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Abstract Methods are developed and analyzed for estimating the distance to a local mini-
mizer of a nonlinear programming problem. One estimate, based on the solution of a con-
strained convex quadratic program, can be used when strict complementary slackness and the
second-order sufficient optimality conditions hold. A second estimate, based on the solution
of an unconstrained nonconvex, nonsmooth optimization problem, is valid even when strict
complementary slackness is violated. Both estimates are valid in a neighborhood of a local
minimizer. An active set algorithm is developed for computing a stationary point of the non-
smooth error estimator. Each iteration of the algorithm requires the solution of a symmetric,
positive semidefinite linear system, followed by a line search. Convergence is achieved in a
finite number of iterations. The error bounds are based on stability properties for nonlinear
programs. The theory is illustrated by some numerical examples.

Keywords Error bounds · KKT conditions · Active set algorithm · Nonconvex quadratic
programming · Nonlinear programming

1 Introduction

For a nonlinear system of equations h(x) = 0, where h : R
n → R

m , the residual norm
‖h(x)‖ is often used to assess how close x is to a solution of the system. For an unconstrained
optimization problem min{ f (x)}, where f : R

n → R, the norm of the gradient ‖∇ f (x)‖
is often used to assess how close x is to a local minimizer of f . In this paper, we focus
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on the more difficult problem of estimating the distance to a solution of a general nonlinear
programming problem. Error estimation in this context is complicated since one needs to take
into account the gradient of the Lagrangian, constraint violations, and the complementary
slackness condition. We consider optimization problems in the form

min{ f (x) : h(x) = 0, x ≥ 0, x ∈ R
n}, (1.1)

where f and h are continuously differentiable. A general nonlinear program with equality
and inequality constraints can always be written in this form. Alternatively, throughout the
paper the constraint x ≥ 0 can be replaced by the more general constraint g(x) ≥ 0, where
g : R

n → R
l , without significant changes in either the results or the analysis—simply

replace xi by gi (x). We assume that (1.1) has a local minimizer x∗, and we wish to estimate
the distance from an approximation x to x∗.

Let L : R
n × R

m × R
n → R be the Lagrangian defined by

L(x,λ,μ) = f (x)+ λTh(x)− μTx,

where T denotes transpose. If a constraint qualification holds at x∗, then there exists λ ∈ R
m

and μ ∈ R
n such that the Karush/Kuhn-Tucker (KKT) conditions

∇xL(x,λ,μ) = 0, μ ≥ 0, μTx = 0, h(x) = 0, and x ≥ 0 (1.2)

are satisfied at x = x∗. Here ∇x is the gradient with respect to x, and any solution of (1.2)
is referred to as a KKT point. Constraint qualifications include the widely used linear inde-
pendence constraint qualification LICQ (for example, see Nocedal and Wright [14]), the
Mangasarian-Fromovitz constraint qualification [11], the constant rank constraint qualifica-
tion [9], the constant positive linear dependence constraint qualification [16], the relaxed
constant rank constraint qualification [13], and the relaxed constant positive linear depen-
dence constraint qualification [2].

Our goal is to develop an error estimator E(x,λ,μ) with the property that

‖x − x∗‖ + ‖λ − λ̂‖ + ‖μ − μ̂‖ ≤ cE(x,λ,μ) (1.3)

for all (x,λ,μ) in a neighborhood N of a KKT point (x∗,λ∗,μ∗), where (λ̂, μ̂) is the
projection of (λ,μ) on the set of KKT multipliers at x∗ and c is a constant. Throughout the
paper, we use the Euclidean norm ‖ · ‖. There is a substantial body of literature concerning
error estimation. Pang’s comprehensive survey [15] gives an overview of research up to 1997.
Much of the earlier work focused on error bound conditions for problems with a particular
structure, or for iterates produced by a specific algorithm. For example, in Luo and Tseng [10]
the authors obtain error bounds for problems where the objective function is the composition
of an affine mapping with a strongly convex differentiable function, and the constraint is
either a polyhedron or a box. In Mathias and Pang [12], the authors derive an error bound for
a linear complementarity problem involving a P matrix, while in García-Esnaola and Peña
[5] the authors consider an H matrix. In the application section of Andreani et al. [2] and in
Eckstein and Silva [4], the authors develop error bound conditions associated with iterates
that arise in an augmented Lagrangian algorithm. General results concerning the convergence
to KKT points are developed in Andreani et al. [1], where the authors formulate approximate
KKT conditions and approximate gradient projection conditions.

In this paper, our focus is on error estimators that satisfy (1.3) for a general nonlinear
optimization problem with equality and inequality constraints. Our first estimate, denoted
E0, is defined by

E0(x,λ,μ) =
√

‖∇xL(x,λ,μ)‖2 + ‖h(x)‖2 + (μTx)2,
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where we require that x ≥ 0 andμ ≥ 0. If an approximation (λ,μ) to the Lagrange multipliers
is known, with μ ≥ 0, then we could directly evaluate E0(x,λ,μ) to estimate the distance
to a local minimizer. Alternatively, we could estimate both the KKT multipliers and the error
at an approximation x to a solution of (1.1) by solving the problem

min{E0(x,λ,μ)2 : λ ∈ R
m, μ ∈ R

n, μ ≥ 0}. (1.4)

If E0(x)2 denotes the optimal objective value in (1.4), then E0(x), in essence, yields the
tightest upper bound in (1.3).

Observe that E0(x,λ,μ) ≥ 0 and E0(x,λ,μ) = 0 if and only λ and μ satisfy the KKT
conditions (1.2). If (x∗,λ∗,μ∗) satisfies the KKT conditions (1.2) and the second-order
sufficient optimality conditions hold, then we show that E0 has the error estimation property
(1.3) when the strict complementary slackness condition is satisfied. That is, x∗

i > 0 when
μ∗

i = 0. If strict complementary slackness does not hold, then we only have ‖x − x∗‖ ≤
c
√

E0(x,λ,μ). Since (1.4) is a convex quadratic programming problem, it can be solved by
many algorithms including either the primal active set algorithm (see Nocedal and Wright
[14]) or the dual active set algorithm [7].

To handle problems where strict complementary slackness is violated, we have a slightly
different error estimator. Let � : R

n ×R
n → R

n be the componentwise min function defined
by

�i (x,μ) = min{xi , μi }, i = 1, 2, . . . , n.

Our second estimate, denoted E1, is given by

E1(x,λ,μ) =
√

‖∇xL(x,λ,μ)‖2 + ‖h(x)‖2 + ‖�(x,μ)‖2.

Note that for E1, there are no sign constraints on either μ or x. The KKT multiplier estimates
can be obtained by solving the unconstrained optimization problem

min{E1(x,λ,μ)2 : λ ∈ R
m, μ ∈ R

n}. (1.5)

As with E0, we see that E1(x,λ,μ) ≥ 0 and E1(x,λ,μ) = 0 if and only λ and μ satisfy the
KKT conditions (1.2). In particular, when E1(x,λ,μ) = 0, we must have �(x,μ) = 0, which
implies that the minimum of xi and μi is 0 for each i . As a consequence, xi ≥ 0, μi ≥ 0,
and xiμi = 0. Hence, all the conditions in (1.2) are satisfied when E1(x,λ,μ) = 0. We will
show that E1 has the property (1.3) even when strict complementary slackness does not hold.
Again, we let E1(x)2 denote the optimal value of the objective in (1.5).

A fundamental difference between E0 and E1 is that the objective function associated with
E0 is convex, while the objective function of E1 is piecewise convex, but globally nonconvex
as seen in Fig. 1. Due to the nonconvexity, computing even a stationary point of (1.5) may not
be easy. However, we could use a solution of the more tractable (1.4) as a starting guess for a
solution of (1.5). An active set algorithm will be developed for handling the nonsmoothness
of � in (1.5).

Our error bounds are deduced from Theorem 1 in Hager and Gowda [6] where a stability
result is established for constrained optimization problems. Here we show that if (x,λ,μ)
is an approximation to a KKT point, then E0(x,λ,μ) and E1(x,λ,μ) measure how much
(x,λ,μ) violates the KKT conditions.

A different error estimate is developed by Dutta et al. in [3], where they consider a purely
inequality constrained optimization problem of the form

min{ f (x) : g(x) ≤ 0, x ∈ R
n}, g : R

n → R
l . (1.6)
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Fig. 1 A plot of �i (x,μ)2 versus μi showing the piecewise convex, but globally nonconvex structure

For any feasible x, their error estimate, which we denote ED , is given by

ED(x) = min{δ : ‖∇x [ f (x)+ μTg(x)]‖2 ≤ δ, μTg(x) ≥ −δ, μ ≥ 0, μ ∈ R
m}.

The estimate ED is related to our E0 estimate in the sense that they both contain a Lagrangian
term and a term connected with the violation of complementary slackness. Nonetheless, there
are fundamental differences between the error estimators. For example, if the optimization
problem is unconstrained and g does not exist, then ED(x) = ‖∇ f (x)‖2, while E0(x) =
‖∇ f (x)‖. Since ED is the square of E0 and since E0 satisfies (1.3) when the Hessian ∇2 f (x∗)
is positive definite at an unconstrained local minimizer x∗, it follows that in general, ED does
not satisfy (1.3); more precisely, we have ‖x − x∗‖ ≤ c

√
ED(x) for this unconstrained

optimization problem.
In ED the Lagrangian error and the complementary slackness error are treated in an

unsymmetric fashion since the square of the Lagrangian error is bounded in terms of δ,
while the complementary slackness error is not squared. On the other hand, in E0 both the
Lagrangian error and the complementary slackness error are squared. Another difference
between E0 and ED is that the objective of E0 is quadratic, while ED has a quadratic
constraint, which is not as easy to handle numerically. In Dutta et al. [3], ED(x)was evaluated
using a real-coded evolutionary optimization algorithm. In Theorem 3.6 of Dutta et al. [3],
the authors show that if ED(xk) tends to zero, then under suitable assumptions, convergent
subsequences of the xk approach KKT points. In this paper, on the other hand, we focus on
error estimation results of the form (1.3).

The paper is organized as follows: In Sect. 2 we review results in Hager and Gowda [6]
concerning the stability of mathematical programs. In Sect. 3 we use results from Hager
and Gowda [6] to obtain an estimate of the form (1.3) for E1, while Sect. 4 analyzes the
E0 estimate. In Sect. 5 we show that although E1 is nonsmooth, a minimizer of E1 lies at a
point of differentiability for the objective provided x ≥ 0. In Sect. 6 we develop an active
set algorithm for computing an extreme point of E1, while Sect. 7 gives numerical examples
exploring the tightness of the theory.

Notation ∇ f denotes the gradient of f , a row vector, and ∇2 f is the Hessian of f . ‖ · ‖
denotes the Euclidean norm and T denotes transpose. If A is a set, then Ac is the complement
of A. In an algorithm, a k subscript is often used to denote the iteration number. In particular,
μk would be the kth iterate in the variable μ, and μki is the i th component of the kth iterate.
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2 A stability result for nonlinear programming

Our analysis of the error estimators is based on the stability analysis given in Hager and
Gowda [6] for the solution of a nonlinear programming problem. Since the notation in our
paper is different from the notation in the earlier work, we restate a key result from Hager
and Gowda [6] using the notation in our paper. Let N (μ) be the normal cone defined by

N (μ) =
{ {x ∈ R

n : x ≥ 0, xTμ = 0} if μ ≥ 0,
∅ otherwise.

Let T : R
n × R

m × R
n → R

n × R
m × R

n and F : R
n → 2R

n × R
m × R

n be defined by

T(x,λ,μ) =
⎡
⎣

x
h(x)

∇xL(x,λ,μ)

⎤
⎦ and F(μ) =

⎡
⎣

N (μ)
0
0

⎤
⎦ . (2.1)

With this notation, the KKT conditions are satisfied if and only if

T(x,λ,μ) ∈ F(μ). (2.2)

In the context of our optimization problem (1.1), Theorem 1 in Hager and Gowda [6] reduces
to the following stability result:

Theorem 2.1 Suppose that x∗ is a local minimizer of (1.1) and the following conditions
hold:

A1. f and h are twice differentiable at x∗.
A2. There exist λ∗ and μ∗ satisfying T(x∗,λ∗,μ∗) ∈ F(μ∗).
A3. The second-order sufficient optimality conditions hold; that is, there exists α > 0 such

that

wT∇2
x L(x∗,λ∗,μ∗)w ≥ α‖w‖2

whenever

∇h(x∗)w = 0, wi = 0 if μ∗
i > 0, wi ≥ 0 if μ∗

i = x∗
i = 0.

Then there exists a neighborhood N of (x∗,λ∗,μ∗) and constants γ and δ with the property
that for each (x,λ,μ), we have

‖x − x∗‖ + ‖λ − λ̂‖ + ‖μ − μ̂‖ ≤ ‖x − x0‖ + ‖λ − λ0‖ + ‖μ − μ0‖ + γ ‖y‖
for all (x0,λ0,μ0) ∈ N satisfying

T(x0,λ0,μ0)+ y ∈ F(μ0), ‖y‖ ≤ δ, (2.3)

where (λ̂, μ̂) is the projection of (λ,μ) on the set of KKT multipliers M defined by

M = {(λ,μ) : T(x∗,λ,μ) ∈ F(μ)}.
The condition (2.3) is the KKT conditions (2.2) perturbed by y. Theorem 2.1 basically says

that under the assumptions of the theorem, the error at any approximate solution (x,λ,μ)
can be bounded by the perturbations x − x0, λ − λ0, μ − μ0, and y needed to move from
the approximate solution to a point (x0,λ0,μ0) satisfying the KKT conditions perturbed by
y. We use Theorem 2.1 to analyze the error estimate connected with either E0 or E1.
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3 Error associated with E1

Since the analysis of E1 is more straightforward than the analysis of E0, we begin with E1.
Suppose that the assumptions of Theorem 2.1 are satisfied, and let N be a neighborhood of
(x∗,λ∗,μ∗) which is small enough that Theorem 2.1 holds. For any given (x,λ,μ) ∈ N , let
ε be defined by

ε = E1(x,λ,μ) =
√

‖∇xL(x,λ,μ)‖2 + ‖h(x)‖2 + ‖�(x,μ)‖2. (3.1)

In order to apply Theorem 2.1, we try to choose (x0,λ0,μ0) ∈ N near (x,λ,μ) and y near 0
satisfying (2.3). The T function defined in (2.1) has three blocks of components corresponding
to x, h(x), and ∇xL(x,λ,μ). We partition y into three corresponding subvectors denoted
y1, y2, and y3. Hence, to apply Theorem 2.1, we need to specify x0, λ0, μ0, y1, y2, and y3.
We take

x0 = x, λ0 = λ, and y2 = −h(x). (3.2)

The parameters μ0 and y1 must be chosen so that μT
0 (x + y1) = 0, where μ0 ≥ 0, and

x + y1 ≥ 0. We accomplish this with the following choices:

(a) μ0i = μi and yi = −xi if xi < μi and μi ≥ 0.
(b) μ0i = 0 and yi = −xi if xi < μi < 0.
(c) μ0i = 0 and yi = 0 if μi ≤ xi and xi ≥ 0.
(d) μ0i = 0 and yi = −xi if μi ≤ xi < 0.

With these choices, either μ0i = 0 or yi = −xi for each i , and when this holds, we have
μ0i (xi + yi ) = 0. Moreover, μ0i ≥ 0 and xi + yi ≥ 0 as we now show. If μi ≤ xi , then
μ0i = 0 in (c) and (d). If μi ≤ xi and xi ≥ 0, then yi = 0 in (c) and xi + yi = xi ≥ 0, while
yi = −xi in (d) and xi + yi = 0. If xi < μi , then in (a) and (b), yi = −xi and xi + yi = 0;
moreover, μ0i = μi ≥ 0 in (a), while μ0i = 0 in (b).

Finally, we choose
y3 = −∇xL(x,λ,μ0). (3.3)

With the parameter choices given in (3.2), (3.3), and (a)–(d), the inclusion

T(x0,λ0,μ0)+ y ∈ F(μ0)

is satisfied.
By the choices in (3.2) and by the definition of ε in (3.1), we have

‖x − x0‖ = 0, ‖λ − λ0‖ = 0, and ‖y2‖ ≤ ε. (3.4)

By the choices in (a)–(d), we have

‖μ − μ0‖2 =
∑
μi ≤xi

μ2
i +

∑

xi<μi<0

μ2
i ≤

∑
μi ≤xi

μ2
i +

∑

xi<μi<0

x2
i , (3.5)

and
‖y1‖2 =

∑
xi<μi

x2
i +

∑

μi ≤xi<0

x2
i ≤

∑
xi<μi

x2
i +

∑

μi ≤xi<0

μ2
i . (3.6)

By the definition of �, we have �i (x,μ) = μi when μi ≤ xi , and �i (x,μ) = xi when
xi < μi . Hence, (3.5) and (3.6) yield

‖μ − μ0‖2 ≤
n∑

i=1

�i (x,μ)2 and ‖y1‖2 ≤
n∑

i=1

�i (x,μ)2. (3.7)
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Since ‖�(x,μ)‖ ≤ ε, it follows from (3.7) that

‖μ − μ0‖ ≤ ‖�(x,μ)‖ ≤ ε and ‖y1‖ ≤ ‖�(x,μ)‖ ≤ ε. (3.8)

Finally, let us bound y3. Observe that

− y3 = ∇xL(x,λ,μ0) = ∇xL(x,λ,μ)+ (μ − μ0)
T. (3.9)

Since ‖∇xL(x,λ,μ)‖ ≤ ε by the definition of ε, and since ‖μ−μ0‖ ≤ ε by (3.8), it follows
that

‖y3‖ ≤ 2ε. (3.10)

Combine (3.4), (3.8), and (3.10) to obtain ‖y‖ ≤ 4ε. As N shrinks around (x∗,λ∗,μ∗), ε
tends to 0 since E1(x∗,λ∗,μ∗) = 0 and (x,λ,μ) ∈ N . Choose N small enough that 4ε ≤ δ

whenever (x,λ,μ) ∈ N , where δ is the constant appearing in Theorem 2.1. We combine
(3.4), (3.8), (3.10) and invoke Theorem 2.1 to obtain the following result:

Theorem 3.1 If x∗ is a local minimizer of (1.1) and (A1)–(A3) are satisfied, then there is a
neighborhood N of (x∗,λ∗,μ∗) with the property that for each (x,λ,μ) ∈ N , we have

‖x − x∗‖ + ‖λ − λ̂‖ + ‖μ − μ̂‖ ≤ (1 + 4γ )E1(x,λ,μ),

where γ is the constant in Theorem 2.1, and (λ̂, μ̂) is the projection of (λ,μ) on the set of
KKT multipliers at x∗.

4 Error associated with E0

For the error estimator E0, we no longer have the � term that we used to bound ‖μ − μ0‖
and ‖y1‖ in (3.8). However, a similar bound is obtained when strict complementary slackness
holds. That is, x∗

i > 0 whenever μ∗
i = 0. Choose σ > 0 small enough that

2σ < min{x∗
i : x∗

i > 0} and 2σ < min{μ∗
i : μ∗

i > 0}.
Let N be a neighborhood of (x∗,λ∗,μ∗) which is small enough that Theorem 2.1 holds and
small enough that

max{xi : x∗
i = 0} < σ < min{xi : x∗

i > 0} (4.1)

and
max{μi : μ∗

i = 0} < σ < min{μi : μ∗
i > 0} (4.2)

for all (x,λ,μ) ∈ N . For any given (x,λ,μ) ∈ N with μ ≥ 0 and x ≥ 0, let ε now be
defined by

ε = E0(x,λ,μ) =
√

‖∇xL(x,λ,μ)‖2 + ‖h(x)‖2 + (μTx)2. (4.3)

By the definition of E0, we see that μTx ≤ ε. Since μi xi ≥ 0, we also have

μi xi ≤ ε. (4.4)

We make exactly the same choices for x0, λ0, μ0, and y that we made in the analysis of
E1. The only difference is that we now need to bound ‖μ − μ0‖ and y1 in a different way.
Suppose that (x,λ,μ) ∈ N , x ≥ 0, and μ ≥ 0. If μi ≤ xi , then we consider two cases:

Case 1: μ∗
i = 0. By strict complementary slackness, x∗

i > 0, and by (4.1), xi > σ . Since
μi xi ≤ ε, we conclude that μi ≤ ε/σ .
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Case 2: μ∗
i > 0. By complementary slackness, x∗

i = 0. By (4.1), xi < σ and by (4.2),
μi > σ . Hence μi > xi , which violates the assumption that μi ≤ xi . This implies
that Case 2 cannot occur.

If μi > xi , then we consider the following two cases:

Case 3: x∗
i = 0. By strict complementary slackness, μ∗

i > 0, and by (4.2), μi > σ . Since
μi xi ≤ ε, we conclude that xi ≤ ε/σ .

Case 4: x∗
i > 0. By complementary slackness, μ∗

i = 0. By (4.2), μi < σ and by (4.1),
xi > σ . Hence xi > μi , which violates the assumption that μi > xi . This implies
that Case 4 cannot occur.

We return to the first equality in (3.5). The second sum is vacuous sinceμi ≥ 0. According
to Case 1, μi ≤ ε/σ when μi ≤ xi . Hence, (3.5) yields

‖μ − μ0‖ ≤ ε
√

n/σ. (4.5)

Similarly, for the first equation in (3.6), the second sum is vacuous since xi ≥ 0. According
to Case 3, xi ≤ ε/σ when μi > xi . Hence, (3.6) yields

‖y1‖ = ε
√

n/σ. (4.6)

Finally, let us bound y3. Since ‖∇xL(x,λ,μ)‖ ≤ ε and ‖μ0 −μ‖ ≤ ε
√

n/σ , it follows from
(3.9) that

‖y3‖ ≤ ε(1 + √
n/σ). (4.7)

Combine (3.4), (4.6), and (4.7) to obtain ‖y‖ ≤ 2ε(1 + √
n/σ). As N shrinks around

(x∗,λ∗,μ∗), ε tends to 0 since E0(x∗,λ∗,μ∗) = 0 and (x,λ,μ) ∈ N . Choose N small
enough that ‖y‖ ≤ δ, the constant appearing in Theorem 2.1. Again, combine (3.4), (4.5),
(4.6), and (4.7) and invoke Theorem 2.1 to obtain the following result:

Theorem 4.1 If x∗ is a local minimizer of (1.1), (A1)–(A3) are satisfied, and strict comple-
mentary slackness holds, then there is a neighborhood N of (x∗,λ∗,μ∗) with the property
that for each (x,λ,μ) ∈ N with x ≥ 0 and μ ≥ 0, we have

‖x − x∗‖ + ‖λ − λ̂‖ + ‖μ − μ̂‖ ≤ cE0(x,λ,μ),

where c = √
n/σ + 2(1 + √

n/σ)γ, σ is the constant in (4.1) and (4.2), γ is the constant in
Theorem 2.1, and (λ̂, μ̂) is the projection of (λ,μ) on the set of KKT multipliers at x∗.

An example is given in Sect. 7 which shows that if the strict complementary slackness
requirement does not hold, then E0 may no longer satisfy the error bound condition (1.3).
When strict complementary slackness does not hold, the O(ε) bounds for ‖μ−μ0‖ and ‖y1‖
must be replaced by O(

√
ε) as we now show. Referring to (3.5), the sum indexed by μi < 0

is again vacuous when μi ≥ 0. For the sum indexed by xi ≥ μi ≥ 0, we utilize the relation
(4.4) to obtain μ2

i ≤ ε, which implies that

‖μ − μ0‖ ≤ √
nε.

In a similar fashion, in (3.6), the sum indexed by xi < 0 is again vacuous when xi ≥ 0.
For the sum indexed by μi > xi ≥ 0, we utilize the relation (4.4) to obtain x2

i ≤ ε, which
implies that

‖y1‖ ≤ √
nε.

The O(
√
ε) bounds for ‖μ − μ0‖ and ‖y1‖ yield the following result when strict comple-

mentary slackness does not hold:
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Theorem 4.2 If x∗ is a local minimizer of (1.1) and (A1)–(A3) are satisfied, then there is a
neighborhood N of (x∗,λ∗,μ∗) with the property that for each (x,λ,μ) ∈ N with x ≥ 0
and μ ≥ 0, we have

‖x − x∗‖ + ‖λ − λ̂‖ + ‖μ − μ̂‖ ≤ c
√

E0(x,λ,μ),

where c is independent of (x,λ,μ) and (λ̂, μ̂) is the projection of (λ,μ) on the set of KKT
multipliers at x∗.

5 Differentiability at a minimizer of E1

Often at a solution of a nonsmooth optimization problem, the objective function is nondif-
ferentiable. The nonsmoothness associated with the E1 error estimator, on the other hand,
is quite different. The analysis in this section implies that if x ≥ 0, then at a minimum for
(1.5), the objective function is differentiable. In fact, the following more general property is
established:

Differentiablity Property. If x ≥ 0 and E1(x,λ,μ) is minimized over μi with all the
other variables fixed, then the minimizing μi is a point where E2

1 is differentiable.

Since the nonsmoothness of E2
1 is associated with the �(x,μ) term in the objective, and since

a minimizer in (1.5) must also achieve a minimum along each of the coordinate directions,
the Differentiability Property implies that E2

1 is differentiable at a solution of (1.5).
The Differentiability Property is significant for the following reason: Since E1 is non-

smooth, solving (1.5) could be nontrivial, and potentially bundle methods and nonsmooth
optimization techniques would be required. The Differentiability Property implies that
although E1 is nonsmooth, it is smooth at a minimizer where subdifferentials can be replaced
by ordinary derivatives. In the next section, we show that although E1 is nonsmooth, we can
find an extreme point by solving a series of linear systems, and we never need to be concerned
with the lack of smoothness.

In order to establish the Differentiablity Property, let us focus on the scalar problem

min
μ

φ(μ), where φ(μ) = (μ− a)2 + s min{μ, x}2. (5.1)

Here a and x are arbitrary parameters and s > 0. When minimizing E1(x,λ,μ) over a
component of μ, we essentially solve a problem of the form (5.1). In the E1 error estimator,
we took s = 1, but in general, we may wish to scale the � term relative to the Lagrangian
term so we included a scaling parameter s in the definition of φ.

Proposition 5.1 Suppose that s > 0. If x ≥ 0, then at the solution of (5.1), φ is differentiable
for any choice of a. If x < 0, then at a solution of (5.1), φ is differentiable except when
a ∈ [(1 + s)x, x].
Proof If x = 0, then φ is differentiable at any μ, so in particular, φ is differentiable at the
solution of (5.1). Hence, we assume that x �= 0. In this case, which corresponds to Fig. 1,
the only point where φ is nondifferentiable is μ = x . To prove the proposition, we need to
show that the minimizer in (5.1) is never μ = x except when x < 0 and a ∈ [(1 + s)x, x].

In the region μ ≤ x , we have φ(μ) = (μ− a)2 + sμ2. The minimum of this quadratic is
μ− = a/(1 + s). We consider three cases:

Case 1: a > x . In this case φ′(μ) = 2(μ− a) < 0 for μ ∈ [x, a). Hence, the minimum of
φ cannot be attained at μ = x .
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Case 2: a ≤ x and x ≥ 0. For μ > x , we have φ(μ) = (μ − a)2 + sx2. Hence, φ′(μ) =
2(μ − a) > 0 for μ > x ≥ a. Consequently, the minimum of φ is attained on the
interval (−∞, x] at μ− = a/(1 + s) ≤ x/(1 + s) < x since s > 0 and x ≥ 0.

Case 3: a ≤ x < 0. As in Case 2, the minimum of φ is attained on the interval (−∞, x]. As
noted earlier, φ(μ) = (μ− a)2 + sμ2 on this interval, and this quadratic achieves
its minimum at μ = μ− = a/(1 + s). If μ− < x , then the minimum is attained
at μ = μ− < x . If μ− ≥ x , then the minimum is attained at μ = x . Since it was
assumed that a ≤ x , we conclude that the minimum is attained at μ = x if and only
if both inequalities a ≤ x and μ− ≥ x are satisfied; equivalently, a ∈ [(1 + s)x, x].

��
Since the Hessian of E1 is not necessarily positive definite at a point of differentiability,

we may wish to regularize the objective by adding a term of the form ε‖μ‖2, where ε > 0.
This leads us to consider the following generalization of (5.1):

min
μ

ψ(μ), where ψ(μ) = (μ− a)2 + s min{μ, x}2 + εμ2.

After completing the square, ψ can be written as

ψ(μ) = (1 + ε)

(
μ− a

1 + ε

)2

+ s min{μ, x}2 + a2ε

1 + ε
.

We divide by 1 + ε to obtain an objective in the same form as (5.1). Hence, Proposition 5.1
applies to the regularized problem, but with a in (5.1) replaced by a/(1 + ε).

6 Active set algorithm for minimizing E1

We now develop an active set algorithm for computing a stationary point of the nonconvex,
nonsmooth problem (1.5). When minimizing E1(x,λ,μ)2 over λ and μ, the h(x) term is
irrelevant, so we focus on the problem of minimizing

F(λ,μ) = ‖∇xL(x,λ,μ)‖2 +
n∑

i=1

min{xi , μi }2,

where x ≥ 0 is given. Our algorithm involves a set Uk ⊂ {1, 2, . . . , n}, and two other
functions

Gk(λ,μ) = ‖∇xL(x,λ,μ)‖2 +
∑

i∈Uk

μ2
i +

∑

i∈Uc
k

min{xi , μi }2,

and

Hk(λ,μ) = ‖∇xL(x,λ,μ)‖2 +
∑

i∈Uk

μ2
i +

∑

i∈Uc
k

x2
i .

For any choice of Uk , we have
F ≤ Gk ≤ Hk . (6.1)

A formal statement of our algorithm for minimizing E1 is given in Fig. 2. Since Hk(λ,μ)

is convex and quadratic in λ and μ, the minimizer (λ̄, μ̄) of Hk computed in Step 1 is easily
evaluated by solving a linear system of equations. If the system is singular, we could compute
the minimum norm solution. In Step 2, we perform a line search along the ray connecting
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Fig. 2 Active set algorithm for minimizing E1(x, λ,μ) over λ and μ

the current iterate (λk,μk) to (λ̄, μ̄). The goal of the line search is to minimize Gk along
the search direction. The minimizer becomes the next iterate (λk+1,μk+1). If the condition
in Step 3 is satisfied, then Uk set is updated and we return to Step 1. Otherwise, we proceed
to Step 4 where coordinate descent is applied to the multiplier μ, starting from μ = μk .
We minimize over each component of the multiplier μ while holding the other components
fixed. If μ j = μk j attains the minimum, then we accept μ j = μk j as the minimizer for the
j th component. After the coordinate descent phase, the set Uk+1 is initialized in the same
way that U0 was initialized at the start of the algorithm. Step 5 is the convergence test. If the
algorithm has not converged, then we return to Step 1.

To prove the convergence of the algorithm to a stationary point, we will first show that

Hk(λk,μk) = Gk(λk,μk) (6.2)

at the start of Step 2. This identity is due to the fact that the updates to the set Uk throughout
the algorithm always ensure that

min{xi , μki } = xi for all i ∈ Uc
k . (6.3)

When Uk satisfies this condition, the trailing terms in Gk and in Hk are the same and hence,
(6.2) holds. The condition (6.3) holds initially for k = 0 by the definition of U0. Moreover,
at Step 4, this condition holds by the definition of Uk+1. Let us proceed by induction and
assume that (6.3) holds in Step 1 at iteration k. In Step 3, we add to Uk those indices i ∈ Uc

k
for which μki (tk) < xi . Hence, for the indices i ∈ Uc

k+1, we must have

min{xi , μki (tk)} = min{xi , μ(k+1),i } = xi ,

and (6.3) holds with k replaced by k + 1.
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Since Gk = Hk at (λk,μk) by (6.2), Gk ≤ Hk by (6.1), (λ̄, μ̄) minimizes Hk , and
(λk+1,μk+1) minimizes Gk in the search direction, we conclude that

Gk(λk+1,μk+1) = Gk(λ̄, μ̄) ≤ Hk(λ̄, μ̄) ≤ Hk(λk,μk). (6.4)

By the definition of Uk+1 in Step 3, we have

Gk+1(λk+1,μk+1) = Gk(λk+1,μk+1). (6.5)

It follows that

Hk(λk,μk) ≥ Gk+1(λk+1,μk+1) = Hk+1(λk+1,μk+1) ≥ F(λk+1,μk+1), (6.6)

where the first inequality is (6.4) combined with (6.5), the next equality is (6.2), and the final
inequality is (6.1). Since the sets Uk can only grow in Step 3, we eventually reach a set Uk in
Step 2 with μki (tk) ≥ xi for all i ∈ Uc

k . In this case Hk = Gk on the line segment connecting
(λk,μk) to (λk+1,μk+1), and the algorithm advances to Step 4. We call this iterate where
the algorithm advances to Step 4 a terminating iterate.

When k = 0, we have H0(λ0,μ0) = F(λ0,μ0) in Step 1 by the definition of U0. Similarly,
at any iteration k that follows a terminating iterate, we have Hk(λk,μk) = F(λk,μk) in Step 1
by the definition of Uk+1 in Step 4. When the algorithm performs Step 1, Step 2, Step 3 and
then branches back to Step 1, (6.6) yields Hk+1(λk+1,μk+1) ≤ Hk(λk,μk). Hence, the
identity Hk(λk,μk) = F(λk,μk) at any iteration that follows a terminating iterate and the
inequality (6.6) together imply that the value of F(λk+1,μk+1) when the algorithm leaves
Step 4 is greater than or equal to its value when it later returns to the start of Step 4.

In Step 5, either F(λk+1,μk+1) = F(λk,μk) and the algorithm stops or

F(λk+1,μk+1) < F(λk,μk).

If the latter holds and the algorithm does not stop, then before the start of Step 4, we have
Hk(λk,μk) ≥ F(λk,μk) by (6.1). Since F(λk+1,μk+1) < F(λk,μk) in Step 5, and since
Hk(λk,μk) = F(λk,μk) at the start of Step 1 in the next iteration, it follows from (6.6) that
there is strict decrease in Hk(λk,μk) when the algorithm does not stop in Step 5. Observe
that the terminating iterate is a minimizer of Hk for some k, and this minimizer only depends
on the set Uk . Since there is strict decrease in Hk when the algorithm does not stop in Step 5,
the set Uk associated with a terminating iterate in Step 3 cannot repeat. Since there are a finite
number of distinct Uk sets, we must eventually have F(λk+1,μk+1) = F(λk,μk) and the
algorithm stops. In this case, the current iterate achieves the minimum in Step 4 in each of the
coordinate directions, and Hk(λk,μk) = F(λk,μk). Since (λk,μk) minimizes the smooth
function Hk , it follows that ∇λHk(λk,μk) = 0. Since the λ terms in F and Hk coincide, we
conclude that ∇λF(λk,μk) = 0. When the algorithm stops, the minimum of F(λk,μ) in
each of the coordinate direction μ j is attained at μk j ; consequently, by the Differentiability
Property, the gradient of F vanishes at (λk,μk), and the current iterate is a stationary point
of F . We summarize these observations as follows:

Theorem 6.1 From any starting point (λ0,μ0), the active set algorithm for (1.5) reaches a
stationary point in a finite number of iterations.

Note that the E0 estimator is the solution of a convex quadratic programming problem
(1.4) for which a global minimizer is easily evaluated. Consequently, the global minimizer
associated with the E0 error bound could be a good starting guess for the nonsmooth problem
(1.5). Although the minimizer (λ∗,μ∗) of F computed by the active set algorithm is only
claimed to be a stationary point in Theorem 6.1, our analysis established the following
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stronger property: λ∗ minimizes F(λ,μ∗) over all λ, and componentwise, F(λ∗,μ) achieves
its minimum over μ j at μ∗

j for each j .

7 Numerical examples

We first wish to show that the strict complementary slackness assumption in Theorem 4.1 is
needed to ensure an error bound of the form (1.3) for E0. Let us consider the optimization
problem

min

{
1

2
x2 : x ≥ 0

}
. (7.1)

The optimal solution is x∗ = 0 and the Lagrange multiplier associated with the constraint
is μ = 0. Hence, strict complementary slackness does not hold. The optimization problem
(1.4) that we solve to evaluate E0(x) is

min{(x − μ)2 + (μx)2 : μ ≥ 0}. (7.2)

The solution isμ = x/(1+ x2). Evaluating the objective in (7.2) at this value ofμ and taking
the square root gives

E0(x) = x2

√
1 + x2

.

For any given x > 0, we have |x − x∗| = x since x∗ = 0. Hence, we have

|x − x∗|
E0(x)

=
√

1 + x2

x
,

which approaches ∞ as x approaches 0. Hence, we cannot bound |x − x∗| by cE0(x) for a
fixed choice of c as x tends to 0. On the other hand, we do have |x − x∗| ≤ c

√
E0(x), in

compliance with Theorem 4.2.
To evaluate E1, we solve the problem

min
{
(x − μ)2 + min{x, μ}2} .

The solution is μ = x/2 if x ≥ 0 and μ = x if x < 0. It follows that

E1(x) =
{

x/
√

2 if x ≥ 0,
|x | if x < 0.

Hence, |x − x∗| ≤ √
2E1(x), and E1 satisfies (1.3), while E0 does not.

Next, we consider a variation of Problem 5 in Appendix A of Himmelblau [8]:

min{−(x1(x1 + x2 + x3)+ 2x2
2 + x2

3 ) : ‖x‖2 ≤ 5, ax ≤ 56, x ≥ 0},
where a = [8 14 7]. The optimal solution is

x∗ = [3.512121395195 0.2169879372766 3.552171102367]T.
The only difference between our problem and Problem 5 is that we changed the equalities

‖x‖2 = 5 and ax = 56 in Himmelblau [8] to inequalities. The solution is unchanged since the
inequalities are both active at the optimal solution. Strict complementary slackness and the
second-order sufficient optimality conditions hold for this problem. Hence, both Theorems 3.1
and 4.1 are applicable. We introduce slack variables to transform the problem into the form
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Fig. 3 A plot of log10(E0(x))
and log10(E1(x)) versus
log10(‖x − x∗‖)
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(1.1), and we consider a sequence of spheres centered at x∗ of radii shrinking to zero. A
randomly generated point on a sphere is accepted if it satisfies the constraints; otherwise,
we continue to randomly generate points until the constraints are satisfied. In Fig. 3 we plot
E0(x) and E1(x) as a function of the true error. The fact that the E0 plot is very close to the
true error indicates that for this problem, the constant c in (1.3) is around 1 for E0, while the
vertical shift in the E1 plot indicates that the corresponding c in (1.3) is around 0.1.

8 Conclusions

We have developed two different error estimators for a general nonlinear programming prob-
lem. The E0 estimator, which is based on the solution of a constrained, convex quadratic
program, satisfies the error bound condition (1.3) when strict complementary slackness and
the second-order sufficient optimality conditions hold, as shown in Theorem 4.1. In general,
when strict complementary slackness is violated, E0 yields a bound for the square of the error
as shown in Theorem 4.2. The E1 estimator, which is based on the solution of an uncon-
strained nonconvex, nonsmooth optimization problem, satisfies the error bound condition
(1.3) even when strict complementary slackness does not hold, as shown in Theorem 3.1.
These theorems not only provide a bound for the error in a solution of (1.1), but also a bound
for the distance to the set of KKT multipliers. An active set algorithm was developed for
solving the nonsmooth optimization problem associated with the E1 error estimator. Each
iteration of the algorithm required the solution of a symmetric, positive definite linear system
and a line search using a nonsmooth function. Convergence to a stationary point in a finite
number of iterations was established. An example was presented to show that when strict
complementary slackness is violated, the E0 estimator generally does not satisfy the error
bound condition (1.3).
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