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Abstract An exact algorithm is presented for solving edge weighted graph par-
titioning problems. The algorithm is based on a branch and bound method applied
to a continuous quadratic programming formulation of the problem. Lower bounds
are obtained by decomposing the objective function into convex and concave parts
and replacing the concave part by an affine underestimate. It is shown that the best
affine underestimate can be expressed in terms of the center and the radius of the
smallest sphere containing the feasible set. The concave term is obtained either by a
constant diagonal shift associated with the smallest eigenvalue of the objective func-
tion Hessian, or by a diagonal shift obtained by solving a semidefinite programming
problem. Numerical results show that the proposed algorithm is competitive with
state-of-the-art graph partitioning codes.
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1 Introduction

Given a graph with edge weights, the graph partitioning problem is to partition the
vertices into two sets satisfying specified size constraints, while minimizing the sum
of the weights of the edges that connect the vertices in the two sets. Graph partitioning
problems arise in many areas including VLSI design, data mining, parallel comput-
ing, and sparse matrix factorizations [17,27,32,43]. The graph partitioning problem
is NP-hard [14].

There are two general classes of methods for the graph partitioning problem, exact
methods which compute the optimal partition, and heuristic methods which try to
quickly compute an approximate solution. Heuristic methods include spectral methods
[22], geometric methods [15], multilevel schemes [23], optimization-based methods
[11], and methods that employ randomization techniques such as genetic algorithms
[41]. Software which implements heuristic methods includes Metis [29–31], Chaco
[21], Party [37], PaToH [6], SCOTCH [36], Jostle [44], Zoltan [9], and HUND [16].

This paper develops an exact algorithm for the graph partitioning problem. In ear-
lier work, Brunetta et al. [5] propose a branch-and-cut scheme based on a linear
programming relaxation and subsequent cuts based on separation techniques. A col-
umn generation approach is developed by Johnson, Mehrotra, and Nemhauser [26],
while Mitchell [33] develops a polyhedral approach. Karisch, Rendl, and Clausen [28]
develop a branch-and-bound method utilizing a semidefinite programming relaxation
to obtain a lower bound. Sensen [39] develops a branch-and-bound method based on
a lower bound obtained by solving a multicommodity flow problem. Armbruster et
al. [1,2] develop methods based on linear and semidefinite relaxations combined with
separation routines for valid inequalities associated with the bisection cut polytope.

In this paper, we develop a branch-and-bound algorithm based on a quadratic pro-
gramming (QP) formulation of the graph partitioning problem. The objective function
of the QP is expressed as the sum of a convex and a concave function. We consider
two different techniques for making this decomposition, one based on eigenvalues
and the other based on semidefinite programming. In each case, we give an affine
underestimate for the concave function, which leads to a tractable lower bound in the
branch and bound algorithm.

The paper is organized as follows. In Sect. 2 we review the continuous quadratic
programming formulation of the graph partitioning problem developed in [17] and
we explain how to associate a solution of the continuous problem with the solu-
tion to the discrete problem. In Sect. 3 we discuss approaches for decomposing the
objective function for the QP into the sum of convex and a concave functions, and
in each case, we show how to generate an affine lower bound for the concave part.
Section 4 gives the branch-and-bound algorithm, while Sect. 5 provides necessary and
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An exact algorithm for graph partitioning 533

sufficient conditions for a local minimizer. Section 6 compares the performance of the
new branch-and-bound algorithm to earlier results given in [1,28,38], and [39].

Notation Throughout the paper, ‖ · ‖ denotes the Euclidian norm. 1 is the vector
whose entries are all 1. The dimension will be clear from context. If A ∈ R

n×n, A � 0
means that A is positive semidefinite. We let ei denote the i-th column of the identity
matrix; again, the dimension will be clear from context. If S is a set, then |S| is the
number of elements in S. The gradient ∇ f (x) is a row vector.

2 Continuous quadratic programming formulation

Let G be a graph with n vertices

V = {1, 2, . . . , n},

and let ai j be a weight associated with the edge connecting vertices i and j . When
there is no edge between i and j , we set ai j = 0. For each i and j , we assume that
aii = 0 and ai j = a ji ; in other words, we consider an undirected graph without self
loops (a simple, undirected graph). The sign of the weights is not restricted, and in
fact, ai j could be negative, as it would be in the max-cut problem. Given integers l
and u such that 0 ≤ l ≤ u ≤ n, we wish to partition the vertices into two disjoint sets,
with between l and u vertices in one set, while minimizing the sum of the weights
associated with edges connecting vertices in different sets. The edges connecting the
two sets in the partition are referred to as the cut edges, and the optimal partition min-
imizes the sum of the weights of the cut edges. Hence, the graph partitioning problem
is also called the min-cut problem.

In [17] we show that for a suitable choice of the diagonal matrix D, the graph
partitioning problem is equivalent to the following continuous quadratic program-
ming problem:

minimize f (x) := (1 − x)T(A + D)x

subject to 0 ≤ x ≤ 1, l ≤ 1Tx ≤ u,
(2.1)

where A is the matrix with elements ai j . Suppose x is binary and let us define the sets

V0 = {i : xi = 0} and V1 = {i : xi = 1}. (2.2)

It can be checked that f (x) is the sum of the weights of the cut edges associated with
the partition (2.2). Hence, if we add the restriction that x is binary, then (2.1) is exactly
equivalent to finding the partition which minimizes the weight of the cut edges. Note,
though, that there are no binary constraints in (2.1). The equivalence between (2.1)
and the graph partitioning problem is as follows (see [17, Thm. 2.1]):

Theorem 2.1 If the diagonal matrix D is chosen so that

dii + d j j ≥ 2ai j and dii ≥ 0 (2.3)
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534 W. W. Hager et al.

for each i and j , then (2.1) has a binary solution x and the partition given by (2.2) is
a min-cut.

The generalization of this result to multiset partitioning is given in [18]. The con-
dition (2.3) is satisfied, for example, by the choice

d j j = max {0, a1 j , a2 j , . . . , anj }

for each j . The proof of Theorem 2.1 was based on showing that any solution to (2.1)
could be transformed to a binary solution without changing the objective function
value. With a modification of this idea, any feasible point can be transformed to a
binary feasible point without increasing the objective function value. We now give a
constructive proof of this result, which is used when we solve (2.1).

Corollary 2.2 If x is feasible in (2.1) and the diagonal matrix D satisfies (2.3), then
there exists a binary y with f (y) ≤ f (x) and yi = xi whenever xi is binary.

Proof We first show how to find z with the property that z is feasible in (2.1), f (z) ≤
f (x), 1Tz is integer, and the only components of z and x which differ are the fractional
components of x. If 1Tx = u or 1Tx = l, then we are done since l and u are integers;
hence, we assume that l < 1Tx < u. If all components of x are binary, then we are
done, so suppose that there exists a nonbinary component xi . Since aii = 0, a Taylor
expansion of f gives

f (x + αei ) = f (x) + α∇ f (x)i − α2dii ,

where ei is the i-th column of the identity matrix. The quadratic term in the expansion is
nonpositive since dii ≥ 0. If the first derivative term is negative, then increase α above
0 until either xi +α becomes 1 or 1Tx +α is an integer. Since the first derivative term
is negative and α > 0, f (x+αei ) < f (x). If 1Tx+α becomes an integer, then we are
done. If xi + α becomes 1, then we reach a point x1 with one more binary component
and with an objective function value no larger than f (x). If the first derivative term is
nonnegative, then decrease α below 0 until either xi + α becomes 0 or 1Tx + α is an
integer. Since the first derivative term is nonnegative and α < 0, f (x + αei ) ≤ f (x).
If 1Tx + α becomes an integer, then we are done. If xi + α becomes 0, then we reach
a point x1 with one more binary component and with a smaller value for the cost
function. In this latter case, we choose another nonbinary component of x1 and repeat
the process. Hence, there is no loss of generality in assuming that 1Tx is an integer.

Suppose that x is not binary. Since 1Tx is an integer, x must have at least two
nonbinary components, say xi and x j . Again, expanding f in a Taylor series gives

f (x + α(ei − e j )) = f (x) + α(∇ f (x)i − ∇ f (x) j ) + α2(2ai j − dii − d j j ).

By (2.3), the quadratic term is nonpositive for any choice ofα. If the first derivative term
is negative, then we increase α above 0 until either xi +α reaches 1 or x j −α reach 0.
Since the first derivative term is negative and α > 0, we have f (x+α(ei −e j )) < f (x).
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An exact algorithm for graph partitioning 535

If the first derivative term is nonnegative, then we decrease α below 0 until either xi +α

reaches 0 or x j − α reach 1. Since the first derivative term is nonnegative and α < 0,
it follows that f (x +α(ei − e j )) ≤ f (x). In either case, the value of the cost function
does not increase, and we reach a feasible point x1 with 1Tx1 integer and with at
least one more binary component. If x1 is not binary, then x1 must have at least two
nonbinary components; hence, the adjustment process can be continued until all the
components of x are binary. These adjustments to x do not increase the value of the
cost function and we only alter the fractional components of x. This completes the
proof. 	


3 Convex lower bounds for the objective function

We compute an exact solution to the continuous formulation (2.1) of graph partition-
ing problem using a branch and bound algorithm. The bounding process requires a
lower bound for the objective function when restricted to the intersection of a box and
two half spaces. This lower bound is obtained by writing the objective function as the
sum of a convex and a concave function and by replacing the concave part by the best
affine underestimate. Two different strategies are given for decomposing the objective
function.

3.1 Lower bound based on minimum eigenvalue

Let us decompose the objective function f (x) = (1 − x)T(A + D)x in the following
way:

f (x) = ( f (x) + σ‖x‖2) − σ‖x‖2,

where σ is the maximum of 0 and the largest eigenvalue of A + D. This represents a
DC (difference convex) decomposition (see [24]) since f (x) + σ‖x‖2 and σ‖x‖2 are
both convex. The concave term −‖x‖2 is underestimated by an affine function � to
obtain a convex underestimate fL of f given by

fL(x) =
(

f (x) + σ‖x‖2
)

+ σ�(x). (3.1)

We now consider the problem of finding the best affine underestimate � for the con-
cave function −‖x‖2 over a given compact, convex set denoted C. The set of affine
underestimators for −‖x‖2 is given by

S1 = {� : R
n → R such that � is affine and − ‖x‖2 ≥ �(x) for all x ∈ C}.

The best affine underestimate is a solution of the problem

min
�∈S1

max
x∈C

−
(
‖x‖2 + �(x)

)
. (3.2)
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536 W. W. Hager et al.

The following result generalizes Theorem 3.1 in [19] where we determine the best
affine underestimate for −‖x‖2 over an ellipsoid.

Theorem 3.1 Let C ⊂ R
n be a compact, convex set and let c be the center and r be

the radius of the smallest sphere containing C. This smallest sphere is unique and a
solution of (3.2) is

�∗(x) = −2cTx + ‖c‖2 − r2.

Furthermore,

min
�∈S1

max
x∈C

−
(
‖x‖2 + �∗(x)

)
= r2.

Proof To begin, we will show that the minimization in (3.2) can be restricted to a
compact set. Clearly, when carrying out the minimization in (3.2), we should restrict
our attention to those � which touch the function h(x) := −‖x‖2 at some point in C.
Let y ∈ C denote the point of contact. Since h(x) ≥ �(x) and h(y) = �(y), a lower
bound for the error h(x) − �(x) over x ∈ C is

h(x) − �(x) ≥ |�(x) − �(y)| − |h(x) − h(y)|.

If M is the difference between the maximum and minimum value of h over C, then
we have

h(x) − �(x) ≥ |�(x) − �(y)| − M. (3.3)

An upper bound for the minimum in (3.2) is obtained by the linear function �0
which is constant on C, with value equal to the minimum of h(x) over x ∈ C. If w is a
point where h attains its minimum over C, then we have

max
x∈C

h(x) − �0(x) = max
x∈C

h(x) − h(w) = M.

Let us restrict our attention to the linear functions � which achieve an objective func-
tion value in (3.2) which is at least as small as that of �0. For these � and for x ∈ C,
we have

h(x) − �(x) ≤ max
x∈C

h(x) − �(x) ≤ max
x∈C

h(x) − �0(x) = M. (3.4)

Combining (3.3) and (3.4) gives

|�(x) − �(y)| ≤ 2M. (3.5)

Thus, when we carry out the minimization in (3.2), we should restrict our attention to
linear functions which touch h at some point y ∈ C and with the change in � across

123

Author's personal copy



An exact algorithm for graph partitioning 537

C satisfying the bound (3.5) for all x ∈ C. This tells us that the minimization in (3.2)
can be restricted to a compact set, and that a minimizer must exist.

Suppose that � attains the minimum in (3.2). Let z be a point in C where h(x)−�(x)

achieves its maximum. A Taylor expansion around x = z gives

h(x) − �(x) = h(z) − �(z) + (∇h(z) − ∇�)(x − z) − ‖x − z‖2.

Since � ∈ S1, h(x) − �(x) ≥ 0 for all x ∈ C. It follows that

h(z) − �(z) ≥ −(∇h(z) − ∇�)(x − z) + ‖x − z‖2. (3.6)

Since C is convex, the first-order optimality conditions for z give

(∇h(z) − ∇�)(x − z) ≤ 0

for all x ∈ C. It follows from (3.6) that

h(z) − �(z) ≥ ‖x − z‖2 (3.7)

for all x ∈ C. There exists x ∈ C such that ‖x − z‖ ≥ r or else z would be the center
of a smaller sphere containing C. Hence, (3.7) implies that

h(z) − �(z) ≥ r2.

It follows that

max
x∈C

h(x) − �(x) ≥ h(z) − �(z) ≥ r2. (3.8)

We now observe that for the specific linear function �∗ given in the statement of
the theorem, (3.8) becomes an equality, which implies the optimality of �∗ in (3.2).
Expand h in a Taylor series around x = c to obtain

h(x) = −‖c‖2 − 2cT(x − c) − ‖x − c‖2

= −2cTx + ‖c‖2 − ‖x − c‖2.

Subtract �∗(x) = −2cTx + ‖c‖2 − r2 from both sides to obtain

h(x) − �∗(x) = r2 − ‖x − c‖2. (3.9)

If c ∈ C, then the maximum in (3.9) over x ∈ C is attained by x = c for which

h(c) − �∗(c) = r2.

Consequently, (3.8) becomes an equality for � = �∗, which implies the optimality of
�∗ in (3.2).
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538 W. W. Hager et al.

Fig. 1 Suppose c �∈ C

We can show that c ∈ C as follows: Suppose c �∈ C. Since C is compact and convex,
there exists a hyperplane H strictly separating c and C—see Fig. 1 If c′ is the projection
of c onto H, then

‖x − c′‖ < ‖x − c‖ for all x ∈ C. (3.10)

Let x′ ∈ C be the point which is farthest from c′ and let x ∈ C be the point farthest from
c. Hence, ‖x − c‖ = r . By (3.10), we have ‖x′ − c′‖ < ‖x − c‖ = r ; it follows that
the sphere with center c′ and radius ‖x′ − c′‖ contains C and has radius smaller than
r . This contradicts the assumption that r was the sphere of smallest radius containing
C.

The uniqueness of the smallest sphere containing C is as follows: Suppose that there
exist two different smallest spheres S1 and S2 containing C. Let S3 be the smallest
sphere containing S1 ∩ S2. Since the diameter of the intersection is strictly less than
the diameter of S1 or S2, we contradict the assumption that S1 and S2 were spheres
of smallest radius containing C. 	

Remark 1 Although the smallest sphere containing C in Theorem 3.1 is unique, the
best linear underestimator of h(x) = −‖x‖2 is not unique. For example, suppose a
and b ∈ R

n and C is the line segment

C = {x ∈ R
n : x = αa + (1 − α)b, α ∈ [0, 1]}.

Along this line segment, h is a concave quadratic in one variable. The best affine
underestimate along the line segment corresponds to the line connecting the ends of
the quadratic restricted to the line segment. Hence, in R

n+1, any hyperplane which
contains the points (h(a), a) and (h(b), b) leads to a best affine underestimate.

Remark 2 Let C be the box

B = {x ∈ R
n : p ≤ x ≤ q}.
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An exact algorithm for graph partitioning 539

The diameter of B, the distance between the points in B with greatest separation, is
‖p − q‖. Hence, the smallest sphere containing B has radius at least ‖p − q‖/2. If
x ∈ B, then

|xi − (pi + qi )/2| ≤ (qi − pi )/2

for every i . Consequently, ‖x − (p + q)/2‖ ≤ ‖p − q‖/2 and the sphere with center
c = (p+q)/2 and radius r = ‖p−q‖/2 contains B. It follows that this is the smallest
sphere containing B since any other sphere must have radius at least ‖p − q‖/2.

Remark 3 Finding the smallest sphere containing C may not be easy. However, the
center and radius of any sphere containing C yields an affine underestimate for ‖x‖2

over C. That is, if S is a sphere with C ⊂ S, then the best affine underestimate for
−‖x‖2 over S is also an affine underestimate for −‖x‖2 over C.

3.2 Lower bound based on semidefinite programming

A different DC decomposition of f (x) = (1 − x)T(A + D)x is the following:

f (x) = ( f (x) + xT�x) − xT�x,

where � is a diagonal matrix with i-th diagonal element λi ≥ 0. We would like to make
the second term xT�x as small as possible while keeping the first term f (x) + xT�x
convex. This suggests the following semidefinite programming problem

minimize
n∑

i=1
λi

subject to � − (A + D) � 0, � � 0,

(3.11)

where λ is the diagonal of �. If the diagonal of A+D is nonnegative, then the inequality
� � 0 can be dropped since it is implied by the inequality � − (A + D) � 0.

As before, we seek the best linear underestimate of the concave function −xT�x
over a compact, convex set C. If any of the λi vanish, then reorder the components of
x so that x = (y, z) where z corresponds to the components of λi that vanish. Let �+
be the principal submatrix of � corresponding to the positive diagonal elements, and
define the set

C+ = {y : (y, z) ∈ C for some z}.

The problem of finding the best linear underestimate for −xT�x over C is essentially
equivalent to finding the best linear underestimate for −yT�+y over the C+. Hence,
there is no loss of generality in assuming that the diagonal of � is strictly positive. As
a consequence of Theorem 3.1, we have
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Corollary 3.2 Suppose the diagonal of � is strictly positive and let c be the center
and r the radius of the unique smallest sphere containing the set

�1/2C := {�1/2x : x ∈ C}.

The best linear underestimate of −xT�x over the compact, convex set C is

�∗(x) = −2cT�1/2x + ‖c‖2 − r2.

Furthermore,

min
�∈S2

max
x∈C

−
(

xT�x + �∗(x)
)

= r2,

where

S2 = {� : R
n → R such that � is affine and − xT�x ≥ �(x) for all x ∈ C}.

Proof With the change of variables y = �1/2x, an affine function in x is transformed
to an affine function in y and conversely, an affine function in y is transformed to an
affine function in x. Hence, the problem of finding the best affine underestimate for
−xT�x over C is equivalent to the problem of finding the best affine underestimate
for −‖y‖2 over �1/2C. Apply Theorem 3.1 to the transformed problem in y, and then
transform back to x. 	

Remark 4 If C is the box {x ∈ R

n : 0 ≤ x ≤ 1}, then �1/2C is also a box to which we
can apply the observation in Remark 2. In particular, we have

c = 1

2
�1/21 = 1

2
λ1/2 and r = ‖�1/21‖/2 = ‖λ1/2‖/2. (3.12)

Hence, ‖c‖2 − r2 = 0 and we have �∗(x) = −λTx.

Remark 5 Let us consider the set

C = {x ∈ R
n : 0 ≤ x ≤ 1, 1Tx = b},

where 0 < b < n. Determining the smallest sphere containing �1/2C may not be easy.
However, as indicated in Remark 3, any sphere containing �1/2C yields an underes-
timate for xT�x. Observe that

�1/2C = {y ∈ R
n : 0 ≤ y ≤ λ1/2, yTλ−1/2 = b}.

As observed in Remark 4, the center c and radius r of the smallest sphere S containing
the set

{y ∈ R
n : 0 ≤ y ≤ λ1/2}
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An exact algorithm for graph partitioning 541

are given in (3.12). The intersection of this sphere with the hyperplane yTλ−1/2 = b is a
lower dimensional sphere S ′ whose center c′ is the projection of c onto the hyperplane.
S ′ contains C since C is contained in both the original sphere S and the hyperplane.
With a little algebra, we obtain

c′ = 1

2
λ1/2 +

(
b − .5n∑n

i=1 λ−1
i

)
λ−1/2.

By the Pythagorean Theorem, the radius r ′ of the lower dimensional sphere S ′ is

r ′ =
√√√√.25

(
n∑

i=1

λi

)
− (b − .5n)2

∑n
i=1 λ−1

i

.

Hence, by Corollary 3.2, an underestimate of −xT�x is given by

�(x) = −λTx +
(

n − 2b∑n
i=1 λ−1

i

)
1Tx + ‖c′‖2 − (r ′)2.

Since 1Tx = b when x ∈ C, it can be shown, after some algebra, that �(x) = −λTx
(all the constants in the affine function cancel). Hence, the affine underestimate �∗
computed in Remark 4 for the unit box and the affine underestimate � computed in
this remark for the unit box intersect the hyperplane 1Tx = b are the same.

4 Branch and bound algorithm

Since the continuous quadratic program (2.1) has a binary solution, the branching
process in the branch and bound algorithm is based on setting variables to 0 or 1 and
reducing the problem dimension (we do not employ bisections of the feasible region
as in [19]). We begin by constructing a linear ordering of the vertices of the graph
according to an estimate for the difficulty in placing the vertex in the partition. For the
numerical experiments, the order was based on the total weight of the edges connect-
ing a vertex to the adjacent vertices. If two vertices v1 and v2 have weights w1 and w2
respectively, then v1 precedes v2 if w1 > w2.

Let v1, v2, . . . , vn denote the ordered vertices. Level i in the branch and bound tree
corresponds to setting the vi -th component of x to the values 0 or 1. Each leaf at level
i represents a specific selection of 0 and 1 values for the v1 through vi -th components
of x. Hence, a leaf at level i has a label of the form

τ = (b1, b2, . . . , bi ), b j = 0 or 1 for 1 ≤ j ≤ i. (4.1)

Corresponding to this leaf, the value of the v j -th component of x is b j for 1 ≤ j ≤ i .
Let Tk denote the branch and bound tree at iteration k and let E(Tk) denote the

leaves in the tree. Suppose τ ∈ E(Tk) lies at level i in Tk as in (4.1). Let xτ denote the
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( v )2

( v )3

( v )1Level 1

Level 2

Level 3

(0) (1)

(0,1)(0,0) (1,1)(1,0)

(1,0,1)(1,0,0)

Fig. 2 Branch and bound tree

vector gotten by removing components v j , 1 ≤ j ≤ i , from x. The v j -th component
of x has the pre-assigned binary value b j for 1 ≤ j ≤ i . After taking into account
these assigned binary values, the quadratic problem reduces to a lower dimensional
problem in the variable xτ of the form

minimize fτ (xτ )

subject to 0 ≤ xτ ≤ 1, lτ ≤ 1Txτ ≤ uτ ,

where

uτ = u −
i∑

j=1

b j and lτ = l −
i∑

j=1

b j .

Using the techniques developed in Sect. 3, we replace fτ by a convex lower bound
denoted f L

τ and we consider the convex problem

minimize f L
τ (xτ )

subject to 0 ≤ xτ ≤ 1, lτ ≤ 1Txτ ≤ uτ .
(4.2)

Let M(τ ) denote the optimal objective function value for (4.2). At iteration k, the leaf
τ ∈ E(Tk) for which M(τ ) is smallest is used to branch to the next level. If τ has the
form (4.1), then the branching processes generates the two new leaves

(b1, b2, . . . , bi , 0) and (b1, b2, . . . , bi , 1). (4.3)

An illustration involving a 3-level branch and bound tree appears in Fig. 2.
During the branch and bound process, we must also compute an upper bound for

the minimal objective function value in (2.1). This upper bound is obtained using a
heuristic technique based on the gradient projection algorithm and sphere approxi-
mations to the feasible set. These heuristics for generating an upper bound will be
described in a separate paper. As pointed out earlier, many heuristic techniques are
available (for example, Metis [29–31], Chaco [21], and Party [37]). An advantage of
our quadratic programming based heuristic is that we start at the solution to the lower
bounding problem, a solution which typically has fractional entries and which is a
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feasible starting point for (2.1). Consequently, the upper bound is no larger than the
objective function value associated with the optimal point in the lower-bound problem.

Convex quadratic branch and bound (CQB)

1. Initialize T0 = ∅ and k = 0. Evaluate both a lower bound for the solution to (2.1)
and an upper denoted U0.

2. Choose τk ∈ E(Tk) such that M(τk) = min{M(τ ) : τ ∈ E(Tk)}. If M(τk) = Uk ,
then stop, an optimal solution of (2.1) has been found.

3. Assuming that τk has the form (4.1), let Tk+1 be the tree obtained by branching at
τk and adding two new leaves as in (4.3); also see Fig. 2. Evaluate lower bounds
for the quadratic programming problems (4.2) associated with the two new leaves,
and evaluate an improved upper bound, denoted Uk+1, by using solutions to the
lower bound problems as starting guesses in a descent method applied to (2.1).

4. Replace k by k + 1 and return to step 2.

Convergence is assured since there are a finite number of binary values for the
components of x. In the worst case, the branch and bound algorithm will build all
2n+1 − 1 nodes of the tree.

5 Necessary and sufficient optimality conditions

We use the gradient projection algorithm to obtain an upper bound for a solution to
(2.1). Since the gradient projection algorithm can terminate at a stationary point, we
need to be able to distinguish between a stationary point and a local minimizer, and
at a stationary point which is not a local minimizer, we need a fast way to compute a
descent direction.

We begin by stating the first-order optimality conditions. Given a scalar λ, define
the vector

μ(x, λ) = (A + D)1 − 2(A + D)x + λ1,

and the set-valued maps N : R → 2R and M : R → 2R

N (ν) =
⎧⎨
⎩

R if ν = 0
{1} if ν < 0
{0} if ν > 0

, M(ν) =
⎧⎨
⎩

R if ν = 0
{u} if ν > 0
{l} if ν < 0

.

For any vector μ,N (μ) is a vector of sets whose i-component is the set N (μi ).
The first-order optimality (Karush-Kuhn-Tucker) conditions associated with a local
minimizer x of (2.1) can be written in the following way: For some scalar λ, we have

0 ≤ x ≤ 1, x ∈ N (μ(x, λ)), l ≤ 1Tx ≤ u, and 1Tx ∈ M(λ). (5.1)

The first and third conditions in (5.1) are the constraints in (2.1), while the remain-
ing two conditions correspond to complementary slackness and stationarity of the
Lagrangian.
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In [17] we give a necessary and sufficient optimality conditions for (2.1), which we
now review. Given any x that is feasible in (2.1), let us define the sets

U(x) = {i : xi = 1}, L(x) = {i : xi = 0}, and F(x) = {i : 0 < xi < 1}.

We also introduce subsets U0 and L0 defined by

U0(x, λ) = {i ∈ U(x) : μi (x, λ) = 0} and L0(x, λ) = {i ∈ L(x) : μi (x, λ) = 0}.

Theorem 5.1 Suppose that l = u and D is chosen so that

dii + d j j ≥ 2ai j (5.2)

for all i and j . A necessary and sufficient condition for x to be a local minimizer in
(2.1) is that the following all hold:

(P1) For some λ, the first-order conditions (5.1) are satisfied at x.
(P2) For each i and j ∈ F(x), we have dii + d j j = 2ai j .
(P3) Consider the three sets U0(x, λ),L0(x, λ), and F(x). For each i and j in two

different sets, we have dii + d j j = 2ai j .

In treating the situation l < u, an additional condition concerning the dual multi-
pliers λ and μ in the first-order optimality conditions (5.1) enters into the statement
of the result:

(P4) If λ = μi (x, 0) = 0 for some i , then dii = 0 in any of the following three
cases:

(a) l < 1Tx < u.
(b) xi > 0 and 1Tx = u.
(c) xi < 1 and 1Tx = l.

Corollary 5.2 Suppose that l < u and D is chosen so that

dii + d j j ≥ 2ai j and dii ≥ 0 (5.3)

for all i and j . A necessary and sufficient condition for x to be a local minimizer in
(2.1) is that (P1)–(P4) all hold.

Based on Theorem 5.1 and Corollary 5.2, we can easily check whether a given
stationary point is a local minimizer. This is in contrast to the general quadratic pro-
gramming problem for which deciding whether a given point is a local minimizer is
NP-hard (see [34,35]). We now observe that when x is a stationary point and when any
of the conditions (P2)–(P4) are violated, then a descent direction is readily available.

Proposition 5.3 Suppose that x is a stationary point for (2.1) and (5.3) holds. If either
(P2) or (P3) is violated, then d = ei − e j , with an appropriate choice of sign, is a
descent direction. If l < u, λ = 0 = μi (x, 0), and dii > 0, then d = ei , with an
appropriate choice of sign, is a descent direction in any of the cases (a)–(c) of (P4).

123

Author's personal copy



An exact algorithm for graph partitioning 545

Proof The Lagrangian L associated with (2.1) has the form

L(x) = f (x) + λ(1Tx − b) −
∑
i∈L

μi xi −
∑
i∈U

μi (xi − 1), (5.4)

where b = u if λ > 0, b = l if λ < 0, and μ stands for μ(x, λ). The sets L and U
denote L(x) and U(x) respectively. By the first-order optimality conditions (5.1), we
have L(x) = f (x) and ∇L(x) = 0. Expanding the Lagrangian around x gives

L(x + y) = L(x) + ∇L(x)y + 1

2
yT∇2 L(x)y = f (x) − yT(A + D)y.

We substitute for L using (5.4) to obtain

f (x + y) = L(x + y) − λ(1T(x + y) − b) +
∑
i∈L

μi (xi + yi ) +
∑
i∈U

μi (xi + yi − 1)

= f (x) − λ1Ty − yT(A + D)y +
∑
i∈L

μi yi +
∑
i∈U

μi yi . (5.5)

If (P2) is violated, then there are indices i and j ∈ F(x) such that dii + d j j > 2ai j .
We insert y = α(ei − e j ) in (5.5) to obtain

f (x + α(ei − e j )) = f (x) + α2(2ai j − dii − d j j ). (5.6)

Since the coefficient of α2 is negative, d = ei − e j is a descent direction for the
objective function. Since 0 < xi < 1 and 0 < x j < 1, feasibility is preserved for α

sufficiently small. In a similar manner, if (P3) is violated by indices i and j , then (5.6)
again holds and d = ±(ei − e j ) is again a descent direction where the sign is chosen
appropriately to preserve feasibility. For example, if i ∈ L0(x) and j ∈ U0(x), then
xi = 0 and x j = 1. Consequently, x + α(ei − e j ) is feasible if α > 0 is sufficiently
small.

Finally, suppose that l < u, λ = 0 = μi (x, 0), and dii > 0. Substituting y = αei

in (5.5) yields

f (x + αei ) = f (x) − α2dii .

Since the coefficient dii of α2 is positive, d = ±ei is a descent direction. Moreover, in
any of the cases (a)–(c) of (P4), x +αd is feasible for some α > 0 with an appropriate
choice of the sign of d. 	


We now give a necessary and sufficient condition for a local minimizer to be strict.
When a local minimizer is not strict, it may be possible to move to a neighboring point
which has the same objective function value but which is not a local minimizer.

Corollary 5.4 If x is a local minimizer for (2.1) and (5.3) holds, then x is a strict local
minimizer if and only if the following conditions hold:
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(C1) F(x) is empty.
(C2) ∇ f (x)i > ∇ f (x) j for every i ∈ L(x) and j ∈ U(x).
(C3) If l < u, the first-order optimality conditions (5.1) hold for λ = 0, and Z :=

{i : ∇ f (x)i = 0} �= ∅, then either
(a) 1Tx = u and xi = 0 for all i ∈ Z or
(b) 1Tx = l and xi = 1 for all i ∈ Z .

Proof Throughout the proof, we let μ,F ,L and U denote μ(x, λ),F(x),L(x), and
U(x) respectively, where x is a local minimizer for (2.1) and the pair (x, λ) satisfies
the first-order optimality conditions (5.1). To begin, suppose that x is a strict local
minimizer of (2.1). That is, f (y) > f (x) when y is a feasible point near x. If F has
at least two elements, then by (P2) of Theorem 5.1, dii + d j j = 2ai j for each i and
j ∈ F . Since the first-order optimality conditions (5.1) hold at x, it follows from (5.6)
that

f (x + α(ei − e j )) = f (x) (5.7)

for all α. Since this violates the assumption that x is a strict local minimizer, we con-
clude that |F | ≤ 1. If 1Tx = u or 1Tx = l, then since u and l are integers, it is not
possible for x to have just one fractional component. Consequently, F is empty. If
l < 1Tx < u, then by complementary slackness, λ = 0. Suppose that |F | = 1 and
i ∈ F . By (P4) of Corollary 5.2, dii = 0. Again, by (5.5) it follows that

f (x + αei ) = f (x)

for all α. This violates the assumption that x is a strict local minimizer of (2.1). Hence,
F is empty.

By the first-order conditions (5.1), there exists λ such that

μi (x, λ) ≥ 0 ≥ μ j (x, λ) (5.8)

for all i ∈ L and j ∈ U . If this inequality becomes an equality for some i ∈ L and
j ∈ U , then μi = 0 = μ j , and by (P3) of Corollary 5.2, we have dii + d j j = 2ai j .
Again, (5.7) violates the assumption that x is a strict local minimizer. Hence, one of
the inequalities in (5.8) is strict. The λ on each side of (5.8) is cancelled to obtain (C2).

Suppose that l < u, λ = 0, and Z := {i : ∇ f (x)i = 0} �= ∅. When λ = 0, we
have μ(x, 0) = ∇ f (x). Hence, Z = {i : μi (x, 0) = 0} �= ∅. It follows from (P4) that
in any of the cases (a)–(c), we have dii = 0. In particular, if l < 1Tx < u, then by
(5.5), we have f (x +αei ) = f (x) for all α. Again, this violates the assumption that x
is a strict local minimum. Similarly, if for some i ∈ Z , either xi > 0 and 1Tx = u or
xi < 1 and 1Tx = l, the identity f (x + αei ) = f (x) implies that we violate the strict
local optimality of x. This establishes (C3).

Conversely, suppose that x is a local minimizer and (C1)–(C3) hold. We will show
that

∇ f (x)y > 0 whenever y �= 0 and x + y feasible in (2.1). (5.9)
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As a result, by the mean value theorem, f (x +y) > f (x) when y is sufficiently small.
Hence, x is a strict local minimizer.

When x + y is feasible in (2.1), we have

yi ≥ 0 for all i ∈ L and yi ≤ 0 for all i ∈ U . (5.10)

By the first-order optimality condition (5.1), μi ≥ 0 for all i ∈ L and μi ≤ 0 for all
i ∈ U . Hence, we have

(∇ f (x) + λ1T)y = μTy =
∑
i∈L

μi yi +
∑
i∈U

μi yi ≥ 0. (5.11)

We now consider three cases.
First, suppose that 1Ty = 0 and y �= 0. By (C1) F is empty and hence, by (5.10),

yi > 0 for some i ∈ L and y j < 0 for some j ∈ U . After adding λ to each side in the
inequality in (C2), it follows that either

min
i∈L

μi ≥ 0 > max
j∈U

μ j (5.12)

or

min
i∈L

μi > 0 ≥ max
j∈U

μ j . (5.13)

Combining (5.11), (5.12), and (5.13) gives ∇ f (x)y ≥ μi yi − μ j y j > 0 since either
μi > 0 or μ j < 0, and yi > 0 > y j .

Second, suppose that 1Ty �= 0 and λ �= 0. To be specific, suppose that λ > 0. By
complementary slackness, 1Tx = u. Since x + y is feasible in (2.1) and 1Ty �= 0, we
must have 1Ty < 0. Hence, by (5.11), ∇ f (x)y > 0. The case λ < 0 is similar.

Finally, consider the case 1Ty �= 0 and λ = 0. In this case, we must have l < u. If
the set Z in (C3) is empty, then ∇ f (x)i = μi �= 0 for all i , and by (5.11), ∇ f (x)y > 0.
If Z �= ∅, then by (C3), either 1Tx = u and xi = 0 for all i ∈ Z or 1Tx = l and xi = 1
for all i ∈ Z . To be specific, suppose that 1Tx = u and xi = 0 for all i ∈ Z . Again,
since x + y is feasible in (2.1) and 1Ty �= 0, we have 1Ty < 0. If U = ∅, then x = 0
since F = ∅. Since 1Ty < 0, we contradict the feasibility of x + y. Hence, U �= ∅.
Since 1Ty < 0, there exists j ∈ U such that y j < 0. Since Z ⊂ L, it follows from
(5.12) that μ j < 0. By (5.11) ∇ f (x)y ≥ μ j y j > 0. The case 1Tx = l and xi = 1
for all i ∈ Z is similar. This completes the proof of (5.9), and the corollary has been
established. 	


6 Numerical results

We investigate the performance of the branch and bound algorithm based on the lower
bounds in Sect. 3 using a series of test problems. The codes were written in C and the
experiments were conducted on an Intel Xeon Quad-Core X5355 2.66 GHz computer
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using the Linux operating system. Only one of the 4 processors was used in the exper-
iments. To evaluate the lower bound, we solve (4.2) by the gradient projection method
with an exact linesearch and Barzilai-Borwein steplength [3]. The stopping criterion
in our experiments was

‖P(xk − gk) − xk‖ ≤ 10−4,

where P denotes the projection onto the feasible set and gk is the gradient of the objec-
tive function at xk . The solution of the semidefinite programming problem (3.11) was
obtained using Version 6.0.1 of the CSDP code [4] available at

https://projects.coin-or.org/Csdp/

We compare the performance of our algorithm with results reported by Karisch, Rendl,
and Clausen in [28], by Sensen in [39], and by Armbruster in [1]. We also compared
the performance of our algorithm to the max-cut algorithm of Rendl, Rinaldi, and
Wiegele [38] as implemented in the code BiqMac. Since some earlier results were
obtained on different computers, we obtained estimates for the corresponding running
time on our computer using the LINPACK benchmarks [10]. Since our computer is
roughly 30 times faster than the HP 9000/735 used in [28], it is roughly 7 times faster
than the Sun UltrSPARC-II 400 Mhz machine used in [39], and it is roughly 1.3 times
faster than the HP Compaq DC7100 3.2 Ghz Pentium IV used in [1], the earlier CPU
times were divided by 30, 7 and 1.3 respectively to obtain the estimated running time
on our computer. Note that the same interior-point algorithm that we use, which is the
main routine in the CSDP code, was used to solve the semidefinite relaxation in [28].
Since the BiqMac code [38] of Rendl et al. was run on our machine, there was no need
to scale the running times of this code.

Various data sets were used for the A matrices in the numerical experiments. Most
of the test problems came from the library of Brunetta et al. [5]. Some of the test
matrices were from the UF Sparse Matrix Library maintained by Timothy Davis:

http://www.cise.ufl.edu/research/sparse/matrices/

Since this second set of matrices is not directly connected with graph partitioning,
we create an A for graph partitioning as follows: If the matrix S from the library was
symmetric, then A was the adjacency matrix defined as follows: the diagonal of A is
zero, ai j = 1 if si j �= 0, and ai j = 0 otherwise. If S was not symmetric, then A was
the adjacency matrix of STS. Finally, finite element mesh [8], KKT systems [20] and
Johnson [25] graphs are available at

http://www.tu-chemnitz.de/mathematik/discrete/armbruster/diss

The test problems were based on the graph bisection problem where l = u = n/2
except for instances: KKT.lowt01, KKT.putt01, and KKT.capt09 in Table 9. For these
three instances, we select (see page 149 of [1])

l = �n − d

2
�, u = �n + d

2
� where d = 2�1.05n

2
� − n. (6.1)
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Table 1 Comparison of two
lower bounds

Graph n L B1 L B2 Opt

Tina_Discal 11 0.31 0.86 12

jg1009 9 1.55 1.72 16

jg1011 11 1.48 0.94 24

Stranke94 10 1.76 1.77 24

Hamrle1 32 −1.93 1.12 17

4×5t 20 −21.71 5.43 28

8×5t 40 −16.16 2.91 33

t050 30 0.90 18.54 397

2×17 m 34 1.33 1.27 316

s090 60 −9.84 13.10 238

6.1 Lower bound comparison

Our numerical study begins with a comparison of the lower bound of Sect. 3.1 based
on the minimum eigenvalue of A + D and the best affine underestimate, and the lower
bound of Sect. 3.2 based on semidefinite programming. We label these two lower
bounds L B1 and L B2 respectively. In Table 1, the first 5 graphs correspond to matri-
ces from the UF Sparse Matrix Library, while the next 5 graphs were from the test
set of Brunetta, Conforti, and Rinaldi. The column labeled “Opt” is the minimum cut
and while n is the problem dimension. The numerical results indicate that the lower
bound L B2 based on semidefinite programming is generally better (larger) than L B1.
In Table 1 the best lower bound is highlighted in bold. Based on these results, we
use the semidefinite programming-based lower bound in the numerical experiments
which follow.

6.2 Algorithm performance

Unless stated otherwise, the remaining test problems came from the library of Brun-
etta et al. [5]. Table 6 gives results for matrices associated with the finite element
method [42]. In this section, the six methods being compared are labeled CQB (our
convex quadratic branch and bound algorithm), BiqMac (algorithm of Rendl, Rinaldi,
and Wiegele [38]), KRC (algorithm of Karisch, Rendl, and Clausen [28]), SEN (algo-
rithm of Sensen [39]), and ARM-LP (linear programming relaxation) and ARM-SDP
(semidefinite programming relaxation) (algorithms of Armbruster [1]). In particular,
ARM-LP is based on the LP relaxation with separators (so-called lp_all_small in
[1]), whereas ARM-SDP is related to the SDP relaxation along with the early branch-
ing criteria, odd cycle inequalities, the shortest-path and problem shrinking techniques
(denoted by oc_sp_s in [1]). Note that some of numerical results from [1] were also
presented in [2].

BiqMac is an algorithm designed to solve max-cut problems [38]. The minimum
equipartitioning problems with n even can be formulated as
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Table 2 Toroidal grid: a weighted h × k grid with hk vertices and 2hk edges that received integer weights
uniformly drawn from [1,10]

CQB BiqMac KRC

Graph n (%) #nodes Time #nodes Time #nodes Time

8×5t 40 10 157 0.12 1 0.16 1 0.20

21×2t 42 10 21 0.02 1 0.22 1 0.17

23×2t 46 9 80 0.16 9 10.95 33 4.16

4×12t 48 9 76 0.20 1 0.29 3 0.56

5×10t 50 8 152 0.22 1 0.38 1 0.20

6×10t 60 7 1226 0.43 3 6.03 43 11.66

7×10t 70 6 1143 0.72 1 0.81 47 19.06

10×8t 80 5 584 0.81 3 4.76 45 31.46

min
1

2

∑
i< j

ai j (1 − xi x j ) s.t.
n∑

i=1

xi = 0, x ∈ {−1, 1}n .

By using an exact quadratic penalty function approach [40], we can recast the problem
as an unconstrained integer programming problem

min
1

2

∑
i< j

ai j (1 − xi x j ) + τ‖
n∑

i=1

xi‖2 s.t. x ∈ {−1, 1}n,

for any τ ≥ ∑
i< j |ai j |, which is, in turn, equivalent to the following max-cut problem

max
1

2

∑
i< j

(4τ − ai j )(1 − xi x j ) s.t. x ∈ {−1, 1}n .

We chose τ = ∑
i< j |ai j | in the numerical simulations for BiqMac. If n is odd, then

we added a dummy node without any connections to the remaining nodes.
In the numerical results that follow, “n” is the problem dimension, “%” is the

percent of the elements in the matrix that are nonzero, and “# nodes” is the number of
nodes in the branch and bound tree. The CPU time is given in seconds. The best time
is highlighted in bold.

Table 2 gives results for toroidal grid graphs. These graphs are connected with an
h × k grid, the number of vertices in the graph is n = hk and there are 2hk edges
whose weights are chosen from a uniform distribution on the interval [1, 10]. We now
compare between CQB, BiqMac, and KRC. We see in Table 2 that CQB was fastest
in 7 of the 8 toroidal grid cases.

Results for planar grid graph are given in Table 3. These graphs are associated with
an h × k grid. There are hk vertices and 2hk −h − k edges whose weights are integers
uniformly drawn from [1,10]. For this relatively sparse test set, CQB was the fastest
in 6 out of 8 problems.
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Table 3 Planar grid

CQB BiqMac KRC

Graph n (%) #nodes Time #nodes Time #nodes Time

2×16 g 32 9 25 0.06 1 0.07 1 0.13

18×2 g 36 8 19 0.07 1 0.05 1 0.06

2×19 g 38 8 52 0.11 7 3.69 49 1.83

5×8 g 40 9 29 0.10 1 0.07 1 0.06

3×14 g 42 8 33 0.13 1 0.71 5 0.60

5×10 g 50 7 179 0.28 1 0.32 1 0.30

6×10 g 60 6 268 0.33 3 4.55 57 10.63

7×10 g 70 5 209 0.52 3 21.64 61 18.56

Table 4 Mixed grid graphs

CQB BiqMac KRC

Graph n (%) #nodes Time #nodes Time #nodes Time

2×17 m 34 100 42070 1.54 3 1.15 21 0.96

10×4 m 40 100 51635 3.80 1 0.05 2 0.06

5×10 m 50 100 3585782 283.17 1 0.14 1 0.06

4×13 m 52 100 10403116 725.36 1 0.66 5 1.13

13×4 m 52 100 16428323 1082.58 1 0.63 5 1.13

9×6 m 54 100 43513492 2967.04 1 0.53 1 0.40

10×6 m 60 100 36151948 2602.88 1 0.30 1 0.26

10×7 m 70 100 110759766 5044.75 1 0.39 1 0.46

Table 4 gives results for mixed grid graphs. These are complete graphs associated
with an planar h × k planar grid; the edges in the planar grid received integer weights
uniformly drawn from [1,100], while all the other edges needed to complete the graph
received integer weights uniformly drawn from [1,10]. For these graphs, BiqMac and
KRC were much faster than CQB. Notice that the graphs in this test set are completely
dense. One trend that is seen in these numerical experiments is that as the graph density
increases, the performance of CQB relative to the other methods degrades.

Table 5 gives results for randomly generated graphs. For these graphs, the density
is first fixed and then the edges are assigned integer weights uniformly drawn from
[1,10]. For this test set, CQB is fastest in 8 of 17 cases. Again, observe that the relative
performance of CQB degrades as the density increases, mainly due to the large number
of nodes in the branch and bound tree.

As can be seen in the mesh instances of Table 6, CQB was fastest in 6 out of the 10
problems even though the number of nodes in the branch and bound tree was much
larger. Thus BiqMac, KRC and SEN provided much tighter relaxations, however, the
time to solve their relaxed problems was much larger than the time to optimize our
convex quadratics.
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Table 5 Randomly generated graphs

CQB BiqMac KRC

Graph n (%) #nodes Time #nodes Time #nodes Time

q090 40 10 88 0.11 1 0.29 1 0.13

q080 40 20 1076 0.20 5 7.17 31 2.30

q030 40 70 781245 37.41 7 5.61 23 2.06

q020 40 80 1522011 66.02 3 3.84 7 0.83

q010 40 90 4096845 202.07 5 3.59 13 1.36

q000 40 100 7975274 373.24 1 0.24 1 0.13

c090 50 10 445 0.23 1 0.36 1 0.33

c080 50 20 19525 1.85 7 12.58 45 6.13

c070 50 30 217903 15.85 11 16.89 49 8.06

c030 50 70 33641339 2212.75 23 23.42 51 5.46

c010 50 90 24811307 1785.16 19 15.49 55 5.30

c000 50 100 40794151 2401.53 17 13.93 43 4.67

c290 52 10 380 0.26 1 0.46 1 0.40

c490 54 10 1591 0.41 1 0.66 15 3.30

c690 56 10 4675 0.66 1 0.38 3 1.00

c890 58 10 16883 1.98 13 28.45 71 17.53

s090 60 10 10674 1.47 3 5.56 37 9.90

Table 6 Mesh instances

CQB BiqMac KRC SEN

Graph n (%) #nodes Time #nodes Time #nodes Time #nodes Time

m4 32 10 23 0.04 1 0.04 1 0.03 1 0.14

ma 54 5 9 0.17 1 0.05 1 0.10 1 0.28

me 60 5 16 0.20 1 0.14 1 0.13 1 0.28

m6 70 5 297 0.45 1 0.68 1 1.23 1 1.43

mb 74 4 90 0.37 1 0.62 1 0.98 1 1.14

mc 74 5 370 0.41 1 0.49 1 1.53 1 1.43

md 80 4 97 0.53 1 0.87 1 0.96 1 1.28

mf 90 4 105 0.67 1 1.42 1 0.80 1 1.85

m1 100 3 212 0.99 3 18.74 15 36.50 1 3.00

m8 148 2 4774 4.35 1 3.06 1 10.70 1 4.14

Table 7 gives results for binary de Bruijn graphs which arise in applications related
to parallel computer architecture [7,12]. These graphs are constructed by the following
procedure. We first build a directed graph using the Mathematica command:
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Table 7 de Bruijn networks

CQB BiqMac KRC SEN

Graph n (%) #nodes Time #nodes Time #nodes Time #nodes Time

debr5 32 12 46 0.07 1 0.08 3 0.20 1 0.00

debr6 64 6 3373 0.48 1 0.84 55 15.63 1 1.00

debr7 128 3 50314492 3092.34 71 471.94 711 2796.96 1 10.28

Table 8 Compiler design

CQB BiqMac KRC SEN ARM-LP ARM-SDP

Graph n (%) #nodes Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes Time

cd30 30 13 11 0.05 1 0.10 1 0.03 1 0.00 326 1.53 10276 196.92

cd45 45 10 34 0.25 1 0.26 1 0.23 1 0.57 49 3.84 2995 336.92

cd47a 47 9 42 0.31 1 0.30 1 0.33 7 1.00 100 2.03 4403 333.07

cd47b 47 9 55 0.29 1 0.81 35 3.73 3 1.43 12 3.84 963 86.92

cd61 61 10 78 0.80 7 6.31 1 0.67 6 6.00 785 62.30 failed

A = TableForm[ToAdjacencyMatrix[DeBruijnGraph[2, n]]]

To obtain the graph partitioning test problem, we add the Mathematica generated
matrix to its transpose and set the diagonal to 0. For this test set, SEN had by far the
best performance in 2 of 3 instances, while CQB was fastest in 1 instance.

Table 8 gives results for compiler design problems [13,26]. For this test set, CQB,
BiqMac and KRC were fastest for 1 problem, when KRC was fastest in 2 out of 5 test
problems. Note that the times for CQB were competitive with KRC even when KRC
was faster.

Table 9 gives results for finite element meshes [8], KKT systems [20], and Johnson
graphs [25]. We report the comparison of CQB, BiqMac and the algorithms of Armbr-
uster [1]: ARM-LP and ARM-SDP. For KKT system graphs, the results reported in [1]
is not for equicut problems, i.e. u − l ≥ 2 in (6.1), hence BiqMac is not applicable. We
see in Table 9 that CQB and ARM-LP were each fastest in 5 cases, while BiqMac and
ARM-SDP were each fastest in 2 cases. Note that ARM-LP failed to solve 3 problems
to optimality within 5 h on their computer, BiqMac reached the time limit of 36 h on
our machine for the G250,2.5 graph.

7 Conclusions

An exact algorithm is presented for solving the graph partitioning problem with upper
and lower bounds on the size of each set in the partition. The algorithm is based on a
continuous quadratic programming formulation of the discrete partitioning problem.
We show how to transform a feasible x for the graph partitioning QP (2.1) to a binary
feasible point y with an objective function value which satisfies f (y) ≤ f (x). The
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Table 9 Finite element mesh, KKT systems, and Johnson graphs

CQB BiqMac ARM-LP ARM-SDP

Graph n (%) #nodes Time #nodes Time #nodes Time #nodes Time

mesh.69.112 69 0.5 121 0.36 1 3.41 1 0.02 1 0.76

mesh.74.129 74 4.8 1462 0.49 1 0.61 1 11.95 1 1.20

mesh.137.231 137 2.5 9468 5.35 3 30.28 1 9.52 1 2.20

mesh.138.232 138 2.5 15240 6.91 1 11.36 1 36.37 1 7.86

mesh.148.265 148 2.5 4774 4.30 1 2.98 1 0.67 1 0.85

mesh.274.231 274 0.6 18628 7.88 3 76.43 1 2.02 1 8.51

mesh.274.469 274 1.3 24241 24.62 105 3581.05 1 153.53 1 14.90

KKT.lowt01 82 7.8 105 0.57 1 0.15 1 0.69

KKT.putt01 115 6.6 161 1.51 1 3.36 1 1.56

KKT.capt09 2063 0.5 549610 4658.59 634 1467.25 failed

G124,2.5 124 2.0 3120 4.21 539 2054.46 7 10.70 9 104.52

G124,5 124 4.2 4173417 953.36 225 1229.72 failed 31 3375.13

G124,10 124 8.1 500645440 101058.58 7069 39685.91 failed 1541 61449.53

G124,20 124 16.7 414725123 82380.11 4015 18322.35 failed 2153 49798.59

G250,2.5 250 1.1 9709688 10106.14 > 36 h 3063 1409.42 13 7476.43

binary feasible point corresponds to a partition of the graph vertices and f (y) is the
weight of the cut edges. At any stationary point of (2.1) which is not a local minimizer,
Proposition 5.3 provides a descent direction that can be used to strictly improve the
objective function value.

In the branch and bound algorithm, the objective function is decomposed into the
sum of a convex and a concave part. A lower bound for the objective function is
achieved by replacing the concave part by an affine underestimate. Two different
decompositions were considered, one based on the minimum eigenvalue of the matrix
in the objective function, and the other based on the solution to a semidefinite pro-
gramming problem. The semidefinite programming approach generally led to much
tighter lower bounds. In a series of numerical experiments, the new algorithm CQB
(convex quadratic branch and bound) was competitive with state-of-the-art partition-
ing methods; the relative performance of CQB was better for sparse graphs than for
dense graphs.
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