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Abstract. Given an approximation to a local minimizer to a nonlinear optimization problem and to associated
multipliers, we obtain a tight error estimate in terms of the violation of the first-order conditions. Our results
apply to degenerate optimization problems where independence of the active constraint gradients and strict
complementarity can be violated.
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1. Introduction

We obtain estimates for the error in an approximation to the solution to an optimiza-
tion problem. One of our main objectives is to establish error estimates that apply in
situations where the Mangasarian-Fromovitz constraint qualification (MFCQ) does not
necessarily hold, or where strict complementarity is violated. For a system of equalities
and inequalities

g(z) ≤ 0 and h(z) = 0,

whereg : Rn→ Rl andh : Rn→ Rm, the Mangasarian-Fromovitzconstraint qualifica-
tion [9] holds at a solutionz∗ if the constraint gradients∇hi (z∗) are linearly independent
and there existsy ∈ Rn such that∇g(z∗)y < 0 and∇h(z∗)y = 0. It is well known
(see [10] or [11]) that when the MFCQ is not satisfied by a linear inequality system, then
arbitrary small perturbations can yield an infeasible system. Using a Lipschitz stability
result for the solutions of quadratic programming problems, based on Robinson’s conti-
nuity properties [13] (also see [6] and [7]) for polyhedral multifunctions, we estimate the
distance from a given point to the solution of a nonquadratic problem, without imposing
the MFCQ. We note that estimates for the error in an approximate solution to a pro-
gramming problem play an integral role in Wright’s [16] recent sequential quadratic
programming algorithm for degenerate optimization problems.

In a related paper [4], Facchinei, Fischer, and Kanzow obtain similar upper bounds
for the error in an approximate solution to an optimization problem by applying results
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of Klatte [8], however, their analysis assumes that the MFCQ holds. Also, a result [14,
Theorem 4.2] of Robinson can be used to obtain an analogous estimate, assuming the
MFCQ. In the approach of [4], one assumes that the usual second-order sufficient op-
timality condition holds for all multipliers associated with a given local optimum, and
one obtains an error estimate at all points in a neighborhood of the optimal solution and
the associated multipliers. In our approach, we assume that the second-order condition
holds at a given solution/multiplier pair, and we obtain an error estimate in a neighbor-
hood of the given solution/multiplier pair. For polyhedral constraints, the estimate for
the solution error is valid in a neighborhood of the solution, without constraints on the
choice of the multipliers. In contrast to our work, the lack of smoothness in problem
functions is taken into account in [4] by working with generalized Jacobians, while here
we assume that the functions are twice differentiable at the point under consideration.
In another paper [16], Wright obtains error estimates in the case where the multipliers
at the reference point are bounded from zero, again assuming the MFCQ.

Our approach is in the spirit of a result [1, Theorem 3.2] of Dontchev. There, in
a nondegenerate setting, he estimates the distance from a given point to a solution
of an inclusion by perturbing the inclusion so that the given point becomes a solution.
Properties of an associated linearization are used to analyze the effect of the perturbation.
When the MFCQ does not hold, special care is needed in the analysis of the linearized
problem since it may be infeasible for certain perturbations, and continuity arguments
cannot be applied. Our paper concludes by demonstrating the tightness of a particular
merit function which is essentially the same one studied in [4]. That is, we show that
this merit function yields not only an upper bound for the distance to the solution set,
but a lower bound as well.

2. Local uniqueness and quadratic program stability

Our error estimates are based on a result concerning the stability of stationary points for
a quadratic program. Initially, let us consider the local uniqueness of stationary points
for the following optimization problem:

minimize f(z) subject to Az≤ r, Bz= s, z ∈ Rn, (1)

whereA is l × n andB is m× n. The first-order optimality conditions associated with
(1) at a pointz where f is differentiable can be expressed: There existλ andµ such that

∇ f(z)+ λT A+ µT B = 0, Az− r ∈ N(λ), Bz− s= 0, (2)

whereN is the normal cone:

N(λ) =
{ {π : π ≤ 0, πTλ = 0} if λ ≥ 0,
∅ otherwise.

Throughout this paper‖·‖ denotes the Euclidean norm, andβ denotes a generic positive
constant that has different values in different equations.
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Proposition 1. Suppose thatf is twice continuously differentiable at a solution(z∗, λ∗,
µ∗) to (2) and that there exists a scalarα > 0 such that

wT∇2 f(z∗)w ≥ α‖w‖2 (3)

for eachw such thatBw = 0, (Aw)+ = 0, and(Aw)0 ≤ 0, where the+ and0subscripts
are used to denote the subvectors associated with those indicesi for which (λ∗)i > 0
and(λ∗)i = 0 = (Az∗ − r)i , respectively. Then there exists a neighborhoodN 1 of z∗
with the property that ifz ∈ N1 and(z, λ, µ) is a solution to (2), thenz= z∗.

Proof. Our proof exploits the technique of Robinson in [14, Theorem 2.4]. There he
considers a nonlinear optimization problem that satisfies the Mangasarian-Fromovitz
constraint qualification. Using bounds on the multipliers, he extracts limits and proves
a similar local uniqueness result. In our case, we do not assume the Mangasarian-
Fromovitz constraint qualification, and there are no bounds on the multipliers.

nstead, the polyhedral structure of the constraints leads to local uniqueness.
The proof is by contradiction. Suppose that there exists a sequence{zk} approaching

z∗ and associated multipliers such that(zk, λk, µk) satisfies(2) for eachk, and(zk −
z∗)/‖zk − z∗‖ approaches some unit vectorw. Multiplying the first equation in (2),
evaluated at(zk, λk, µk), by (zk − z∗), we conclude that

0 = ∇ f(zk)(zk − z∗)+ λT
k A(zk − z∗)

= ∇ f(zk)(zk − z∗)+ λT
k (Azk − a)+ λT

k (a− Az∗). (4)

For any vectory, let y− denote the subvector associated with those indicesi for which
(Az∗−a)i < 0. By complementary slackness,λT

k (Azk−a) = 0, while fork sufficiently
large,(λk)− = 0 since(Az∗ − a)− < 0, zk converges toz∗, and(λk)

T−(Azk− a)− = 0.
Consequently,

λT
k (Azk − a) = 0= λT

k (a− Az∗), (5)

for k sufficiently large, and (4) implies that∇ f(zk)(zk− z∗) = 0 for k sufficiently large.
By taking limits, we conclude that∇ f(z∗)w = 0. SinceAzk ≤ a and(Az∗ − a)+ =
(Az∗−a)0 = 0, it follows, by taking limits, that(Aw)+ ≤ 0 and(Aw)0 ≤ 0. In a similar
manner,Bw = 0. Moreover, multiplying (2), evaluated at(z∗, λ∗, µ∗) byw, we deduce
that (Aw)+ = 0 since∇ f(z∗)w = 0 andλ+ > 0. Hence,w satisfies the constraints
associated with (3).

Now, as in [14, Theorem 2.4], we consider the scalar functions defined by

s(t) = (∇ f(zt)+ λT
t A)(zk − z∗)+ (λk − λ∗)T(a− Azt) (6)

where(zt, λt ) = (1− t)(z∗, λ∗)+ t(zk, λk). The first term in (6) vanishes fort = 0 and
t = 1 by the first-order condition (2). The observation (5) implies that

(λk − λ∗)T(a− Az∗) = 0,

for k sufficiently large, while

(λk − λ∗)T(a− Azk) = −λT∗ (a− Azk) ≤ 0
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sinceAzk ≤ a andλ∗ ≥ 0. Hence,s(0) = 0 ≥ s(1), and by the mean value theorem,
there existstk ∈ (0,1) such that

0≥ s′(tk) = (zk − z∗)T∇2 f(ztk)(zk − z∗).

Dividing by ‖zk − z∗‖2 and taking limits, we obtain a contradiction to (3).
ut

Now let us consider a quadratic programming problem

minimize
1

2
zT Qz− zTϕ subject to Az≤ r, Bz= s, z ∈ Rn, (7)

whereQ is ann× n symmetric matrix andϕ ∈ Rn. The first-order conditions can be
expressed in the following way:

ψ =
ϕr

s

 ∈ F(z, λ, µ), (8)

where

F(z, λ, µ) =
Qz+ ATλ+ BTµ

Az
Bz

−
 0

N(λ)
0

 if λ ≥ 0, (9)

andF(z, λ, µ) = ∅ otherwise. Using Proposition 1, we have

Lemma 1. Suppose that(z, λ, µ) = (z∗, λ∗, µ∗) is a solution to (8) corresponding to
ψ = ψ∗, and that there exists a scalarα > 0 such that

wTQw ≥ α‖w‖2 (10)

for eachw such thatBw = 0, (Aw)+ = 0, and (Aw)0 ≤ 0, where the+ and 0
subscripts are used to denote the subvectors associated with those indicesi for which
(λ∗)i > 0 and(λ∗)i = 0= (Az∗ − r)i , respectively. Then there exist a scalarβ > 0 and
neighborhoodsN1 of z∗ andN∗ ofψ∗ with the property that if(z, λ, µ) is a solution to
(8) corresponding toψ ∈ N∗ andz ∈ N1, then

‖z− z∗‖ ≤ β‖ψ − ψ∗‖. (11)

Proof. The functionF defined in (9) is a polyhedral multifunction since its graph,
defined by

grF = {(w,ψ) : ψ ∈ F(w)},
is the union of finitely many polyhedral convex sets. Robinson notes in [13] that the
set-valued inverse of a polyhedral multifunction is a polyhedral multifunction, and
that polyhedral multifunctions are closed under (finite) composition. LettingP1 be
the projection defined byP1(z, λ, µ) = z, it follows thatP1 ◦ F−1 is a polyhedral
multifunction. Using a theorem of Walkup and Wets [15] concerning a Lipschitzian
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characterization of convex polyhedra, Robinson proves that a polyhedral multifunction
is locally upper Lipschitzian at every point, and the Lipschitz constant is independent
of the point. Hence, there exists a constantβ and an associated neighborhoodN∗ of ψ∗
such that

P1 ◦ F−1(ψ) ⊂ P1 ◦ F−1(ψ∗)+ β‖ψ − ψ∗‖B for all ψ ∈ N∗, (12)

whereB is the unit ball inRn. LettingN1 be as in Proposition 1, it follows that since
P1 ◦ F−1(ψ) is the set ofz-components of solutions to (8), we have

P1 ◦ F−1(ψ∗) ∩N1 = {z∗}. (13)

ChooseN1 smaller if necessary so that it is contained within the ball of centerz∗ and
radiusρ/3 whereρ is the distance fromz∗ to (P1 ◦F−1(ψ∗)) \ {z∗}. ShrinkN∗ further
if necessary so that

{z∗} + β‖ψ − ψ∗‖B ⊂ N1 for all ψ ∈ N∗.
Now if ψ ∈ N∗ andz ∈ N1 ∩P1 ◦ F−1(ψ), then by (12), (11) holds.

ut
Under the hypotheses of Lemma 1, an example given in [12] shows thatN1 ∩ P1 ◦

F−1(ψ) may be multivalued forψ nearψ∗, even though (13) holds; moreover, asψ
approachesψ∗, some of the elements ofN1∩P1◦F−1(ψ)may not be local minimizers
of (7).

3. Error estimates

Let us consider the following inequality constrained optimization problem:

minimize f(z) subject to g(z) ≤ 0, h(z) = 0, z ∈ Rn, (14)

where f is real-valued,g : Rn → Rl , andh : Rn → Rm. Givenλ ∈ Rl andµ ∈ Rm,
the LagrangianL is defined by

L(z, λ, µ) = f(z)+ λTg(z)+ µTh(z).

The first-order necessary conditions associated with (14) can be expressed:

T(z, λ, µ) ∈ F(λ), (15)

where

T(z, λ, µ) =
∇zL(z, λ, µ)

g(z)
h(z)

 , F(λ) =
 0

N(λ)
0

 . (16)

LetM denote the set of all multipliers associated with a local minimizerz∗ for (14).
That is, letting3 denote the pair(λ,µ), then3 ∈M if and only if ∇zL(z∗,3) = 0
with λ ≥ 0 andλTg(z∗) = 0. Then we have
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Lemma 2. Suppose thatf , g, andh are twice differentiable at a local minimizerz∗ of
(14),3∗ ∈M 6= ∅, and

wT∇2
zL(z∗,3∗)w ≥ α‖w‖2 (17)

whenever∇h(z∗)w = 0= ∇g+(z∗)w and∇g0(z∗)w ≤ 0, whereg+ andg0 denote the
components ofg associated with indicesi for which(λ∗)i > 0 and(λ∗)i = 0= gi (z∗),
respectively. Then there exists a neighborhoodN of (z∗,3∗) and constantsγ andδ > 0
with the property that for every(z,3) ∈ N and for eachy with ‖y‖ ≤ δ and

T(z,3)+ y ∈ F(3), (18)

we have

‖z− z∗‖ + ‖3− 3̂‖ ≤ γ‖y‖, (19)

where3̂ is the closest element ofM to3.

Proof. Throughout this proof, the generic constantβ is uniformly bounded whenN is
sufficiently small. Let us consider the quadratic program (7) in the case that

Q = ∇2
zL(z∗,3∗), A= ∇g(z∗), B = ∇h(z∗).

We make two choices forψ. Our first choice is

ψ = ψ1 = L(z,3) − T(z,3)− y,

wherey satisfies (18), and

L(z,3) =
Qz+ ATλ+ BTµ

Az
Bz

 .
In this case,(z,3) ∈ F−1(ψ1). Our second choice is

ψ = ψ2 = L(z∗,32)− T(z∗,32) =
Qz∗ − ∇ f(z∗)

Az∗ − g(z∗)
Bz∗ − h(z∗)

 ,
where32 is arbitrary since the terms containing it cancel. Taking32 =3∗, we see that
(z∗,3∗) ∈ F−1(ψ2). By the differentiability assumption,ψ1 is close toψ2 when(z,3)
is close to(z∗,3∗), andy is close to 0. Consequently, by choosingN andδ sufficiently
small, and by taking32 = 3, Lemma 1 gives us the estimate

‖z− z∗‖ ≤ β‖T(z,3)− T(z∗,3)− (L(z,3)− L(z∗,3))+ y‖ (20)

for all (z,3) ∈ N and‖y‖ ≤ δ.
Given anyε > 0, it follows from the differentiability assumption that forN suffi-

ciently small,

‖T(z,3)− T(z∗,3)− L(z− z∗,0)‖ ≤ ε‖z− z∗‖ (21)
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for all (z,3) ∈ N . Combining this with (20), we have

‖z− z∗‖ ≤ β‖y‖. (22)

An estimate for the error in the multipliers is gotten from Hoffman’s result [5] for
the distance to the boundary of a polyhedron. That is, if a linear system of inequalities
is feasible, then the distance from any given point to the feasible set is bounded by
a constant times the norm of the constraint violation at the given point. SinceM is the
solution set for the linear inequality system

∇zL(z∗,3) = 0, 3 = (λ,µ), λ ≥ 0, λ− = 0,

whereλ− denotes the subvector ofλ associated with those indicesi such thatgi (z∗) < 0,
the norm of the constraint violation at any given3 is ‖∇zL(z∗,3)‖ + ‖λ−‖ (the
constraintλ ≥ 0 is satisfied due to (18)). Let us takeN and δ small enough that
g−(z) + y− < 0 when(z,3) ∈ N and ‖y‖ ≤ δ. In this case the complementary
slackness condition associated with (18) implies thatλ− = 0, and Hoffman’s result
yields

‖3− 3̂‖ ≤ β‖∇zL(z∗,3)‖. (23)

By the definition ofy, by the differentiability assumption, and by choosingN smaller
if necessary, we have

‖∇zL(z∗,3)‖ ≤ ‖∇zL(z,3)‖ + ‖∇zL(z∗,3)− ∇zL(z,3)‖ ≤ ‖y‖ + β‖z− z∗‖.
(24)

Combining (22)–(24), the proof is complete.
ut

Since the normal coneN(λ) changes discontinuously when a component ofλ

becomes zero, sharper estimates for the error in(z, λ, µ) may be gotten by estimat-
ing the error in an intermediate point. This idea is the motivation for the following
result.

Theorem 1. Suppose the assumptions of Lemma 2 are in effect. Then there exists
a neighborhoodN of (z∗,3∗) and constantsγ and δ > 0 with the property that for
every(z,3), for each(z̄, 3̄) ∈ N , and for eachy with ‖y‖ ≤ δ and

T(z̄, 3̄)+ y ∈ F(3̄), (25)

we have

‖z− z∗‖ + ‖3− 3̂‖ ≤ ‖z− z̄‖ + ‖3− 3̄‖ + γ‖y‖, (26)

where3̂ is the closest element ofM to3.
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Proof. By the triangle inequality and the analysis of Lemma 2, we have

‖z− z∗‖ ≤ ‖z− z̄‖ + ‖z̄− z∗‖ ≤ ‖z− z̄‖ + γ‖y‖.
In a similar fashion, Lemma 2 yields

‖3− 3̂‖ = inf
3̃∈M

‖3− 3̃‖
≤ ‖3− 3̄‖ + inf

3̃∈M
‖3̄− 3̃‖

≤ ‖3− 3̄‖ + γ‖y‖.
This completes the proof.

ut
When the functionsg andh are affine, the multipliers in (20) and (21) cancel leading

to the following special form of Lemma 2 and Theorem 1.

Corollary 1. Suppose thatf is twice differentiable at a local minimizerz∗ of (14),
g and h are affine,3∗ ∈ M, and (17) holds whenever∇h(z∗)w = 0 = ∇g+(z∗)w
and∇g0(z∗)w ≤ 0, whereg+ and g0 denote the components ofg associated with
indicesi for which (λ∗)i > 0 and (λ∗)i = 0 = gi (z∗), respectively. Then there exists
a neighborhoodN1 of z∗ and constantsγ andδ > 0 with the property that for every
z ∈ N1 and for each3 andy satisfying (18) with‖y‖ ≤ δ, we have

‖z− z∗‖ + ‖3− 3̂‖ ≤ γ‖y‖,
where3̂ is the closest element ofM to3. Moreover, ifz is arbitrary, butz̄ ∈ N1 and
(z̄, 3̄) satisfies (25), then we have

‖z− z∗‖ + ‖3− 3̂‖ ≤ ‖z− z̄‖ + ‖3− 3̄‖ + γ‖y‖.
Proof. As noted above, restrictions on the choice of the multipliers only arise when we
make the transition from (20) to (21) in the proof of Lemma 2. However, wheng andh
are affine, the multiplier terms cancel, and hence, the conclusion of the Lemma 2 and
Theorem 1 are valid without constraints on the multipliers.

ut
In Corollary 1, we restrict the norm of the perturbationy. Since there are no condi-

tions on3 in Corollary 1, one approach for removing the constraint‖y‖ ≤ δ is to choose
3 to minimize the distance fromT(z,3) to F(3). Whenz is close toz∗, T(z,3∗) is
close toF(3∗), and hence, if3 is chosen to minimize the distance fromT(z,3) to
F(3), then the constraint‖y‖ ≤ δ is satisfied automatically forz in a neighborhood of
z∗. A second approach for removing this restriction ony is to strengthen the form of
second-order sufficient condition in order to obtain a quadratic program stability result
analogous to Lemma 1, but with the perturbationsψ unrestricted. The following result
removes the neighborhoods of Lemma 1. In the proof of [13, Proposition 4], Robinson
notes this property in the context of a real valued function, while Klatte in [7, Corollary
5.1] proves this, in a more general context, for the solution to a quadratic programming
problem.
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Lemma 3. Suppose that there exists a scalarα > 0 such that

wTQw ≥ α‖w‖2 (27)

for eachw such thatBw = 0. Then for eachψ = (ϕ, r, s) wherer ands are chosen so
that the system

Az≤ r and Bz= s, (28)

is feasible, (7) has a unique minimizerz(ψ). Moreover, there exists a scalarβ > 0 with
the property that for everyψ1 = (ϕ1, r1, s1) andψ2 = (ϕ2, r2, s2), where the associated
linear systems (28) corresponding to(r, s) = (r i , si ), i = 1, 2, are feasible, we have

‖z(ψ2)− z(ψ1)‖ ≤ β‖ψ2 − ψ1‖. (29)

Proof. For completeness, we give a short proof of the Klatte/Robinson observation.
By [3, Section 4] and (27), there exists a unique solutionz = z(ψ) to (7) when (28)
is feasible. Moreover, anyz that satisfies the first-order optimality conditions for (7) is
a strict local minimizer. By Robinson’s result [13, Proposition 1], a polyhedral multifunc-
tion is locally upper Lipschitzian at every point with Lipschitz constantβ independent
of the point. That is, for anyψ0, there exists an associated neighborhoodN for which

P1 ◦ F−1(ψ) ⊂ P1 ◦ F−1(ψ0)+ β‖ψ − ψ0‖B for all ψ ∈ N , (30)

whereB is the unit ball inRn.
Now suppose that forψ1 = (ϕ1, r1, s1) andψ2 = (ϕ2, r2, s2), the associated linear

systems (28) corresponding to(r, s) = (r i , si ), i = 1, 2, are feasible. Then for all
ψ ∈ [ψ1, ψ2], the line segment connectingψ1 andψ2, the associated linear systems
(28) remain feasible, and hence, the corresponding unique solutionz(ψ) exists. Since
P1◦F−1(ψ) = z(ψ), it follows from (30) that ifψ0 ∈ [ψ1, ψ2], then for allψ ∈ [ψ1, ψ2]
nearψ0, we have

‖z(ψ)− z(ψ0)‖ ≤ β‖ψ − ψ0‖. (31)

Let ψ̄ be the point on the line segment[ψ1, ψ2] that is closest toψ2 and that satisfies

‖z(ψ̄)− z(ψ1)‖ ≤ β‖ψ̄ − ψ1‖. (32)

Sincez(·) is continuous on[ψ1, ψ2] by (31), the pointψ̄ exists. Since (31) holds for
ψ0 = ψ1 and forψ nearψ1, we see that̄ψ 6= ψ1. We wish to conclude that̄ψ = ψ2. If
ψ̄ 6= ψ2, then applying (31) withψ0 = ψ̄, we deduce that

‖z(ψ) − z(ψ̄)‖ ≤ β‖ψ − ψ̄‖
for ψ betweenψ̄ andψ2 with ψ nearψ̄. Since the triangle inequality becomes an
equality for three successive colinear points, we have

‖z(ψ)− z(ψ1)‖ ≤ ‖z(ψ) − z(ψ̄)‖ + ‖z(ψ̄)− z(ψ1)‖
≤ β‖ψ − ψ̄‖ + β‖ψ̄ − ψ1‖
= β‖ψ − ψ1‖.

Sinceψ can be chosen closer toψ2 thanψ̄, we have a contradiction. Hence,ψ̄ = ψ2 in
(32), and the proof is complete.

ut
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Using Lemma 3 instead of Lemma 1, we have the following analogue of Theorem 1:

Theorem 2. Suppose thatf is twice differentiable at a local minimizerz∗ of (14),g
andh are affine,3∗ ∈M, and for someα > 0, (17) holds whenever∇h(z∗)w = 0.
Then there exists a neighborhoodN1 of z∗ and a constantγ with the property that for
every(z,3), for every(z̄, 3̄) with z̄ ∈ N1, and for eachy satisfying (25), we have

‖z− z∗‖ ≤ ‖z− z̄‖ + γ‖y‖.
Proof. Again, the proof of this result is contained in the proofs of Lemma 2 and
Theorem 1, except that Lemma 3 is used in place of Lemma 1.

ut

4. An application

As a specific application of Theorem 1, we consider the following choices for the
variables:̄z= z andµ̄ = µ, while λ̄ is defined by

λ̄i =
{

0 if λi < −gi (z) or λi < 0,
λi otherwise.

(33)

And y = (q, r, s) where

q = −∇zL(z, λ̄, µ), s= −h(z), ri =
{−gi (z) if λ̄i > 0 or gi (z) > 0,

0 otherwise.
(34)

With these definitions, the inclusion (25) of Theorem 1 is satisfied. This is,λ̄ ≥ 0 and
if λ̄i > 0, thengi (z) + ri = 0, while q ands are the negatives of the corresponding
components ofT(w̄). The variablesr and λ̄ were chosen in the following way: The
multiplier was changed so that the nonnegativity constraintλ̄ ≥ 0 was satisfied, and
then we perturbed further either the inequality constraintg(z) ≤ 0 or the multiplier
making the smallest change so that the complementarity conditiong(z)+ r ∈ N(λ̄) was
satisfied. For this special choice ofw̄ andy, we now show that the right side of (26) not
only provides an upper bound for the error inw = (z, λ, µ), but a lower bound as well.

Theorem 3. If f , g, andh are twice differentiable at a local minimizerz∗ of (14) and
3∗ ∈M 6= ∅, then there exists a neighborhoodN of (z∗,3∗) and a constantγ with
the property that for each(z, λ, µ) ∈ N , we have

‖λ− λ̄‖ + ‖y‖ ≤ γ(‖z− z∗‖ + ‖3− 3̂‖), (35)

whereλ̄ andy are given in (33) and (34), and̂3 is the closest element ofM to3.

Proof. The generic constantβ used in this proof is uniformly bounded when the neigh-
borhoodN is sufficiently small. Observe that

‖y‖ ≤ ‖q‖ + ‖r‖ + ‖s‖
= ‖∇zL(z, λ̄, µ)‖ + ‖r‖ + ‖h(z)‖
≤ β‖λ− λ̄‖ + ‖∇zL(z, λ, µ)‖ + ‖r‖ + ‖h(z)‖. (36)
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Sinceh(z∗) = 0, we have‖h(z)‖ ≤ β‖z−z∗‖. Also, by the differentiability assumption,
we have

‖∇zL(z,3)−∇zL(z
∗,3)‖ ≤ β‖z− z∗‖.

Since∇zL(z∗, 3̂) = 0, we have

‖∇zL(z
∗,3)‖ = ‖∇zL(z

∗, λ)−∇zL(z
∗, 3̂)‖ ≤ β‖3− 3̂‖.

ChooseN small enough that for all(z, λ, µ) ∈ N , we havegi (z) < 0 and|λi | < |gi (z)|
whenevergi (z∗) < 0 (and hence,λ∗i = 0). By its definition, the components ofr are
either 0 or−gi (z). If ri = −gi (z), then by (34), eithergi (z) > 0 or λ̄i > 0. In the
former case,gi (z∗) = 0 by the choice ofN . That is,gi (z) < 0 for all (z, λ, µ) ∈ N
when gi (z∗) < 0. Hence, ifgi (z) > 0, we must havegi (z∗) = 0. In the latter case
(gi (z) ≤ 0 andλ̄i > 0), it follows from (33) thatλi ≥ −gi (z) ≥ 0. Since|λi | ≥ |gi (z)|,
it follows from the choice ofN thatgi (z∗) = 0. In summary, ifri 6= 0, thenri = gi (z)
andgi (z∗i ) = 0. Sinceg is differentiable, for these nonzero components ofr , we have

|ri | = |gi (z)| ≤ β‖z− z∗‖.
Hence,‖r‖ ≤ β‖z− z∗‖. Combining these estimates for the terms in (36) gives

‖y‖ ≤ β(‖z− z∗‖ + ‖3− 3̂‖ + ‖λ− λ̄‖). (37)

Also, by the definition of̄λ, each component ofλ− λ̄ is either zero orλi , and(λ− λ̄)i =
λi 6= 0 only when eitherλi < 0, or 0≤ λi < −gi (z). In the former case,

|λi − λ̄i | = |λi | ≤ |λi − λ̂i |
sinceλ̂ ≥ 0. In the latter case, ifgi (z∗) < 0, thenλ̂i = 0 for all (λ̂, µ̂) ∈M, and we
have

|λi − λ̄i | = |λi | = |λi − λ̂i |.
On the other hand, ifgi (z∗) = 0, then the relation 0≤ λi < −gi (z) implies that

|λi − λ̄i | = |λi | ≤ |gi (z)| ≤ β‖z− z∗‖.
Combining these observations gives

‖λ− λ̄‖ ≤ ‖λ− λ̂‖ + β‖z− z∗‖.
Taking into account (37), we have

‖λ− λ̄‖ + ‖y‖ ≤ β‖z− z∗‖ + ‖3− 3̂‖,
which completes the proof.

ut
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By Theorems 1 and 3, the expression

‖λ− λ̄‖ + ‖r‖ + ‖h(z)‖ + ‖∇zL(z, λ̄, µ)‖
whereλ̄ andr are defined in (33) and (34), respectively, tightly measures the error in
an approximation(z, λ, µ) to the solution to the optimization problem (14) in the sense
that it is bounded from above and below by constants times the true error.
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