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Abstract. Given an approximation to a local minimizer to a nonlinear optimization problem and to associated
multipliers, we obtain a tight error estimate in terms of the violation of the first-order conditions. Our results
apply to degenerate optimization problems where independence of the active constraint gradients and strict
complementarity can be violated.
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1. Introduction

We obtain estimates for the error in an approximation to the solution to an optimiza-
tion problem. One of our main objectives is to establish error estimates that apply in
situations where the Mangasarian-Fromovitz constraint qualification (MFCQ) does not
necessarily hold, or where strict complementarity is violated. For a system of equalities
and inequalities

g2 <0 and h(z) =0,

whereg : R" — R andh : R" — R™, the Mangasarian-Fromovitz constraint qualifica-
tion [9] holds at a solutioa, if the constraint gradientgh; (z,) are linearly independent
and there existy € R" such thatvg(z,)y < 0 andVh(z,)y = 0. It is well known
(see[10] or [11]) that when the MFCQ is not satisfied by a linear inequality system, then
arbitrary small perturbations can yield an infeasible system. Using a Lipschitz stability
result for the solutions of quadratic programming problems, based on Robinson’s conti-
nuity properties [13] (also see [6] and [7]) for polyhedral multifunctions, we estimate the
distance from a given point to the solution of a nonquadratic problem, without imposing
the MFCQ. We note that estimates for the error in an approximate solution to a pro-
gramming problem play an integral role in Wright's [16] recent sequential quadratic
programming algorithm for degenerate optimization problems.

In a related paper [4], Facchinei, Fischer, and Kanzow obtain similar upper bounds
for the error in an approximate solution to an optimization problem by applying results
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of Klatte [8], however, their analysis assumes that the MFCQ holds. Also, a result [14,
Theorem 4.2] of Robinson can be used to obtain an analogous estimate, assuming the
MFCQ. In the approach of [4], one assumes that the usual second-order sufficient op-
timality condition holds for all multipliers associated with a given local optimum, and
one obtains an error estimate at all points in a neighborhood of the optimal solution and
the associated multipliers. In our approach, we assume that the second-order condition
holds at a given solution/multiplier pair, and we obtain an error estimate in a neighbor-
hood of the given solution/multiplier pair. For polyhedral constraints, the estimate for
the solution error is valid in a neighborhood of the solution, without constraints on the
choice of the multipliers. In contrast to our work, the lack of smoothness in problem
functions is taken into account in [4] by working with generalized Jacobians, while here
we assume that the functions are twice differentiable at the point under consideration.
In another paper [16], Wright obtains error estimates in the case where the multipliers
at the reference point are bounded from zero, again assuming the MFCQ.

Our approach is in the spirit of a result [1, Theorem 3.2] of Dontchev. There, in
a nondegenerate setting, he estimates the distance from a given point to a solution
of an inclusion by perturbing the inclusion so that the given point becomes a solution.
Properties of an associated linearization are used to analyze the effect of the perturbation.
When the MFCQ does not hold, special care is needed in the analysis of the linearized
problem since it may be infeasible for certain perturbations, and continuity arguments
cannot be applied. Our paper concludes by demonstrating the tightness of a particular
merit function which is essentially the same one studied in [4]. That is, we show that
this merit function yields not only an upper bound for the distance to the solution set,
but a lower bound as well.

2. Local uniqueness and quadratic program stability

Our error estimates are based on a result concerning the stability of stationary points for
a quadratic program. Initially, let us consider the local uniqueness of stationary points
for the following optimization problem:

minimize f(z) subjectto Az<r, Bz=s, zeR", (1)

whereAis| x nandB is m x n. The first-order optimality conditions associated with
(1) at a poinz wheref is differentiable can be expressed: There exebdu such that

Viz)+ATA+u"™B=0, Az—reN@®), Bz—s=0, (2)
whereN is the normal cone:

iz 7 <0, aTh =0} if A>0,
NGy = { ¢ otherwise.
Throughoutthis paper- || denotes the Euclidean norm, afidenotes a generic positive
constant that has different values in different equations.
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Proposition 1. Suppose that is twice continuously differentiable at a solutign, A,
) 10 (2) and that there exists a scalar> 0 such that

w V2 f(z)w > af|lw|? 3)

foreachw such thaBw = 0, (Aw)+ = 0,and(Aw)g < 0, where thet and0 subscripts
are used to denote the subvectors associated with those indiaes/hich (A,)j > 0
and (A4)i = 0 = (Az, —r);, respectively. Then there exists a neighborhabdof z,
with the property that iz € N7 and(z, A, w) is a solution to (2), thez = z,.

Proof. Our proof exploits the technique of Robinson in [14, Theorem 2.4]. There he
considers a nonlinear optimization problem that satisfies the Mangasarian-Fromovitz
constraint qualification. Using bounds on the multipliers, he extracts limits and proves
a similar local uniqueness result. In our case, we do not assume the Mangasarian-
Fromovitz constraint qualification, and there are no bounds on the multipliers.

nstead, the polyhedral structure of the constraints leads to local uniqueness.

The proof is by contradiction. Suppose that there exists a seq{maepproaching
z, and associated multipliers such thiat, Ak, k) satisfies(2) for eachk, and(zx —
Z.)/llzx — z«|| approaches some unit vector Multiplying the first equation in (2),
evaluated atzy, Ak, 1K), by (zx — z,), we conclude that

0=V f(zK)(Z — Z) + M AlZk — Z:)
= V(20 (2 — 2.) + A (Az — @) + A (@a— Az). (4)
For any vector, let y_ denote the subvector associated with those indiéeswhich
(Az, —a); < 0. By complementary slacknes}i,(Azk —a) = 0, while fork sufficiently

large, (k) = 0 since(Az, — a)_ < 0, z converges ta,, and(ix) ' (Az —a)_ = 0.
Consequently,

M(AzZ—a)=0=1)(a— Az), (5)

for k sufficiently large, and (4) implies th&t f(z¢) (zx — z.) = 0 fork sufficiently large.
By taking limits, we conclude th&¥ f(z,)w = 0. SinceAz < aand(Az, —a); =
(Az,—a)o = 0, itfollows, by taking limits, thatAw) + < 0 and(Aw)o < 0. Inasimilar
mannerBw = 0. Moreover, multiplying (2), evaluated &, X, ) by w, we deduce
that (Aw); = 0 sinceV f(z,)w = 0 andi; > 0. Hencew satisfies the constraints
associated with (3).

Now, as in [14, Theorem 2.4], we consider the scalar functidefined by

s(t) = (V(z) + A Az — 2) + Ok — M) (@ — Az) (6)

where(z;, At) = (1 —t)(z4, Ax) +t(zk, Ak). The first term in (6) vanishes for= 0 and
t = 1 by the first-order condition (2). The observation (5) implies that

Ok — ) (@— Az) =0,
for k sufficiently large, while

(k= AT (@— Az) = —2[(@a— Az) <0
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sinceAz, < aandi, > 0. Hences(0) = 0 > s(1), and by the mean value theorem,
there existdx € (0, 1) such that

0> s(t) = (z — 20V f(z) (2 — Z.).

Dividing by [|zx — z.||% and taking limits, we obtain a contradiction to (3).
Now let us consider a quadratic programming problem

L 1 .
minimize EZTQZ—ZT(p subjectto Az<r, Bz=s, zeR", (7)

whereQ is ann x n symmetric matrix ang € R". The first-order conditions can be
expressed in the following way:

%
v=1r|eFzZiruw, (8)
S
where
Qz+ ATA+ BT 0
F(z h ) = Az — | Nw | if A=0 (9)
Bz 0

andF(z, x, ) = ¥ otherwise. Using Proposition 1, we have

Lemma 1. Suppose thatz, A, ) = (Z«, A, ix) IS @ solution to (8) corresponding to
¥ = Y, and that there exists a scalar> 0 such that

w' Qu > alflw||? (10)

for eachw such thatBw = 0, (Aw)+ = 0, and (Aw)g < 0, where the+ and 0
subscripts are used to denote the subvectors associated with those infticeghich
(M) > 0and(r,)i = 0 = (Az. —r);, respectively. Then there exist a scatar 0and
neighborhoodsV; of z, and ;. of v, with the property that ifz, A, 1) is a solution to
(8) corresponding tay € N, andz € A, then

1Z = Z:ll < BllY — el (11)

Proof. The functionF defined in (9) is a polyhedral multifunction since its graph,
defined by

grF ={w,¥) ¥ € F(w),

is the union of finitely many polyhedral convex sets. Robinson notes in [13] that the
set-valued inverse of a polyhedral multifunction is a polyhedral multifunction, and
that polyhedral multifunctions are closed under (finite) composition. LetBade
the projection defined bfP1(z, 1, 1) = z, it follows thatP; o F~1 is a polyhedral
multifunction. Using a theorem of Walkup and Wets [15] concerning a Lipschitzian
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characterization of convex polyhedra, Robinson proves that a polyhedral multifunction
is locally upper Lipschitzian at every point, and the Lipschitz constant is independent
of the point. Hence, there exists a constéand an associated neighborhdddof v,

such that

Pro F L) C Pro F W) + Bllv — v lB forall v e N, 12)

whereB is the unit ball inR". Letting 1 be as in Proposition 1, it follows that since
P10 F-L(y) is the set oz-components of solutions to (8), we have

P1o F ) NN = (2. (13)

ChooseN; smaller if necessary so that it is contained within the ball of centend
radiusp/3 wherep is the distance from, to (P1 o F~1(y)) \ {z.}. Shrink\ further
if necessary so that

(2.} + BllY — ¥ |IBC Ny forall v e N.

Now if ¥ € N, andz € N1 NPy o F-1(y), then by (12), (11) holds.
O

Under the hypotheses of Lemma 1, an example given in [12] showa/thatP; o
F~L(y) may be multivalued fory neary,, even though (13) holds; moreover, és
approaches,, some of the elements &f; NP1 o F~1(1/) may not be local minimizers
of (7).

3. Error estimates
Let us consider the following inequality constrained optimization problem:
minimize f(z) subjectto g(z) <0, h(z) =0, zeR", (14)

where f is real-valuedg : R" — R!, andh : R" — R™. Givenx € R' andu € R™,
the LagrangiarC is defined by

Lz 1 p) = f(2)+279@ + u"h@).

The first-order necessary conditions associated with (14) can be expressed:

T(z, A, ) € F(A), (15)
where
VZE(Zs }"1 /J/) O
T(z, A, pn) = g9(2) ., F) =1 N®M |. (16)
h(z) 0

Let M denote the set of all multipliers associated with a local minimizefor (14).
That is, lettingA denote the paiti, 1), thenA € M if and only if V,£(z,, A) =0
with 2 > 0 andATg(z.) = 0. Then we have
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Lemma 2. Suppose thaf, g, andh are twice differentiable at a local minimizey, of
(14),Ax e M # ¢, and

wIV2L(Ze, ADw > aflw]? @)

wheneveVh(z,)w = 0 = Vg, (z,)w andVgo(z,)w < 0, whereg; andgp denote the
components af associated with indicesfor which (1,); > 0and(1,); = 0 = g (z,),
respectively. Then there exists a neighborh&odf (z,, A,) and constanty ands > 0
with the property that for evergz, A) € A/ and for eachy with ||y|| < § and

T(z, A) +y e F(A), (18)
we have
Iz =zl + 1A = Al < vy, (19)
whereA is the closest element 8ff to A.

Proof. Throughout this proof, the generic constgris uniformly bounded whew is
sufficiently small. Let us consider the quadratic program (7) in the case that

Q =V2L(z.,Ay), A=Vgz), B=Vhz).
We make two choices fap. Our first choice is
wherey satisfies (18), and
Qz+ ATA+ BT
L(z, A) = Az .
Bz

In this case(z, A) € F~1(y1). Our second choice is

Qz. — Vi(zy)
Y =12 =L(2Z A2) — T(Zs, A2) = | AzZ.—0(z) |,
Bz, —h(z,)

whereA is arbitrary since the terms containing it cancel. Takiyg= A, we see that
(Ze, Ay) € F (). By the differentiability assumptiony; is close toy> when(z, A)
is close to(z,, Ay), andy is close to 0. Consequently, by choosikigands sufficiently
small, and by taking\, = A, Lemma 1 gives us the estimate

1=zl = BIT(Z, A) — T(z+, A) — (L(Z, A) — L(Z, A) + Yl (20)

forall (z, A) e N and|y| <.
Given anye > 0, it follows from the differentiability assumption that faf suffi-
ciently small,

IT(z, A) = T(ze, A) = L(Z— 2, 0l <€llz—zl (21)
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for all (z, A) € N'. Combining this with (20), we have

IZ— 2zl < BllYIl- (22)

An estimate for the error in the multipliers is gotten from Hoffman’s result [5] for
the distance to the boundary of a polyhedron. That is, if a linear system of inequalities
is feasible, then the distance from any given point to the feasible set is bounded by
a constant times the norm of the constraint violation at the given point. 3ihcethe
solution set for the linear inequality system

VL(z,, A)=0, A=(@G,p, 2=20 21-=0,

wherei_ denotes the subvectorbhssociated with those indicesuch that; (z,) < O,
the norm of the constraint violation at any giveénis ||VzL(z, A)|l + ||A—]| (the
constraintA > 0 is satisfied due to (18)). Let us také and § small enough that
g-(2 + y- < 0when(z,A) € N and|y| < é. In this case the complementary
slackness condition associated with (18) implies that= 0, and Hoffman’s result
yields

IA — All < BIIVZL(Ze, M. (23)

By the definition ofy, by the differentiability assumption, and by choosikgsmaller
if necessary, we have

IV2L(Zi, M = IV2L(Z, M|+ 1IV2L(Zi, A) — V2L(Z, M| = I+ BlIZ — Z]|.
(24)

Combining (22)—(24), the proof is complete.
i

Since the normal con@&l(A) changes discontinuously when a component of
becomes zero, sharper estimates for the errd@e,in, ©) may be gotten by estimat-
ing the error in an intermediate point. This idea is the motivation for the following
result.
Theorem 1. Suppose the assumptions of Lemma 2 are in effect. Then there exists
a neighborhoodV of (z«, Ax) and constanty andé > 0 with the property that for
every(z, A), for each(z, A) € NV, and for eachy with || y|| < § and

T(z, A) +y e F(A), (25)

we have

1Z=zdll + 1A = All < lz— 2l + 1A — A+ IIYll, (26)

whereA is the closest element 8 to A.
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Proof. By the triangle inequality and the analysis of Lemma 2, we have
1Z=2zdll = l1z=2ZI + 12—zl = Iz— 2l + v Iyl

In a similar fashion, Lemma 2 yields

IA—Al = inf ||A—A|
AeM
< A=A+ inf [A—A]
AeM

< |IA = Al + vyl

This completes the proof.
i

When the functiong andh are affine, the multipliersin (20) and (21) cancel leading
to the following special form of Lemma 2 and Theorem 1.

Corollary 1. Suppose thaf is twice differentiable at a local minimizez, of (14),

g and h are affine,A, € M, and (17) holds whenevérh(z,)w = 0 = Vg (z,)w
and Vgo(z.)w < 0, whereg, and go denote the components gfassociated with
indicesi for which (A,); > 0and (i4);j = 0 = g;(z.), respectively. Then there exists
a neighborhoodV; of z, and constanty and§ > 0 with the property that for every
z € N1 and for eachA andy satisfying (18) withy| < §, we have

1z =zl + 1A — Al < Iyl

whe_ref\ is the closest element @ff to A. Moreover, ifz is arbitrary, butz € N7 and
(z, A) satisfies (25), then we have

1Z= 2zl + 1A = Al < 2= 2l + I|A — Al + ¥ ]Iyl

Proof. As noted above, restrictions on the choice of the multipliers only arise when we
make the transition from (20) to (21) in the proof of Lemma 2. However, whandh
are affine, the multiplier terms cancel, and hence, the conclusion of the Lemma 2 and
Theorem 1 are valid without constraints on the multipliers.

O

In Corollary 1, we restrict the norm of the perturbatirSince there are no condi-
tions onA in Corollary 1, one approach for removing the constriint < § is to choose
A to minimize the distance fromi(z, A) to F(A). Whenz is close toz,, T(z, A,) is
close toF(Ay), and hence, ifA is chosen to minimize the distance frof(z, A) to
F(A), then the constrairjty|| < § is satisfied automatically farin a neighborhood of
z,. A second approach for removing this restrictionyois to strengthen the form of
second-order sufficient condition in order to obtain a quadratic program stability result
analogous to Lemma 1, but with the perturbatigngnrestricted. The following result
removes the neighborhoods of Lemma 1. In the proof of [13, Proposition 4], Robinson
notes this property in the context of a real valued function, while Klatte in [7, Corollary
5.1] proves this, in a more general context, for the solution to a quadratic programming
problem.
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Lemma 3. Suppose that there exists a scalar- 0 such that
w'Qu > afw|? (27)

for eachw such thatBw = 0. Then for each) = (¢, r, s) wherer ands are chosen so
that the system

Az<r and Bz=s, (28)

is feasible, (7) has a unique minimizan/). Moreover, there exists a scalgr> 0 with
the property that for every1 = (¢1,r1, S1) andy2 = (g2, 2, S2), where the associated
linear systems (28) corresponding@Q s) = (ri, 5),i = 1, 2, are feasible, we have

Iz(¥2) — z2(YDl < BllY2 — all- (29)

Proof. For completeness, we give a short proof of the Klatte/Robinson observation.
By [3, Section 4] and (27), there exists a unique solutioa z(y) to (7) when (28)

is feasible. Moreover, angthat satisfies the first-order optimality conditions for (7) is

a strictlocal minimizer. By Robinson’s result[13, Proposition 1], a polyhedral multifunc-
tion is locally upper Lipschitzian at every point with Lipschitz constaimdependent

of the point. That is, for anyrg, there exists an associated neighborh&btbr which

P1ro F L) € Pro F o) + Bllv — volB forall v e N, (30)

whereB is the unit ball inR".

Now suppose that faf1 = (¢1,r1, S1) andyz = (p2,r2, S), the associated linear
systems (28) corresponding o s) = (ri,s), i = 1, 2, are feasible. Then for all
¥ € Y1, ¥2], the line segment connecting andy,, the associated linear systems
(28) remain feasible, and hence, the corresponding unique sok{ilgrexists. Since
Plo]-'*l(w) =z(y), itfollows from (30) that ify/g € [v/1, ¥2], thenforall)y € [v1, ¥r2]
neary, we have

lz(y¥) — z(Po) || < Bl — Yoll- (31)
Let v be the point on the line segmet, 2] that is closest tg/, and that satisfies
lz(¥) — 2zl < Bl — . (32)

Sincez(-) is continuous ony1, ¥2] by (31), the pointy exists. Since (31) holds for
Yo = Y1 and foryr nearyr1, we see thatr # 1. We wish to conclude that = 5. If
¥ # V2, then applying (31) withyg = ¥, we deduce that
lz(¥) =zl < By — v
for ¢ betweeny and v, with v neary. Since the triangle inequality becomes an
equality for three successive colinear points, we have
Iz(¥) — 2|l < 1) — 2|l + 12() — 2P |
= BlY — vl + BllYy — Yl
= Blv — Yl

Sincey can be chosen closer tip thany, we have a contradiction. Henag,= v in
(32), and the proof is complete.
o
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Using Lemma 3 instead of Lemma 1, we have the following analogue of Theorem 1.:

Theorem 2. Suppose thaf is twice differentiable at a local minimizez, of (14),g
andh are affine,A, € M, and for somex > 0, (17) holds whenevevh(z,)w = 0.
Then there exists a neighborhoad of z, and a constany with the property that for
every(z, A), for every(z, A) with z € N1, and for eachy satisfying (25), we have

1z—=zdl < llz=2 + ¥yl

Proof. Again, the proof of this result is contained in the proofs of Lemma 2 and
Theorem 1, except that Lemma 3 is used in place of Lemma 1.
O

4. An application

As a specific application of Theorem 1, we consider the following choices for the
variablesz = zandjx = u, while A is defined by

:_JO ifa < —gi(@orii <0,
i = {Ai otherwise. (33)
Andy = (q,r, s) where
. - . | —gi(@ if x > 0o0rgi(2 >0,

With these definitions, the inclusion (25) of Theorem 1 is satisfied. This is,0 and

if i > 0, thengi(2) + ri = 0, while q ands are the negatives of the corresponding
components off(w). The variables and A were chosen in the following way: The
multiplier was changed so that the nonnegativity constraint 0 was satisfied, and
then we perturbed further either the inequality constrgi@ < O or the multiplier
making the smallest change so that the complementarity condit®r-r € N(1) was
satisfied. For this special choice®fandy, we now show that the right side of (26) not
only provides an upper bound for the erronin= (z, A, 1), but a lower bound as well.

Theorem 3. If f, g, andh are twice differentiable at a local minimizex of (14) and
Ay € M # @, then there exists a neighborhoad of (z,, A,) and a constany with
the property that for eacte, A, u) € A/, we have

I =X+ Iyl < vz =zl + 1A = A, (35)
where’. andy are given in (33) and (34), and is the closest element 8 to A.

Proof. The generic constaitused in this proof is uniformly bounded when the neigh-
borhoodV\ is sufficiently small. Observe that

Iyl < llall + Qe ll + sl
= IV2L(@zZ &, Wl + lIrll + h@)]]
< BIr = Al + IIV2L@Z A, )l + Pl + Ih@)]- (36)
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Sinceh(z,) = 0, we havélh(2)|| < B|lz—z||- Also, by the differentiability assumption,
we have

IV2L(z, A) — VoL(Z", N < Bllz — Z*].
SinceV,L(z,, A) = 0, we have
IV2L(Z5, A)|| = IVLL(EZ, 1) — VZL(EZ A)|| < BIA — Al

ChooseV small enough that for allz, A, 1) € N, we haveg;i (z) < 0and|Ai| < |gi(2)|
whenever;(z,) < 0 (and hence); = 0). By its definition, the components pfare
either 0 or—g;j(2). If ri = —gi(2), then by (34), eithegj(z) > 0 or; > 0. In the
former caseg;(z.) = 0 by the choice ofV. That is,gi(z) < 0 forall (z, A, ) € N
whengi(z,) < 0. Hence, ifgi(z) > 0, we must haveji(z,) = 0. In the latter case
(gi(2) < 0andx; > 0), it follows from (33) thatj > —gj(z) > 0. Sincelri| > |gi(2)],
it follows from the choice ofV thatg; (z,) = 0. In summary, if; # 0, thenr; = gi(2)
andgi(z") = 0. Sinceg is differentiable, for these nonzero components,afie have

Iril =161 (2| < Bllz — zl.
Hence,|r || < Bllz— z*||. Combining these estimates for the terms in (36) gives
IVl < BUIz— zell + |1 A — Al + 12 = A]D. (37)

Also, by the definition of., each component of— 1 is either zero ok;, and(x — 1); =
Ai # 0 only when eithe; < 0, 0or 0< Aj < —g@;(2). In the former case,

A — il = 1nil < |4 — Al

sincei > 0. In the latter case, i (z,) < 0, theni; = 0 for all (A, 1) € M, and we
have

i = &il =[xl = M — Al
On the other hand, i (z,) = 0, then the relation & A; < —g;(2) implies that
i = Ail = [%i] <1612 < Bllz = zll.
Combining these observations gives
I =&l < IIx = Al + Bllz— zll.
Taking into account (37), we have
I =X+ Iyl < Bllz— zll + 1A — A,

which completes the proof.
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By Theorems 1 and 3, the expression
1A =21+ Il + 1h@)[| + 1V2£(Z, &, w)

wherex andr are defined in (33) and (34), respectively, tightly measures the error in
an approximatioriz, A, u) to the solution to the optimization problem (14) in the sense
that it is bounded from above and below by constants times the true error.
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