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Abstract. In this paper, we examine an iterative implementation of
the Dual Active Set Algorithm, focusing on its application to linear
programs such as those associated with lower bounds to the quadratic
assignment problem.

1 Introduction

In [9, 10, 12, 13, 14] we present the Dual Active Set Algorithm (DASA) and
prove its convergence both for linear programming and for optimization problems
satisfying a strict convexity assumption. In [14] a local quadratic convergence result
for a “full step” version of this algorithm is given in the context of optimal control,
while line search versions of the algorithm for general optimization problems appear
in [9, 10, 12, 13]. Also, in [2] Bergounioux and Kunisch establish convergence for a
full step version in quadratic optimization problems where the matrix in the cost
function has a diagonal dominance property.

In this paper, we examine iterative implementations of the DASA. In the earlier
work, it was assumed that the subproblems were solved exactly in each step, in
which case convergence to an optimal solution is obtained in a finite number of steps.
In an iterative implementation, convergence is achieved in the limit. We illustrate
the convergence properties of the iterative schemes using linear programming (LP)
test problems, focusing in particular on LPs associated with lower bounds for the
quadratic assignment problem (see [6, 15, 21]). The lack of strict convexity in the
LP setting is handled using proximal techniques.

Earlier research on iterative methods for the solution of linear programming
problems using proximal techniques includes that of [5, 18, 25]. Some success has
been reported with these iterative methods when applied to randomly generated
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problems. These methods did not perform as well when applied to test problems
arising in applications, such as those contained in the Netlib test suite. In our
iterative approach, we employ an SSOR preconditioned conjugate gradient iteration
which we show in [11] correctly handles the singularities often present in LPs arising
in practice. By utilizing this iterative solver within the DASA, we are able to handle
the changes in active set in a way similar to that of the DASA algorithm itself, for
which finite convergence holds.

Even though convergence is not finite for the iterative version of DASA, the
algorithm is rather efficient in some cases. For LPs with a sparse matrix and sparse
factorization, a factorization-based approach such as the simplex method or an
interior point method or a multilevel LPDASA should be preferable. On the other
hand, for a sparse LP whose factorization is relatively dense, an iterative approach
can be relatively efficient. In this case, multiplying a vector by the matrix is much
faster than either factoring the matrix or solving a factored system.

Another iterative approach [21], which has been applied with success to the
linear programs associated with the quadratic assignment problem, involves us-
ing a preconditioned conjugate gradient method to evaluate the search directions
generated by an interior point method. Note though that this preconditioning tech-
nique involves a partial factorization of the interior point matrix, with an increasing
number of nonzero elements in the preconditioner as the iterations converge. The
storage associated with our iterative approach is proportional to the number of
nonzeros in the original matrix, not its factorization.

2 DASA with exact subproblems

We first summarize the statement of DASA as given (for example) in [12] for
problems of the form:

max min L(A,x), (2.1)

bY x>0

where £ : R™ x R™ — R. We assume that £(A,x) is concave in A for each fixed
x € R™, uniformly strongly convex in x for each fixed A € R™, and continuously
differentiable. By strong convexity in x, we mean that there exists a constant « > 0
such that

(vw'c()‘;}I) - vwﬁ()‘ax)) (y - X) > a”y - X||27

where « is independent of A, x, and y, and || - || denotes the Euclidean norm.
If BC {1,2,...,n}, let xp be the subvector of x consisting of those components

x; associated with ¢ € B. Two different functions enter into the statement of the
DASA.:

Lp(A) = min £(A,x) and £%(A) = min £(A, x). (2.2)
xp >0 xp=0

In carrying out the minimizations in (2.2), the components of x corresponding to
indices in the complement of B are unconstrained. By the strong convexity of
L(A, ), there exists a unique minimizer x(\, B) over the set xg > 0, for each
choice of A and B. Since L£(A,x) is strongly convex in x and continuously differ-
entiable, x(\, B) depends continuously on A [12]. The unique minimizer of (2.1)
corresponding to B = {1,2,...,n} in (2.2) is denoted x(A). We let L(\) denote
the dual function L£(\,x(X)):

LX) =LA, x(N) = I)?ZII(} LN, x).



The Dual Active Set Algorithm and the Iterative Solution of Linear Programs 97

In the DASA, we start from an arbitrary Ay and generate a finite sequence
of iterates. If Aj denotes the current iterate (initially & = 0), then either Ag
maximizes the dual function and we stop, or we move to the next iterate Agy1
using a finite sequence of subiterates vo = A, V1, V2, ... . The algorithmic steps
are the following:

Dual Active Set Algorithm (with line search)

e Convergence test: If A\; maximizes the dual function, then stop.

e Dual initialization: Set j =0, vy = A, By = {i : ;(Ar) = 0}.

e Dual subiteration:

wj € arg m)z\ixﬁ%j (A) and v € arg max ]L’B]. (A).
Ac vij,wj
If there are multiple maxima on the line segment [v;, w;] connecting v; and
wj, then v;; should be the point closest to v;.
e Constraint deletion:

Bjy1 ={i € Bj:y; =0, (VoL(Vjt1,¥))i > 0} where y =x(v;41,B;).
e Stopping criterion: If Ly, (V1) = LOB], (wj), then increment k, set Ay =

vjt+1, and go to convergence test. Otherwise, increment j and continue the
dual subiteration.

In [12] we prove the following:

Theorem 2.1 Assume that L(A,x) is uniformly strongly convez in x for each
fized X € R™, concave in X for each fized x € R"™, and continuously differentiable.
If in each step of the DASA, a mazimizer w; in the dual subiteration exists, then
the DASA generates a solution of (2.1) in a finite number of iterations.

The proof in [12] reveals that for each j, Bj;1 is strictly contained in B; until the
stopping criterion is satisfied.

3 DASA with inexact subproblems

In the previous section, we assumed the subproblems in the DASA were solved
exactly, and we obtained convergence in a finite number of steps. In an iterative
implementation, the solution of the subproblems are approximated, and conver-
gence occurs in the limit (possibly an infinite number of steps). One approach for
achieving guaranteed (monotone) convergence is to begin the dual subiteration with
a steepest ascent step, and in subsequent subiterations, compute a maximizer of
L’OB], (A) with sufficient accuracy to ensure ascent. More precisely, if R(\, g) denotes
the ray emanating from A in the direction g:

R(A,8) ={A+ag:a>0},

then the definitions of w; and v;1; in the dual subiteration should be revised to
the following;:

j =0: A 1
Case j =0 vy € arg AER(SQI7%X£(A;¢))£BO( ) (3.1)
Case j >0: Find w; such that E%j (wj) > L’OB]_ (V)
and choose Vi1 € arg r[nax ]EBJ. A) (3.2)
AC|vj,wj

By [4, Theorem 2.1], VL(Ag) = VAL(A, x) evaluated at x = x(Ag).
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The stopping criterion in the DASA is expressed in terms of the maximizer w;
of Lp;. In the iterative version of DASA, we only approximate w;; since w; is not
available, a different stopping criterion is needed. We have found that the following
criterion works well in practice: Given a fixed scalar § € (0, 1), stop when

IVLE; ()|l < OIVL@ 1)l (3.3)

By the “iterative DASA” we mean DASA with the dual subiteration replaced by
(3.1)—(3.2) and with stopping criterion replaced by (3.3). In more detail, the algo-
rithm is the following:

Iterative Dual Active Set Algorithm (with line search)
e Convergence test: If [|[VL(A)|| is sufficiently small, then stop.
e Dual initialization: Set j =0, vy = A, By = {i : ;(Ar) = 0}.
e Dual subiteration:

C j=0: € Lo (A
ase J vy © arg AeR(g%XL(Ak)) 50(Y)

Case j >0: Find w; such that ﬁ%j (wj) > LOB], (V)

and choose vy € arg I[nax ]ﬁBj (N)
A€y ,wj

e Constraint deletion:
Bj+1 = {Z S Bj Y = 0, (Vzﬁ(uj+1,y))i > 0} Where y = X(Vj+1,Bj).

e Stopping criterion: If [|[VLp, (vj11)|| < 0||VL(vj11)|l, go to convergence
test. Otherwise, increment 5 and continue the dual subiteration.

If the w; in the dual subiteration are generated by steepest ascent or conjugate
gradients or preconditioned conjugate gradients, the gradients VLp, (v;) tend to
zero, as j tends to infinity, and the stopping criterion is eventually satisfied (except
when VL(v;) tends to zero, in which case the iterates approach a maximizer of £).
We assume that the iterative method used in the dual subiteration has the property
that the gradients VLp; (v;) tend to zero as j tends to infinity.

Theorem 3.1 Assume that L(\,X) is uniformly strongly convez in x for each
fixed X € R™, concave in X for each fived x € R", and twice continuously dif-
ferentiable in A and x. If for some iterate A, the associated level set S of the
dual function is compact, then all the succeeding iterates of the iterative DASA are
contained in S and each convergent subsequence converges to a solution of (2.1).

Proof Without loss of generality, suppose that S is the level set associated
with the starting guess Ag. We divide the proof into 8 steps.

I. Boundedness of x(A), A € S:
Given w € R", let z = x(m) denote the associated minimizer in the dual function:

L(mw,z) = I}{lzigﬁ(ﬂ',x),
and let xgp = x(Ap) denote the dual function minimizer associated with Ag. Since

the constraint x > 0 defines a convex set, the first-order optimality conditions for
z and x¢ yield:

V.L(m,z)(xo —2z) >0 and V,L(Ao,X0)(z —%0) >0
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After adding and rearranging these inequalities, and utilizing the strong convexity
assumption, we obtain:

al|lz — xo|| < |V L(mw,x0) — Vi L( Ao, X0)||- (3.4)

Since V,L(A,xp) is a continuous function of A, it follows from (3.4) that z is
uniformly bounded, independent of the choice of 7w € S.

II. Continuity of the dual function and Lipschitz continuity on S:
Given 7 and 72 € S, let z; = x(7;), i = 1,2, denote the associated minimizers in
the dual function. Similar to (3.4), we have

al|lzy — z2]] < ||VeL(mw1,22) — Vo L(72,22)||. (3.5)

Since L is twice continuously differentiable, it follows that the minimizer x(7) is
a continuous function of mr, and hence, the dual function L£(7w) = L(m,x(7)) is
a continuous function of 7. If w € &, then z» lies in a bounded set by step I;
consequently, by (3.5) there exists a constant ¢, independent of w1 and 7y € S,
such that

|21 — 22| < cl|m1 — 2. (3.6)

III. Lipschitz continuity of the dual gradient:
Since VL(A) = VAL(A, x) evaluated at x = x(\) [4, Theorem 2.1], we have

V,C(ﬂ'l) - Vﬁ(ﬂ'z) = V,\E(Wl,Z1) - V,\ﬁ(ﬂ'z,z2).

Utilizing the Lipschitz estimate (3.6) and the fact that £(\, x) is twice continuously
differentiable in A and x, we conclude that there exists a constant ¢, independent
of w1 and o € S, such that

IVL(m1) = VL(ms)|| < cffmry — ma].

In a similar fashion, VLpg is Lipschitz continuous over S for any choice of B.
Since B is a subset of a finite set, there are a finite number of choices for B, and a
constant ¢y can be chosen so that

IVLp(m1) = VLp(m2)|| < collmy — |

for all w1 and 7y € S, and for all choices of B C {1,2,...,n}.

IV. Monotonicity of the iterates:
This property follows by exactly the same analysis used to establish monotonicity in
the DASA itself. The analysis is repeated for completeness: Recall that x; = x(\y,)
is the solution to the problem

min L(Ag, x).
x>0

Since the first-order optimality conditions are both necessary and sufficient for
optimality when L(A,+) is convex (see [17, Chap. 7]), we have

ﬁ()\k) = E(Ak,xk) = ﬁBO ()\k) = ﬁBO (Vo). (37)
For the same reason, we have
EB]' (Vj+1) = EB]'+1 (Vj+1) (38)

for each j > 0. Since v, is obtained from a line search, L£p,(v;) < Lp; (Vj11).
Combining this with (3.7) and (3.8) gives

L(Ak) < Lp;(vj) < Lp;(Vjt1) = LBy (Vi) (3.9)
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for each j > 0. This implies that
LAk) < Loy (Art1) < L(Ag41), (3.10)

where C}, is the final set B; in the subiteration. The final inequality in (3.10) is
due to the fact that the optimization problem associated with the evaluation of
L(Ag+1) involves more constraints than the corresponding optimization problem
for ,Cck (Ak+1).

V. Convezxity of S and concavity of the dual function:
Since L£(A,x) is concave in A for each fixed x, we have, for each 6 € [0, 1] and
and m, € R™,

LOm1+(1—0)mw) = L(Ow + (1 —0)mwa,xp)
0L(my,x9) + (1 — 0)L(m2, xp), (3.11)

where xyp = x(fm; + (1 —6)m2). Since x = x(7) is the minimizer of the Lagrangian
L(m,x) over x > 0, it follows that

L(mi,xp) > L(7,x(m;)) = L(m;), i=1,2.
Combining this with (3.11) gives
L(Om1 + (1 —0)mws) > 0L(mw1) + (1 — ) L(s)

for each 8 € [0, 1]. Thus the dual function is concave, and the level set S is convex.

In the same fashion, the function Lp is concave for any choice of the index set B.
VI. Strict ascent of the dual function:

Define g = VL(Ag). Since

\Y

d .
LAk +s8)| = VL8 = VLW,

o s=0
it follows that £(Ar + sg) > L(Ag) for s > 0 sufficiently small. Let 5 be the largest
s for which A + sg € S for all s € [0,5]. We now show that § > 1/¢y. The proof

is by contradiction. Suppose § < 1/¢y. By the fundamental theorem of calculus,

LAk + sg) = L(Ag) -I-/ VL(A, + tg)gdt.
0
Adding and subtracting g = VL(Ag) from the VL(Ay + tg) factor gives
LAk +58) = L(Ag) + s|[VL)|* + / [VL(A, +tg) — VL(Ag)]gdt.  (3.12)
0

Since A\ +tg € S for t € [0, 5], and VL is Lipschitz continuous on § (see III), we
have

/Os[Vﬁ(/\k +1g) — VL(Ay)]gdt < /Os IVL(AL + tg) = VL(A)[[gldt

IN

| otlieliar = Gens? IV QDI (313)
for each s € [0,5]. Combining (3.12) and (3.13) gives
L+ 58) > LOW) + (5 — 50V P (3.14)
for each s € [0, 3]. If 5 < 1/co, then (3.14) implies that
LA+ 58) > L) + SIVEAWIP (3.15)
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for each s € [0, 3].

Due to the continuity of £ (see II), (3.15) yields L(Ag + sg) > L(Ag) for s near
5. This violates the fact that s was the largest s such that Ap + sg € S. Hence,
we have a contraction and our original supposition § < 1/¢ cannot hold. In other
words, § > 1/cy. Hence, (3.15) holds for all s € [0,1/co].

VII. Strict ascent of Lp,:
We now derive a similar lower bound for Lp,. In IV we observe that L(A;) =
LB, (Ar). Again, by [4, Theorem 2.1] we have VLpg, (Ax) = VAL(Ag,y) where y is
the solution to

min L(Ag, X). (3.16)

XBg >
As observed in (3.7), xx = x(Ag) achieves the minimum in (3.16). Consequently,
y = xi and VL(Ag) = VLp, (Ag). Combining the fact that VLp is Lipschitz con-
tinuous over S with Lipschitz constant ¢y, that L(A;) = Lp,(Ak), that VL(Ag) =
VLB, (Ar), and that Lp,(A) < L(A) for each A € R™, we conclude that Lp, has a
lower bound analogous to that of £ in (3.15):

L, + VL) > L) + SIVEAL) (3.17)

whenever s € [0,1/co]. In the dual subiteration, v1 maximizes Lp, along the ray
R(Ak, VL(AL)). Hence, taking s = 1/c¢p in (3.17) yields the lower bound

Coy(v1) > L) + %%IIVE(A;@)II? (3.18)

VIII. Convergence:
Utilizing the lower bound (3.18) in the monotonicity inequalities IV gives:

1 ‘
LAkt1) 2 L(Ak) + 2—COIIV£(>\:¢)||2-

Summing this inequality over k, we have

k

L) > L) + 5 S IVEQ)IP. (3.19)

Co =0

Since S is compact and £ is continuous, £ attains a finite-valued maximum on S.
Hence, the gradients VL(A;) in (3.19) tend to zero. By the concavity of £, the
maximizers of £ coincide with the points where the gradient vanishes. Hence, by
the continuity of the gradients of £, any convergent subsequence of the iterates
approaches a maximizer of £, and the proof is complete. O

4 LPs and proximal approximations

Now let us consider the linear programming problem
Tx subject to Ax=b, x>0, (4.1)

where b € R™, ¢ € R", and A is an m by n matrix. In this case, the associated
Lagrangian has the following special form:

L x) =c'x+ AT (b— Ax).
In this linear setting, £ does not satisfy the strong convexity assumption used in
the previous section. One way to deal with the lack of strict convexity is to examine

the DASA in the limit, as a strong convexity parameter tends to zero. This limit
analysis leads to the LPDASA, as presented in [12], in which the minimization in

min ¢
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the DASA subiteration is replaced by a projection. A related approach for handling
the lack of strong convexity in the Lagrangian, which we discuss here, involves a
proximal regularization. In the proximal approach, additional “small” terms are
added to the Lagrangian to achieve suitable strong convexity. Let § and ¢ denote
small positive parameters, and let y € R™ and p € R denote the proximal “shift”
vectors. Typically, the shift vectors are zero before any estimate of the primal or
dual solutions are known. After approximations to the primal or dual solutions
have been determined, y or g might be replaced by these approximations. There
is a substantial body of research on proximal point methods. References include
[7, 16, 19, 20, 22, 23, 24, 26].
The proximal Lagrangian £, corresponding to (4.1) is

€ 0
Lp(Ax) = Sllx — ylI> - lIA = pll> +c"x +AT(b - Ax), (4.2)

and the proximal dual is
Lp(A) = m>ir(} Lp(A, x).

If § = € =0, then the proximal Lagrangian coincides with the original Lagrangian.
If y and p are chosen to be a solution x* and a dual multiplier A* for the original
LP (4.1), then for any choice of § and ¢, A = A" maximizes the proximal dual
function and x = x* is the associated minimizer in the proximal Lagrangian.

Observe that the DASA can be applied to the proximal Lagrangian (4.2) since
Lp(A,x) is concave in A and strongly convex in x. In this LP setting, w; in the
DASA subiteration is the solution A of the following linear equation:

(ApAl +oDX =op + Apcp +e(b — Apyyp), (4.3)

where o = ¢, F' (the free set) is the complement of B; (the bound set), and Ap is
the submatrix of A corresponding to the column indices in F'. We now show that
the inverse of the matrix in (4.3) is approximately a projection matrix; consequently,
the proximal iterates generated by the solution of (4.3) track, in a sense, the dual
subiterates generated in [12] by a projection.

Without loss of generality, we can assume that the columns of A are linearly
independent; that is, there exists a matrix L with linearly independent columns such
that LLT = ApAJ where A], = QL' is the factorization of A}, into the product
of a matrix with orthonormal columns and a triangular matrix with nonzero row.
The nonzero rows of LT, or equivalently, the nonzero columns of L are trivially
independent due to the triangular structure of L.

Returning to the matrix in (4.3), the matrix modification formula [8] gives

(I4+0'ArpAL) ' =T—0'Ar(I+0c7"ALAF) 1AL (4.4)
Recall the geometric series expansion
I+C)t=Cct-C?+C?~...,

which is valid when C is invertible and the spectral radius of C! is less than one.
Using this in (4.4) with C = ¢ ' AL A, we see that when o is sufficiently small,

(I+0 ' ApAL) ' =1 Ap[(AFAR) P —o(ATAR) 2+ 0% (ALAR) 2 — .. ]AL.

Since the matrix P = I — Ap(ALAr) 'AL projects a vector into the space or-
thogonal to the columns of A, and since o is typically a small number, it follows
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Table 1 LPs associated with the quadratic assignment problem

Problem Rows Columns Nnz
qap08 912 1632 7296
qapl2 3192 8856 38304
qapls 6330 22275 94,950
nug05 210 225 1050
nug06 372 486 2232
nug07 602 931 4214
nug08 912 1632 7296
nugl2 3192 8856 38,304

nugl) 6330 22275 94,950
nug20 15240 72600 304,800
nug30 52260 379350 1,567,800

that .
(ApAL +oD)7 '~ —P.
o

Thus the solution of (4.3) is nearly proportional to the projection of the right side
into the space orthogonal to the columns of Af.

5 Numerical results

We compare CPLEX (V7.0.0) with our iterative implementation of the LP-
DASA using the SSOR preconditioned conjugate gradient scheme of Bjoérck and
Elfving [3] to solve (4.3), or equivalently, to ascend the function L’OB], in the dual
subiteration. The test problems, derived from lower bounds for the quadratic as-
signment problem, are available at several web sites including;:

http://www.research.att.com/~mgc
http://www.netlib.org/lp
http://www.cise.ufl.edu/~davis
http://www.math.ufl.edu/~coap

A description of the matrices in these problems is given in Table 1. The column
labeled Nnz gives the number of nonzeros in A. The problems qap08, qapl2, and
qaplb, found at the netlib site, appear to be permutations of the problems nug08,
nugl2, and nugl5 found at Rescende’s site.

Run time statistics for CPLEX dual simplex and CPLEX barrier routines, on
an IBM RS6000 computer, appear in Table 2. There was insufficient memory to
solve the nug30 problem using either the barrier method or the simplex method.
The barrier method also ran out of memory on nug20. The statistics for the dual
simplex method on nug20, flagged by *, were estimated in the following way: After
974,000 seconds and 418,000 iterations, CPLEX dual simplex achieved the relative
error .15 in the cost. In the CPLEX run for nuglh, 97.6% of the run time was
spent after the relative cost error reached .15. By using the same constant of
proportionality in nug20, we arrived at the estimates for time and iterations given
in Table 2.

Run time statistics for iterative LPDASA appear in Table 3. In these experi-
ments, we solved the problems to 3 and 7-digit accuracy. That is, when the primal
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Table 2 CPLEX dual simplex and barrier: time (seconds) and iterations (its)

Problem Simplex Barrier Simplex Barrier
Name (secs)  (secs) (its) (its)
qap08 8.6 2.6 4,924 8
qapl2 1,568 95 102,310 12
qaplb 84,606 750 1,538,300 15
nug05 .03 11 100 8
nug06 19 .36 400 8
nug07 1.7 1.0 1,700 9
nug08 8.4 2.6 4,900 8
nugl? 4,525 95 284,788 12
nugls 150,128 648 265,0179 11
nug20  40,248,000* 7?77 17,273,000% 77?
nug30 777 777 777 777

Table 3 Iterative LPDASA: time, iterations, 3 and 7-digit accuracy

Problem 3-digit 7-digit 3-digit 7-digit

Name (secs) (secs) (its) (its)
qap08 T 6.3 542 6,000
qapl2 56 427 12,600 103,300
gaplh 187 1,339 17,400 173,200
nug05 2 5 900 2,400
nug06 7 1.9 1,600 5,100
nug07 1.5 39.5 2,200 67,100
nug08 3.5 74 3,100 7,100
nugl2 49 399 10,800 96,800
nuglh 282 1,463 27,300 152,200
nug20 832 13,870 25,100 480,200

nug30 16,200 215,000 68,600 1,007,300

and dual solutions were normalized to be unit vectors, the Kuhn-Tucker conditions
were satisfied with a relative error, in the L norm, of either 1072 or 10~7. In
comparing Tables 2 and 3, we see that the simplex method is competitive only for
the very smallest problems. Iterative LPDASA achieved the best computing time
for 3-digit accuracy. For 7-digit accuracy and moderate size problems (up to 6330
rows), the barrier method had the lowest computing time. For larger problems,
however, there was insufficient memory for the factorization used in the barrier
method.

The solid line of Figure 1 plots the relative error versus computing time (sec-
onds) for iterative LPDASA and test problem gapl2 (3192 rows). Observe that a
low accuracy solution is obtained relatively quickly: 2-digit accuracy in 13 seconds,
3-digit accuracy in 56 seconds. For between 4 and 8 digits, the cpu time increases
more rapidly, and about 380 seconds are needed to boost the accuracy from 4 to
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Figure 1 Iterative LPDASA time (solid) and simplex scaled time (dashed)
versus relative error for qapl2

8 digits. For more than 8 digits, the cpu time increases more slowly—about 81 sec-
onds are needed to increase accuracy from 8 to 12 digits. Roughly, we observe the
following behavior in the iterations: For between 4 and 8 significant digits, much
of the cpu time is consumed identifying the active constraints. After 8 significant
digits have been achieved, the active constraints are fairly well identified, and the
iterative method is essentially solving a linear system with ever increasing accuracy.
The convergence of both the simplex and barrier methods is much different
from the convergence of iterative LPDASA shown in Figure 1. For comparison, we
scale the computing time in the CPLEX dual simplex run and plot with a dashed
line in Figure 1 the relative cost error versus scaled time. Observe that 3-digit
accuracy is achieved after 76% of the run, while in iterative LPDASA, 3-digit error
is achieved after 10% of the run. With the simplex method, the convergence speed
is relatively slow until the very end of the run when there is a huge improvement
in accuracy. Iterative LPDASA exhibits steady convergence throughout the run.
The set of test problems used in this paper has the property that A is relatively
sparse while factorizations of A or AAT are relatively dense. For example, A in
qapl5 is 99.93% zero, while if AAT is ordered using approximate minimum degree
[1], then the Cholesky factor is only 53.36% zero. Hence, as the size of the problems
increases, a point is reached where it is no longer possible to store the Cholesky
factor. For problems like these with relatively dense factors, the time to factor the
matrix grows proportional to m?, the number of rows of A cubed. Hence, even if it
were possible to store factors of the larger matrices in this test set, the computing
time should become quite large. For comparison, with iterative LPDASA and 7-
digit accuracy, the ratio of running times for nug30 and nug20 is 15.6, while the
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ratio of row dimensions is 3.4. This implies that running time grew proportional
to m?-2. Thus iterative LPDASA was able to exploit the sparsity of A in order to
achieve a computing time which grew more slowly with m than CPLEX barrier;
the number of nonzeros in A grows more slowly than m?, which is reflected in a
computing time that grows more slowly than m3.

In these experiments with iterative LPDASA, the matrix A was stored in a
standard sparse matrix format, the same format used in Malab. Note though
that iterative schemes such as conjugate gradients, diagonal preconditioned conju-
gate gradients, or SSOR preconditioned conjugate gradients, applied to (4.3), only
involves the product of submatrices of A and a vector. Hence, it is possible to im-
plement iterative LPDASA without storing A. In problems like qapxx and nugxx,
where the product of submatrices of A with a vector amount to summing various
components of the vector, these coded products should run much quicker than a
product which is implemented by looking up coefficients stored in a sparse format.

In summary, iterative LPDASA is relatively efficient for certain classes of linear
programming problems. In the test set investigated in this paper, iterative LDASA
achieved the best computing time for up to 3 digit accuracy, when compared to
CPLEX dual simplex and CPLEX barrier. Although the iterative approach could
be used to compute high accuracy solutions, CPLEX barrier was more efficient
for problems of size up to 6330 rows (whose factorization also fit in the available
memory). With iterative LPDASA, we solved problems with up to 52260 rows. In
the current implementation of our code, we need enough memory to store A itself
(not a factorization of A or AAT). By coding the products of submatrices of A
with vectors, this memory constraint could be removed, and it should be possible
to solve problems in space proportional to that required by the primal and dual
solutions.
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