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Abstract. An algorithm presented in Hager [Comput. Math. Appl., 14 (1987), pp. 561–572]
for diagonalizing a matrix is generalized to a block matrix setting. It is shown that the resulting
algorithm is locally quadratically convergent. A global convergence proof is given for matrices with
separated eigenvalues and with relatively small off-diagonal elements. Numerical examples along
with comparisons to the QR method are presented.
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1. Introduction. Let A denote an n×n block matrix; that is, the (i, j) element
Aij of A is itself a matrix of dimension ni ×nj , where

∑r
i=1 ni = n for some r ≤ n. In

this paper, we develop and analyze an algorithm for computing a block diagonalization
XΛX−1 of A, assuming one exists. Here Λ is a block diagonal matrix with diagonal
blocks Λi, i = 1 to r, and X is an invertible matrix whose ith block of columns is
denoted by Xi. Hence, the equation A = XΛX−1 is equivalent to the relation

AXi = XiΛi, i = 1 to r.

The algorithm developed in this paper is based on a stability result, Proposition 1,
for a perturbation A(ε)X(ε) = X(ε)Λ(ε) of the original eigenequation. We show that
if the spectrum of Λi and Λj are disjoint for each i 6= j, then there exist continuously
differentiable solutions X(ε) and Λ(ε) to the perturbed equation. After differentiat-
ing the perturbed equation and applying Taylor’s theorem, we obtain the following
algorithm (throughout the paper, the subscript k denotes the iteration number while
the subscripts i and j denote elements or submatrices of larger matrices).

BLOCK DIAGONALIZATION ALGORITHM. If XkΛkX−1
k is the current approxi-

mate diagonalization of A, then

(1) Λk+1 = diag X−1
k AXk and Xk+1 = Xk(I + D),

where

(2) diag D = 0 and DΛk+1 − Λk+1D = off X−1
k AXk.

The notation “diag” and “off” above are defined in the following way: given a block
matrix B, “diag B” denotes the block diagonal matrix whose diagonal blocks coincide
with the diagonal blocks of B, and “off B” denotes the matrix that coincides with B
except for the diagonal blocks which are replaced by blocks of zeros.
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In section 3 we show that if the spectrum of Λi and Λj are disjoint for i 6= j,
then this algorithm is locally quadratically convergent. Moreover, in the case of 1× 1
diagonal blocks, we establish a global convergence result in section 4 when the diagonal
elements of A are separated and the off-diagonal elements are relatively small.

Some related Newton-type methods for computing or refining invariant spaces are
presented in [2], [4], [5], [7], and [15]. The work of Anselone and Rall [2] justifies the
application of Newton’s method to the system

(3) Ax − λx = 0, yT x = 1,

where the vector x and the scalar λ are the unknowns and y is a normalization vector.
This scheme, which typically converges locally quadratically for a simple eigenvalue,
involves the inversion of a matrix of the following form in each iteration:[

A − λkI xk

yT 0

]
.

In [4] Chatelin examines the problem of approximating an invariant space spanned
by the columns of some matrix Z. She applies Newton’s method to the equation

(4) AZ − Z(Y T AZ) = 0,

where Y is a normalization matrix. Observe that at a solution to (4), Y T Z = I
assuming Y T AZ is invertible. The condition Y T Z = I is the generalization of the
condition yT x = 1 in (3). Chatelin obtains a local quadratic convergence result for
Newton’s method applied to (4) assuming that zero is not an eigenvalue of A and that
the number of eigenvalues of A, counting multiplicities, associated with the columns
of Z is equal to the number of columns of Z. Each iteration of this scheme involves
inverting a linear operator L, where L acting on a matrix M is defined by

L(M) = (I − ZY T )AM − M(Y T AZ).

In [7] Dongarra, Moler, and Wilkinson also consider Newton’s method applied
to (3); however, they focus on the special case where all the components of y are
zero except for one component which is set to one. In [7] the authors consider both
the modified Newton’s method and the standard Newton scheme. In the modified
Newton’s method (see [12]), the Jacobian is evaluated at some given point, and in
each Newton iteration, this fixed Jacobian is used instead of the Jacobian at the new
iterate. Hence, each iteration of the modified scheme involves inverting a matrix of
the form [

A − λI x

yT 0

]
,

where λ and x are fixed approximations to an eigenpair. Generalizations of this idea
for invariant spaces are also presented in [7].

In [5] Demmel examines the schemes [4] and [7], as well as a scheme that he
attributes to Stewart [15], and he shows that in some sense, each of these schemes
tries to solve an underlying Riccati equation. In comparing the schemes of Anselone
and Rall, Chatelin, and Dongarra, Moler, and Wilkinson with the scheme proposed in
this paper, we make the following observation: each iteration of any of these schemes
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essentially involves the inversion of a matrix. With the block diagonalization scheme,
one inversion yields a first-order correction to all the eigenvectors and eigenvalues
while one inversion with any of the other methods yields a first-order correction to
an invariant space. On the other hand, with these other schemes, one only needs
an approximation to an invariant space to get an improved approximation while the
scheme in this paper requires an approximation to a block diagonalization to get an
improved approximation.

For another comparison between the block algorithm and Newton’s method ap-
plied to (3), suppose that an approximate block diagonalization has been determined
and we wish to obtain a first-order correction. For simplicity, suppose that all the
eigenvalues are simple and separated so that Newton’s method applied to (3) converges
nicely. With the block algorithm, the flop count for 1 step is essentially 10

3 n3—there
are n3 flops involved in multiplying A and Xk, 4

3n3 flops to compute X−1
k (AXk), and

n3 flops to compute Xk(I + D). Now consider Newton’s method applied to (3); to
be specific, let us consider the choice of Dongarra, Molder, and Wilkinson for y: each
component is zero except for one component. To implement the Newton approach, let
us initially reduce A to upper Hessenberg form by an orthogonal similarity transfor-
mation; without this reduction, the Newton approach would require on the order of
n4 flops. The flop count (see [10]) for this reduction is about 10

3 n3 flops. As described
in [7], the Newton system can be solved using a series of Givens rotations, followed
by an LU factorization. The flop count for this process in the worst case is 3n2, and
since there are n eigenvectors to update, the total flop count is 3n3. Finally, we need
to expend n3 flops to multiply each eigenvector by the orthogonal factor to obtain
an eigenvector of the original matrix. The total flop count for the Newton approach
is 22

3 n3 flops. Hence, the block algorithm appears to be preferable relative to a flop
count; in addition, the block algorithm is much easier to implement, especially when
the blocks are larger than 1 × 1.

2. The algorithm. The algorithm developed in this paper is based on a stability
result for the block diagonalization of a perturbation of the original matrix A.

PROPOSITION 1. Let A(ε) denote an n × n matrix which is continuously differ-
entiable at ε = 0 and which has the property A = A(0). If for each i 6= j the spectrum
of Λi and Λj is disjoint, then there exist continuously differentiable functions X(ε)
and Λ(ε), where Λ(ε) is block diagonal, X(0) = X, Λ(0) = Λ, and for each ε near 0
we have

(5) A(ε)X(ε) = X(ε)Λ(ε).

Proof. Our proof of this result is based on the implicit function theorem. Instead
of evaluating X(ε) directly, we introduce an auxiliary matrix C(ε) which is chosen
such that X(ε) = XC(ε). Since X is invertible, there is a one-to-one correspondence
between C(ε) and X(ε). It turns out that there are an infinite number of solutions
to (5) with the desired properties. In order to achieve uniqueness, we impose the
following constraints: Cjj(ε) = I for each j. With these side constraints, (5) takes
the form

(6) A(ε)XC(ε) = XC(ε)Λ(ε), Cjj(ε) = I for each j.

Abstractly, (6) has the form F (ε, C(ε), Λ(ε)) = 0, where the solutions C(ε) and Λ(ε)
depend on ε and where the number of equations is equal to the number of unknown
elements of C(ε) and Λ(ε). At ε = 0, there is the trivial solution C(0) = I, and
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Λ(0) = Λ. By the implicit function theorem (see [1, Thm. 13.7] or [8, Thm. 10.8]),
there exists a continuously differentiable solution for ε near zero if the derivative
operator of the system (6) with respect to C and Λ is invertible at ε = 0. Establishing
invertibility of the derivative is equivalent to showing that the only solution (δC, δΛ),
with δΛ block diagonal, to the following linear system is δC = 0 and δΛ = 0:

∂F

∂C
(0, C(0), Λ(0))δC +

∂F

∂Λ
(0, C(0), Λ(0))δΛ =

∂F

∂C
(0, I, Λ)δC +

∂F

∂Λ
(0, I, Λ)δΛ = 0.

In the context of (6), this reduces to

(7) AXδC = XδCΛ + XδΛ, δCjj = 0, j = 1 to r.

Premultiplying (7) by X−1 yields

(8) ΛδC = δCΛ + δΛ, δCjj = 0, j = 1 to r.

Since Λ and δΛ are block diagonal and δCjj = 0, we deduce that δΛ = 0. For i 6= j,
(8) implies that

(9) ΛiδCij − δCijΛj = 0.

Referring to [13, sect. 12.5, Thm. 1], we see that the unique solution to (9) is δCij = 0
when the spectrum of Λi and Λj is disjoint. Since δC = δΛ = 0, we conclude that the
derivative of (6) with respect to C and Λ at ε = 0 is invertible. The implicit function
theorem completes the proof.

Proposition 1 is surprising since Λ(ε) is differentiable even though its eigenvalues
may be nondifferentiable. To evaluate X ′(0) and Λ′(0), we differentiate (6) to obtain
the relation

A′(0)X + AXC ′(0) = XC ′(0)Λ + XΛ′(0), C ′
jj(0) = 0, j = 1 to r.

Premultiplying by X−1 yields

(10) X−1A′(0)X + ΛC ′(0) = C ′(0)Λ + Λ′(0), C ′
jj(0) = 0, j = 1 to r.

If ZT denotes X−1, (10) is equivalent to the following relations:

(11) Λ′
i(0) = ZT

i A′(0)Xi, i = 1 to r,

and

(12) C ′
ij(0)Λj − ΛiC

′
ij(0) = ZT

i A′(0)Xj for i 6= j, C ′
jj(0) = 0, j = 1 to r.

With the notation “diag” and “off” of section 1, (11) and (12) can be expressed

(13)
Λ′(0) = diag X−1A′(0)X, diag C ′(0) = 0, C ′(0)Λ − ΛC ′(0) = off X−1A′(0)X.

After obtaining C ′(0) satisfying (13), we have X ′(0) = XC ′(0).
When the spectrum of Λi and Λj is disjoint, (12) can be solved in the following way

(see [3] or [10, p. 387] for details): replace Λi and Λj by their Schur decompositions
and obtain an equivalent equation with upper triangular matrices in place of Λi and
Λj . This upper triangular system can be solved directly by a substitution procedure.



BLOCK DIAGONALIZATION 1259

As in [11], we can utilize these formulas for X ′(0) and Λ′(0) in an iterative al-
gorithm for block diagonalizing a matrix. In particular, given a matrix A and an
approximate block diagonalization XΛX−1, let us consider the matrix

A(ε) = XΛX−1 + ε(A − XΛX−1).

Observe that A(1) = A. Suppose that the spectrum of Λi and Λj is disjoint for
i 6= j and that for ε between zero and one, the continuously differentiable functions
X(ε) and Λ(ε) of Proposition 1 exist. Evaluating the first-order Taylor expansions of
X(ε) and Λ(ε) around ε = 0 and putting ε = 1, we obtain the following first-order
approximations:

Λ(1) ≈ Λ(0) + Λ′(0) = Λ + diag(X−1(A − XΛX−1)X) = diag X−1AX,

and

X(1) ≈ X(0) + X ′(0) = X + XC ′(0) = X(I + C ′(0)),

where C ′(0) satisfies (13). Based on these expansions, we arrive at the algorithm (1)
and (2), where D corresponds to the matrix C ′(0) above.

As another variation of (2), the matrix Λk+1 can be replaced by the previous
iterate Λk in the evaluation of D; that is, the matrix D satisfies

(14) diag D = 0 and DΛk − ΛkD = off X−1
k AXk.

It turns out that with the modified formula (14) for D, the block diagonalization
algorithm is 2-step quadratically convergent while the original formula (2) yields a
1-step quadratically convergent algorithm.

3. Local quadratic convergence. This section analyzes the local convergence
of the block diagonalization algorithm while the next section analyzes one situation
where convergence is guaranteed for the starting guess X0 = I. Throughout this
analysis, ‖ · ‖ denotes any matrix norm with the following properties:

P1. ‖AB‖ ≤ ‖A‖ ‖B‖ for each A and B.
P2. ‖A‖ ≤ ‖B‖ whenever |aij | ≤ |bij | for each i and j.
P3. ‖I‖ = 1.

Below, subscripts i and j are used to denote elements of matrices while subscripts k,
l, and m are used to denote the iteration number. Finally, let Bρ(X) denote the ball
with center X and radius ρ:

Bρ(X) = {Y : ‖Y − X‖ ≤ ρ}.

Recall that there is an eigenspace associated with each eigenvalue of a matrix.
At best, the block diagonalization algorithm converges to elements of the eigenspace
associated with a block diagonalization of A. Given a block diagonalization XΛX−1

of A, let S(X) denote the set of all matrices of the form XD for some invertible block
diagonal matrix D.

THEOREM 1. Suppose that A = XΛX−1, where Λ is block diagonal and the
spectrum of Λi and Λj is disjoint for all i 6= j. Then for all X0 in a neighborhood of
X, the iterates Xk and Λk generated by the block diagonalization algorithm approach
limits X∞ and Λ∞ such that A = X∞Λ∞X−1

∞ , where X∞ lies in S(X) and where the
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root convergence order is at least two. That is, there exists a constant C, independent
of k, such that

‖Xk − X∞‖ + ‖Λk − Λ∞‖ ≤ C2−2k

.

Proof. Let FΛ(Z) denote the linear operator defined by

FΛ(Z) = off (ZΛ − ΛZ),

where the domain and range are the set of n × n block matrices with diagonal blocks
equal to zero. As noted previously, FΛ is an invertible linear opeator since the spec-
trum of Λi and Λj is disjoint for all i 6= j. Since FΛ is a continuous function of Λ, there
exist constants γ and σ such that ‖F−1

M ‖ ≤ γ for every block diagonal M ∈ Bσ(Λ).
Choose ρ small enough that Y is invertible whenever Y ∈ Bρ(X), and let β be defined
by

β = max{‖Y −1‖ : Y ∈ Bρ(X)}.

Decrease ρ further if necessary to ensure that

(15) ρβ ≤ 1 and ‖Λ − Y −1AY ‖ + βρ‖Y −1AY ‖ ≤ σ

for every Y ∈ Bρ(X). We will show that there exist a constant c and a Yk+1 ∈ S(X)
such that

(16) ‖Yk+1 − Yk‖ ≤ c‖Xk − Yk‖ and ‖Yk+1 − Xk+1‖ ≤ c‖Xk − Yk‖2,

where c is independent of Xk and Yk in Bρ(X), and where Xk+1 is generated by the
block diagonalization algorithm.

Assuming, for the moment, the existence of the constant c in (16), the proof is
completed in the following way: define Y0 = X and choose X0 close enough to X such
that

(17) ‖X0 − X‖ ≤ minimum
{

1
(4c)

,
ρ

(4c)
,
ρ

4

}
.

Since Y0 = X, both X0 and Y0 lie in Bρ(X). Proceeding by induction, suppose that
X1, Y1, . . . , Xk, Yk all lie in Bρ(X). We use (16) to show that Xk+1 and Yk+1 also lie
in Bρ(X). The second inequality in (16) leads to the relation

c‖Yk − Xk‖ ≤ (c‖X − X0‖)2
k

or ‖Yk − Xk‖ ≤ ‖X − X0‖(c‖X − X0‖)2
k−1.

Combining this with the bound (17), we have

(18) ‖Yk − Xk‖ ≤ ‖X − X0‖ 1
42k−1

=
4‖X − X0‖

42k ≤ ρ

42k .

Utilizing the first inequalities in (16) and (18), and the bound in (17), we get

‖Yk+1 − X‖ ≤ ‖Yk+1 − Yk‖ + ‖Yk − X‖ ≤ c‖Xk − Yk‖ + ‖Yk − X‖

≤ 4c

42k ‖X − X0‖ + ‖Yk − X‖ ≤ ρ

42k + ‖Yk − X‖.
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Repeated application of this inequality yields

‖Yk+1 − X‖ ≤ ρ

k∑
l=0

1
42l <

ρ

2
.

Thus, Yk+1 ∈ Bρ/2(X). By (18), with k replaced by k + 1, we have

‖Yk+1 − Xk+1‖ ≤ ρ

42k+1 .

Hence, Xk+1 lies in Bρ(X) and the induction step is complete.
By the first inequality in (16) and by (18) we have

(19)

‖Yk − Yl‖ ≤
k−1∑
m=l

‖Ym+1 − Ym‖ ≤ c
k−1∑
m=l

‖Ym − Xm‖ ≤ cρ
k−1∑
m=l

1
42m

≤ cρ
∞∑

m=l

1
42m ≤ 2cρ

42l

for any k ≥ l. Thus, for X0 sufficiently close to X, the Yk form a Cauchy sequence
approaching some limit X∞, and by (18) the Xk approach X∞ as well. The triangle
inequality

‖Xk − X∞‖ ≤ ‖Xk − Yk‖ + ‖Yk − X∞‖
combined with (18) and (19) complete the proof of quadratic convergence for the Xk.
Since Λk+1 = diag X−1

k AXk, we conclude that the Λk approach Λ∞ = X−1
∞ AX∞ at

the same rate that the Xk approach X∞.
To establish (16), we proceed in the following way. Let E be a matrix chosen so

that Xk = Yk(I + E); that is, E = Y −1
k Xk − I = Y −1

k (Xk − Yk). By (15) and (18)

(20) ‖E‖ = ‖Y −1
k (Xk − Yk)‖ ≤ ‖Y −1

k ‖ ‖Xk − Yk‖ ≤ β‖Xk − Yk‖ ≤ βρ

42k ≤ 1
42k ≤ 1

2
.

It follows that I + E is invertible and

(21) ‖(I + E)−1‖ ≤ 1
1 − ‖E‖ ≤ 2.

Defining Mk = Y −1
k AYk, which is block diagonal since Yk ∈ S(X), observe that

(22)


X−1

k AXk = (I + E)−1Y −1
k AYk(I + E)

= [I − E + E2(I + E)−1]Mk(I + E)
= Mk − EMk + MkE − EMkE + E2(I + E)−1Mk(I + E)
= Mk − EMk + MkE + L,

where

L = E2(I + E)−1Mk(I + E) − EMkE.

By (15) with Y = Yk we have

(23) ‖Λ − Mk‖ = ‖Λ − Y −1
k AYk‖ ≤ σ,



1262 N. GHOSH, W. W. HAGER, AND P. SARMAH

and combining this with (21) we have

(24) ‖L‖ ≤ ‖E‖2‖Mk‖
(

1 +
1 + ‖E‖
1 − ‖E‖

)
=

2‖Mk‖ ‖E‖2

1 − ‖E‖ ≤ 4(σ + ‖Λ‖)‖E‖2.

Defining Λ = Λk+1 = diag X−1
k AXk and referring to (22), the matrix D involved

in the evaluation of Xk+1 satisfies

off (DΛ − ΛD) = DΛ − ΛD = off X−1
k AXk = off (MkE − EMk + L),

which implies that

(25) off ((D + E)Λ − Λ(D + E)) = off ((Mk − Λ)E − E(Mk − Λ) + L).

By (21), (22), (23), and the next-to-last inequality in (24) we have

(26)

‖Λ − Mk‖ = ‖diag X−1
k AXk − Mk‖

≤ ‖X−1
k AXk − Mk‖ = ‖MkE − EMk + L‖

≤ 2‖Mk‖ ‖E‖ + ‖L‖ ≤ 2‖Mk‖ ‖E‖
1 − ‖E‖ ≤ 4(σ + ‖Λ‖)‖E‖,

from which it follows that

(27)
‖off ((Mk − Λ)E − E(Mk − Λ) + L)‖ ≤ ‖(Mk − Λ)E − E(Mk − Λ) + L‖

≤ 2‖E‖ ‖Λ − Mk‖ + ‖L‖ ≤ 12(σ + ‖Λ‖)‖E‖2.

By (26) we have

(28) ‖Λ − Λ‖ ≤ ‖Λ − Mk‖ + ‖Mk − Λ‖ ≤ 2‖Mk‖ ‖E‖
1 − ‖E‖ + ‖Mk − Λ‖.

Referring to (20), we see that

(29) ‖E‖ ≤ 1
2

and ‖E‖ ≤ βρ

4
.

Combining (28) and (29) gives

‖Λ − Λ‖ ≤ ‖Mk − Λ‖ + βρ‖Mk‖.

By (15) ‖Λ−Λ‖ ≤ σ, which ensures that ‖F−1
Λ

‖ ≤ γ. This bound in conjunction with
(25) and (27) implies that

(30) ‖off (D + E)‖ ≤ 12γ(σ + ‖Λ‖)‖E‖2.

Let G be defined by G = off (D + E). Substituting D = off D = G − off E in (1)
and utilizing the identity Xk = Yk(I + E) yields

Xk+1 = Xk(I + D) = Yk(I + E)(I + G − off E).

Hence, we have

(31) Xk+1 = Yk(I + diag E) + Yk(I + E)G − YkEoff E.
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Defining Yk+1 = Yk(I + diag E), observe that

(32) ‖Yk+1 − Yk‖ ≤ ‖Yk‖ ‖diag E‖ ≤ (ρ + ‖X‖)‖E‖
since Yk lies in Bρ(X). Referring to (20), ‖E‖ ≤ β‖Xk − Yk‖, and combining this
with (32) gives

(33) ‖Yk+1 − Yk‖ ≤ β(‖X‖ + ρ)‖Xk − Yk‖,

which yields the first inequality in (16). Moreover, by (31), we have

‖Xk+1 − Yk+1‖ ≤ ‖Yk‖(‖I + E‖ ‖G‖ + ‖E‖2) ≤ (ρ + ‖X‖)(‖I + E‖ ‖G‖ + ‖E‖2).

Combining this with the bound for G = off (D+E) in (30) and the relation ‖I +E‖ ≤
1 + ‖E‖ ≤ 3

2 from (29) gives

(34)
‖Xk+1 − Yk+1‖ ≤ (ρ + ‖X‖)(18γ(σ + ‖Λ‖) + 1)‖E‖2

≤ β2(ρ + ‖X‖)(18γ(σ + ‖Λ‖) + 1)‖Xk − Yk‖2.

The constant c in (16) is the maximum of the constants in (33) and (34)

4. A priori convergence. This section analyzes one situation where the block
diagonalization algorithm is guaranteed to converge. Define A0 = A and for k > 0,
let Ak denote X−1

k AXk. With this notation, the block diagonalization algorithm,
starting from X0 = I, can be expressed in the following way:

(35) Λk+1 = diag Ak, Ak+1 = (I + Dk)−1Ak(I + Dk), Xk+1 = Xk(I + Dk),

where
diag Dk = 0 and DkΛk+1 − Λk+1Dk = off Ak.

Throughout this section, we assume that the diagonal blocks of A are all 1 × 1. In
addition to the three properties imposed for the norm in section 3, we assume the
following:

P4. ‖diag A‖ = maximum {|Aii| : i = 1 to n} for each A.
Let σ(A) be the minimum separation of diagonal elements defined by

σ(A) = minimum
i6=j

|Ajj − Aii|.

In the case of 1×1 blocks, the equation for Dk can be solved explicitly. In particular,
we have

(36) Dk,ij =
Ak,ij

Ak,jj − Ak,ii

for all i 6= j. Taking absolute values yields

|Dk,ij | ≤ |Ak,ij |/σ(Ak).

It follows that

(37) ‖Dk‖ ≤ ‖off Ak‖
σ(Ak)

.

These observations are the basis for the following theorem.



1264 N. GHOSH, W. W. HAGER, AND P. SARMAH

THEOREM 2. If ‖off A‖ < σ(A)(
√

3 − 1)/2, then A is diagonalizable, and the
iterates Λk and Xk generated by the block diagonalization algorithm, with the starting
guess X0 = I, approach limits Λ∞ and X∞, respectively, where A = X∞Λ∞X−1

∞ .
Proof. Let α denote the ratio ‖off A‖/σ(A), which is less than or equal to (

√
3 −

1)/2 by assumption. Hence, the inequality

(38) ‖off Ak‖ ≤ ασ(Ak)

holds trivially at k = 0. Proceeding by induction, assume that (38) holds at iteration
k. By (37) and (38),

(39) ‖Dk‖ ≤ ‖off Ak‖
σ(Ak)

≤ α.

Letting B denote I + Dk, it follows that

(40) ‖B−1‖ = ‖(I + Dk)−1‖ ≤ 1
1 − ‖Dk‖ ≤ 1

1 − α
.

By (35) we have

Ak+1 − Λk+1 = B−1AkB − Λk+1

= B−1(off Ak + Λk+1)B − Λk+1

= B−1off AkB + B−1Λk+1B − Λk+1

= B−1off AkB + B−1(Λk+1B − BΛk+1)
= B−1off AkB − B−1off Ak

= B−1off Ak(B − I)
= B−1off AkDk.

Combining this with (38), (39), and (40) yields

(41)
‖off Ak+1‖ ≤ ‖Ak+1 − Λk+1‖ ≤ ‖B−1‖ ‖off Ak‖ ‖Dk‖

≤ α

1 − α
‖off Ak‖ ≤ α2

1 − α
σ(Ak).

Also note that

(42)
‖diag (Ak+1 − Ak)‖ ≤ ‖Ak+1 − diag Ak‖ = ‖Ak+1 − Λk+1‖

≤ α

1 − α
‖off Ak‖ ≤ α2

1 − α
σ(Ak).

Applying the “diag” operator to the identity Ak+1 = Ak + (Ak+1 − Ak) and referring
to (42) we have

(43)
σ(Ak+1) ≥ σ(Ak) − 2‖diag (Ak+1 − Ak)‖ ≥ σ(Ak) − 2α2σ(Ak)

1 − α

=
(1 − α − 2α2)σ(Ak)

1 − α
.

Combining this with (41) gives

‖off Ak+1‖
σ(Ak+1)

≤ α2

1 − α − 2α2 ≤ α

for α ≤ (
√

3 − 1)/2. This completes the induction step, and (38) holds for all k.
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Observe that in (41) we establish the relation

‖off Ak+1‖ ≤ α

1 − α
‖off Ak‖.

Repeated application of this inequality gives

(44) ‖off Ak‖ ≤
(

α

1 − α

)k

‖off A‖.

Since α < 1
2 , the off-diagonal elements of Ak all tend to zero. Also, by (42) and (44),

(45) ‖diag Ak+1 − diag Ak‖ ≤
(

α

1 − α

)k+1

‖off A‖.

Thus, the diagonal of Ak forms a Cauchy sequence approaching some limit Λ∞, while
the off-diagonal elements tend to zero.

We now show that no two diagonal elements of Λ∞ are equal. By the first in-
equality in (43) and by (45) we have

σ(Ak+1) ≥ σ(Ak) − 2
(

α

1 − α

)k+1

‖off A‖ = σ(Ak) − 2ασ(A)
(

α

1 − α

)k+1

.

Repeated application of this inequality yields

σ(Ak) ≥ σ(A)

(
1 − 2α

k∑
i=1

(
α

1 − α

)i
)

≥ σ(A)

(
1 − 2α

∞∑
i=1

(
α

1 − α

)i
)

= σ(A)
(

1 − 2α

(
α/(1 − α)

1 − α/(1 − α)

))
= σ(A)

(
1 − 2α − 2α2

1 − 2α

)
.

Since 1 − 2α − 2α2 > 0 for α < (
√

3 − 1)/2, σ(Ak) is uniformly bounded away from
zero.

Combining the lower bound for σ(Ak) with (37) and (44) yields

(46)

‖Dk‖ ≤ crk, where r =
α

(1 − α)
≤ 1√

3
and

c =
‖off A‖(1 − 2α)

σ(A)(1 − 2α − 2α2)
=

α(1 − 2α)
1 − 2α − 2α2 .

By the equation for Xk+1

‖Xk+1‖ = ‖Xk(I + Dk)‖ ≤ (1 + ‖Dk‖)‖Xk‖ ≤ (1 + crk)‖Xk‖ ≤ ‖X0‖
k∏

l=0

(1 + crl).

Since

log

( ∞∏
l=0

(1 + crl)

)
≤ c

(1 − r)
,

‖Xk‖ is uniformly bounded by some constant β independent of k (see [1, p. 209,
Thm. 8.55]). The estimate

‖Xk+1 − Xk‖ = ‖XkDk‖ ≤ ‖Xk‖ ‖Dk‖ ≤ βcrk
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TABLE 1

n k ‖off Ak‖∞

10 4 2.0 × 10−9

40 4 2.7 × 10−9

160 4 2.7 × 10−9

640 4 2.7 × 10−9

TABLE 2

k ‖off Ak‖∞

1 4 × 10−1

2 3 × 10−2

3 1 × 10−4

4 2 × 10−9

implies that the Xk form a Cauchy sequence that approaches some limit X∞. Since
‖Dk‖ < 1 for each k by (39), the Xk are invertible and

(47) ‖X−1
k+1‖ ≤ ‖(I + Dk)−1‖ ‖X−1

k ‖ ≤ 1
1 − ‖Dk‖‖X−1

k ‖ ≤ 1
1 − crk

‖X−1
k ‖.

The relation 1/(1 − crk) ≤ 1 + 2crk for k sufficiently large along with (47) shows that
the sequence X−1

k is uniformly bounded. Thus, X∞ is invertible and X−1
k approaches

X−1
∞ ; moreover, Λk+1 = diag X−1

k AXk approaches X−1
∞ AX∞ = Λ∞. This completes

the proof.
During the proof of Theorem 2, it was shown that no two diagonal elements of

Λ∞ are equal. Hence, Theorem 1 implies that the convergence in Theorem 2 is locally
quadratic.

5. Numerical experiments. To illustrate Theorems 1 and 2, we consider the
matrix A defined by Aij = 3−|i−j| for i 6= j, and Aii = i. We apply the iteration (35),
stopping when the following inequality holds:

‖off Ak‖∞ = ‖off X−1
k AXk‖∞ ≤ 10−6.

Here ‖ · ‖∞ denotes the matrix ∞-norm (maximum absolute row sum). By Gersch-
gorin’s theorem the diagonal elements of Ak approximate the eigenvalues of A with
error at most ‖off Ak‖∞. The number of iterations needed for convergence appears in
Table 1 for various values of the dimension n of A. In Table 2 we show how the error
depends on the iteration number for n = 10. Observe that the convergence appears
to be at least quadratic as the theory predicts.

In Table 3 we compare the execution times (in seconds on a Sun Sparc 20 work-
station, compiled with f77 −O) for the block diagonalization algorithm with the cor-
responding times of both Dongarra’s SICEDR [6] (an implementation of the Newton
algorithm contained in ACM algorithm 589) and the QR algorithm as implemented in
EISPACK [9], [14]. Recall that the flop count for one iteration of the block algorithm
is 10

3 n3 while the Newton approach requires about 22
3 n3 flops. As a rough estimate,

a diagonalization computed by the QR method requires 9n3 flops—about 5n3 flops
to reduce the matrix to Hessenberg form and to form the orthogonal matrix used
in the reduction, 2n3 flops to update the orthogonal matrix during the reduction to
Schur form, n3 flops to reduce the Hessenberg matrix to triangular form, and n3 flops
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TABLE 3

n Block QR SICEDR

10 .01 .04 .05
40 .10 .12 .81

160 6.00 4.04 57.97
640 329.92 284.88 4561.26

TABLE 4

ε Block QR

.05 6 151

.01 3 148

.001 2 140

.0001 2 138

to diagonalize the triangular matrix and multiply by the orthogonal factor. Hence,
three iterations of the block algorithm are comparable to the QR algorithm, which
agrees with the observed computing times in Table 3. Observe though that the New-
ton approach was somewhat slower than was predicted by the flop counts. Moreover,
some of the Newton iterates converged to the same eigenvalue; hence, one did not
actually achieve a diagonalization of the starting matrix but rather achieved a refined
approximation to most of the eigenpairs.

As both the flop counts and the execution times in Table 3 indicate, one or two
iterations of the block algorithm execute quicker than the QR algorithm. Hence, on
a serial computer, the block algorithm is only faster than the QR algorithm when
we have a good starting guess for the block diagonalization, for example, when a
matrix is modified incrementally and rediagonalized after each change. On the other
hand, the block algorithm is much better suited to parallel computing than the QR
method since matrix multiplication and matrix inversion are readily implemented in
a parallel computing environment. In comparing code size the block algorithm was
implemented in 120 lines of Fortran code, SICEDR contains 1000 statements, and
the QR code contains 1370 statements (excluding comment and matrix generation
statements).

In the next sequence of experiments we take a 100 × 100 matrix A whose elements
are randomly distributed between zero and one, and we use the QR method to obtain
the real Schur decomposition A = QUQT , where Q is orthogonal and U is quasi-
upper triangular. We then perturb A by a matrix E whose elements are randomly
distributed on the interval [0, ε]. In Table 4 we compare the number of iterations for
the block diagonalization algorithm with the number of iterations for the QR method
applied to the matrix QT (A + E)Q = U + QT EQ. The starting X0 in the block
algorithm corresponds to the invariant spaces of A, where a pair of real vectors are
used to span each complex conjugate pair of eigenvectors. With this choice for X0,
the block algorithm could be implemented with real arithmetic. Since the number of
QR iterations needed to obtain the original Schur decomposition was 132, it appears
that the number of iterations for the QR method applied to a small perturbation of
an upper Hessenberg matrix is essentially the same as the number of iterations that
were required for the original random matrix. On the other hand, with the block
diagonalization algorithm, the number of iterations decreases as the perturbation
decreases.
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