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LAGRANGE DUALITY THEORY FOR CONVEX
CONTROL PROBLEMS*

WILLIAM W. HAGER’[" AND SANJOY K. MITI’ER:I:

Abstract. The Lagrange dual of control problems with linear dynamics, convex cost and convex
inequality state and control constraints is analyzed. If an interior point assumption is satisfied, then the
existence of a solution to the dual problem is proved; if there exists a solution to the primal
problem, then a complementary slackness condition is satisfied. A necessary and sufficient condition
for feasible solutions in the primal and dual problems to be optimal is also given. The dual variables p
and v corresponding to the system dynamics and state constraints are proved to be of bounded
variation while the multiplier corresponding to the control constraints is proved to lie in 1. Finally, a
contr61 and state minimum principle is proved. If the cost function is differentiable and the state
constraints have two derivatives, then the state minimum principle implies that a linear combination of
p and v satisfy the conventional adjoint condition for state constrained control problems.

1. Introduction. The Lagrange dual of the following control problem is
studied:

inf c(x, u)

subject to 2(t)= A(t)x(t)+B(t)u(t),

Kc(u(t), t)=<0, Ks(x(t),t)<=O

x(0)- x0,
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where c(’," ), Kc(’, t) and Ks(’, t) are all convex. Rockafellar [7] has derived
duality results for convex state constrained control problems using Fenchel
duality theory. The development in this paper goes beyond Rockafellar’s results
since the constraints are given explicitly by inequalities above, and hence the
multipliers associated with the constraints can be characterized. Also, a slightly
different form of the dual problem, the Lagrange dual, is studied herein; and the
matrix B(t) above, which Rockafellar assumes is the identity matrix in his
development, is introduced. The theory in this paper provides the foundation for
an analysis of the numerical solution of the dual problem by the Ritz method in
[1]. The control problem stated above involves no constraints on x(0) and x(1)
except for the condition x(0) x0; however, convex inequality and linear equality
endpoint constraints could have been included with very little change in the
analysis. To keep the presentation simpler, these constraints are not explicitly
treated; however, notice that the state constrained problem explicitly involves
endpoint restrictions because of the condition Ks(x(t), t)<= 0 for all 6 [0, 1].

In 2 and 3, the principal result based on the Hahn-Banach theorem,
proves that the dual problem has an optimal solution if there exists an interior
point for the constraint set (i.e., the Slater condition holds); if the primal problem
has an optimal solution, then a complementary slackness condition holds. The
optimal multipliers /3 and 3 corresponding to the system dynamics and state
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844 WILLIAM W. HAGER AND SANJOY K. MITFER

constraints are shown to have bounded variation while the multiplier corres-
ponding to the control constraints lies in L. Also a necessary and sufficient
condition for the optimality of solutions to the primal and the dual problem is
given.

Section 4 then proves that a minimum principle holds, and while (/3, 3) are
only of bounded variation, the combination (t)= Ks(2(t), t)rx(t)-(t) is abso-
lutely continuous where 2 solves the primal problem; furthermore satisfies the
conventional adjoint equation for state constrained control problems. This result
has important consequences for the solution of the dual problem using the Ritz
method in 1] since the convergence rate of the discrete approximation depends
upon the smoothness of the dual variables; hence if the dual problem is reformu-
lated in terms of q rather than p, then a superior convergence rate is achieved.

The Appendix contains several technical lemmas concerning the regularity of
the dual variables.

Notation. The following notation is Used for spaces of real-valued functions
on [0, 1]:

s absolutely continuous functions,
T" functions of bounded variation continuous from the left on [0, 1),
3c3T" functions of bounded variation continuous from the left on [0, 1),

and normalized so that f(1) 0,
continuous functions,

P functions with j If(/)l dt <
o functions essentially bounded and measurable.

If o///. is any of the spaces above, the notation x ///’(R") means that x is a
vector-valued function with n components and each component lies in

If y R" then define lyl- = lyl and denote the supremum norm of a
vector-valued function by I[fll sup, c0, a

If x, y e R", the inner product (. ,. is defined by (x, y) .= xkyk. If f
g q, where q is the dual of fP, v 6 3T’, and h 6 % then define:

(f, g)= if(t), g(t)) dt, Iv, hi= h(t) dv(t).

The complement and closure of a set are denoted A and fi, respectively.

2. Duality theory. The following control problem is considered:

inf c(x, u)

subject to c(x, u)= J0 h(x(t), u(t), t) dt,

(P) (t) A (t)x(t) + B(t)u(t), x(O) Xo,

Kc(u(t), t)<=O, Ks(x(t), t)<-O forallt[0, 1],

x e s(R"),

where h, Kc and Ks have range in R, R’c and R", respectively, and the matrices
A and B are of the appropriate dimensions. Note that in the control problemD
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LAGRANGE DUALITY THEORY 845

above, the controls lie in 2. The next section will treat the case where the
controls lie in . The dual function L is given by

L(p, w, v)=inf {c(x, u)+(p, 2-Ax-Bu)+(w, Kc(u))+[v, Ks(x)]}

subject to x(O) Xo, x sg(R",), u (R").

The dual problem corresponding to (P)

sup L(p, w, v)

(D) subjectto pll/’(Rn), vW3(R’ns), wel(Rmc), w>=O,
v nondecreasing.

In order that all the terms in (P) and (1) above make sense, assumptions must
be made concerning the functions appearing in these problems. Theorem 1 will
require the following, continuity, convexity and Slater conditions:

(C) h(.,., t), Ks(’, t) and Kc(’, t) are convex for [0, 1], A(. and B(.
have components in1 and h( , , ), Ks(" ," and Kc(" ," are all continuous.

(SL) There exists a control a C(R") and a corresponding trajectory Y such
that (Kc(a(t), t))j < a < 0 and (Ks(Y(t), t))j < a < 0 for some "a", for all [0, 1]
and for all components of Kc and Ks.

Proposition 1 below, the weak duality theorem, is easily verified. This is
followed by the principal theorem, or strong duality result.

PROPOSITIOy 1. c(x, u)<=L(p, w, v) whenever (x, u) are feasible in (P) and
(p, w, v) are feasible in (D).

THEOREM 1. Suppose (C) and (SL) hold and the optimal value, ., of (P) is

finite. Then there exist (, , ) that are optimal in (D) with L(O, , 3)=.
Furthermore, if (, v, f)) and (fc, fi) are feasible in (D) and (P), respectively, then a
necessary and sufficient condition for (, v; ) and (, fi) to be optimal solutions to
the dual and primal problems is that (, fi) achieve the minimum in (1) for
(p, w, v)=(/5, , ) and the complementary slackness conditions (,K(fi))=
[t3, Ks(:)] 0 hold.

Observe that the condition (v?,K(fi))=[5, Ks()]=0 implies that
K(fi(t), t)i =0 whenever ff(t)i >0 a.e. and ti is constant on every interval where
Ks((t), t)<0. Also notice that the sufficiency condition follows immediately
from complementary slackness, feasibility of (), fi) and (/5, if, fi), the optimality of
(, fi) in (1) for (p, w, v) (/5, if, t3) and Proposition 1 that is, c(Y, fi) L(/5, if, if),
and this can only happen when (, fi) and (/5, if, ) are optimal in (P) and (D),
respectively. On the other hand, if (/, v?, ) and (, fi) are optimal in (D) and (P)
and it can be proved that the optimal value of the primal and dual problems are

equal, then c(, fi) L(/5, , iS)_-< c(, fi) +(, K(fi)) +[, Ks()]. Since
K(fi(t), t)_-<0, (t)_->0, K((t), t)<-O and is nondecreasing, (, K(fi))=0,
[, Ks(2)] 0 and (, fi) achieve the minimum in (1) for (p, w, v) (/5, , ). Thus
the proof of Theorem i will be complete if it can be shown that the optimal value
of the dual problem and the primal problem are equal whenever (SL) and (C) hold
and the value of the primal problem is finite.

Rather than prove directly that the optimal value of the primal and dualD
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846 WILLIAM W. HAGER AND SANJOY K. MITTER

problem are equal, we first consider a slightly more general problem:

inf f(x, u)

(P’) subjectto 2(t)=A(t)x(t)+B(t)u(t), x(O)6Xo, Ks(x(t),t)<=O,

u(t) U(t) for all 6 [0, 1], x 6 .(Rn), u 6 (R’),
where [ is a functional defined on (Rn) (R’). The corresponding dual
function is

L’(p, v)=inf {f(x, u)+(p, 2-Ax-Bu)+[v, Ks(x)]}

(2) subject to x g(R"), u (R"), x(O) Xo, u(t) U(t)

for all 6 [0, 1 ].

The dual problem is

sup L (p, v)
(D’) subject to p YJV(R "), v 6 3cN//’(R’’), v nondecreasing.

Define X={xM(R"): gs(x(t),t)O for all t[0,1]} and U={ue
(Rm); u(t) e U(t) for all tel0, 1]}, and make the following assumptions
analogous to those above for problem (P).

(C’) f(.,-), Ks(’, t), U(t) aod X0 are convex for all t [0, 1], Ks(’," is
continuous, and both A(.) and B(- have components in 1.

(SL’) There exists a control 17 e (R"), a corresponding trajectory and
constants M, O, c >0 such that 17 e U, (0)eXo, Ks((t), t)j <-c <0 for all
components of Ks, and f(x, 17) <M whenever Ilx 0.

LEMMA 1. Suppose (C’) and (SL’) hold and , the optimal value of (P’), is

finite. Then there exist (, ) that are optimal in (D’) and L’(O, )= .. If (2, ) are
optimal in (P’), then [3, Ks(2)] 0 and hence (, ft) achieve the minimum in (2) for
(, ).

Proof. Lemma i follows from an application of the Hahn-Banach theorem to
the following two sets:

Y= {(a, b, c) a e R 1, b l(Rn), c C(Rms), a <=, b =0, c -<0},

Z {(a, b, c) a R 1, b l(Rn), c (Rms) and there exists

x s4(R") and u U with x(O)Xo, a >-_f(x, u),

b(t) 2(t)-A(t)x(t)-B(t)u(t), c(t) >- Ks(x(t), t) for all

te[0, 1]}.

From the development of duality in the literature, it is obvious that two sets
like Y and Z must be constructed, and the hyperplane separating the sets will
define the optimal dual multipliers. Note though that the choice of the convex sets
that are to be separated is a very delicate question since one set must have
nonempty interior which is disjoint from the other set before the Hahn-Banach
theorem can be employed. Also the sets must be chosen so that the dual
multipliers are in "reasonable" spaces if the duality principle corresponding to theD
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LAGRANGE DUALITY THEORY 847

sets is to generate a numerically tractable problem. It will be seen that Y and Z do
indeed satisfy all these conditions and lead to the duality principle stated in the
lemma.

The reader can readily verify that the convexity conditions in (C’) imply that
Y and Z are convex, the assumption (SL’) implies that Z has an interior point, and
the fact that is the optimal value in (P’) implies that Y and the interior of Z are
disjoint. Thus by the Hahn-Banach theorem [4], there exists a hyperplane
separating Z and Y, i.e., there exists r R 1, P (R"), v (R"s) such
that

(3) (r, a)+(p, b)+Iv, c]>-(r, a2)+(p, b2)+Iv, c2]

for all (al, bl, Cl)Z, (a2, b2, C2) Y. By choosing particular points in Y and Z,
properties of the separating hyperplane will be exhibited"

(a) r _->0. Substitute a2 t- 1, al =f(, tT), bl b2 Cl c2 0 in (3) where
(, tT) was given in (SL’).

(b) v is monotone nondecreasing. For notational convenience, v is assumed
scalar-valued, although for vector-valued functions the proof is identical.

Given t, s, d [0, 1), < s, d < Is tl, let Cd denote the continuous piecewise
linear function that is -1 on It, s- d], zero on [0, t-d] and [s, 1], and linear on
[t-d, t] and [s-d, s]. Now, [v, c]= v(t)-v(s-d)+z where

IZdl<--ITV(t, V)--TV(t-d, v)I+ITV(s, v)-TV(s-d,

and TV(t, v) is the total variation of v on [0, t]. Since v is continuous from the left
on [0, 1), then TV(., v) is continuous from the left at and s (see [6]), and hence
limd_,olZl=0 and lim_.o[V,C]=v(t)-v(s). Substituting (t?,0,0) and
(t?, 0, c) Y into (3) and letting d -->0, we obtain v(t)<-v(s). The right endpoint,

1, is treated similarly.
(c) If (, ) are optimal in (P’), then [v, Ks(2)]=0. Substitute al

hi b2---c2----0, and Cl(t)= Ks((t), t) in (3). Then [v, Ks()]_->0 and (c) follows
from (b). Hence the complementary slackness condition in the lemma holds.

(d) r>0. Suppose r=0. Substituting b-b2=c2--O and cl(t)=Ks((t), t)
in (3) yields [v, Ks($)]->0. Since Ks((t),t)j<-a <0, (b) implies that v=0.
Substituting bl =-p and b2 0 in (3) yields -(p, p)_-> 0. Hence, p 0 a.e. This is
impossible since r, p, v cannot all vanish so that r >0 and (3) can be normalized
with r 1.

(e) L’(p, v)= d. Substituting al c(x, u), bl "-Yc-Ax-Bu, Cl--Ks(x), a2
t?, b2 c2 0 in (3) and recalling that r 1 from (d) yields L’(p, v) >= . However, by
weak duality, L’(p, v)<= and hence L’(p, v)= . Note that p 6 &(R"), but the
lemma claims that L’(p, v)= t? where p 6 o//..

(f) p -/ a.e. where/3 T’. This proof is more technical than (a) to (e) and
appears in Lemma A. 1 of the Appendix, so the proof of Lemma 1 is complete
since L’(p, v)= L’(O, v).

Proof of Theorem 1. In the problem (P) with explicit control constraints,
proceed exactly as in the proof of Lemma 1. A fourth component d (R") is
added to the sets Y and Z, where d -<_0 in Y and d(t) >= K(u(t), t) in Z. (Note that
d 6 qg and not d ’if d were chosen in, then the Hahn-Banach theoremD
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848 WILLIAM W. HAGER AND SANJOY K. MITTER

would produce a multiplier in the dual of oo which is a miserable space. By
choosing d , the dual multiplier lies in--in fact, it is seen below that the
multiplier is also absolutely continuous.)

Continuing as in Lemma 1, we find the Hahn-Banach theorem yields

(4) c(x, u)+(p, :i-Ax-Bu)+[v, Ks(x)]+[z, Kc(u)]>-e

for all x sg(R n) with x(0)=x0 and uCC(R m) where
No//’(R,-c), and both v and z are nondecreasing. Note that to obtain an optimal
solution to (D), it must be shown that: (i) z is absolutely continuous so that
[z, Kc(u)]=(w, Kc(u)) where w=2 and (ii) expression (4) holds for all u e
(R"), not just for u C(R"). Combining these properties with weak duality,
Proposition 1, implies that L(p, w, v)= ..

First it is proved that the infimum of the left side of (4) over x sg(R") and
u (R’) actually equals g-. Let {u k} be a minimizing sequence for (P) and let {x k}
be the corresponding trajectories. The sequence {u} lies in oo; however, in
Lemma A.2 of the Appendix, it is shown that the convexity of K and the
existence of an interior point for the constraint K(u(t), t) <= 0 (given in (SL)) imply
that for any e>0, there exists yq(R’) satisfying Kc(yk(t)t)<0
lyk(t)--u(t)l<--e except on a set of measure less than e, and [ly lt_-<lloll/llu ll,
where ti is the interior control given in (SL) Thus, by the continuity of h( "k’ )’
the integrand of the cost functional of (i), it follows that lim_,oC(X yk)=
C(X , U ’) and lim_,o (p, Yck-Ax-Byk)=O. Now given 6>0, there exist k’ such
that Ic(x k’, u’)-.1<6/3 and e’ such that Ic(x k’, y;)-c(x ’, u’)1<6/3 and
I(p, 2k’--Axk’--Byk;)J<6/3. Since [z, Kc(yk;)]<--O and Iv, K(xk’)]<--O, then the

k’ is within 6 of t?, and hence theleft side of (4) evaluated at x x k’ and u y,
infimum of the left side over (x, u) satisfying x sg(R"), u (R") and x(0) Xo
equals as claimed.

The proof that z s(R mc) is now summarized, and the details can be found in
Lemma A.3 of the Appendix.

Define g(x, u) c(x, u)+(p, Yc-Ax -Bu)+[v, Ks(x)]. Using the construc-
tion of the previous paragraph, there exists a sequence (x k, yk) satisfying
g(x k, yk)., [Z, Kc(yk)]<--O, and yk c(Rm). It is possible to express z r+ s
where r s4(R"), s e N(R"), =0 a.e., s(0)=0 and s is nondecreasing (see
Rudin [8, p. 166]). In Lemma A.3 of the Appendix, it is shown that a sequence
{6k}c C(R"c) can be constructed with 6 k =0 except on a set E of small measure
on which is concentrated the variation on s, 6 k a- yk just inside E, and hence
Is, K(y k + 6k)] <- as(l)/2 where a < 0was given in (SL). Since s is nondecreasing,
then s(1)_->0, and unless s=0, (4) will be contradicted since g(x k, yk +6k)+
as(l)/2 will be less than t? for k sufficiently large. Hence z r

To complete the proof, it must be shown that (4) holds for u (R"), not
just u e (R"). By Lusin’s theorem [8, p. 53], any u (Rm) can be approxi-
mated by y C(R") satisfying y u except on a set of measure less than e and
Ily ll--< Ilull. Since (4) holds for y, the continuity condition (C)implies that (4) holds
for u (R’). Thus L(p, w, v) d as desired and the complementary slackness
conditions follow as in Lemma 1, property (c). [-1

Notice that the duality results above were derived by separating the sets Y
and Z with a hyperplane, and exploiting the separation condition (4) above toD
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LAGRANGE DUALITY THEORY 849

push the dual variables into successively smaller spaces. An immediate question
is whether the spaces exhibited above are the smallest possible. A more recent
paper 11 will show that for a strictly convex, quadratic cost control problem with
linear state and control constraints satisfying an independence condition, there
exists an optimal control u*, a corresponding trajectory x* and dual multipliers
p*, w* and v* such that (2", u*, p*, w*, v*) are all Lipschitz continuous when Ks
has a Lipschitz continuous partial derivative in and A, B, Kc, and h are Lipschitz
continuous in t. Furthermore, if no state constraints are present, then * is
Lipschitz continuous when the data defining (P) is sufficiently smooth. Below it is
shown that when state constraints are present, a linear combination, q*, of p* and
v* has increased smoothness, and in [11] the Lipschitz continuity of #* is proved.
Hence (2", *, u*, w*, v*) have derivatives in L. Also by an example given in
[11], it is seen that (*, 0", u*, w*, v*) may be discontinuous when K does not
possess a Lipschitz continuous partial derivative t.

3. Extension of duality theory to controls in ,1. Let () denote the control
problem with constraint u (R’) instead of u (R’). It is assumed both
that the components of /3(. lie in so that the differential equation
Ax +Bu makes sense, and the integral in the cost functional is defined for
x sC(R n) and u (Rm) (i.e., the integrand is in ).

THEOREM 2. Suppose (C) and (SL) hold and the optimal value g of (P) is finite.
Then there exist (, , ) that are optimal in (D) with L(, , )= 6. If (, (t) are
optimal in (P), then the complementary slackness condition of Theorem 1 holds.

Note that in defining the dual problem (D), we still restrict u (Rm) in the
minimization of (1).

Proof. Let denote the optimal value of (P). Since >= 6 > -oe, then Theorem
1 implies the existence of (p, w, v) with

(5) c(x, u)+(p, 2 -Ax -Bu)+(w, Kc(u))+[v, K.(x)]_-> =>e

for all (x, u) satisfying x sg(R"), x(O) Xo and u (R’n). It is now shown that
7. Suppose for the moment that there exists an optimal solution (, t) to (P).

Define the following control Uk and set Sk"

when I(t)[=<k,
u ti(t) when ]fi(t)l>k, s {t. a(t) / u(t)},

where a was given in (SL).
Since w =>0, v is nondecreasing, and Kc(u(t), t)<--O and Ks((t), t)<=O for

t[0, 1], then inserting (x, u)= ()2, u) into (5) yields c(2, u)+(p,B((-uk))>=
c>g.A__ Since the components of B(.) and p(.) lie in w, u(Rm),
a= u except on S, and tx(S)0 as k oo, where x(. denotes Lebesque
measure, then 0= lim_,oo (p, B(fi- uk)). Similarly c(, a)- c(, u)
Jsk {h()2(t), ((t), t)-h(2(t), (t), t)} dt and both h(2(. ), fi(. ),-) and
h(2(. ), t(. ),. lie in , so c(, fi)= limk_,oo c(2, u). Thus (2 6 since the left
side of (5) evaluated at x and u u converges to 6. Since L(p, w, v) ,
L(p, w, v)= .D
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850 WILLIAM W. HAGER AND SANJOY K. MITTER

If there does not exist an optimal solution to (P), then by choosing a
minimizing sequence and approximating each element of the minimizing se-
quence as above, it can be proved that L(p, w, v)= 6.

Now the complementary slackness condition is verified. Again by the
inequality (5) above, substituting u uk, x yields:

(6) (w(t), Kc((t), t)) dt->-(w, Kc(uk))>=-c(, Uk)--(p,B(t--Uk)).

(7)

As shown above, the right side of (6) converges to zero as k-. Since
limk_,/x(ST,)= 1, Ej={t" w(t)j>0, Kc((t),t)i<O} has no measure, and the
complementary slackness condition in the control constraint must hold. A similar
proof confirms the complementary slackness condition in the state constraint.

4. Minimum principles. In order to solve the dual problem numerically, the x
and u that achieve the infimum in (1) must be characterized. This leads to a
minimum principle and an adjoint condition. Theorem 3 below proves that the
minimization over u in (1) can be taken under the integral sign.

THEOREM 3. Suppose (C) and (SL) hold, (p, w, v) is feasible in (D) with
L(p, w, v) > -, and x* sg(R") and u* (R’) achieve the minimum in (1)
corresponding to (p, w, v). Then the minimum o]: [(u, t)=
h(x*(t), u, t)-(p(t), B(t)u)+(w(t), K(u, t)) occurs at u u*(t) ]:or almost every
[0, 1]. Similarly, ifL’(p, v)>-c, the cost]:unctional in (P’) is given by c(.,. ),
U(t)={b6Rm Kc(b,t)<=O}, and x*sg(R n) and u*(R") .achieve the
minimum in (2) corresponding to (p, v), then the minimum of {h(x*(t), u, t)-
(p(t), B(t)u)} over u U(t) occurs at u u*(t) for almost every [0, 1].

Proo[. Only the first minimum principle above will be proved since the second
is similar. Let ? L(p, w, v) where by definition

I"t"

L(p, w, v) =inf [J, {h(x(t), u(t), t)+(p(t), 2(t)-A(t)x(t)-B(t)u(t))

+(w(t), K(u(t), t))} dt +Iv, Ks(x)]]
subject to x 5(Rn), u o(Rm), x(O) Xo.

Let E denote the intersection of the Lebesgue points of each term in the integrand
of (7) evaluated at (x*, u*) and suppose f(z, s)<f(u*(s), s) for some s E and
z R’. Let A denote a ball of diameter 6 centered at s, I(A, u) the integral in (7)
evaluated at x x* over the ball A, and J(u(. )) the integrand in (7) evaluated at
x= x*. Since s is a Lebesgue point of J(u*(. )), I(A, u*)=J(u*(s))6+o(6).
Define v to be a control that agrees with u* outside A and equals z inside A. It is
easy to see that I(A, v)=J(z)6+o(6), and since f(z, s)<f(u*(s), s), J(z)<
J(u*(s)) and I(A, v) < I(A, u*) for 6 sufficiently small. This violates the optimal-
ity of (x*, u*) in (7) so that the minimum principle holds on E. Since E has full
measure, the proof is complete. [-1

Note that Theorem 3 holds for all (p, w, v) that are feasible in the dual
problem, while the standard necessary conditions only hold for some (p, w, v).
Also observe that it is not possible to carry out the minimization over x under the
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LAGRANGE DUALITY THEORY 851

integral sign in (1) due to the presence of the k term. The following lemma will be
needed before the adjoint conditions can be derived.

LFMMA 2. Suppose (C) and (SL) hold, (p, w, v) is feasible in (D) with
L(p, w, v)>-oo, (x*, u*) achieves the minimum in (1) for (p, w, v), Ks(’," is
twice continuously differentiable, and G(t) denotes the gradient of Ks(’, t)
evaluated at x*(t). Then if q is defined by q(1)=0, q(t)=G(t)rv(t)-p(t) for
t6 (0, 1), and q(0)= q(0+), then q sg(Rn). If Ks is alfine, then the existence of
(x*, u*) is not required.

Proof. By the definition of L,

(8) L(p, w, v)<-c(x, u)+(p, 2-Ax-Bu)+(w, Kc(u))+[v, Ks(x)]

for all x s(R n) with x(0) xo and u (Rm). Each term on the right side of (8)
is convex and furthermore the Iv, Ks (x )]-term is differentiable in x. Recall the
following standard necessary condition: Suppose v* solves the problem: minimize
](v) + g(v) subject to v F where L g and F are all convex and [ is differentiable.
Then v* satisfies g(v*) <-_ g(v) + (d/dv)[’(v*) (v v*) for all v F (see [3]). Apply-
ing this result to the right side of (8) we get

c(x*, u*)+(p, 2*-Ax*-Bu*)+(w, Kc(u*))
(9) <-c(x, u)+(p, 2-Ax-Bu)+[v, G(x-x*)]+(w, Kc(u))

for all x (R") with x(0) Xo and u e (R’). Observe that equality holds in
(9) for x x* and u u*.

Since p is continuous from the left on [0, 1), the integration by parts formula
of Dunford and Schwartz [4, p. 154] gives

1-

(10) o (p(t), 2(t)-2*(t)) dt=(p(a-), x(1)-x*(1))- fo ,[x(t)-x*(t)]7"dp(t).
The boundary term at =0 vanishes since x(0)= x*(0)= Xo. Since Ks has two
continuous derivatives, then the gradient of Ks (", t) is absolutely continuous, and
hence G(. is absolutel continuous. Thus the following relation holds:

io io i0(11) x(t)rG(t)r dv x(t)r d(G(t)rv) v(t)r(7(t)x(t) dt.

Since v is normalized with v(1) 0 and since x(0) x*(0) x0,

iO
1-

(X(t)-x*(t))7"G(t)7" dv (x(t)-x*(t))rG(t) dv
(12)

-(x(1)- x*(1))rG(1)rv(l-).
Combining (9), (10), (11) and (12) we find

(13) c(x, u)-(p, Ax +Bu)-(v, (3x)+ x(t)7"dq(t)+(w, Kc(u))

(q(1-), x(l)) g >-oo

for all (x, u) satisfying x sg(R"), u e (R") and x(0)= x0, where g >-oo is a
constant depending on x*, u*, p, w and v. Again equality holds in (13) for x x*
and u u*. If Ks is affine, then (13) holds without even assuming the existence of
(x*, u*), and g only depends on L(p, w, v).
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852 WILLIAM W. HAGER AND SANJOY K. MITTER

Now it is shown that q(1-)= 0. Define the continuous function g(6, e, t) as
follows: g(& e, is linear on [1- e, 1] and satisfies g(8, e, t)= 0 for [0, 1- e]
and g(8, e, 1)= 8q(1-). Inserting x(t)=Xo+g(8, e, t) into (13) and letting e->0
and 8 --> +c, we get a contradiction since the left side of (13) deverges to -c due
to the presence of the boundary term in (13).

Now consider the absolute continuity of q. It is po.ssible to express q r + s,
where r (R"), s V(R"), s(0) 0 and 0 a.e. (see Rudin [8, p. 166]). If
U {t (t) 0}, then Lemma A.4 in the Appendix proves that unless s =0, a
seqaence {xk}c d(R n) can be chosen such that xk agrees with just outside of E
and [s,x]--. This will violate (13), and hence s =0 and q=rg(R"). [q

TI-IEOREM 4. Suppose (C) and (SL) hold, (p, w, v) is feasible in (D) with
L(p, w, v)>-oo, x*sg(R") and u*(R’n) achieve the minimum in (1)
corresponding to (p, w, v) and Ks(’," is twice continuously differentiable.
Then the minimum o]’

[(x, t) h(x, u*(t), t)+ ((l(t) + At(t) q(t)- (d(t)r +A(t) rG(t) r)v (t), x)

occurs at x x*(t) ’or almost every [0, 1], where G and q were defined in Lemma
2. I" h( u, t) is differentiable, then the adjoint equation holds: q(1)= 0 and

(14) (t(t)=-A(t)q(t)-h(x*(t), u*(t), t)x +(((t)T+A(t)rG(t)r)v(t) a.e.

Pro@ In Lemma 2 itwas observed that q sg(R n) so that [q, x] (0, x). From
(13),

(15) {h(x(t), u*(t), t)-(p(t), A(t)x(t))-(v(t), (7,(t)x(t))+(gt(t), x(t))} dt >-_

for all x e sg(R n) with x(0) x0, where > -oo is a constant depending only on x*,
u*, p, w and v. As noted after (13), equality holds in (15) for x- x*. As in
Theorem 3, we wish to say that x*(t) yields the pointwise minimum for the
integrand. There is one technical point, though, since in Theorem 3, u was
contained in oo, while in (15), x lies in sg. However, if z R yields a better
minimum for the integrand of (15) at the Lebesgue point s, then by [10, p. 9]
there exists an infinitely differentiable function 4; that equals 1 on Is 8, s + 8]
and equals 0 on [s+8+e, 1] and [0, s-8-e]. Thus the function x=
zb+ (1- 4)x* is absolutely continuous and equals z near s and x* away from s.
Letting first e 0 and then 8 0 again violates the optimality of x*. The adjoint
equation is obtained simply by setting the derivative of f(., t) to zero at x
x*(t).

The condition (14) above is the familiar adjoint equation for state con-
strained problems given in [5] and [2]. These standard necessary conditions only
assert that (14) holds for some (p, w, v) where (x*, u*) is optimal in (P), while
Theorem 4 holds for all (p, w, v) feasible in (D). Using the minimum principles,
Theorems 3 and 4 above, the evaluation of L(p, w, v) is reduced to the solution of
a sequence of math programming problems for each [0, 1]. In certain cases,
such as problems with quadratic cost and linear constraints, the minimum
principles permit the explicit determination of the (x, u) achieving the minimum in
(1) in terms of (p, w, v). The numerical solution of the dual problem using the Ritz
method is analyzed in [1].D
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LAGRANGE DUALITY THEORY 853

A combined state and control minimum principle can be proved, and the
proof is similar to Theorems 3 and 4 above.

THEOREM 5. Suppose (C) and (SL) hold, (p, w, v) is feasible in (D) with
L(p, w, v) >-oo, Ks(" ," is twice continuously differentiable and x* M(R") and
u* (R’) achieve the minimum in (1) corresponding to (p, w, v). Then the
minimum of[(x, u, t) defined below occurs at x x*(t) and u u*(t) for a. e. t:

f(x, u, t) h(x, u, t)+(q(t)--G(t)Tv(t), B(t)u)+(w(t), Kc(u, t))
(16)

+ (c(t)+ A(t)Tq(t)--(d(t) w + A(t)wG(t)W)v(t), x)

Appendix. Regarity of the dual variables.
LEMMA A. 1. Suppose (C’) and (SL’) are satisfied, the optimal value of (P’) is

finite, and L’(p, v) where p (Rn) and v T’(R"). Then p a.e. where
U(R").
Proof. For notational convenience, p is assumed scalar-valued (the proof

below could be applied to each component of p separately to demonstrate the-
result for vector-valued functions). Let R denote the set of Lebesgue points
and suppose that p has infinite variation on this set. It is now shown that th
to a contradiction.

Given a constant b, there exists 0 to < tl < tN such that

(A.1) E Ip(ti-,)-p(ti)[> b
lNj=N,jodd

and either p(tj+)< p(tj)> p(ti-1) for j even or the reverse inequalities hold. For
the construction given below, it is assumed that the former holds. Let c, p, M> 0
be as given in (SL’), and define the function x(t) as follows: x(. is the
continuous, piecewise linear function that is zero for odd and -p for ] even on the
interval [t + e, t+- e], linear on the interval [t- e, t + e] for all ], and zero at

N
t=0. Notice that as e 0, 2-p Yq=o (-1)6(t-ti), where 6(. is the delta
function, and since {t} are Lebesgue points of p and p(t+)< p(t)> p(ti_a) for ]
even, then lim_,0 (p, 2) p _-<N, odd p(ti)-p(ti_a) < -oh.

From the definition of L’,

(A.2) f(Y + x, gt)+(p, Yc +$-A (ic + X)-Ba)+[v, K(X + x)]_-> ,
where ($, a) was given in (SL’). Also by (SL’), f( + x, a)< M, and hence all the
terms in (A.2) are bound uniformly in b and e except for the (p, 2)-term which
becomes less than -pb for e sufficiently small. Thus if b were chosen sufficiently
large, this would lead to a contradiction in (A.2), and hence the total variation of p
on R is finite.

Since R has full measure (see [8, p. 158]), for all RC,. there exists a

sequence {ti}c R such that tj -* t-. Because p has finite variation on R, limi_,oo p(ti)
exists, and it is possible to define a function/5(t) that equals [p(t)] for e R and
equals [limi_ p(ti)] if t R where {tj}c R and
has the same variation on [0, 1] as p has on R.

The following theorem essentially proves that if the set U=
{u(. e (R") K(u(t), t) <-0} has an interior, then any u(. e U can be
approximated arbitrarily closely in the P-norm by a continuous function in U.D
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854 WILLIAM W. HAGER AND SANJOY K. MITTER

LEMMA A.2. Suppose K" R’n x [0, 1] R" is continuous, K( t) is convexfor
e[0, 1], and there exist C(R’n) and a <0 such that K(a(t), t)i < a J’or all

t6[0, 1] and j= 1, 2,. ., n. Then given u(.) U and e >0, there exists v
Ufl (R") such that ]u(t)-v(t)l<e except on a set of measure less than e and

Proof. Let w ba + (1 b)u, where 1 > b > 0 is small enough that Ilu wll--< e.
By the convexity of K(., t), K(w(t), t)i <- ba < 0 for j 1,. , n, and by Lusin’s
theorem [8, p. 53], there exists y (Rm) with y w on a closed set E satisfying
Ix(EC) <-_ e, where Ix(. )denotes Lebesgue measure and furthermore, Ilyll<_-llwl[.
Since K(y(. ),. is uniformly continuous on [0, 1], there exists a constant 6 >0
such that if [t-s]< 6, then IK(y(t), t)-K(y(s), s)l<blal. Outer regularity of the
Lebesgue measure implies the existence of an open set D containing E with
Ix(D-E) < 6. Also D can be chosen so that no point of D is more than 6 away
from a point of E (for example, construct open balls of diameter 6 about each
point of E, choose a finite subcover {Bi} of the balls, construct an open set B = E
with Ix(B E) < 6, and define D U Bi) f’l B).

Since K(y(t), t)j K(w(t), t)j <- ba < 0 on E and any point of D is at most 6
away from a point of E, K(y(t), t)<=0 for D. From Urysohn’s lemma, there
exists g e (R 1) with the support of g contained in D, g(t) i for e E, and Ilgll 1
(we use the notation of Rudin [8] to denote a function satisfying these conditions"
E < g <D). Define v gy+(1-g)fi. For teD, v is on the line segment between
two functions that satisfy the constraint K(., t)_-< 0, and since K(., t) is convex,
K(v(t), t)<=O. On the other hand, v=fi on D so v U. By construction,
v(t) y(t) w(t) for e E so lu(t)- v(t)] <- e except on a set E of measure less
than e. Also Iv(t)l<=g(t)ly(t)l+(1-g(t))lfi(t)l<-_g(t)lw(t)l+(a-g(t))lfi(t)l <-
[g(t)(b- 1)+ 1]la(t)l+(1-b)g(t)lu(t)l, and since 0<b < 1 and Ilgll 1, the bound
IIvll =< [lfill+llull is immediate. 71

LMMA A.3. Suppose (C) and (SL) hold; then the function z 3V in (4) is
absolutely continuous.

Proof. To keep notation simple, K is assumed to have range in Rthe proof
for vector-valued functions is identical, but it is necessary to introduce extra
subscripts. Let g(x,u) denote the first three terms in (4) and let F-
{(x, u)" xs4(R), x(0)=x0, ug’(R")}. As shown after (4), =
inf {g(x, u)+[z, Kc(u)]’(x, u)eF}, and there exists a sequence (x k, uk)F such
that g(x k, uk) and K(uk(t), t)<--O for tel0, 1]. Also recall that z was non-
decreasing.

Rudin [8, p. 166] proves that z r + s, where r 6 sg, s NV, 0 a.e., s is
nondecreasing and s(0) =0. We now suppose that s 0 or equivalently s(1) >0,
and show that this leads to a contradiction. As noted above, it is possible to find
(x, u)F such that K(u(t), t)<-_O for te[0, 1], and g(x, u)<+[a[s(1)/8 where
"a" was given in (SL). Since s is nondecreasing and s(0) 0, the total variation of s
is s(1). First a summary of the proof is given.

Since 0 a.e., it will be shown that a closed set E can be constructed that is a
union of a finite number of intervals with the variation of s concentrated on E, and
Ix(E), the measure of E, is very small. Then a function v e %(R") is constructed
that satisfies [Ivll-_<llall/llull, t)<-O for t6[0, 13, and v agrees with a, the
interior control given in (SL), on E and agrees with u just outside of E. ThusD
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LAGRANGE DUALITY THEORY 855

jEKc(v(t), t) ds(t)=jEKc(fi(t), t) ds(t)<a jds(t)<(a/2)s(1) where the last
inequality follows since E captures almost all the variation of s. Also
J K(v(t), t) dr(t)[ < lals()/8 since (E) is chosen small, and
-K(v(t), t) dz(t)<=O since z is nondecreasing and K(v(t), t)<-O. Combining
these inequalities, we see that [z, K(v)]<-s(1)(a/2 +[a]/8) 3as(1)/8. If/z(E) is
chosen small enough so that g(x, v)<+[a[s(1)/4, then g(x, v)+[z,K(v)]<=
+[a[s(1)/4+as(1)3/8=+as(1)/8. Since a,-s(1)<0, this contradicts the
optimality of ; hence s 0 and z r c M.

Now E and v will be constructed. Begin by choosing a closed set Hc [0, 1]
with - 0 on H and/z(H) < e. For each h H, construct an open ball Dh of
radius 2r" where rh is choosen sufficiently small so that [s(t)-s(T)l<--e[t-TI
whenever t, Tc--. Since /(h)=0, this construction is possible. Let Bh be the
open ball centered at h of radius rh. Since H is compact, a finite subcover of these
balls {B} can be chosen of radii {r}. Define B UB3 and D UD; since s is
monotone and Is(t)-s(T)l <- lt-T] whenever t, TD for some j, then the total
variation of s on D is at most e, and hence the variation of s on D is at least
s(1)-e. Also since HcBcD, tz(D)<=tx(B)<-lz(H)<e. By Urysohn’s
lemma, there exists c Cg(R 1) satisfying D < </. Defining v (1
we see that v u on B, v t7 on D, Ilvll <- Ilull / I1 11; a so since K(., t)is convex,
K(u(t), t)<=O and K(a(t), t)<-O, then K(v(t), t)<=O. Choosing E=D and
returning to the summary above, we notice that for e sufficiently small, all the
statements in the summary hold.

LEMMA A.4. Suppose (C), (SL) and inequality (13) hold. Then
q(R").

Proof. Again to keep notation simple, assume q is scalar-valuedthe argu-
ment below can be applied to each component of q separately to treat vector-
valued functions. Since q GTV p on (0, 1) and G is absolutely continuous while
v and p lie in, then q is continuous from the left on [0, 1) (see the definition of
o//.) and by Lemma 2, q is continuous from the left on [0, 1] since q(1-)= 0
q(1). As in Lemma A.3, we can express q r + s, where r ,. s , s(0)=0,
and s 0 almost everywhere. Let us suppose that s(t) 0 for some [0, 1)it is
shown that (13) is violated and hence s 0.

Since s is continuous from the left, then the total variation of s on [0, t] is a
continuous function of from the left, and it is possible to choose t’( such that
the variation of s on It’, t] is less than .

Using the construction of Lemma A.3 on [0, t’], one generates sets B
[0, t’] such that the variation of s on D is at most and/z ([0, t’] B) . (Since the
construction of Lemma A.3 was only valid for a monotone function, this last step
actually requires that we first express s- sl+ s2, where s and -s2 are both
nondecreasing (see Natanson [6]) and 2 0 a.e. (see Rudin [8, p. 166]). Then
using Lemma A.3, sets D and D2 are constructed that capture only e/4 of the
variation of s and s2, respectively, and that satisfy/z ([0, t’]- D),
e/4. Then define D D CI D2.

Now choose <It-t’] and define Jo to be an open ball centered at t’ of
diameter p. Again construct (R) satisfying ([0, t’]- D) < : < ([0, t’]- B) U
and define xu=(1-)+:N, where was given in (SL) and NoR with
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856 WILLIAM W. HAGER AND SANJOY K. MITTER

sgn (N)=-sgn (s(t)). (We had to introduce the set J since [0, t’]-B is not an
open set on [0, i] as required by Urysohn’s lemma.)

Since XN on [t, 1],

io io i i0xN(o’) dq(cr)= XN(Cr) ds(o’) + g(o’) ds(cr) + XN(r) dr(o’)

(A.3) <=Ns(t) + 1 +IIII(TV(s) + TV(r)),

where TV(s) is the total variation of s on [0, 1) and the last inequality follows from
the following relations whenever e and 6 are chosen sufficiently small-

N fo ds(r) +f (xu(r)-N) ds(r)

<-- Ns(t’) + e (11 11 + INI)

Xl(O’) ds(o)

If g(x) denotes the first three terms of (13) evaluated at u u*, then for e and
6 sufficiently small, g(XN) is close to g(g). However, this combined with the
inequality (A.3) and the fact that Ns(t)<O violates (13) for N large; i.e.,
inf {g(x) +I x(t)T dq(t) :x sO(R"), x(O) Xo} is no longer finite. Hence s 0 and
q is absolutely continuous. VI
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