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Abstract

The following generalized eigenproblem is analyzed: Find u ∈ H 1
0 (Ω), u �= 0, and λ ∈ R such that

〈∇u,∇v〉D = λ〈∇u,∇v〉Ω
for all v ∈ H 1

0 (Ω), where Ω ⊂ R
n is a bounded domain, D is a subdomain with closure contained in Ω , and 〈·,·〉Ω is the inner

product

〈∇u,∇v〉Ω =
∫
Ω

∇u · ∇v dx.

It is proved that any f ∈ H 1
0 (Ω) can be expanded in terms of orthogonal eigenfunctions for the generalized eigenproblem. During

the analysis, we present a new inner product on H 1/2(∂D) with the following properties: (a) the norm associated with the inner
product is equivalent to the usual norm on H 1/2(∂D), and (b) the double layer potential operator is self adjoint with respect to the
new inner product and compact as a mapping from H 1/2(∂D) into itself. The analysis identifies four classes of eigenfunctions for
the generalized eigenproblem:

1. The function Π which is 1 on D and harmonic on Ω \ D; the eigenvalue is 0.
2. Functions in H 1

0 (Ω) with support in Ω \ D; the eigenvalue is 0.

3. Functions in H 1
0 (Ω) with support in D; the eigenvalue is 1.

4. Excluding Π , the harmonic extension of the eigenfunctions of a double layer potential on ∂D. The eigenvalues are contained
in the open interval (0,1). The only possible accumulation point is λ = 1/2.

A positive lower bound for the smallest positive eigenvalue is obtained. These results can be used to evaluate the change in the
electric potential due to a lightning discharge.
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1. Introduction

Let Ω ⊂ R
n be a bounded domain and let D be a connected subdomain with closure contained in Ω and with the

complement Dc = Ω \D connected. This paper focuses on the following generalized eigenproblem: Find u ∈ H 1
0 (Ω),

u �= 0, and λ ∈ R such that

〈∇u,∇v〉D = λ〈∇u,∇v〉Ω (1.1)

for all v ∈ H 1
0 (Ω), where 〈·,·〉Ω is the L2(Ω) inner product

〈∇u,∇v〉Ω =
∫
Ω

∇u · ∇v dx. (1.2)

Throughout this paper, we view H 1
0 (Ω) as a Hilbert space for which the inner product between functions u and

v ∈ H 1
0 (Ω) is given by (1.2). Our main result is the following:

Theorem 1.1. If ∂Ω is C2 and ∂D is C2,α , for some α ∈ (0,1) (the exponent of Hölder continuity for the second
derivative), then any f ∈ H 1

0 (Ω) has an expansion of the form

f =
∞∑
i=1

φi,

where the φi are eigenfunctions of (1.1) which are orthogonal relative to the inner product (1.2). Here the convergence
is with respect to the norm of H 1

0 (Ω).

For all the analysis in this paper up to the proof of Theorem 1.1, we require at most C2 boundaries for Ω and D.
The Hölder continuity of the second derivative is required during the proof of Theorem 1.1 when we utilize a result of
Kirsch [12] (also see [6, Theorem 3.6] and [13, Theorem 8.20]) concerning the regularity of a double layer potential
operator.

As explained in Section 2, this generalized eigenproblem arises in the modeling of a lightning discharge for a
thundercloud [10]. In the process of proving Theorem 1.1, we identify an inner product for which the double layer
potential operator is self adjoint and compact in H 1/2(∂D). The inner product amounts to harmonically extending
functions from ∂D into Ω and forming the H 1

0 (Ω) inner product. The norm associated with this inner product is
equivalent to the usual norm on H 1/2(∂D). In [11] it is shown that the double layer potential operator is symmetrizable
by introducing an appropriate (incomplete) inner product on L2(∂D). Here, we use a new inner product to obtain an
eigenexpansion which converges in the norm of H 1/2(∂D).

Our analysis exhibits four classes of eigenfunctions for (1.1):

1. The function Π which is 1 on D and harmonic on Ω \ D; the eigenvalue is 0.
2. Functions in H 1

0 (Ω) with support in Ω \ D; the eigenvalue is 0.
3. Functions in H 1

0 (Ω) with support in D; the eigenvalue is 1.
4. Excluding Π , the harmonic extensions of the eigenfunctions of a double layer potential on ∂D. The eigenvalues

are contained in the open interval (0,1). The only possible accumulation point is λ = 1/2.

The eigenfunction Π is particularly important since the electric potential in D right after the lightning discharge is
obtained by projecting the pre-discharge potential on Π .

The paper is organized as follows. Section 2 shows how the generalized eigenproblem arises in the modeling of
lightning. Section 3 gives the ordinary eigenproblem associated with the generalized eigenproblem (1.1). Section 4
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derives eigenfunctions of types 1, 2, and 3, while Section 5 reformulates the eigenproblem for the remaining eigen-
functions in terms of extensions of the eigenfunctions of a double layer potential for ∂D. Section 6 obtains a lower
bound for the smallest positive eigenvalue, and it proves Theorem 1.1 by exploiting a complete inner product on
H 1/2(∂Ω) for which the double layer potential operator is self adjoint. Section 7 examines eigenfunctions in one
dimension. Final conclusions appear in Section 8.

Notation. Throughout this paper, we use the following notation. The complement of D is Dc = Ω \ D. H 1(Ω) is
the usual Sobolev space consisting of functions whose value and derivative are square integrable on Ω , with the usual
norm given by

‖u‖2
H 1(Ω)

= 〈∇u,∇u〉Ω + 〈u,u〉Ω.

C∞
0 (Ω) is the collection of infinitely differentiable functions with compact support in Ω and H 1

0 (Ω) is the closure of
C∞

0 (Ω) in H 1(Ω). Ck denotes the set of k-times continuously differentiable functions, while Ck,α is the subset of Ck

whose kth derivative is Hölder continuous with exponent α. ∂
∂n

denotes the derivative in the direction of the outward
normal to D.

2. Origin of the generalized eigenproblem

During lightning, a region of space, the lightning channel, becomes highly conductive, leading to a jump discon-
tinuity in the electric potential throughout the atmosphere. The electric potential change due to lightning is evaluated
in [10] using the eigendecomposition developed in this paper. Here we briefly review the connection between the
generalized eigenproblem and lightning. By Ampere’s law, the electric potential φ satisfies an evolution equation of
the form

∂�φ

∂t
= −∇ · (σ∇φ) + ∇ · J, (x, t) ∈ Ω × [0,∞), (2.1)

φ(x, t) = 0, (x, t) ∈ ∂Ω × [0,∞), (2.2)

φ(x,0) = φ0(x), x ∈ Ω, (2.3)

where σ ∈ L∞(Ω) is the conductivity divided by the permittivity of the atmosphere, J ∈ L2(Ω) is due to transport by
wind of charged ice and water particles in the thundercloud, and φ0 ∈ H 1

0 (Ω). Equation (2.1) is interpreted in a weak
sense.

When the electric field in a thundercloud reaches the “breakdown threshold,” the lightning channel D turns into
a plasma where conductivity is large. The lightning domain D (see Fig. 1) is essentially a network of connected,
thin open tubes. Since the conductivity of the ionized region is extremely high, the effect of lightning in the partial
differential equation (2.1) is to replace σ by σ + τΨ where Ψ is the characteristic function of D and τ is large.

Fig. 1. A sketch of D and Ω for a lightning discharge.



B.C. Aslan et al. / J. Math. Anal. Appl. 341 (2008) 1028–1041 1031
If the lightning occurs at time t = 0, then in the moments after the lightning, the electric potential is governed by the
equation

∂�φ

∂t
= −∇ · (σ∇φ) − τ∇ · (Ψ ∇φ) + ∇ · J in Ω × [0,∞), (2.4)

subject to the boundary conditions (2.2) and (2.3).
If φτ (x, t) denotes the solution to (2.4) at position x ∈ Ω and time t , and if the lightning is infinitely fast and the

conductivity of the channel is infinitely large, then the potential right after the lightning is given by

φ+(x) = lim
t→0+ lim

τ→∞φτ (x, t). (2.5)

We show [10] that φ+ can be expressed in the following way:

Theorem 2.1. If ∂Ω is C2 and ∂D is C2,α , for some α ∈ (0,1), then the electric potential φ+ immediately after the
lightning discharge is given by

φ+(x) =
{

φL if x ∈ D,

φ0(x) + ξ(x) if x ∈ Dc,
(2.6)

where

φL = 〈∇φ0,∇Π〉Ω
〈∇Π,∇Π〉Ω , (2.7)

and where Π and ξ are harmonic functions in Dc with boundary conditions as specified below:

�Π = 0 in Dc, Π = 0 on ∂Ω, Π = 1 in D, (2.8)

�ξ = 0 in Dc, ξ = 0 on ∂Ω, ξ = φL − φ0 on ∂D. (2.9)

As explained in [10], when D touches ∂Ω , as it would during a cloud-to-ground flash, φL = 0 and Π can be
eliminated.

Thus in the lightning channel D, the electric potential is the projection of the pre-flash potential φ0 along the type 1
eigenfunction Π . Outside the lightning channel, the change in the electric potential is a linear combination of type 4
eigenfunctions. Hence, the change in the electric potential is harmonic outside of D, and the boundary conditions can
be expressed in term of the pre-flash potential φ0 and the post-flash potential φL along the lightning channel. We prove
Theorem 2.1 by expanding the solution to (2.4) in terms of the eigenfunctions of the generalized eigenproblem (1.1)
and analyzing limits as τ tends to ∞ and t tends to 0+. When φ is an eigenfunction, the τ term in (2.4), which operates
on the subdomain D, is transformed to a term on the entire domain Ω by (1.1).

3. The ordinary eigenproblem

Suppose that A and B are square, symmetric n by n matrices with B positive definite. Consider the following
generalized eigenproblem: Find x ∈ R

n, x �= 0, and λ ∈ R such that

Ax = λBx. (3.1)

By defining y = B1/2x, where B1/2 is the symmetric square root of B, we obtain the following ordinary, symmetric
eigenproblem: Find y ∈ R

n and λ ∈ R such that(
B−1/2AB−1/2)y = λy.

Hence, finding the eigenvalues of the generalized eigenproblem (3.1) is equivalent to finding the ordinary eigenvalues
of B−1/2AB−1/2. We now derive an ordinary, self adjoint eigenproblem associated with (1.1) in which the Laplacian
operator plays the role of the matrix B.

Let (−�)− 1
2 : L2(Ω) → H 1

0 (Ω) be the inverse of the square root of the Laplacian (see [2]). We claim that the
ordinary eigenproblem associated with (1.1) is the following: Find U ∈ L2(Ω) such that〈∇(−�)−

1
2 U,∇(−�)−

1
2 V

〉 = λ〈U,V 〉Ω (3.2)

D
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for all V ∈ L2(Ω). The operator on the left side is the analogue of the matrix B−1/2AB−1/2. To see the connection
between (3.2) and (1.1), let u = (−�)−1/2U and v = (−�)−1/2V denote the functions in H 1

0 (Ω) corresponding to U

and V ∈ L2(Ω). In terms of u and v, (3.2) can be stated in the following way: Find u ∈ H 1
0 (Ω) such that

〈∇u,∇v〉D = λ
〈
(−�)

1
2 u, (−�)

1
2 v

〉
Ω

(3.3)

for all v ∈ H 1
0 (Ω). If u ∈ C∞

0 (Ω), then〈
(−�)

1
2 u, (−�)

1
2 v

〉
Ω

= −〈�u,v〉Ω = 〈∇u,∇v〉Ω. (3.4)

Since C∞
0 (Ω) is dense in H 1

0 (Ω) and the operators (−�)
1
2 and ∇ are both bounded in H 1

0 (Ω), the identity (3.4) is
valid for all u ∈ H 1

0 (Ω). Hence, (3.3) reduces to (1.1).

4. Eigenfunctions of types 1, 2, and 3

The eigenfunctions of types 1, 2, and 3 are now derived. By (1.1), we have

λ = 〈∇u,∇u〉D
〈∇u,∇u〉Ω = 〈∇u,∇u〉D

〈∇u,∇u〉D + 〈∇u,∇u〉Dc
, (4.1)

which implies that 0 � λ � 1. Let H 1
0 (D) ⊂ H 1

0 (Ω) denote the subspace consisting of functions with support in D.
Similarly, let H 1

0 (Dc) ⊂ H 1
0 (Ω) denote the subspace consisting of functions with support in Dc .

Proposition 4.1. λ = 1 and u ∈ H 1
0 (Ω) is an eigenpair of (1.1) if and only if the support of u is contained in D.

If u ∈ H 1
0 (Dc), then u is an eigenfunction of (1.1) corresponding to the eigenvalue 0. The only other eigenfunction

of (1.1) corresponding to the eigenvalue 0, which is orthogonal to H 1
0 (Dc), is the solution Π ∈ H 1

0 (Ω) of

〈∇Π,∇v〉Ω = 0 for all v ∈ H 1
0

(
Dc

)
, Π = 1 on D. (4.2)

Proof. If λ = 1 and u ∈ H 1
0 (Ω) is an eigenpair of (1.1), then by (4.1), we have

〈∇u,∇u〉Dc = 0.

Hence, ∇u = 0 in Dc, which implies that u is constant in Dc since Dc is connected. Since u ∈ H 1
0 (Ω), u = 0 in Dc .

Conversely, if u = 0 in Dc, then by (1.1), u is an eigenfunction corresponding to the eigenvalue 1. If u = 0 in D,
then u is an eigenfunction corresponding to the eigenvalue 0. The solution Π of (4.2) is an eigenfunction of (1.1)
corresponding to the eigenvalue 0 since ∇Π = 0 in D.

Let w ∈ H 1
0 (Ω) be any eigenfunction of (1.1) corresponding to the eigenvalue 0 which is orthogonal to H 1

0 (Dc).
By (1.1), we have 〈∇w,∇w〉D = 0, which implies that ∇w = 0 in D, or w is constant in D since D is connected.
Without loss of generality, let us assume that w = 1 in D. Since w is orthogonal to the functions v ∈ H 1

0 (Dc), we
have

〈∇w,∇v〉Ω = 0 for all v ∈ H 1
0

(
Dc

)
.

Combining this with (4.2) gives〈∇(w − Π),∇v
〉
Ω

= 0 for all v ∈ H 1
0

(
Dc

)
.

Since ∂Dc = ∂Ω ∪ ∂D and since w − Π vanishes on both ∂Ω and ∂D, it follows that w = Π . �
5. Reformulation of eigenproblem in H using double-layer potential

Proposition 4.1 describes eigenfunctions of types 1, 2, and 3. In this section, we focus on type 4 eigenfunctions.
Let H be the space which consists of all u ∈ H 1

0 (Ω) satisfying the conditions

〈∇u,∇v〉Ω = 0 for all v ∈ H 1
0 (D) and (5.1)

〈∇u,∇w〉Ω = 0 for all w ∈ H 1(Dc
)
. (5.2)
0
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H is a subspace of H 1
0 (Ω) consisting of functions harmonic in D and Dc (�u = 0 in D and �u = 0 in Dc). Note

that Π ∈ H. Since H 1
0 (D) and H 1

0 (Dc) are orthogonal with respect to the H 1
0 (Ω) inner product, and since H is the

orthogonal complement of H 1
0 (D) ⊕ H 1

0 (Dc) in H 1
0 (Ω), we have the orthogonal decomposition

H 1
0 (Ω) = H⊕ H 1

0 (D) ⊕ H 1
0

(
Dc

)
.

The following series of lemmas reformulates the generalized eigenvalue problem (1.1) on H in terms of an integral
operator.

Lemma 5.1. u ∈H is a solution of the generalized eigenproblem (1.1) if and only if

∂u

∂n

−
= −λ

[
∂u

∂n

]
on ∂D, (5.3)

where[
∂u

∂n

]
= ∂u

∂n

+
− ∂u

∂n

−
∈ H−1/2(∂D).

Here n is the outward unit normal to D and the − and + refer to the limits from the interior and exterior of D,
respectively.

Proof. First we show a generalized eigenpair also satisfies (5.3). By (1.1) we have

〈∇u,∇v〉D = λ〈∇u,∇v〉Ω = λ
(〈∇u,∇v〉Dc + 〈∇u,∇v〉D

)
(5.4)

for any v ∈ H 1
0 (Ω). Integrating by parts and utilizing the fact that u is harmonic in both D and Dc gives∫

∂D

v
∂u

∂n

−
dγ = −λ

∫
∂D

v
∂u

∂n

+
dγ + λ

∫
∂D

v
∂u

∂n

−
dγ, (5.5)

where γ denotes the boundary measure on ∂D. Hence, we have∫
∂D

v

[
∂u

∂n

−
+ λ

(
∂u

∂n

+
− ∂u

∂n

−)]
dγ = 0

for any v ∈ H 1
0 (Ω). Since any v ∈ H 1/2(∂D) has an H 1

0 (Ω) extension, (5.3) holds.
Conversely, suppose that u satisfies (5.3). As in (5.4)–(5.5), we have

λ〈∇v,∇u〉Ω = −λ

∫
∂D

v
∂u

∂n

+
dγ + λ

∫
∂D

v
∂u

∂n

−
dγ.

Applying (5.3) gives

λ〈∇v,∇u〉Ω =
∫

∂D

v
∂u

∂n

−
= 〈∇v,∇u〉D

since u is harmonic in D. Hence, u satisfies (1.1). �
Now let us introduce the Green’s function on Ω :

�yG(x, y) = δx(y) in Ω, G(x, y) = 0 for y ∈ ∂Ω, (5.6)

where δx is the Dirac delta function located at x. The piecewise harmonic functions u ∈ H can be described in terms
of the jump on ∂D of the normal derivative.

Lemma 5.2. Suppose that ∂D and ∂Ω are C2. If u ∈H, x ∈ Ω , and x /∈ ∂D, then

u(x) =
∫

∂D

[
∂u

∂n

]
(y)G(x, y) dγy. (5.7)
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Proof. This follows from (5.6). Multiply both sides by u(y), integrate over y ∈ Ω , and integrate by parts. The terms
involving the trace of u on ∂D cancel since the exterior and interior traces match for functions in H. �

The following lemma is the well-known limit of a double layer potential. See for example [4, Theorem 6.5.1] or
[8, Theorem 3.22] for the case of free space potentials. We restate this limit here for completeness.

Lemma 5.3. Suppose φ ∈ H 1/2(∂D) and both ∂D and ∂Ω are C2. For x ∈ Ω , x /∈ ∂D, let v(x) be defined by

v(x) =
∫

∂D

φ(y)
∂G

∂ny

(x, y) dγy.

The trace v+ of v onto ∂D from the exterior of D and the trace v− of v onto ∂D from the interior D are given by

v±(x) = ∓1

2
φ(x) +

∫
∂D

φ(y)
∂G

∂ny

(x, y) dγy. (5.8)

Proof. We express G as the sum of the free space Green’s function F (fundamental solution) for the Laplacian and a
harmonic function: G = F + H where

F(x, y) =
{ |x−y|2−n

(2−n)ωn
, n > 2,

1
2π

log|x − y|, n = 2,
(5.9)

and ωn is the surface area of the unit sphere in R
n. By [4, Theorem 6.5.1],

lim
x→∂D
x∈Dc

∫
∂D

φ(y)
∂F

∂ny

(x, y) dγy = −1

2
φ(x) +

∫
∂D

φ(y)
∂F

∂ny

(x, y) dγy. (5.10)

For x ∈ Ω , the harmonic function H has C2 boundary values given by H(x,y) = −F(x, y) for y ∈ ∂Ω . By the
smoothness of H and (5.10), we obtain (5.8). �

Using Lemmas 5.1–5.3, we reformulate the generalized eigenproblem (1.1) on H in terms of a boundary integral
operator. By the trace theorem [1, Theorem 7.53], any u ∈ H ⊂ H 1

0 (Ω) has a trace on ∂D in H 1/2(∂D). Conversely,
u ∈ H 1/2(∂D) has a unique harmonic extension into both D and Dc with u = 0 on ∂Ω . Hence, there is a one-to-one
correspondence between elements of H and elements of H 1/2(∂D).

Define

T : L2(∂D) → L2(∂D)

by

T φ(x) =
∫

∂D

φ(y)K(x, y) dγy, K(x, y) := ∂G

∂ny

(x, y). (5.11)

By [8, Proposition 3.17], K is a continuous kernel of order n − 2 on ∂D. It follows from [8, Proposition 3.12] that T

is a compact operator from L2(∂D) to itself.

Proposition 5.4. If both ∂D and ∂Ω are C2, then (u,λ) ∈ H × R is a generalized eigenpair for (1.1) if and only if
the corresponding u ∈ H 1/2(∂D) is an eigenfunction of T with associated eigenvalue 1/2 − λ; that is,

T u = (1/2 − λ)u. (5.12)

Proof. First, let us assume that (u,λ) ∈ H× R is a generalized eigenpair for (1.1). By Lemmas 5.1 and 5.2, we have

λu(x) = −
∫

∂u

∂n

−
(y)G(x, y) dγy
∂D
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for x ∈ Ω and x /∈ ∂D. We integrate by parts to obtain

λu(x) = −
∫
D

∇u(y)∇yG(x, y) dy = −
∫

∂D

u(y)
∂G

∂ny

(x, y) dγy +
∫
D

u(y)�yG(x, y) dy.

If x ∈ Dc , then the second term above disappears, and we have

λu(x) = −
∫

∂D

u(y)
∂G

∂ny

(x, y) dγy,

an equation for a double layer potential. We let x ∈ Dc approach ∂D. According to Lemma 5.3,

λu(x) = 1

2
u(x) −

∫
∂D

u(y)
∂G

∂ny

(x, y) dγy,

which is equivalent to (5.12).
Conversely, suppose that u ∈ H 1/2(∂D) satisfies (5.12). We identify u with its harmonic extension in H, and we

define w(x) by

w(x) =
⎧⎨
⎩

− ∫
∂D

u(y) ∂G
∂ny

(x, y) dγy for x ∈ Dc,

− ∫
∂D

u(y) ∂G
∂ny

(x, y) dγy + u(x) for x ∈ D.
(5.13)

In either Dc and D, w is harmonic. By Lemma 5.3, we have

w+(x) = 1

2
u(x) −

∫
∂D

u(y)
∂G

∂ny

(x, y) dγy

and

w−(x) = u(x) − 1

2
u(x) −

∫
∂D

u(y)
∂G

∂ny

(x, y) dγy = 1

2
u(x) −

∫
∂D

u(y)
∂G

∂ny

(x, y) dγy.

Utilizing (5.12) yields

w+ = w− = (1/2 − T )u = λu on ∂D. (5.14)

Observe that w vanishes on ∂Ω due to the symmetry of G(x,y) [8, Lemma 2.33]; that is, since G(x,y) = 0 when
y ∈ ∂Ω , we have by symmetry G(x,y) = 0 when x ∈ ∂Ω . Hence, the normal derivative in (5.13) vanishes when
x ∈ ∂Ω . Since w is harmonic in each subdomain and it is equal to λu on both ∂D (see (5.14)) and ∂Ω (they both
vanish), it follows that w = λu in Ω . We replace w with λu in (5.13) to obtain

λu(x) =
⎧⎨
⎩

− ∫
∂D

u(y) ∂G
∂ny

(x, y) dγy for x ∈ Dc,

− ∫
∂D

u(y) ∂G
∂ny

(x, y) dγy + u(x) for x ∈ D.
(5.15)

Integrating both right-hand sides in (5.15) by parts into D and using Eq. (5.6) for G, we have for any x /∈ ∂D

λu(x) = −
∫

∂D

∂u

∂n

−
(y)G(x, y) dγy. (5.16)

By Lemma 5.2,

λu(x) = λ

∫
∂D

[
∂u

∂n

]
(y)G(x, y) dγy. (5.17)

Subtracting (5.17) from (5.16) gives

s(x) :=
∫

φ(y)G(x, y) dγy = 0 for any x /∈ ∂D,
∂D
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where

φ(y) = −∂u

∂n

−
(y) − λ

[
∂u

∂n

]
(y).

Since s = 0 almost everywhere in Ω , φ lies in the null space of the single layer potential operator. Since the null space
is the zero function, it follows that φ = 0 or

∂u

∂n

−
= −λ

[
∂u

∂n

]
.

Lemma 5.1 completes the proof.
It is proved in [4, Theorem 6.8.2] that the null space of the single layer potential operator associated with the

fundamental solution for the Laplacian is the zero function when Ω is simply connected and Ω ⊂ R
3 with smooth

boundary. For completeness, we provide a proof of this result in our slightly different setting. Given a smooth function
r defined on ∂D, let r also denote any smooth extension into Ω with compact support in Ω . By the symmetry of G,
we have

r(y) =
∫
Ω

[
�xr(x)

]
G(x,y) dx.

Forming the L2(Ω) inner product between s (which vanishes almost everywhere) and �r yields

0 = 〈s,�r〉Ω =
∫
Ω

∫
∂D

φ(y)
[
�xr(x)

]
G(x,y) dγy dx = 〈φ, r〉∂D.

Since r was an arbitrary smooth function defined on ∂D, it follows that φ = 0. �
Corollary 5.5. If both ∂D and ∂Ω are C2, then the eigenvalues of the double layer potential operator T in (5.11) are
real and contained in the half-open interval (−1/2,1/2]. The only possible accumulation point for the spectrum is 0.

Proof. The eigenvalues of the generalized eigenproblem (1.1) are all real due to symmetry of the inner product.
By Proposition 5.4, the eigenvalues of T are all real. As noted before Proposition 4.1, the eigenvalues of (1.1) are
contained on the interval [0,1]. Moreover, by Proposition 4.1, those eigenfunctions corresponding to the eigenvalue 1
are supported in D. The trace of this eigenfunction on ∂D is 0. The only element in H with vanishing trace on ∂D

is the zero function. Consequently, there is no eigenfunction in H corresponding to the eigenvalue 1. There is one
eigenfunction in H corresponding to the eigenvalue 0, namely the function Π of Proposition 4.1. Except for the
eigenvalue 0, all the remaining eigenvalues for the generalized eigenproblem lie in the open interval (0,1). Since the
eigenvalues of T are 1/2 minus the corresponding eigenvalue of (1.1) in [0,1), the proof is complete. Since T is
compact on L2(Ω) [8, Proposition 3.12], the only possible accumulation point for the spectrum is 0. �

A lower bound for the separation between the largest and second largest eigenvalues of T is obtained from Propo-
sition 6.1.

6. Eigenvalue separation and completeness of eigenfunctions

Due to Proposition 4.1, the generalized eigenproblem (1.1) restricted to H has a simple eigenvalue λ = 0 cor-
responding to the eigenfunction Π ∈ H while the remaining eigenvalues are positive. By Proposition 5.4, the only
possible accumulation point for the spectrum is λ = 1/2. Hence, there is an interval (0, ρ), ρ > 0, where the general-
ized eigenproblem has no eigenvalues. We now give an explicit positive lower bound for ρ in terms of three embedding
constants:

(E1) Let ua denote the constant function on Ω whose value is the average of u ∈ H 1(Ω) over D:

ua = 1

measure(D)

∫
u(x)dx.
D
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By [7, Theorem 1, p. 275], there exists a constant θ1 > 0 such that

‖∇u‖2
L2(D)

� θ1‖u − ua‖2
H 1(D)

for all u ∈ H 1(Ω).
(E2) By [1, Theorem 7.53], there exists a constant θ2 > 0 such that

‖u‖2
H 1(D)

� θ2‖u‖2
H 1/2(∂D)

for all u ∈ H 1(Ω).
(E3) There exists a constant θ3 > 0 such that

‖u‖2
H 1/2(∂D)

� θ3‖u‖2
H 1(Dc)

(6.1)

for all u ∈ H 1
0 (Ω) which are harmonic in Dc (in other words, (5.2) holds). This is a standard result for har-

monic extensions of H 1/2 functions. That is, by [9, Theorem 1.5.1.3], there exists a bounded linear map
T : H 1/2(∂D) → H 1

0 (Ω) with the property that T (g) has trace g on ∂D. Consequently, if g is the trace of
a harmonic function u ∈ H 1(Dc), then we have〈∇u,∇(

u − T (g)
)〉

Dc = 0,

which implies that ‖∇u‖L2(Dc) � ‖∇T (g)‖L2(Dc) � (‖T ‖)‖g‖H 1/2(∂D). Since u vanishes on ∂Ω , (6.1) holds.

Proposition 6.1. If both ∂D and ∂Ω are Lipschitz, then the generalized eigenproblem (1.1) has no eigenvalues in the
interval (0, ρ) where

ρ = min{1, θ2θ3}θ1/2.

Proof. Let μ be the smallest positive eigenvalue for the generalized eigenproblem (1.1), and let u be an associated
eigenfunction with normalization 〈∇u,∇u〉Ω = 1. If Π ∈H is the eigenfunction described in (4.2), then we have

μ = ‖∇u‖2
L2(D)

� θ1‖u − ua‖2
H 1(D)

(6.2)

= θ1‖u − Πua‖2
H 1(D)

(6.3)

� θ1θ2‖u − Πua‖2

H
1
2 (∂D)

(6.4)

� θ1θ2θ3‖u − Πua‖2
H 1(Dc)

. (6.5)

Above, (6.3) is due to the fact that Π = 1 on D, while (6.2), (6.4), and (6.5) come from (E1)–(E3), respectively.
Suppose that the proposition does not hold, in which case μ < θ1/2 and μ < θ1θ2θ3/2. By (6.3) and (6.5), we have

‖u − Πua‖2
H 1(D)

< 1/2 and ‖u − Πua‖2
H 1(Dc)

< 1/2.

Combining these gives

‖u − Πua‖2
H 1(Ω)

< 1. (6.6)

On the other hand, u and Π are orthogonal since these eigenfunctions correspond to distinct eigenvalues. Since uaΠ

is a multiple of Π which is orthogonal to u, it follows that

1 �
∥∥∇(u − Πua)

∥∥2
L2(Ω)

�
∥∥∇(u − Πua)

∥∥2
H 1(Ω)

. (6.7)

Comparing (6.6) and (6.7), we have a contradiction. Hence, either μ � θ1/2 or μ � θ1θ2θ3/2. �
We continue to develop properties for the eigenfunctions of the generalized eigenproblem (1.1) by exploiting the

connection, given in Proposition 5.4, between the eigenfunctions of the generalized eigenproblem (1.1) and those of
the double layer potential T in (5.11). As noted before Proposition 5.4, there is a one-to-one correspondence between
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elements of H and elements of H 1/2(∂D). If u ∈ H 1/2(∂D), then the corresponding E(u) ∈ H is the harmonic
extension of u ∈ H 1/2(∂D) into Ω which vanishes on ∂Ω . For any u,v ∈ H 1/2(∂D), we define the inner product

(u, v) = 〈∇E(u),∇E(v)
〉
Ω

. (6.8)

In other words, harmonically extend u and v in Ω and form the H 1
0 (Ω) inner product of the extended functions. We

now show that T is self adjoint and compact relative to this new inner product.

Lemma 6.2. The following properties are satisfied:

(T1) If ∂Ω and ∂D are Lipschitz, then the norm (·,·)1/2 is equivalent to the usual norm for H 1/2(∂D). That is, there
exist positive constants c1 and c2 such that

c1(v, v) � ‖v‖2
H 1/2(∂D)

� c2(v, v)

for all v ∈ H 1/2(∂D).
(T2) If ∂Ω and ∂D are C2, then the double layer potential operator T in (5.11) is self adjoint relative to the inner

product (6.8).
(T3) If ∂Ω is C2 and ∂D is C2,α , then T is a compact operator from H 1/2(∂D) into H 1/2(∂D).

Proof. We begin by showing that the norm of H 1/2(∂D) and the norm (·,·)1/2 are equivalent. First, recall [7, p. 265]
that there exists a constant θ4 > 0 such that

‖∇v‖2
L2(Ω)

� θ4‖v‖2
H 1(Ω)

for each v ∈H which vanishes on ∂Ω . Combining this with (E2) gives the lower bound

(v, v) = 〈∇E(v),∇E(v)
〉
Ω

� θ4
∥∥E(v)

∥∥2
H 1(Ω)

� θ4
∥∥E(v)

∥∥2
H 1(D)

� θ2θ4‖v‖2
H 1/2(∂D)

. (6.9)

An upper bound for (v, v) is obtained from (E3):

(v, v) = 〈∇E(v),∇E(v)
〉
Ω

�
∥∥E(v)

∥∥2
H 1(Ω)

�
(
θ−1

3 + θ̄−1
3

)‖v‖2
H 1/2(∂D)

. (6.10)

Here θ̄3 > 0 is analogous to θ3 in (6.1) except that it relates D to ∂D:

‖v‖2
H 1/2(∂D)

� θ̄3
∥∥E(v)

∥∥2
H 1(D)

.

Relations (6.9) and (6.10) yield (T1).
To show that T is self adjoint relative to the inner product (6.8), we must verify the identity

(T u, v) = 〈∇E(T u),∇E(v)
〉
Ω

= 〈∇E(u),∇E(T v)
〉
Ω

= (u,T v) (6.11)

for all u and v ∈ H 1/2(∂D). We first observe that the extension of T u has the form

E(T u)(x) =
⎧⎨
⎩

1
2E(u)(x) + ∫

∂D
u(y)

∂G(x,y)
∂ny

dγy for x ∈ Dc,

− 1
2E(u)(x) + ∫

∂D
u(y)

∂G(x,y)
∂ny

dγy for x ∈ D.
(6.12)

By Lemma 5.3, the trace of the right side of (6.12) is T u from either side of ∂D. Moreover, the right side is harmonic
and it vanishes on ∂Ω since E(u) vanishes on ∂Ω and G(x,y) = 0, independent of y ∈ Ω , when x ∈ ∂Ω . Since the
right side is harmonic and satisfies the boundary conditions associated with E(T u), it must equal E(T u).

Integrating by parts and utilizing (6.12), we obtain

(T u, v) = 〈∇E(T u),∇v
〉
Ω

= 〈∇E(T u),∇E(v)
〉
D

+ 〈∇E(T u),∇E(v)
〉
Dc

= −1

2

∫
∂D

(
∂E(u)−

∂n
+ ∂E(u)+

∂n

)
E(v)dγ. (6.13)

The term in E(T u) associated with the Green’s function cancels since the normal derivative of a double layer potential
operator is continuous across ∂D (for example, see [6, Theorem 3.1], [5, Theorem 2.21], [13, Theorem 6.13]).
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For any p and q ∈ H, we have the identities

〈∇p,∇q〉D =
∫

∂D

q
∂p

∂n

−
dγ =

∫
∂D

p
∂q

∂n

−
dγ,

and

〈∇p,∇q〉Dc = −
∫

∂D

q
∂p

∂n

+
dγ = −

∫
∂D

p
∂q

∂n

+
dγ.

Hence, the normal derivatives in (6.13) can be moved from the u terms to v to obtain

(T u, v) = −1

2

∫
∂D

(
∂E(v)−

∂n
+ ∂E(v)+

∂n

)
E(u)dγ = (u,T v),

which establishes (T2).
We now show that T is compact on H 1/2(∂D). Consider the corresponding free space double layer potential

operator TF defined by

TF φ(x) =
∫

∂D

φ(y)
∂F

∂ny

(x, y) dγy,

where F is the free space Green’s function defined in (5.9). For n = 2, TF is compact by [13, Theorem 8.20]. For
n � 3, Theorem 4.2 in [12] gives the boundedness of TF as a map from L2(∂D) to H 1(∂D). This result extends to
our operator T as follows. The difference, T − TF , is an integral operator on ∂D with kernel

∂H

∂ny

(x, y) = ∂G

∂ny

(x, y) − ∂F

∂ny

(x, y).

For x ∈ ∂D, H has no singularity since it is harmonic with smooth boundary data (see the proof of Lemma 5.3).
Consequently, T − TF is bounded from L2(∂D) to H 1(∂D). Since both TF and T − TF are bounded from L2(∂D)

to H 1(∂D), we conclude that T is bounded from L2(∂D) to H 1(∂D). This implies that T is compact on H 1/2(∂D)

since H 1 embeds compactly in H 1/2; that is, by [9, Theorem 1.4.3.2] Hs embeds compactly in Ht when s > t � 0.
Hence, T is compact on H 1/2(∂D). �

We now prove our main result, Theorem 1.1. As pointed out earlier, we have the orthogonal decomposition

H 1
0 (Ω) = H⊕ H 1

0 (D) ⊕ H 1
0

(
Dc

)
.

By Proposition 4.1, any complete orthonormal basis for H 1
0 (D) is an eigenfunction basis corresponding to the eigen-

value 1. Likewise, any complete orthonormal basis for H 1
0 (Dc) is a basis whose elements are eigenfunctions of the

generalized eigenproblem corresponding to the eigenvalue 0. To complete the proof, we need to show that any f ∈H
lies in the span of the remaining eigenfunctions for (1.1).

By Lemma 6.2, T is compact and self adjoint relative to the inner product (·,·) defined in (6.8). Hence, every
f ∈ H 1/2(∂D) has a unique expansion in terms of orthogonal eigenfunctions of T (for example, see [3, Theo-
rem 1.28]). Given f ∈ H, its restriction to ∂D lies in H 1/2(∂D). Therefore, there exist orthogonal eigenfunctions φi ,
i � 1, of T such that

f =
∞∑
i=1

φi on ∂D.

By the linearity and boundedness of the extension operator, we have

f =
∞∑
i=1

E(φi) on Ω.

By Proposition 5.4, E(φi) is an eigenfunction for the generalized eigenproblem (1.1). This completes the proof of
Theorem 1.1.
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Fig. 2. Eigenfunctions in H in one dimension.

7. One dimension

Let us consider the generalized eigenproblem (1.1) in one dimension where Ω is the interval [0,1] and D is a
subinterval [a, b] ⊂ (0,1). In this case, there are precisely 2 eigenfunctions in H. The functions which are harmonic
on both D and Dc are piecewise linear. The eigenfunction Π of Proposition 4.1, corresponding to the eigenvalue 0,
is defined by its boundary values Π(0) = Π(1) = 0 and the values Π(x) = 1 on D. Let s1, s2, and s3 be the slope
on the intervals [0, a], [a, b], and [b,1] respectively of the remaining eigenfunction u ∈ H. The jump condition of
Lemma 5.1 yields

s2 = −λ(s1 − s2) and s2 = −λ(s3 − s2). (7.1)

Hence, s1 = s3. Let s denote either s1 or s3. The boundary conditions u(0) = u(1) = 0 imply that

0 =
1∫

0

u′(x) dx = s1a + s2(b − a) + s3(1 − b) = s(1 + a − b) + s2(b − a).

This gives

s2 = s

(
b − a − 1

b − a

)
.

With this substitution in (7.1), we have

λ = 1 − (b − a).

A sketch of these two eigenfunctions appears in Fig. 2.

8. Conclusions

We analyze a generalized eigenproblem (1.1) for the Laplacian. The elements of H 1
0 (Dc) are eigenfunctions cor-

responding to the eigenvalue 0, while the elements of H 1
0 (D) are eigenfunctions corresponding to the eigenvalue 1.

The remaining eigenfunctions are elements of the piecewise harmonic space H, consisting of functions in H 1
0 (Ω)

which are harmonic in both D and Dc. There is a one-to-one correspondence between eigenfunctions of (1.1) in H
and eigenfunctions of the double layer potential T in (5.11). The eigenfunctions of (1.1) are the harmonic extensions
of the eigenfunctions of T , and if μ is an eigenvalue of T , then λ = 1/2 − μ is the corresponding eigenvalue of (1.1).
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Π ∈ H (see Proposition 4.1) is the only eigenfunction in H corresponding to the eigenvalue 0. All the remaining
eigenvalues corresponding to eigenfunctions in H are contained in the open interval (0,1) and λ = 1/2 is the only
possible accumulation point. Since the eigenvalues of the generalized eigenproblem (1.1) associated with eigenfunc-
tions in H are contained in the half-open interval [0,1), the eigenvalues of the double layer potential T in (5.11)
are contained in [−1/2,1/2). Proposition 6.1 gives a lower bound for the positive eigenvalues of the generalized
eigenproblem, or equivalently, a lower bound for the gap between the largest and the second largest eigenvalue of T .
Based on the fact that the double layer potential T is self adjoint and compact relative to the inner product (6.8), as
established in Lemma 6.2, we conclude that any f ∈ H 1

0 (Ω) can be expressed as a linear combination of orthogonal
eigenfunctions for (1.1).

The eigenfunction decomposition developed in this paper can be used to determine the potential change due to
lightning as given in Theorem 2.1. Since the eigenfunctions for (1.1) form a basis for H 1

0 (Ω), we can expand the
electric potential in terms of the eigenfunctions. Utilizing the structure of the eigenvalues, we are able to evaluate the
limit (2.5) of the potential as conductivity σ tends to ∞ in the lightning channel. The key properties of the eigenvalues
which enter into the analysis are the following:

(i) The positive eigenvalues are bounded away from 0 (Proposition 6.1). As a result, we show that as σ tends to
∞ in the lightning domain D, the coefficients in the expansion of the potential all decay to zero except for the
coefficients associated with zero eigenvalues.

(ii) There is only one eigenfunction with support in the lightning domain D whose eigenvalue is zero, namely Π .
Since Π is constant on D, it follows that the potential becomes constant along the lightning channel as σ tends
to ∞. The value of the constant is the H 1 projection of the initial potential φ0 along Π . This mathematical result
coincides with our physical expectation that the potential in a highly conductive material is constant.

(iii) Outside the lightning channel D, the change in potential is expressed in terms of the eigenfunctions in H. Since
these eigenfunctions are all harmonic, we deduce that the change in the potential is harmonic in Dc . Using the
known boundary value on ∂D, we determine the potential throughout Dc by solving the Dirichlet problem (2.9).

See [10] for the detailed analysis.
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