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Abstrat. In this paper, we examine an iterative implementation of

the Dual Ative Set Algorithm, fousing on its appliation to linear

programs suh as those assoiated with lower bounds to the quadrati

assignment problem.

1 Introdution

In [9, 10, 12, 13, 14℄ we present the Dual Ative Set Algorithm (DASA) and

prove its onvergene both for linear programming and for optimization problems

satisfying a strit onvexity assumption. In [14℄ a loal quadrati onvergene result

for a \full step" version of this algorithm is given in the ontext of optimal ontrol,

while line searh versions of the algorithm for general optimization problems appear

in [9, 10, 12, 13℄. Also, in [2℄ Bergounioux and Kunish establish onvergene for a

full step version in quadrati optimization problems where the matrix in the ost

funtion has a diagonal dominane property.

In this paper, we examine iterative implementations of the DASA. In the earlier

work, it was assumed that the subproblems were solved exatly in eah step, in

whih ase onvergene to an optimal solution is obtained in a �nite number of steps.

In an iterative implementation, onvergene is ahieved in the limit. We illustrate

the onvergene properties of the iterative shemes using linear programming (LP)

test problems, fousing in partiular on LPs assoiated with lower bounds for the

quadrati assignment problem (see [6, 15, 21℄). The lak of strit onvexity in the

LP setting is handled using proximal tehniques.

Earlier researh on iterative methods for the solution of linear programming

problems using proximal tehniques inludes that of [5, 18, 25℄. Some suess has

been reported with these iterative methods when applied to randomly generated
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problems. These methods did not perform as well when applied to test problems

arising in appliations, suh as those ontained in the Netlib test suite. In our

iterative approah, we employ an SSOR preonditioned onjugate gradient iteration

whih we show in [11℄ orretly handles the singularities often present in LPs arising

in pratie. By utilizing this iterative solver within the DASA, we are able to handle

the hanges in ative set in a way similar to that of the DASA algorithm itself, for

whih �nite onvergene holds.

Even though onvergene is not �nite for the iterative version of DASA, the

algorithm is rather eÆient in some ases. For LPs with a sparse matrix and sparse

fatorization, a fatorization-based approah suh as the simplex method or an

interior point method or a multilevel LPDASA should be preferable. On the other

hand, for a sparse LP whose fatorization is relatively dense, an iterative approah

an be relatively eÆient. In this ase, multiplying a vetor by the matrix is muh

faster than either fatoring the matrix or solving a fatored system.

Another iterative approah [21℄, whih has been applied with suess to the

linear programs assoiated with the quadrati assignment problem, involves us-

ing a preonditioned onjugate gradient method to evaluate the searh diretions

generated by an interior point method. Note though that this preonditioning teh-

nique involves a partial fatorization of the interior point matrix, with an inreasing

number of nonzero elements in the preonditioner as the iterations onverge. The

storage assoiated with our iterative approah is proportional to the number of

nonzeros in the original matrix, not its fatorization.

2 DASA with exat subproblems

We �rst summarize the statement of DASA as given (for example) in [12℄ for

problems of the form:

max

�

min

x�0

L(�;x); (2.1)

where L : R

m

�R

n

! R. We assume that L(�;x) is onave in � for eah �xed

x 2 R

n

, uniformly strongly onvex in x for eah �xed � 2 R

m

, and ontinuously

di�erentiable. By strong onvexity in x, we mean that there exists a onstant � > 0

suh that

(r

x

L(�;y)�r

x

L(�;x)) (y � x) � �ky � xk

2

;

where � is independent of �, x, and y, and k � k denotes the Eulidean norm.

If B � f1; 2; : : : ; ng, let x

B

be the subvetor of x onsisting of those omponents

x

i

assoiated with i 2 B. Two di�erent funtions enter into the statement of the

DASA:

L

B

(�) = min

x

B

�0

L(�;x) and L

0

B

(�) = min

x

B

=0

L(�;x): (2.2)

In arrying out the minimizations in (2.2), the omponents of x orresponding to

indies in the omplement of B are unonstrained. By the strong onvexity of

L(�; �), there exists a unique minimizer x(�; B) over the set x

B

� 0, for eah

hoie of � and B. Sine L(�;x) is strongly onvex in x and ontinuously di�er-

entiable, x(�; B) depends ontinuously on � [12℄. The unique minimizer of (2.1)

orresponding to B = f1; 2; : : : ; ng in (2.2) is denoted x(�). We let L(�) denote

the dual funtion L(�;x(�)):

L(�) = L(�;x(�)) = min

x�0

L(�;x):
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In the DASA, we start from an arbitrary �

0

and generate a �nite sequene

of iterates. If �

k

denotes the urrent iterate (initially k = 0), then either �

k

maximizes the dual funtion and we stop, or we move to the next iterate �

k+1

using a �nite sequene of subiterates �

0

= �

k

, �

1

, �

2

; : : : . The algorithmi steps

are the following:

Dual Ative Set Algorithm (with line searh)

� Convergene test: If �

k

maximizes the dual funtion, then stop.

� Dual initialization: Set j = 0, �

0

= �

k

, B

0

= fi : x

i

(�

k

) = 0g.

� Dual subiteration:

!

j

2 arg max

�

L

0

B

j

(�) and �

j+1

2 arg max

�2[�

j

;!

j

℄

L

B

j

(�):

If there are multiple maxima on the line segment [�

j

;!

j

℄ onneting �

j

and

!

j

, then �

j+1

should be the point losest to �

j

.

� Constraint deletion:

B

j+1

= fi 2 B

j

: y

i

= 0; (r

x

L(�

j+1

;y))

i

> 0g where y = x(�

j+1

; B

j

):

� Stopping riterion: If L

B

j

(�

j+1

) = L

0

B

j

(!

j

), then inrement k, set �

k

=

�

j+1

, and go to onvergene test. Otherwise, inrement j and ontinue the

dual subiteration.

In [12℄ we prove the following:

Theorem 2.1 Assume that L(�;x) is uniformly strongly onvex in x for eah

�xed � 2 R

m

, onave in � for eah �xed x 2 R

n

, and ontinuously di�erentiable.

If in eah step of the DASA, a maximizer !

j

in the dual subiteration exists, then

the DASA generates a solution of (2:1) in a �nite number of iterations.

The proof in [12℄ reveals that for eah j, B

j+1

is stritly ontained in B

j

until the

stopping riterion is satis�ed.

3 DASA with inexat subproblems

In the previous setion, we assumed the subproblems in the DASA were solved

exatly, and we obtained onvergene in a �nite number of steps. In an iterative

implementation, the solution of the subproblems are approximated, and onver-

gene ours in the limit (possibly an in�nite number of steps). One approah for

ahieving guaranteed (monotone) onvergene is to begin the dual subiteration with

a steepest asent step, and in subsequent subiterations, ompute a maximizer of

L

0

B

j

(�) with suÆient auray to ensure asent. More preisely, if R(�;g) denotes

the ray emanating from � in the diretion g:

R(�;g) = f�+ �g : � � 0g;

then the de�nitions of !

j

and �

j+1

in the dual subiteration should be revised to

the following:

Case j = 0 : �

1

2 arg max

�2R(�

k

;rL(�

k

))

L

B

0

(�) (3.1)

Case j > 0 : Find !

j

suh that L

0

B

j

(!

j

) � L

0

B

j

(�

j

)

and hoose �

j+1

2 arg max

�2[�

j

;!

j

℄

L

B

j

(�) (3.2)

By [4, Theorem 2.1℄, rL(�

k

) = r

�

L(�

k

;x) evaluated at x = x(�

k

).
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The stopping riterion in the DASA is expressed in terms of the maximizer !

j

of L

B

j

. In the iterative version of DASA, we only approximate !

j

; sine !

j

is not

available, a di�erent stopping riterion is needed. We have found that the following

riterion works well in pratie: Given a �xed salar � 2 (0; 1), stop when

krL

B

j

(�

j+1

)k � �krL(�

j+1

)k: (3.3)

By the \iterative DASA" we mean DASA with the dual subiteration replaed by

(3.1){(3.2) and with stopping riterion replaed by (3.3). In more detail, the algo-

rithm is the following:

Iterative Dual Ative Set Algorithm (with line searh)

� Convergene test: If krL(�

k

)k is suÆiently small, then stop.

� Dual initialization: Set j = 0, �

0

= �

k

, B

0

= fi : x

i

(�

k

) = 0g.

� Dual subiteration:

Case j = 0 : �

1

2 arg max

�2R(�

k

;rL(�

k

))

L

B

0

(�)

Case j > 0 : Find !

j

suh that L

0

B

j

(!

j

) � L

0

B

j

(�

j

)

and hoose �

j+1

2 arg max

�2[�

j

;!

j

℄

L

B

j

(�)

� Constraint deletion:

B

j+1

= fi 2 B

j

: y

i

= 0; (r

x

L(�

j+1

;y))

i

> 0g where y = x(�

j+1

; B

j

):

� Stopping riterion: If krL

B

j

(�

j+1

)k � �krL(�

j+1

)k, go to onvergene

test. Otherwise, inrement j and ontinue the dual subiteration.

If the !

j

in the dual subiteration are generated by steepest asent or onjugate

gradients or preonditioned onjugate gradients, the gradients rL

B

j

(�

j

) tend to

zero, as j tends to in�nity, and the stopping riterion is eventually satis�ed (exept

when rL(�

j

) tends to zero, in whih ase the iterates approah a maximizer of L).

We assume that the iterative method used in the dual subiteration has the property

that the gradients rL

B

j

(�

j

) tend to zero as j tends to in�nity.

Theorem 3.1 Assume that L(�;x) is uniformly strongly onvex in x for eah

�xed � 2 R

m

, onave in � for eah �xed x 2 R

n

, and twie ontinuously dif-

ferentiable in � and x. If for some iterate �

k

, the assoiated level set S of the

dual funtion is ompat, then all the sueeding iterates of the iterative DASA are

ontained in S and eah onvergent subsequene onverges to a solution of (2:1).

Proof Without loss of generality, suppose that S is the level set assoiated

with the starting guess �

0

. We divide the proof into 8 steps.

I. Boundedness of x(�), � 2 S:

Given � 2 R

n

, let z = x(�) denote the assoiated minimizer in the dual funtion:

L(�; z) = min

x�0

L(�;x);

and let x

0

= x(�

0

) denote the dual funtion minimizer assoiated with �

0

. Sine

the onstraint x � 0 de�nes a onvex set, the �rst-order optimality onditions for

z and x

0

yield:

r

x

L(�; z)(x

0

� z) � 0 and r

x

L(�

0

;x

0

)(z � x

0

) � 0
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After adding and rearranging these inequalities, and utilizing the strong onvexity

assumption, we obtain:

�kz� x

0

k � kr

x

L(�;x

0

)�r

x

L(�

0

;x

0

)k: (3.4)

Sine r

x

L(�;x

0

) is a ontinuous funtion of �, it follows from (3.4) that z is

uniformly bounded, independent of the hoie of � 2 S.

II. Continuity of the dual funtion and Lipshitz ontinuity on S:

Given �

1

and �

2

2 S, let z

i

= x(�

i

), i = 1; 2, denote the assoiated minimizers in

the dual funtion. Similar to (3.4), we have

�kz

1

� z

2

k � kr

x

L(�

1

; z

2

)�r

x

L(�

2

; z

2

)k: (3.5)

Sine L is twie ontinuously di�erentiable, it follows that the minimizer x(�) is

a ontinuous funtion of �, and hene, the dual funtion L(�) = L(�;x(�)) is

a ontinuous funtion of �. If � 2 S, then z

2

lies in a bounded set by step I;

onsequently, by (3.5) there exists a onstant , independent of �

1

and �

2

2 S,

suh that

kz

1

� z

2

k � k�

1

� �

2

k: (3.6)

III. Lipshitz ontinuity of the dual gradient:

Sine rL(�) = r

�

L(�;x) evaluated at x = x(�) [4, Theorem 2.1℄, we have

rL(�

1

)�rL(�

2

) = r

�

L(�

1

; z

1

)�r

�

L(�

2

; z

2

):

Utilizing the Lipshitz estimate (3.6) and the fat that L(�;x) is twie ontinuously

di�erentiable in � and x, we onlude that there exists a onstant , independent

of �

1

and �

2

2 S, suh that

krL(�

1

)�rL(�

2

)k � k�

1

� �

2

k:

In a similar fashion, rL

B

is Lipshitz ontinuous over S for any hoie of B.

Sine B is a subset of a �nite set, there are a �nite number of hoies for B, and a

onstant 

0

an be hosen so that

krL

B

(�

1

)�rL

B

(�

2

)k � 

0

k�

1

� �

2

k

for all �

1

and �

2

2 S, and for all hoies of B � f1; 2; : : : ; ng.

IV. Monotoniity of the iterates:

This property follows by exatly the same analysis used to establish monotoniity in

the DASA itself. The analysis is repeated for ompleteness: Reall that x

k

= x(�

k

)

is the solution to the problem

min

x�0

L(�

k

; x):

Sine the �rst-order optimality onditions are both neessary and suÆient for

optimality when L(�; �) is onvex (see [17, Chap. 7℄), we have

L(�

k

) = L(�

k

;x

k

) = L

B

0

(�

k

) = L

B

0

(�

0

): (3.7)

For the same reason, we have

L

B

j

(�

j+1

) = L

B

j+1

(�

j+1

) (3.8)

for eah j � 0. Sine �

j+1

is obtained from a line searh, L

B

j

(�

j

) � L

B

j

(�

j+1

):

Combining this with (3.7) and (3.8) gives

L(�

k

) � L

B

j

(�

j

) � L

B

j

(�

j+1

) = L

B

j+1

(�

j+1

) (3.9)
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for eah j � 0. This implies that

L(�

k

) � L

C

k

(�

k+1

) � L(�

k+1

); (3.10)

where C

k

is the �nal set B

j

in the subiteration. The �nal inequality in (3.10) is

due to the fat that the optimization problem assoiated with the evaluation of

L(�

k+1

) involves more onstraints than the orresponding optimization problem

for L

C

k

(�

k+1

).

V. Convexity of S and onavity of the dual funtion:

Sine L(�;x) is onave in � for eah �xed x, we have, for eah � 2 [0; 1℄ and �

1

and �

2

2 R

m

,

L(��

1

+ (1� �)�

2

) = L(��

1

+ (1� �)�

2

;x

�

)

� �L(�

1

;x

�

) + (1� �)L(�

2

;x

�

); (3.11)

where x

�

= x(��

1

+(1� �)�

2

). Sine x = x(�) is the minimizer of the Lagrangian

L(�;x) over x � 0, it follows that

L(�

i

;x

�

) � L(�

i

;x(�

i

)) = L(�

i

); i = 1; 2:

Combining this with (3.11) gives

L(��

1

+ (1� �)�

2

) � �L(�

1

) + (1� �)L(�

2

)

for eah � 2 [0; 1℄. Thus the dual funtion is onave, and the level set S is onvex.

In the same fashion, the funtion L

B

is onave for any hoie of the index set B.

VI. Strit asent of the dual funtion:

De�ne g = rL(�

k

). Sine

d

ds

L(�

k

+ sg)

�

�

�

�

s=0

= rL(�

k

)g = krL(�

k

)k

2

;

it follows that L(�

k

+ sg) � L(�

k

) for s > 0 suÆiently small. Let �s be the largest

s for whih �

k

+ sg 2 S for all s 2 [0; �s℄. We now show that �s � 1=

0

. The proof

is by ontradition. Suppose �s < 1=

0

. By the fundamental theorem of alulus,

L(�

k

+ sg) = L(�

k

) +

Z

s

0

rL(�

k

+ tg)gdt:

Adding and subtrating g = rL(�

k

) from the rL(�

k

+ tg) fator gives

L(�

k

+ sg) = L(�

k

) + skrL(�

k

)k

2

+

Z

s

0

[rL(�

k

+ tg)�rL(�

k

)℄gdt: (3.12)

Sine �

k

+ tg 2 S for t 2 [0; �s℄, and rL is Lipshitz ontinuous on S (see III), we

have

Z

s

0

[rL(�

k

+ tg)�rL(�

k

)℄gdt �

Z

s

0

krL(�

k

+ tg)�rL(�

k

)kkgkdt

�

Z

s

0



0

tkgk

2

dt =

1

2



0

s

2

krL(�

k

)k

2

(3.13)

for eah s 2 [0; �s℄. Combining (3.12) and (3.13) gives

L(�

k

+ sg) � L(�

k

) + (s�

1

2



0

s

2

)krL(�

k

)k

2

(3.14)

for eah s 2 [0; �s℄. If �s < 1=

0

, then (3.14) implies that

L(�

k

+ sg) � L(�

k

) +

s

2

krL(�

k

)k

2

(3.15)
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for eah s 2 [0; �s℄.

Due to the ontinuity of L (see II), (3.15) yields L(�

k

+ sg) � L(�

k

) for s near

�s. This violates the fat that �s was the largest s suh that �

k

+ sg 2 S. Hene,

we have a ontration and our original supposition �s < 1=

0

annot hold. In other

words, �s � 1=

0

. Hene, (3.15) holds for all s 2 [0; 1=

0

℄.

VII. Strit asent of L

B

0

:

We now derive a similar lower bound for L

B

0

. In IV we observe that L(�

k

) =

L

B

0

(�

k

). Again, by [4, Theorem 2.1℄ we have rL

B

0

(�

k

) = r

�

L(�

k

;y) where y is

the solution to

min

x

B

0

�0

L(�

k

;x): (3.16)

As observed in (3.7), x

k

= x(�

k

) ahieves the minimum in (3.16). Consequently,

y = x

k

and rL(�

k

) = rL

B

0

(�

k

). Combining the fat that rL

B

is Lipshitz on-

tinuous over S with Lipshitz onstant 

0

, that L(�

k

) = L

B

0

(�

k

), that rL(�

k

) =

rL

B

0

(�

k

), and that L

B

0

(�) � L(�) for eah � 2 R

m

, we onlude that L

B

0

has a

lower bound analogous to that of L in (3.15):

L

B

0

(�

k

+ srL(�

k

)) � L(�

k

) +

s

2

krL(�

k

)k

2

(3.17)

whenever s 2 [0; 1=

0

℄. In the dual subiteration, �

1

maximizes L

B

0

along the ray

R(�

k

;rL(�

k

)). Hene, taking s = 1=

0

in (3.17) yields the lower bound

L

B

0

(�

1

) � L(�

k

) +

1

2

0

krL(�

k

)k

2

: (3.18)

VIII. Convergene:

Utilizing the lower bound (3.18) in the monotoniity inequalities IV gives:

L(�

k+1

) � L(�

k

) +

1

2

0

krL(�

k

)k

2

:

Summing this inequality over k, we have

L(�

k+1

) � L(�

0

) +

1

2

0

k

X

j=0

krL(�

j

)k

2

: (3.19)

Sine S is ompat and L is ontinuous, L attains a �nite-valued maximum on S.

Hene, the gradients rL(�

j

) in (3.19) tend to zero. By the onavity of L, the

maximizers of L oinide with the points where the gradient vanishes. Hene, by

the ontinuity of the gradients of L, any onvergent subsequene of the iterates

approahes a maximizer of L, and the proof is omplete.

4 LPs and proximal approximations

Now let us onsider the linear programming problem

min 

T

x subjet to Ax = b; x � 0; (4.1)

where b 2 R

m

,  2 R

n

, and A is an m by n matrix. In this ase, the assoiated

Lagrangian has the following speial form:

L(�;x) = 

T

x+ �

T

(b�Ax):

In this linear setting, L does not satisfy the strong onvexity assumption used in

the previous setion. One way to deal with the lak of strit onvexity is to examine

the DASA in the limit, as a strong onvexity parameter tends to zero. This limit

analysis leads to the LPDASA, as presented in [12℄, in whih the minimization in
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the DASA subiteration is replaed by a projetion. A related approah for handling

the lak of strong onvexity in the Lagrangian, whih we disuss here, involves a

proximal regularization. In the proximal approah, additional \small" terms are

added to the Lagrangian to ahieve suitable strong onvexity. Let Æ and � denote

small positive parameters, and let y 2 R

n

and � 2 R

m

denote the proximal \shift"

vetors. Typially, the shift vetors are zero before any estimate of the primal or

dual solutions are known. After approximations to the primal or dual solutions

have been determined, y or � might be replaed by these approximations. There

is a substantial body of researh on proximal point methods. Referenes inlude

[7, 16, 19, 20, 22, 23, 24, 26℄.

The proximal Lagrangian L

p

orresponding to (4.1) is

L

p

(�;x) =

�

2

kx� yk

2

�

Æ

2

k�� �k

2

+ 

T

x+ �

T

(b�Ax); (4.2)

and the proximal dual is

L

p

(�) = min

x�0

L

p

(�;x):

If Æ = � = 0, then the proximal Lagrangian oinides with the original Lagrangian.

If y and � are hosen to be a solution x

�

and a dual multiplier �

�

for the original

LP (4.1), then for any hoie of Æ and �, � = �

�

maximizes the proximal dual

funtion and x = x

�

is the assoiated minimizer in the proximal Lagrangian.

Observe that the DASA an be applied to the proximal Lagrangian (4.2) sine

L

p

(�;x) is onave in � and strongly onvex in x. In this LP setting, !

j

in the

DASA subiteration is the solution � of the following linear equation:

(A

F

A

T

F

+ �I)� = ��+A

F



F

+ �(b�A

F

y

F

); (4.3)

where � = Æ�, F (the free set) is the omplement of B

j

(the bound set), and A

F

is

the submatrix of A orresponding to the olumn indies in F . We now show that

the inverse of the matrix in (4.3) is approximately a projetion matrix; onsequently,

the proximal iterates generated by the solution of (4.3) trak, in a sense, the dual

subiterates generated in [12℄ by a projetion.

Without loss of generality, we an assume that the olumns of A

F

are linearly

independent; that is, there exists a matrix L with linearly independent olumns suh

that LL

T

= A

F

A

T

F

where A

T

F

= QL

T

is the fatorization of A

T

F

into the produt

of a matrix with orthonormal olumns and a triangular matrix with nonzero row.

The nonzero rows of L

T

, or equivalently, the nonzero olumns of L are trivially

independent due to the triangular struture of L.

Returning to the matrix in (4.3), the matrix modi�ation formula [8℄ gives

(I+ �

�1

A

F

A

T

F

)

�1

= I� �

�1

A

F

(I+ �

�1

A

T

F

A

F

)

�1

A

T

F

: (4.4)

Reall the geometri series expansion

(I+C)

�1

= C

�1

�C

�2

+C

�3

� : : : ;

whih is valid when C is invertible and the spetral radius of C

�1

is less than one.

Using this in (4.4) with C = �

�1

A

T

F

A

F

, we see that when � is suÆiently small,

(I+�

�1

A

F

A

T

F

)

�1

= I�A

F

[(A

T

F

A

F

)

�1

� �(A

T

F

A

F

)

�2

+ �

2

(A

T

F

A

F

)

�3

� : : :℄A

T

F

:

Sine the matrix P = I � A

F

(A

T

F

A

F

)

�1

A

T

F

projets a vetor into the spae or-

thogonal to the olumns of A

F

, and sine � is typially a small number, it follows
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Table 1 LPs assoiated with the quadrati assignment problem

Problem Rows Columns Nnz

qap08 912 1632 7296

qap12 3192 8856 38304

qap15 6330 22275 94,950

nug05 210 225 1050

nug06 372 486 2232

nug07 602 931 4214

nug08 912 1632 7296

nug12 3192 8856 38,304

nug15 6330 22275 94,950

nug20 15240 72600 304,800

nug30 52260 379350 1,567,800

that

(A

F

A

T

F

+ �I)

�1

�

1

�

P:

Thus the solution of (4.3) is nearly proportional to the projetion of the right side

into the spae orthogonal to the olumns of A

F

.

5 Numerial results

We ompare CPLEX (V7.0.0) with our iterative implementation of the LP-

DASA using the SSOR preonditioned onjugate gradient sheme of Bj�ork and

Elfving [3℄ to solve (4.3), or equivalently, to asend the funtion L

0

B

j

in the dual

subiteration. The test problems, derived from lower bounds for the quadrati as-

signment problem, are available at several web sites inluding:

� http://www.researh.att.om/�mg

� http://www.netlib.org/lp

� http://www.ise.ufl.edu/�davis

� http://www.math.ufl.edu/�oap

A desription of the matries in these problems is given in Table 1. The olumn

labeled Nnz gives the number of nonzeros in A. The problems qap08, qap12, and

qap15, found at the netlib site, appear to be permutations of the problems nug08,

nug12, and nug15 found at Resende's site.

Run time statistis for CPLEX dual simplex and CPLEX barrier routines, on

an IBM RS6000 omputer, appear in Table 2. There was insuÆient memory to

solve the nug30 problem using either the barrier method or the simplex method.

The barrier method also ran out of memory on nug20. The statistis for the dual

simplex method on nug20, agged by *, were estimated in the following way: After

974,000 seonds and 418,000 iterations, CPLEX dual simplex ahieved the relative

error .15 in the ost. In the CPLEX run for nug15, 97.6% of the run time was

spent after the relative ost error reahed .15. By using the same onstant of

proportionality in nug20, we arrived at the estimates for time and iterations given

in Table 2.

Run time statistis for iterative LPDASA appear in Table 3. In these experi-

ments, we solved the problems to 3 and 7-digit auray. That is, when the primal
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Table 2 CPLEX dual simplex and barrier: time (seonds) and iterations (its)

Problem Simplex Barrier Simplex Barrier

Name (ses) (ses) (its) (its)

qap08 8.6 2.6 4,924 8

qap12 1,568 95 102,310 12

qap15 84,606 750 1,538,300 15

nug05 .03 .11 100 8

nug06 .19 .36 400 8

nug07 1.7 1.0 1,700 9

nug08 8.4 2.6 4,900 8

nug12 4,525 95 284,788 12

nug15 150,128 648 265,0179 11

nug20 40,248,000

�

??? 17,273,000

�

???

nug30 ??? ??? ??? ???

Table 3 Iterative LPDASA: time, iterations, 3 and 7-digit auray

Problem 3-digit 7-digit 3-digit 7-digit

Name (ses) (ses) (its) (its)

qap08 .7 6.3 542 6,000

qap12 56 427 12,600 103,300

qap15 187 1,339 17,400 173,200

nug05 .2 .5 900 2,400

nug06 .7 1.9 1,600 5,100

nug07 1.5 39.5 2,200 67,100

nug08 3.5 7.4 3,100 7,100

nug12 49 399 10,800 96,800

nug15 282 1,463 27,300 152,200

nug20 832 13,870 25,100 480,200

nug30 16,200 215,000 68,600 1,007,300

and dual solutions were normalized to be unit vetors, the Kuhn-Tuker onditions

were satis�ed with a relative error, in the L

1

norm, of either 10

�3

or 10

�7

. In

omparing Tables 2 and 3, we see that the simplex method is ompetitive only for

the very smallest problems. Iterative LPDASA ahieved the best omputing time

for 3-digit auray. For 7-digit auray and moderate size problems (up to 6330

rows), the barrier method had the lowest omputing time. For larger problems,

however, there was insuÆient memory for the fatorization used in the barrier

method.

The solid line of Figure 1 plots the relative error versus omputing time (se-

onds) for iterative LPDASA and test problem qap12 (3192 rows). Observe that a

low auray solution is obtained relatively quikly: 2-digit auray in 13 seonds,

3-digit auray in 56 seonds. For between 4 and 8 digits, the pu time inreases

more rapidly, and about 380 seonds are needed to boost the auray from 4 to
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Figure 1 Iterative LPDASA time (solid) and simplex saled time (dashed)

versus relative error for qap12

8 digits. For more than 8 digits, the pu time inreases more slowly{about 81 se-

onds are needed to inrease auray from 8 to 12 digits. Roughly, we observe the

following behavior in the iterations: For between 4 and 8 signi�ant digits, muh

of the pu time is onsumed identifying the ative onstraints. After 8 signi�ant

digits have been ahieved, the ative onstraints are fairly well identi�ed, and the

iterative method is essentially solving a linear system with ever inreasing auray.

The onvergene of both the simplex and barrier methods is muh di�erent

from the onvergene of iterative LPDASA shown in Figure 1. For omparison, we

sale the omputing time in the CPLEX dual simplex run and plot with a dashed

line in Figure 1 the relative ost error versus saled time. Observe that 3-digit

auray is ahieved after 76% of the run, while in iterative LPDASA, 3-digit error

is ahieved after 10% of the run. With the simplex method, the onvergene speed

is relatively slow until the very end of the run when there is a huge improvement

in auray. Iterative LPDASA exhibits steady onvergene throughout the run.

The set of test problems used in this paper has the property that A is relatively

sparse while fatorizations of A or AA

T

are relatively dense. For example, A in

qap15 is 99.93% zero, while if AA

T

is ordered using approximate minimum degree

[1℄, then the Cholesky fator is only 53.36% zero. Hene, as the size of the problems

inreases, a point is reahed where it is no longer possible to store the Cholesky

fator. For problems like these with relatively dense fators, the time to fator the

matrix grows proportional to m

3

, the number of rows of A ubed. Hene, even if it

were possible to store fators of the larger matries in this test set, the omputing

time should beome quite large. For omparison, with iterative LPDASA and 7-

digit auray, the ratio of running times for nug30 and nug20 is 15.6, while the
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ratio of row dimensions is 3.4. This implies that running time grew proportional

to m

2:2

. Thus iterative LPDASA was able to exploit the sparsity of A in order to

ahieve a omputing time whih grew more slowly with m than CPLEX barrier;

the number of nonzeros in A grows more slowly than m

3

, whih is reeted in a

omputing time that grows more slowly than m

3

.

In these experiments with iterative LPDASA, the matrix A was stored in a

standard sparse matrix format, the same format used in Malab. Note though

that iterative shemes suh as onjugate gradients, diagonal preonditioned onju-

gate gradients, or SSOR preonditioned onjugate gradients, applied to (4.3), only

involves the produt of submatries of A and a vetor. Hene, it is possible to im-

plement iterative LPDASA without storing A. In problems like qapxx and nugxx,

where the produt of submatries of A with a vetor amount to summing various

omponents of the vetor, these oded produts should run muh quiker than a

produt whih is implemented by looking up oeÆients stored in a sparse format.

In summary, iterative LPDASA is relatively eÆient for ertain lasses of linear

programming problems. In the test set investigated in this paper, iterative LDASA

ahieved the best omputing time for up to 3 digit auray, when ompared to

CPLEX dual simplex and CPLEX barrier. Although the iterative approah ould

be used to ompute high auray solutions, CPLEX barrier was more eÆient

for problems of size up to 6330 rows (whose fatorization also �t in the available

memory). With iterative LPDASA, we solved problems with up to 52260 rows. In

the urrent implementation of our ode, we need enough memory to store A itself

(not a fatorization of A or AA

T

). By oding the produts of submatries of A

with vetors, this memory onstraint ould be removed, and it should be possible

to solve problems in spae proportional to that required by the primal and dual

solutions.
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