomial spaces). The time needed to solve this dual problem
using" 1000 basis elements (which gives 5-place accuracy), an IBM 370 model 3033
computer, the IMSL conjugate gradient routine, the FORTRAN IV (H) optimizing
compiler and the initial guess zero, is 1 hour. We now develop an algorithm which
solves this dual problem in 1 second.

For the dual problems in 8, observe that the dual integrand at time is chosen
from a finite set. For example, the dual integrand in Problem I is l(x, y, t)=1/2[x2+ y2]
if y =< a and l(x, y, t) 1/2Ix 2-- a(2y- a)] if y > a. In general the dual integrand is
expressed in terms of a partition {1,"’ ", k} of R2"X or and integrands 11,’’ ", lk
defined on R2nx Or. And the integrand l(p’(t), p(t), t) of the dual functional satisfies

(11.1) l(x, y, t)= l(x, y, t)

whenever (x, y, t) i. For Problem I, we have:

ll(X, y, t) 1/2Ix2 + y2], 12(x, y, t) 1/2Ix2 + a(2y- a)],

l {(x,.y, t) 6 R R Or: y_<a}, l12 {(x, y, t) e R x R x Or: y>a}.

In formulating our algorithm for the dual problem, we assume that the dual
function has the form

f l(p’(t),p(t),t) dt

where 4"sR U {-m} and satisfies (11.1) for some partition {1," "’, k} of
Rznx Or and integrands 11,"’, Ik defined on Rznx Or. Now, given a partition T=
{T1," , Tk} of Or into measurable sets, let us define the functional

(11.2) M(p, T)= b(p)+ f li(p’(t), p(t), t) at.
i=1 Ti

Any p induces a partition { T1," , Tk} of Or where T/if and only if

(p’(t), p(t), t) e .
Let S be the map that acts on p to produce the associated partition of Or. From these
definitions, we see that

L(p)=M(p,S(p)).

For the examples in 8, observe that the elements of S(p) are measurable for each
pc . More generally, it can be shown that the elements of S(p) are measurable if
"the multifunctions YI,""", Ytk are measurable--see [51]. Henceforth, we assume that
the elements of S(p) are measurable for every p
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452 WILLIAM W. HAGER AND GEORGE D. IANCULESCU

Letting K c denote a convex set of dual feasible functions which contains a
solution to the dual problem, our algorithm for solving (D) is the following: Starting
from some pe K, we generate a sequence pl, p2,... (we hope) converging to a dual
solution where

pj+l arg max {M(p, TJ): pK}, TJ: S(pJ).

There is an analogous scheme for the dual approximation (Dh). If {1,""", 6N} is a
basis for the finite element space Yh C d, we define

Mh (a, T) M , ai6i, r and g h a e R1. 2 lili e g
i=1 i=1

Our scheme for solving (Dh) starts from some a Kh, and constructs iterations
al, a2,.., by the rule

(11.3) aJ+l=argmax{Mh(a, TJ): ozegh}, TJ:=S OlJll
i=1

We remark that if Mh( Tj) is Gateaux differentiable and a/1 satisfies (11.3), then
the following standard inequality holds [27, Thm. 1.1.3]:

OMh

[oj+1, T](a a+1) _<_ 0 /a K h.

This algorithm has been tested on the problems presented in 8. Experimentally,
the convergence is fast; moreover, the iterations seem to converge from any starting
point a. For example, starting from the initial guess a= 0 in Problem I and using
the linear spline basis mentioned earlier, the relative change IOj+l- Ol.’il/lOl’il is reduced
to 10-1 after 5 iterations, independent of the number of basis elements; each iteration
involves solving a symmetric, tridiagonal system and is easy to implement. The
FORTAN code for Problem I has about 60 statements. Later we show under appropri-
ate hypotheses that the scheme (11.3) is quadratically convergent near a solution to
the dual problem (Dh).

First we observe that any fixed point for the iterations (11.3) solves the dual
maximization problem (Dh). This result is based on the rule for differentiating under
the integral sign. Below, W1’ denotes the space of Lipschitz continuous functions
p: ff R with the norm

Ilpllw.= essential supremum {Ip(t)l+lP’(t)l: }.

LEMMA 11.1. Suppose that T -is measurable and g: RTM R is continuously
differentiable in its first 2n arguments on R2 . If G: WI’- R is defined by

G(p) f g(p’(t), p(t), t) dt,
T

then the Frdchet derivative of G is

-P P](q)= 7-[Vlg(p’(t)’p(t)’t)q (t)+V2g(p’(t),p(t),t)q(t)]dt

where V g and V.g denote g’s gradient with respect to its first n and second n arguments
respectively.

Note that every dual integrand presented in 8 is continuously differentiable. In
Appendix 2 we show that this continuity property holds for a broad class of problems.
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DUAL APPROXIMATIONS IN OPTIMAL CONTROL 453

To prove that any fixed point of the iterations (11.3) solves the dual maximization
problem (Dh), let us assume that both the integrands li and the composite integrand
are continuously ditterentiable in their first 2n arguments on Ran and the function

b in (11.2) is differentiable. Defining the sets

li(t {r R 2n" (r, t) r’i}

we assume moreoVer that

closure i(t) closure (interior i(t))

for each -. Hence, if r i(t), there exists a sequence {r} interior i(t) converging
to r, and since l(., t)= l(., t) near r, we have

Vli(r, t) V/(r, t).

Taking the limit as k goes to infinity, the continuous differentiability assumption implies
that

(11.4) Vii(r, t)=VI(I, t)

for every r i(t). Now, let us define

Lh(ce) L olil]l

If each q’i lies in W1’, then Lemma 11.1 and (11.4) yield

oth-=cgMh-[/3] ---a[/3, T] where T=S /3,q,
i=1

This observation, the concavity of the dual function and the following result combine
to show that any fixed point of the iterations (11.3) solves (D,).

TI-IZorzM 11.2. Suppose that G" K x K --> R where K is a convex subset of a vector
space, y K, and G(x, x) and G(x, y) are Gateaux differentiable functions of x at x y
which satisfy

oG(x, x) oG(x, y)
OX x=y OX x=y

If G(x, x) is a convex function of x K and y minimizes G(x, y) over x K, then y
minimizes G(x, x) over x K. Conversely, i]’ G(x, y) is a convex function of x K and
y minimizes G(x, x) over x K, then y minimizes G(x, y) over x K.

Proof. First assume that G(x, x) is a convex function of x K and y minimizes
G(x, y) over x K. Since G(., y) is Gateaux differentiable at y and K is convex, we
have the standard variational inequality [27, Thm. 1.1.3]:

(11.5)
OG(x, y)

(x- y) >= 0 fx K.
OX x=y

The hypotheses for the gradient and (11.5) imply that

(11.6)
OG(x,x)

(x-y)>=O lxK.
OX x=y

Since G(x, x) is convex, it follows from (11.6) and [27, Thm. 1.1.3] that y minimizes
G(x, x) over x K. Conversely, let us assume that y minimizes G(x, x) over x K
and G(x, y) is a convex function of x s K. Again, by [27, Thm. 1.1.3], the variational
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454 WILLIAM W. HAGER AND GEORGE D. IANCULESCU

inequality (11.6) holds, and by the hypotheses for the gradient, we conclude that (11.5)
is satisfied. Since G(., y) is convex on K, (11.5) implies that y minimizes G(x, y) over
xK. [3

Before giving a convergence proof for the iterative scheme (11.3), let us examine
Problems I and II to help motivate our theorem’s hypotheses. Let h be the space of
linear splines defined on a uniform mesh where h I!N is the distance between grid
points, and let {qo,""", qN} be the usual basis for h sketched in Fig. 4. Applying
Lemma 11.1 to the dual functional for Problem I, we have

(11.7) --oLh(p)= IoP’(t)@,(t) dt+ f p(t)Oi(t) dt+a f @i(t) dt
0ti Tl(a TE(a)

for i= 1,...,N where

N

p( t) Y aiOi( t),
i=0

Tl(a) {t 6 -: p(t)<=a}, Tz(a) { if: p(t) > a }.

The partial derivative of -Lh with respect to a0 is c plus the terms on the right side
of (11.7) where c is the state’s initial value in Problem I. If p(t) equals a at just a
finite set of (0, 1) and 0 tl(a) < h+l(a) <" < tr(a) 1 denote these where p(t)
is a union {0, 1}, then we can write

fT p( t)d/i( t) dt + a fr
Thus for/3 in a neighborhood of the fixed coefficients {ao,’’’, aN}, the gradient of
Lh evaluated at/3 has the form g(/3, T(/3)) where T(/3) is a vector with components
tl(),’", tr(). Our main observation is the following: Since the q(t) are continuous
functions of and p(ti(a))=a for j=/+l,... ,r-l, we have:

Og,(a, T())

More compactly, this result can be stated

(11.8)
Og(a, T(B))

=0.
0/3 =

This identity also holds for state constrained problems, but the argument is a little
different. For Problem II, the terms in the gradient of the dual function corresponding
to the state constraint are

f tj+l(X) f tj+l(C)
(11.9) Y p’(t)O;(t) dt+ , b d/(t) dt

jeven dt( ]odd dt](

where the two sums above correspond to intervals where p’(t) b and p’(t)> b
respectively. Since p is a linear spline, p’ is piecewise constant. Hence, if p’(t) b for

1.0 N@

o t ti. ti+ tN_ N

FIG. 4. Linear spline basis.
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DUAL APPROXIMATIONS IN OPTIMAL CONTROL 455

every 9-, then tj(/3) is independent of/3 in a neighborhood of a. In summary, even
though the integrands in (11.9) are discontinuous functions of t, the identity (11.8)
still holds since tj(/3) is independent of/3 in a neighborhood of a. With this motivation,
we now present our local quadratic convergence result:

THEOREM 11.3. Suppose that g R x R -> R andK is a nonempty, closed convex
subset of R, and consider the problem of finding a K such that

(11.10) g(a, a). (/3- a) >_-0

for all fl K. We assume that there exists a solution a* to (11.10) and that the following
conditions are satisfied:

(1) g(a, ) is a continuous function of a and fl near a*, and og(a, fl)/Oa exists
and is a continuous function of a and fl near a*.

(2) g(a*,. is twice continuously differentiable near a* and the first derivative
vanishes at a*.

(3) EitherK R and og(a, a*)/Oa[=, is nonsingular, orK is an arbitrary closed
convex subset of R and og(a, a*)/Oal=, is positive definite.
Then there exists a neighborhood of a* with the following properties: For each
there is a unique sequence {a 1, ct 2, } K f’) aV such that

(11.11) g(a+1, ai) (/3-a+1)>_-0

for all K and j O, 1,.. , and for some constant c independent of j and ao J’, we
have:

[tj+l t *l cl ).

Proof. By Robinson [43, Thins. 2.1 and 3.1], there exist neighborhoods V/l and
2 of a* such that the following problem has a unique solution a d for each y
find c K such that

(11.12) g(a, y) (fl-a)>-O

for all/3 K. Shrink 3/’2 so it is contained in a bounded region where g(a*,. is twice
continuously differentiable, and let O(y)e d denote the solution of (11.12) corres-
ponding to y aY2. By [43, Thm. 2.1] there also exists a constant/x such that

(11.13) I(y)-(a*)[-< lg(c *, y)-g(a*,

for all y 2. Expanding g(a*,.) to first order about a* and using the integral form
for the remainder term, our second hypothesis implies that

(11.14) Ig(a*, y)-g(a*, c*)l <_- c[y- a*[2

for some constant c independent of y 2. Combining (11.13) and (11.14), we have
for a 2:
(11.15)  *12
Thus if a is sufficiently close to a*, the entire sequence {ay} given by aj+l=

lies in W’I ff2 and (11.15) holds.
Observe that the inequality (11.10) is essentially the relation (11.6) characterizing

the solution to the dual approximation (Dh) while the iterations defined by (11.11)
correspond to our scheme (11.3). The inequality (11.13) is a crucial step in our proof
of Theorem 11.3. In Robinson’s study [43] of the implicit function theorem for
inequalities, he establishes this relation in a very general setting whenever the "strong
regularity" assumption is satisfied. Moreover, in finite dimensions it follows from his
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456 WILLIAM W. HAGER AND GEORGE D. IANCULESCU

Theorem 3.1 that the strong regularity assumption holds under hypothesis 3 of our
theorem. Hence a more general version of Theorem 11.3 can be established where
R is replaced by a normed linear space and hypothesis 3 is replaced by the strong
regularity assumption.

Now let us study the tightness of the error estimates established in 10. Since
the solutions to Problems I and II from 8 can be determined analytically (see Appendix
3), the error in finite element approximations can be computed precisely. Taking a 1
and c=(1 +3e)/2(1-e) in Problem I, the optimal control is 1 for te[0,1/2]. Thus the
constraint u(t)<= a is binding for the optimal control when 0 -< t-<_1/2. Taking a 1,
b=2/-/(1-e), and c=(5e+3)/4(1-e) in Problem II, the optimal control is a for
e [0, 1/4] and the optimal state is b for e[-, 1]. The solutions for these choices of

parameters are shown in Figs. 5 and 6.
In 10 we give the estimates

O(h)IIx-x"ll+llu- u ll 0(h3/2)
where (x, u) solves the primal problem, (x h, u

for linear elements,
for quadratic elements,

h) is the finite element approximation,
and I1" is the 2 norm. Comparing the exact solution of Problems I and II to the
finite element approximations, these estimates are tight. That is, there exists a constant
C > 0 such that

Ch
IIx-x ll+llu-uall Ch /=

for linear elements,
for quadratic elements.

Problem IV was solved using linear splines, and we obtained the solution reported in
[56]; moreover, the error IIx-xll/llu- u ll was proportional to h. Since Problem IV
is not strictly convex, it appears that the convexity assumptions in 9 can be mildly
relaxed.

Although the estimate for IIx-x ll/llu u ll is tight, we also observe in Figs. 7
and 8 that the control converges faster than the state. For linear elements,

IlU- Uhll O( h3/:z),

-2. -I.5

-2.5 -2.

o -z.5
0 .5 Ii0

FIG. 5. Solution to Problem I. FIG. 6. Solution to Problem II.
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DUAL APPROXIMATIONS IN OPTIMAL CONTROL 457

-log (error) ,- grid and contact
points coincide

O- contact between12’ grid pay
8-

6-

4- Yx’"state

FIG. 7. 2 error for Problem and linear elements.

-log(error)

14,

12.

A grid and contact

O-cPo:itnat:’ c:i:tc:::n/

Io1 (N)

FIG. 8. 2 error for Problem II and linear elements.

and putting grid points at the contact points (where constraints in the primal problem
change between binding and nonbinding) gives us the better result"

Ilu- uh]]-- O(he).

For unconstrained problems, Mathis and Reddien [32] use a duality argument to show
that the control convergence rate is h times the state rate. The extension of this result
to constrained optimization is open. The convergence rate for quadratic elements also
improves when the contacts are members of the grid:

IIx- xll / Ilu ull- O(he).

This property of the total error is established in [14] for a full dual scheme.
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458 WILLIAM W. HAGER AND GEORGE D. IANCULESCU

In summary better approximations to the primal solution are obtained as follows:
Solve the dual problem on a fixed mesh and estimate the contacts; then insert grid
points at the approximate contacts, and repeat the process. After the contacts converge,
generate a better state by integrating forward the system dynamics with the approximate
control as input.

Appendix 1. Existence. Suppose that f:X [-oo, +oo) and g :X Y where X
is a set and Y is a normed vector space that is ordered by a convex cone N c Y with
vertex at the origin; that is, given a and b Y, we write a b if b-a N. If Y*
denotes the space of bounded linear functionals on Y, N induces an ordering on Y*
relative to the convex cone

N* {y* Y*: (y*, y) _-> 0 for all y N}.

Above (.,.) denotes the usual pairing between Y* and Y. Associated with the primal
problem,

(P’)

is the dual problem,

maximize f(x)

subject to g(x) >= O, x X,

minimize L(A)
(D’)

subject to A=>0, &Y*,

where

L(A) supremum (f(x)+(Z, g(x)): x X}.

Although equality constraints are not explicitly stated in the primal problem, the
inequality g(x) => 0 becomes equality when N {0}.

Under certain convexity hypotheses and constraint qualifications, a "typical duality
theorem" asserts that there exists a solution to the dual problem and

L(A) supremum {f(x): g(x) >- O, x X}.

For example, see [28], [50], or Theorem A3 below. First, we observe that dual
approximations exist without the convexity hypothesis. If S is a subset of -N*, we
consider the following approximation to the dual problem:

(D) minimize {L(A ): A S}.

Let us define the set

and the ball

A(y) {x e X: g(x) >= y},

and let us introduce the following assumption for (P’):
BOUNOZONZSS ASSUMr’TON. There exists p > 0 such that A(y) is nonempty for all

yP and

M:= inf sup f(x)>-.
yt, xA(y)

THEOREM A.1. If S is a closed subset of a finite dimensional space and the
boundedness hypothesis is satisfied, there exists a solution to (D).
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DUAL APPROXIMATIONS IN OPTIMAL CONTROL 459

Proof. If L(A) is o for all A s S, the theorem is trivial, so let us assume that
S f3 dom L is nonempty. Beginning with the definition of the dual functional and
utilizing the boundedness assumption,

L(A)=sup{f(x)+(A,g(x))" xX}>=sup{f(x)+(A, y): xA(y)}>-M+(A, y)

fqr each y P. Maximizing over y P, it follows that

(A.1) II;11. :-- sup {<x, Y): Y6 31}<--(L(h)-M)/p.

By the next lemma, L is lower semicontinuous. Since S is a closed subset of a finite
dimensional space, (A.1) implies that the level sets

{, S: L(A) _-< a}

are compact. Hence, there exists a solution to (D). lq

LEMMA A.2. L is lower semicontinuous with respect to both the norm topology of
Y* and the weak topology induced on Y* by Y.

Proof. This result is essentially contained in Rockafellar’s work [50, Thm. 5] or
[46, p. 104]. Consider the epigraph set

epi L= {(a, h R x Y*: a >- L(h )}.

Alternatively, we can view this set as the intersection of half spaces which are closed
in the weak topology induced on Y* by Y; in particular,

epiL= f’1 {(a,h)R Y*" a>-f(x)+(h,g(x))}.
xX

Therefore, epi L is closed in both the norm and the weak topologies. Since lower
semicontinuity of L is equivalent to the epigraph being closed, the proof is complete, l-1

Suppose that X is a convex subset of a vector space. We say that g is concave if

g(oX -[- (1 a)X2) --> egg(x1) q- (1 a)g(x2)

for all Xl, x2 X and 0_-< a _-< 1.
THEOREM A.3. Suppose that X is a convex subset of a vector space and both f and

g are concave. Under the boundedness hypothesis, there exists a solution h to (D’) and

L(X) v := supremum {f(x)’g(x) _->0, x X}.

Moreover, for any solution x of (P’), we have (h, g(x)) 0.
(This last result is called the complementary slackness condition.)
Proof. If v=c, the result is trivial. Since v>=M>-o by the boundedness

hypothesis, assume that v is finite. Let us define the convex sets:

E {(a, y) R x Y: :Ix A(y) with a =< f(x)}
and

D ={(a, y)Rx Y: a=v, y>-0}.

By the boundedness assumption, (M- 1, 0) R x Y is an interior point of E. Separating
D from E with a hyperplane gives us r R and/z Y* such that

(A.2) rv +(/x, z) >= ra + (tx, y)

for all (v, z) D and (a, y) E. Clearly,/z => 0. Since (M-1, 0) lies in the interior of
E and (a, 0) E for all a < M, we see that r > 0. Dividing by r, setting h =/z/r, and
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460 WILLIAM W. HAGER AND GEORGE D. IANCULESCU

inserting (a, y)=(f(x), g(x)) and z=0, (A.2) gives us

v>-f(x)+(A,g(x))

for all x e X, or equivalently, L(,)=< v. Since L(,)_-> v by weak duality, it follows that
L(,) v. Finally, if (P) has a solution x e X, then the inequality v>=f(x)+(,X, g(x))
v+(,,g(x)) implies that (,,g(x))<-O. Since _->0 and g(x)>=O, we conclude that
(;, g(x))=0.

Allendix 2. Integrand regularity. In 11, we note that the dual integrands
l(x, y, t) for Problems I-IV are continuously differentiable in x and y. In these examples,
this result amounts to showing that the optimal cost of the quadratic program

minimize xQx+ qrx
subject to Ax <-_ a, x e R

depends smoothly on q. Here Q and A are matrices and q and a are vectors of the
appropriate dimensions. Let us study the more general class of problems

(A.3) minimize {f(x, so) g(x, s) <-O, h(x, ) =0, xeR "}

where f" R" Rp
") R, g" R" Rp "> R’, and h" R" Rp R I. Above, : e Rp is a fixed

parameter, and the minimization is over x . R". Our development is based on Lipschitz
properties established earlier for the solution and the multiplier of (A.3). In [15] these
properties are verified for quadratic programs, and in [15, Appendix], we indicate that
these results extend to more general programs. This extension is now presented; as a
corollary, we show that the optimal cost of (A.3) depends smoothly on se.

Suppose that (A.3) has a unique solution x() for near 0. Under fairly weak
assumptions, it has been shown [42] that the feasible set

{x R"" g(x, ) <-O, h(x, ) =O}

is stable with respect to perturbations in : and hence by [44] x(:) is a continuous
function of :. Defining z=x(0), we assume that f(x, ), g(x, ), and h(x, ) are
continuously Fr6chet differentiable in x near (x, :)= (z, 0). If g(x, ) is the vector
composed of g’s components satisfying g(x, )=0, we also assume that the rows of

Vlh(X(), :)

are linearly independent for : near 0. Under these hypotheses, there exist unique
multipliers (s) e R" and/ (:) e R satisfying the Kuhn-Tucker conditions [29, p. 233]:

where

(x, s) f(x, ) + A () 7"g(x, ) + I() 7"h(x, ).
LEMMA A.4. If x() is a continuous function of near zero and the differentiability

and independence assumptions stated above hold, then A () and tz() are continuous

functions of near zero.

Proof. Let : be a fixed parameter near zero, let Ic {1,..., m} be the set of
indices for which gi(x(), :)= 0, and let g1 be the vector with components gi, e L
Consider the system

(A.5) Vlf(x, r/)+Vlgi(x, r/)7"X, +Vlh(X,
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DUAL APPROXIMATIONS IN OPTIMAL CONTROL 461

in the unknowns x, hi, and tz. Since x(rt) depends continuously on rt, gi(x(q), q)<0
if i:I and rt is near . Assume that I,-1 is so small that gi(x(q), r/)<0 if iL By
the Kuhn-Tucker conditions (A.4), h(rt) =0 if i I and (x(r/), hl(rt),/z(r/)) satisfies
(A.5). Since the rows of VlgB(x(:), :) and Vlh(x(), ) are linearly independent and
x(rt) is a continuous function of rt near zero, it follows that the rows of 71gi(x(rt),
and 7lh(x(q), ,1) are uniformly independent of r/ near :. Hence (A.5) implies that
hi(rt) and /z(r/) are continuous functions of r/ near s. Since h(rt)=0 if i_I, we
conclude that

lim (x(r/), A (rt), z (rt)) (x(:), , (),/x (:)).

THEOREM A.5. In addition to the hypotheses of Lemma A.4, we assume:
(i) f, g and h havepartial derivatives oZ/Oxz, 02/ox Oand 0/0 whichare continuous

near (z, 0), and
(ii) for each near zero, we have

(A.6) yTVxx(X(), )y > 0

for every nonzero vector y such that

71gB(x(s:), se)y 0 Vlh(X(s), sC)y.

Then (x(), A(sc),/.(sc)) is a Lipschitz continuous function of near zero.

Proof. Again, let : be a fixed parameter near zero, let I c {1,..., m} be the set
of indices for which g(x(s), ) 0, and let gz be the vector with components gi, e/.

Consider the system

(A.7)
Vf(x, ’q)+VlgI(x, rl)TA, +7,h(x, rl)Ttx =0,
g,(x, n) =o,
h(x, rl) =0,

in the unknowns x, Zi, and ix. Since (A.6) holds and the rows of VlgB(X(), ) and
V h(x(), ) are linearly independent, it follows from 15, Lemma 3.2] that the Jacobian
of the system (A.7) with respect to (x, Az,/x) is nonsingular at s and (x, Az,/z)
(x(), Az(sc),/z(s)). By the implicit function theorem, (A.7) has a unique solution
(x, AI,/z)(r/) for 7 in a neighborhood of s which is a continuously differentiable function
of r/. Now, as : ranges over a neighborhood of zero, the solution x(:) and the multipliers
A (sc) and/z(:) for the program (A.3) satisfy (A.7) for different choices of L As in [15,

3], it follows from [15, Thm. 2.3] that (x(), Z(sc), (sc)) is a Lipschitz continuous
function of near zero. [3

In a related paper [43], Robinson shows that the Kuhn-Tucker conditions (A.4)
have a solution depending Lipschitz continuously on a parameter. His assumptions are
similar to ours except that (A.6) is strengthened slightly while the assumption that
(A.3) has a unique solution is dropped. Now consider the optimal cost f(x(), ). Since
x() depends Lipschitz continuously on sc, we might expect that f(x(), ) depends
just Lipschitz continuously on s. But the cost is smoother than expected:

COROLLARY A.6. Under the hypotheses of Theorem A.5, f(x(), ) is a con-
tinuously differentiable function of near O. Moreover, if f, g and h have continuous
second partial derivatives near (z, 0), then the derivative of f(x(), ) is Lipschitz
continuous.
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462 WILLIAM W. HAGER AND GEORGE D. IANCULESCU

Proof. Since x(. is ditterentiable almost everywhere, the chain rule gives us

0
)=(x(),

ox()
Vl(X(), ) + g(x(so), sc) 7"OA

(so) + h(x(:), sc)
O/x (so)

+-{/(x, ) + g(x, ) + gh(x, x=x().
x =x(), =t(#)

By the Kuhn-Tucker conditions, 7a(X(:), )=0, and since x(s) is feasible in (A.3),
h(x(), :)=0. Suppose that gi(x(s),)<O. Since x(r/) depends continuously on
gi(x(rt), rt)<0 for r/ near s. Hence the Kuhn-Tucker conditions also tell us that
Ai(rt) =0 for rt near , and

Combining these observations,

(A.8) --; x
o ;-u; { f x’ s + A 7"g x, + tx T"h x, x=x()

x =x(#)
=(#)

Theorem A.5 completes the proof.
Gauvin and Tolle [12] obtain (A.8) under weaker assumptions, although the

feasible set is required to satisfy a uniform compactness condition. Also Armacost and
Fiacco [2] give (A.8), but require the so-called strict complementary slackness condition
which is not satisfied in our applications to the dual integrand.

Appendix 3. Exact solutions. Consider the problem

minimize [x(t)2 + u( t) 2] dt

subject to x’(t) u(t), u(t)<= 1 almost everywhere,

l+3e
x(0)

2(1 e)’ (x, u) Y.

This problem’s solution, computed in [23], is given below.
Region 1. 0 <= <= 1/2.

l+3e 2 (l+3e)
t+’--x(t)= t+Z(l_e-------, u(t)= 1, p(t)=-+z(a_e--------

Region 2. 1/2 <- <- 1.

The optimal cost is

e + e2-t
X( t) /-(1 e)

e e2-t
u(t) p(t) =,-_

)"4e( 1

55e2-2e-5
48(e_ 1)2

13e-5
8(e- 1)"
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DUAL APPROXIMATIONS IN OPTIMAL CONTROL 463

Next, consider the problem

lI0’minimize x(t): + u (t) z] dt

subjectto x’(t) u(t), u(t) <= 1 almost everywhere,

2/7
x(t)<= forall te[o, 171,

1-e

5e+3
x(0) (x,u).

4(1- e)’

This problem’s solution, computed in [23], is given below.
Region 1. 0 <- <-_ 1/4.

1 l+e 33, u(t)= l p(t)
32
+x(t)=t 4+l_e

Region 2. 1/4<- <-_ . t- + t(2t-1).

t--l t--l

x( t)
e

1 + e3/2-2t), u( t) p( t)
e

1--e 1-e

Region 3. 1/4 <- <- 1.

(1 e3/2-2t).

, u(t) =p(t)=0.x(t)=l_ e

The optimal cost is

where b 247/(1 e).

e+l x(O) q_x(O)2q-b24___9++384 2(e-1) 32 8
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