Appendix

This appendix provides additional details associated with the proofs of Lemma
5.2, Lemma 5.3, and Lemma 7.1 in the paper “The Fuler approximation in state
constrained optimal control.”

Proof of Lemma 5.2. For completeness, we provide here the analysis associated
with the term v;11(Vg(z;)") in the second component of T. Let us apply (44) with
the following identifications: Let y(¢) denote the continuous, piecewise linear function
of t for which y(¢;) = @; for each ¢ and set ((t) = Vg(y(t)) to obtain

Vit1 tiv1 (
— t))dt. 1
Sy s et (109)

Vz’+1(v£]($i)/) =

Based on this identity, the i-th element of the associated terms in the second compo-

nent of 7' — 7% can be expressed:

L oftivr d () 1 2 2
A E(Vng(y (1)) — v Valy (1))

0l (1) = () Vgl ()] = (v — V) Vala(0) ), (110)

where y! and y? are the continuous, piecewise linear interpolants associated with z!
and 22 respectively. Here a product of the form y'V2g(z(t)) stands for a matrix
whose j-th row is y'V2g;(x(t)). For any given n > 0, we now derive a series of
estimates, which when combined, show that there exists r > 0 such that the sequence
whose i-th element is given by (110), has L? norm bounded by n|[w; — wsl|x for all
wy, we € B, (w*).

To start, we decompose (110) into the sum of the following three terms:

% tjm % ((Vilﬂ - Vz'2+1)[v9(y1(t)) - Vg(l'*(t))]) dt.

(Term 2), & [ 4 (040 = 20 Vgl ()0 = ) .

(Term 1), :

(Term 3),: 1 [ % (Vo' (1) — Vol (1)
(' (1) = (1) TVg(a*(1))]) dt.

Each of these terms is now analyzed.
Term 1. Taylor’s theorem with integral remainder implies that

Vaily' (1)) = Vo a(0) = (' (1) = 2" (0)7 [ V(1 = )y (1) + s27(0)) ds. (1)
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Differentiating with respect to ¢ and utilizing (33) gives

(Voo (1)~ Vsl (1))

It follows that

<cllyt — 2 |lwre < ||zt — 2F||wre +R). (112)

| Term 1|22 < e(||z" — 2*||wr. + h)||" — 22| 2.
Hence, by (43) there exists h and r > 0 such that
[Term 1]l < nll! — 2]l

for all h < h and = € Lipé with ||a — a*||g < r.
Term 2. Letting G,(¢) denote the Hessian matrix V2g;(z*(?)), ||G||w1. is finite
by Smoothness, while (32) implies that

ly' =y g < lat — 27| (113)
Therefore, by (40) and for r > 0 sufficiently small,
[Term 2[|2 < cllp® — v |2 — 2*|lw < nlla’ = 2*||
for all v* € Lip; with | — |2 < 7.

Term 3. Let (; be defined by

Gi = [ Vai((1 = )5 (0) + sy (1) s

This is the same Hessian matrix appearing in (111) except that «* has been replaced
by y*. With this notation, Term 3 can be written as

1

<
h >

/t:‘z‘+1 % (V22+1(y1(t) — () (G(t) — G(t))) dt

(w2 DIG = Gllwr
= 7 Iyt = 2 (g - (114)

For any n > 0, the continuity of the third derivatives of ¢ given in Smoothness
implies that )
G~ Gl < (115)

when ||a! — 2|y, + |22 — 2||1. is sufficiently small. Hence, by (43), there exists
r > 0 such that (115) holds for all 2! and 22 € Lipé with ||a! —a*|| g1+ ||z — 2|z < 7.
Utilizing (115) in (114), we see that

en|vl|
|(Term 3),| < 7 1y" = G2 (i)
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Hence, taking n small enough and applying (41) and (113), we conclude that for some
r >0,
[Term 3]s < enll?o g — o2l < nlle* — o2l

for all % ¢ Lip; and xl, 2% e Lipé with
V% = vz + [t = 2l + [|2® = 27|l <

In each of the three terms,  can be made arbitrarily small by shrinking h and r.
Hence, terms 1, 2, and 3 are all consistent with (51) when A and r are sufficiently
small. a

Proof of Lemma 5.3. For completeness, we provide here the analysis associated
with the term v;11(Vg(2;)") in the second component of T. Again, let ¢(¢) denotes
the quadratic on [t;_1,t;41] for which ¢(¢;) = x; for j=i—1, 4, and 1+ 1, and let v/(-)
denote the linear function for which v(#;41) = v;41 and v(t;42) = viys. Observe that

(vipaVg(a)) =

= o [ (e Tgtatt 1)~ Vota(o)]) d
= [ SO0~ Vatao)] ) de. (116)

where the 4 subscript denotes translation by h; for example, ¢4 (t) = g(t + h). The
terms in

(T = L) (w) =77)" = ((T = L)(w) = (T = L)(w"))’

corresponding to the term (116) are obtained by subtracting from it the linearization
around z* and v* to obtain the following expression:

%/f;m %(m [Volar) — Vgla)] — vi[Vg(al) — Vg(a™)]

—Villas = 307Gy — (=) G = (v —v3)[Ks — K] )t (117)

The first line of the expression (117) is simply (116) minus the same expression
with (gq,v) replaced by (x*,v*). The second line is the linearization, with respect
to first the state variable, and then the multiplier. As in Section 6, we derive a
series of inequalities which together show that for all = € Lipé and v € Lip; with
|e — «*||gr < r and ||y — v*||z2 < r, the expression (117) can be made arbitrarily
small by taking r sufficiently small.

To start, we decompose (117) into the sum of following three terms:
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(Term 1), : %/t:‘m %((14 —v1)[Vgles) — Valq) — (K4 — K)]) dt.

(Term 2),: o [ ((Val4s) — V(o) - 7 g(e2) - V(")
—iillas —23) Gy — (= )T C)

(Term 3),5 o [ (v11¥300) = Vila)] - 5V9(5) = V()

d
—villan = 23) Gy — (= )G dh

Each of these terms is now analyzed.
Term 1. First, note that

[Vg(as) — Vylq) — (Kp — KB = (g4 —27) Gy — (¢ — &) G(1)]
= [ Silals) — )T ds
< chllq =2 |lwres (it tig2)) (118)

for all ¢ € [t;,t;11], where

_ 1
Gy = [ FRg,((1 = m)qlt) + ra*(1))dr. (119)
Since § = z/ and x € Lipé, it follows that ¢ is Lipschitz continuous with Lipschitz

constant bounded by &. By (47), ¢ is Lipschitz continuous with Lipschitz constant at
most v + ||2*||w1.~. Hence, we have

<ch and |K(t+h)— K(1)] < ch, (120)

@ (Volalt + 1) ~ Vola(1))

for all t € [t;, tiy1]. Combining (118) and (120) gives
(Term 1);[ < e(llg = @™ [lwree + [l = v7[[z)

< clh+ [z = 2Tflwree + v = 7L ), (121)

where the last inequality is based on (46). By (41) and (43), the right hand side of
(121) can be made arbitrarily small, for all « € Lipé and v € Lip; with ||z —2*||;n <7
and || — v*||z2 < r, by taking r and h sufficiently small.

Term 2. Since

v(D)(Valq(t) = Vgla™ (1)) = 7 (1)[(g(t) — 2*(1)) G(1)],
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where (7 is defined in (119). Term 2 takes the following form

I)*

I (-
/t:fm /t+h d [ *(3))T(G(s) — G(S))]dsdt.

Due to (47) and Smoothness, for any given v > 0, there exists » > 0 such that
IG) = Gillp= <~ and  ||Gj = Gl < ¢llg — 27|z
for all z € Lipé with ||@ — 2*||g < r. It follows that
(Term 2),] < ellg — "l + ellg — " llwnoe),

which by (46) can be made arbitrarily small for all € Lipé with || — 2|z <r, by
taking r sufficiently small.
Term 3. We decompose Term 3 further into two terms, the first being

I;L__*;/tHl <(q+ _ xj—)TG-I— —(q— :L’*)TG)dt
h2 /tl+1 /t-l—h d x*(s))TG(s)] dsdt.

By Smoothness, (i is Lipschitz continuous, so we have

(g — &) Gllwre < ellg — 2™ [lwre,

which implies that

s /t:‘z+1 /t+h d [ *(S))TG(S)] dsdt

By (47), this can be made arbitrarily small, for all = € Lipé with ||a — a*||gn < r, by
taking & and r > 0 sufficiently small.
The second part of Term 3 is

< cllg — 2||wrs. (122)

’;L_-*;/%"“ (qI(Gl —Gy)— ¢ (G - G)) dt
T h? /;M /Hh : ( G (s) - G(S)]) dsdt, (123)

where G]I(S) = V?%¢,(q(s)). By Smoothness, for any given v > 0, we can choose r > 0
such that

1V20,(q) — V2 (e |lwie <7, =12,k
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forall z € Lipé with ||[x —a*|| g1 < r. Combining this with (47), the bound |G| < ¢, and
(122)—(123), we conclude that Term 3 can be made arbitrarily small, for all = € Lipé
with ||a — 2*||g: <r, by taking r > 0 sufficiently small. m|

Proof of Lemma 7.1. In [I8, Lem. 3.5] we show that there exists 3 > 0,
subsets Jy, Jy, -+, J; of {1,2,--- k}, where J; = (), corresponding points 0 = 71 <
Ty < -+ < 741 = 1, and a constant 0 < n < ming (7,41 — 7,) such that whenever
t €[, —n, 741 + 1] N[0, 1] for some 1 < ¢ <[, we have Z(t) C .J, and

| > vi(B()B(1))] = Blug,]

J€Jy
for every choice of v. Since K; = K;y; + O(h), let us choose h < 1 small enough that

| Y v (Kip Bi);| > 58|vy,]

J€dq

for each ¢; € [r, — 1,741 + 1] N[0,1] and h < h, and for every choice of v. Our
approach is to enforce the following equations

(K;z;+b;); =0 foreach je J,\ Jyo1, i €1y + 0, Tp11l, (124)
(Kix;+b;); =0 foreach j &€ J,NJ,m1, ti €1y, Tys1)s (125)
q=2,3, -+, I, where L(z,u) +a = 0, zog = 2°. Since .J; is empty, (68) holds

trivially on [11,72] = [0,72]. Suppose that ¢ > 1, and let us consider (68) on the
interval [7,, 7,11]. Since Z(t;) C J, for t; € [1,, 7y+1], we conclude that any j € Z(t;)
is contained in either J, N J,—y or J, \ J,_1. If j € J, N J,_q, then by (125), (68)
holds. If j € J, \ J,—1, then by the construction in Lemma 9.1, Z(¢;) C J,—; for all
t; € [y, 7y +n]. Hence,if j & J,_y then 5 € Z(t;) C J,—1, and (68) holds on [r,, 7, + 7]
since 7 € Z(t;). On the other hand, if j € J, \ J,_1 and t; € [1, + 1, T,41], then (68)
holds by (124).
Observe that if
(Kixi+0i)5, =0 for @=p, (126)

where p is the smallest integer ¢ such that ¢; € [7,, 7,41], and if
(Kix; 4 0);, = 0 for all 1; € [, 7y31], (127)

then (K;x; + 04)5, = 0 for all ¢; € [r;,7y11]. Carrying out the differencing in (127)
and substituting for x,41 using the state equation (56), we obtain a linear equation
for ;. By Lemma 9.1, this equation has a solution, and the minimum norm solution
can be written:

UZ(J}Z) = ‘/Z'[—O'Z/» + Kﬂ_lai — [(Z(l'i — [X7i+1Ai$i]Jq, (128)
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where

Vi = (Kip1 Bi)J [(Kiga Bi) g, (Ko Bi) )7
(Recall that the .J, subscript attached to a matrix denotes the submatrix consisting
of those rows associated with indices in J,.) In the special case where .J, is empty,
we simply set w;(x) = 0.

Using these observations, we now explain how to construct x and u in order to
satisfy (124) and (125). On the initial interval, u; = 0 for each ¢; € [0, 73], and a; is
obtained from the state equation (56). Assuming the components of & and u have
been determined on the interval [0, 7,], their values on [7,,7,4+1] are obtained in the
following way: The control is given in feedback form by (128), where for 5 € J;NJ;_q,

(0i)j = (be); for ti € [rg, Typa]- (129)

For j € J,\ Jy_1, (03); = (b;); for t; € [7,+ 1, Ty41], while o; is linear in ¢ on [r,, 7, + 7]
with

(0;); = = (Kz;); for i=p and (0;); = (b;); for i =p, (130)

where p is the largest integer 7 such that ¢; € [r,, 7, +n]. With this choice for o, (126)

is satisfied by (130) for j € J, \ J,_1 and by induction for j € J, N J,_;. With 2 and

u given by (56) and (128) respectively, we have (K;x; + 0;)y, = 0 for all ¢; € [7;, 7,41]
since (127) is satisfied. Also, by the choice of ¢ in (129),

([(iwi + Ui)j = ([(iwi + bz)] =0

for each j € J,NJ,_1 and t; € [7,, Ty11], and for each j € J,\J,—1 and t; € [1,4+1, Tyt1]-
Hence, (124) and (125) hold, which yields (68).

By the equations (56) for the state, (128) for the control, and (129)—(130) for o,
(x,u) is an affine function of (a,b). Moreover, the change (dx,du) in the state and
control associated with the change (da,db) in the parameters satisfies:

16| 0,7y + [10ul[r2(po,r)y < ellldallr2qo,r) + 1667 22(0,7)) (131)

for each ¢, where o is specified in (129)-(130). To complete the proof, we need to
relate the o term of (131) to the b term of (69). Note that (do;); = (8b;); if j € J,
and t; € [1,+n,7y41] orif y € J,NJ,—1 and t; € [1,, 7, +n]. Hence, for this j, we have

|(60);| = 1(63)1- (132)
Assuming h is small enough that 2h < n/2, we have for j € J,\J,_1 and t; € [7,, 7,+7],

Gof,l < (1(8bs)s] + ()8, 1) (n — 2h)
< (2/m)(1(8bs)s] + 1(K,)02,])
< cll3b]lz= + 15a,]) < e(l3b]l s + 15, ).
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Combining this with (132), we have, for each ¢; € [7,, T441],
|87 < c(l|00]|rr + || + [6B]). (133)

We obtain (69) by an inductive argument. Initially, on the interval [, 73] = [0, 72],
p =0 and dxg = 0 due to the initial condition. Hence, (131) and (133) give us

16|11 (f0,70) + 10Ul L2 0,71y < cllldall 20,71y + 1160l 1 (0,70 ) -
Proceeding by induction, suppose that
10| 2o, + [10ull 20,0y < ellldallLzqoeg)) + 1000l 2 (o,e,0))

and let p be the smallest integer i such that ¢; € [7,, 7,41]. Since |62, <|[62|[F1([0.1,),
1t follows that
|62y < cl|allLaqo,eg) + 16b][ 11 (0,0))-

Combining this with (133) and utilizing (131) with ¢ replaced by ¢+ 1, the induction
is complete. m|
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