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Abstra
t. In this paper, we examine an iterative implementation of

the Dual A
tive Set Algorithm, fo
using on its appli
ation to linear

programs su
h as those asso
iated with lower bounds to the quadrati


assignment problem.

1 Introdu
tion

In [9, 10, 12, 13, 14℄ we present the Dual A
tive Set Algorithm (DASA) and

prove its 
onvergen
e both for linear programming and for optimization problems

satisfying a stri
t 
onvexity assumption. In [14℄ a lo
al quadrati
 
onvergen
e result

for a \full step" version of this algorithm is given in the 
ontext of optimal 
ontrol,

while line sear
h versions of the algorithm for general optimization problems appear

in [9, 10, 12, 13℄. Also, in [2℄ Bergounioux and Kunis
h establish 
onvergen
e for a

full step version in quadrati
 optimization problems where the matrix in the 
ost

fun
tion has a diagonal dominan
e property.

In this paper, we examine iterative implementations of the DASA. In the earlier

work, it was assumed that the subproblems were solved exa
tly in ea
h step, in

whi
h 
ase 
onvergen
e to an optimal solution is obtained in a �nite number of steps.

In an iterative implementation, 
onvergen
e is a
hieved in the limit. We illustrate

the 
onvergen
e properties of the iterative s
hemes using linear programming (LP)

test problems, fo
using in parti
ular on LPs asso
iated with lower bounds for the

quadrati
 assignment problem (see [6, 15, 21℄). The la
k of stri
t 
onvexity in the

LP setting is handled using proximal te
hniques.

Earlier resear
h on iterative methods for the solution of linear programming

problems using proximal te
hniques in
ludes that of [5, 18, 25℄. Some su

ess has

been reported with these iterative methods when applied to randomly generated
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problems. These methods did not perform as well when applied to test problems

arising in appli
ations, su
h as those 
ontained in the Netlib test suite. In our

iterative approa
h, we employ an SSOR pre
onditioned 
onjugate gradient iteration

whi
h we show in [11℄ 
orre
tly handles the singularities often present in LPs arising

in pra
ti
e. By utilizing this iterative solver within the DASA, we are able to handle

the 
hanges in a
tive set in a way similar to that of the DASA algorithm itself, for

whi
h �nite 
onvergen
e holds.

Even though 
onvergen
e is not �nite for the iterative version of DASA, the

algorithm is rather eÆ
ient in some 
ases. For LPs with a sparse matrix and sparse

fa
torization, a fa
torization-based approa
h su
h as the simplex method or an

interior point method or a multilevel LPDASA should be preferable. On the other

hand, for a sparse LP whose fa
torization is relatively dense, an iterative approa
h


an be relatively eÆ
ient. In this 
ase, multiplying a ve
tor by the matrix is mu
h

faster than either fa
toring the matrix or solving a fa
tored system.

Another iterative approa
h [21℄, whi
h has been applied with su

ess to the

linear programs asso
iated with the quadrati
 assignment problem, involves us-

ing a pre
onditioned 
onjugate gradient method to evaluate the sear
h dire
tions

generated by an interior point method. Note though that this pre
onditioning te
h-

nique involves a partial fa
torization of the interior point matrix, with an in
reasing

number of nonzero elements in the pre
onditioner as the iterations 
onverge. The

storage asso
iated with our iterative approa
h is proportional to the number of

nonzeros in the original matrix, not its fa
torization.

2 DASA with exa
t subproblems

We �rst summarize the statement of DASA as given (for example) in [12℄ for

problems of the form:

max

�

min

x�0

L(�;x); (2.1)

where L : R

m

�R

n

! R. We assume that L(�;x) is 
on
ave in � for ea
h �xed

x 2 R

n

, uniformly strongly 
onvex in x for ea
h �xed � 2 R

m

, and 
ontinuously

di�erentiable. By strong 
onvexity in x, we mean that there exists a 
onstant � > 0

su
h that

(r

x

L(�;y)�r

x

L(�;x)) (y � x) � �ky � xk

2

;

where � is independent of �, x, and y, and k � k denotes the Eu
lidean norm.

If B � f1; 2; : : : ; ng, let x

B

be the subve
tor of x 
onsisting of those 
omponents

x

i

asso
iated with i 2 B. Two di�erent fun
tions enter into the statement of the

DASA:

L

B

(�) = min

x

B

�0

L(�;x) and L

0

B

(�) = min

x

B

=0

L(�;x): (2.2)

In 
arrying out the minimizations in (2.2), the 
omponents of x 
orresponding to

indi
es in the 
omplement of B are un
onstrained. By the strong 
onvexity of

L(�; �), there exists a unique minimizer x(�; B) over the set x

B

� 0, for ea
h


hoi
e of � and B. Sin
e L(�;x) is strongly 
onvex in x and 
ontinuously di�er-

entiable, x(�; B) depends 
ontinuously on � [12℄. The unique minimizer of (2.1)


orresponding to B = f1; 2; : : : ; ng in (2.2) is denoted x(�). We let L(�) denote

the dual fun
tion L(�;x(�)):

L(�) = L(�;x(�)) = min

x�0

L(�;x):
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In the DASA, we start from an arbitrary �

0

and generate a �nite sequen
e

of iterates. If �

k

denotes the 
urrent iterate (initially k = 0), then either �

k

maximizes the dual fun
tion and we stop, or we move to the next iterate �

k+1

using a �nite sequen
e of subiterates �

0

= �

k

, �

1

, �

2

; : : : . The algorithmi
 steps

are the following:

Dual A
tive Set Algorithm (with line sear
h)

� Convergen
e test: If �

k

maximizes the dual fun
tion, then stop.

� Dual initialization: Set j = 0, �

0

= �

k

, B

0

= fi : x

i

(�

k

) = 0g.

� Dual subiteration:

!

j

2 arg max

�

L

0

B

j

(�) and �

j+1

2 arg max

�2[�

j

;!

j

℄

L

B

j

(�):

If there are multiple maxima on the line segment [�

j

;!

j

℄ 
onne
ting �

j

and

!

j

, then �

j+1

should be the point 
losest to �

j

.

� Constraint deletion:

B

j+1

= fi 2 B

j

: y

i

= 0; (r

x

L(�

j+1

;y))

i

> 0g where y = x(�

j+1

; B

j

):

� Stopping 
riterion: If L

B

j

(�

j+1

) = L

0

B

j

(!

j

), then in
rement k, set �

k

=

�

j+1

, and go to 
onvergen
e test. Otherwise, in
rement j and 
ontinue the

dual subiteration.

In [12℄ we prove the following:

Theorem 2.1 Assume that L(�;x) is uniformly strongly 
onvex in x for ea
h

�xed � 2 R

m

, 
on
ave in � for ea
h �xed x 2 R

n

, and 
ontinuously di�erentiable.

If in ea
h step of the DASA, a maximizer !

j

in the dual subiteration exists, then

the DASA generates a solution of (2:1) in a �nite number of iterations.

The proof in [12℄ reveals that for ea
h j, B

j+1

is stri
tly 
ontained in B

j

until the

stopping 
riterion is satis�ed.

3 DASA with inexa
t subproblems

In the previous se
tion, we assumed the subproblems in the DASA were solved

exa
tly, and we obtained 
onvergen
e in a �nite number of steps. In an iterative

implementation, the solution of the subproblems are approximated, and 
onver-

gen
e o

urs in the limit (possibly an in�nite number of steps). One approa
h for

a
hieving guaranteed (monotone) 
onvergen
e is to begin the dual subiteration with

a steepest as
ent step, and in subsequent subiterations, 
ompute a maximizer of

L

0

B

j

(�) with suÆ
ient a

ura
y to ensure as
ent. More pre
isely, if R(�;g) denotes

the ray emanating from � in the dire
tion g:

R(�;g) = f�+ �g : � � 0g;

then the de�nitions of !

j

and �

j+1

in the dual subiteration should be revised to

the following:

Case j = 0 : �

1

2 arg max

�2R(�

k

;rL(�

k

))

L

B

0

(�) (3.1)

Case j > 0 : Find !

j

su
h that L

0

B

j

(!

j

) � L

0

B

j

(�

j

)

and 
hoose �

j+1

2 arg max

�2[�

j

;!

j

℄

L

B

j

(�) (3.2)

By [4, Theorem 2.1℄, rL(�

k

) = r

�

L(�

k

;x) evaluated at x = x(�

k

).
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The stopping 
riterion in the DASA is expressed in terms of the maximizer !

j

of L

B

j

. In the iterative version of DASA, we only approximate !

j

; sin
e !

j

is not

available, a di�erent stopping 
riterion is needed. We have found that the following


riterion works well in pra
ti
e: Given a �xed s
alar � 2 (0; 1), stop when

krL

B

j

(�

j+1

)k � �krL(�

j+1

)k: (3.3)

By the \iterative DASA" we mean DASA with the dual subiteration repla
ed by

(3.1){(3.2) and with stopping 
riterion repla
ed by (3.3). In more detail, the algo-

rithm is the following:

Iterative Dual A
tive Set Algorithm (with line sear
h)

� Convergen
e test: If krL(�

k

)k is suÆ
iently small, then stop.

� Dual initialization: Set j = 0, �

0

= �

k

, B

0

= fi : x

i

(�

k

) = 0g.

� Dual subiteration:

Case j = 0 : �

1

2 arg max

�2R(�

k

;rL(�

k

))

L

B

0

(�)

Case j > 0 : Find !

j

su
h that L

0

B

j

(!

j

) � L

0

B

j

(�

j

)

and 
hoose �

j+1

2 arg max

�2[�

j

;!

j

℄

L

B

j

(�)

� Constraint deletion:

B

j+1

= fi 2 B

j

: y

i

= 0; (r

x

L(�

j+1

;y))

i

> 0g where y = x(�

j+1

; B

j

):

� Stopping 
riterion: If krL

B

j

(�

j+1

)k � �krL(�

j+1

)k, go to 
onvergen
e

test. Otherwise, in
rement j and 
ontinue the dual subiteration.

If the !

j

in the dual subiteration are generated by steepest as
ent or 
onjugate

gradients or pre
onditioned 
onjugate gradients, the gradients rL

B

j

(�

j

) tend to

zero, as j tends to in�nity, and the stopping 
riterion is eventually satis�ed (ex
ept

when rL(�

j

) tends to zero, in whi
h 
ase the iterates approa
h a maximizer of L).

We assume that the iterative method used in the dual subiteration has the property

that the gradients rL

B

j

(�

j

) tend to zero as j tends to in�nity.

Theorem 3.1 Assume that L(�;x) is uniformly strongly 
onvex in x for ea
h

�xed � 2 R

m

, 
on
ave in � for ea
h �xed x 2 R

n

, and twi
e 
ontinuously dif-

ferentiable in � and x. If for some iterate �

k

, the asso
iated level set S of the

dual fun
tion is 
ompa
t, then all the su

eeding iterates of the iterative DASA are


ontained in S and ea
h 
onvergent subsequen
e 
onverges to a solution of (2:1).

Proof Without loss of generality, suppose that S is the level set asso
iated

with the starting guess �

0

. We divide the proof into 8 steps.

I. Boundedness of x(�), � 2 S:

Given � 2 R

n

, let z = x(�) denote the asso
iated minimizer in the dual fun
tion:

L(�; z) = min

x�0

L(�;x);

and let x

0

= x(�

0

) denote the dual fun
tion minimizer asso
iated with �

0

. Sin
e

the 
onstraint x � 0 de�nes a 
onvex set, the �rst-order optimality 
onditions for

z and x

0

yield:

r

x

L(�; z)(x

0

� z) � 0 and r

x

L(�

0

;x

0

)(z � x

0

) � 0
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After adding and rearranging these inequalities, and utilizing the strong 
onvexity

assumption, we obtain:

�kz� x

0

k � kr

x

L(�;x

0

)�r

x

L(�

0

;x

0

)k: (3.4)

Sin
e r

x

L(�;x

0

) is a 
ontinuous fun
tion of �, it follows from (3.4) that z is

uniformly bounded, independent of the 
hoi
e of � 2 S.

II. Continuity of the dual fun
tion and Lips
hitz 
ontinuity on S:

Given �

1

and �

2

2 S, let z

i

= x(�

i

), i = 1; 2, denote the asso
iated minimizers in

the dual fun
tion. Similar to (3.4), we have

�kz

1

� z

2

k � kr

x

L(�

1

; z

2

)�r

x

L(�

2

; z

2

)k: (3.5)

Sin
e L is twi
e 
ontinuously di�erentiable, it follows that the minimizer x(�) is

a 
ontinuous fun
tion of �, and hen
e, the dual fun
tion L(�) = L(�;x(�)) is

a 
ontinuous fun
tion of �. If � 2 S, then z

2

lies in a bounded set by step I;


onsequently, by (3.5) there exists a 
onstant 
, independent of �

1

and �

2

2 S,

su
h that

kz

1

� z

2

k � 
k�

1

� �

2

k: (3.6)

III. Lips
hitz 
ontinuity of the dual gradient:

Sin
e rL(�) = r

�

L(�;x) evaluated at x = x(�) [4, Theorem 2.1℄, we have

rL(�

1

)�rL(�

2

) = r

�

L(�

1

; z

1

)�r

�

L(�

2

; z

2

):

Utilizing the Lips
hitz estimate (3.6) and the fa
t that L(�;x) is twi
e 
ontinuously

di�erentiable in � and x, we 
on
lude that there exists a 
onstant 
, independent

of �

1

and �

2

2 S, su
h that

krL(�

1

)�rL(�

2

)k � 
k�

1

� �

2

k:

In a similar fashion, rL

B

is Lips
hitz 
ontinuous over S for any 
hoi
e of B.

Sin
e B is a subset of a �nite set, there are a �nite number of 
hoi
es for B, and a


onstant 


0


an be 
hosen so that

krL

B

(�

1

)�rL

B

(�

2

)k � 


0

k�

1

� �

2

k

for all �

1

and �

2

2 S, and for all 
hoi
es of B � f1; 2; : : : ; ng.

IV. Monotoni
ity of the iterates:

This property follows by exa
tly the same analysis used to establish monotoni
ity in

the DASA itself. The analysis is repeated for 
ompleteness: Re
all that x

k

= x(�

k

)

is the solution to the problem

min

x�0

L(�

k

; x):

Sin
e the �rst-order optimality 
onditions are both ne
essary and suÆ
ient for

optimality when L(�; �) is 
onvex (see [17, Chap. 7℄), we have

L(�

k

) = L(�

k

;x

k

) = L

B

0

(�

k

) = L

B

0

(�

0

): (3.7)

For the same reason, we have

L

B

j

(�

j+1

) = L

B

j+1

(�

j+1

) (3.8)

for ea
h j � 0. Sin
e �

j+1

is obtained from a line sear
h, L

B

j

(�

j

) � L

B

j

(�

j+1

):

Combining this with (3.7) and (3.8) gives

L(�

k

) � L

B

j

(�

j

) � L

B

j

(�

j+1

) = L

B

j+1

(�

j+1

) (3.9)
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for ea
h j � 0. This implies that

L(�

k

) � L

C

k

(�

k+1

) � L(�

k+1

); (3.10)

where C

k

is the �nal set B

j

in the subiteration. The �nal inequality in (3.10) is

due to the fa
t that the optimization problem asso
iated with the evaluation of

L(�

k+1

) involves more 
onstraints than the 
orresponding optimization problem

for L

C

k

(�

k+1

).

V. Convexity of S and 
on
avity of the dual fun
tion:

Sin
e L(�;x) is 
on
ave in � for ea
h �xed x, we have, for ea
h � 2 [0; 1℄ and �

1

and �

2

2 R

m

,

L(��

1

+ (1� �)�

2

) = L(��

1

+ (1� �)�

2

;x

�

)

� �L(�

1

;x

�

) + (1� �)L(�

2

;x

�

); (3.11)

where x

�

= x(��

1

+(1� �)�

2

). Sin
e x = x(�) is the minimizer of the Lagrangian

L(�;x) over x � 0, it follows that

L(�

i

;x

�

) � L(�

i

;x(�

i

)) = L(�

i

); i = 1; 2:

Combining this with (3.11) gives

L(��

1

+ (1� �)�

2

) � �L(�

1

) + (1� �)L(�

2

)

for ea
h � 2 [0; 1℄. Thus the dual fun
tion is 
on
ave, and the level set S is 
onvex.

In the same fashion, the fun
tion L

B

is 
on
ave for any 
hoi
e of the index set B.

VI. Stri
t as
ent of the dual fun
tion:

De�ne g = rL(�

k

). Sin
e

d

ds

L(�

k

+ sg)

�

�

�

�

s=0

= rL(�

k

)g = krL(�

k

)k

2

;

it follows that L(�

k

+ sg) � L(�

k

) for s > 0 suÆ
iently small. Let �s be the largest

s for whi
h �

k

+ sg 2 S for all s 2 [0; �s℄. We now show that �s � 1=


0

. The proof

is by 
ontradi
tion. Suppose �s < 1=


0

. By the fundamental theorem of 
al
ulus,

L(�

k

+ sg) = L(�

k

) +

Z

s

0

rL(�

k

+ tg)gdt:

Adding and subtra
ting g = rL(�

k

) from the rL(�

k

+ tg) fa
tor gives

L(�

k

+ sg) = L(�

k

) + skrL(�

k

)k

2

+

Z

s

0

[rL(�

k

+ tg)�rL(�

k

)℄gdt: (3.12)

Sin
e �

k

+ tg 2 S for t 2 [0; �s℄, and rL is Lips
hitz 
ontinuous on S (see III), we

have

Z

s

0

[rL(�

k

+ tg)�rL(�

k

)℄gdt �

Z

s

0

krL(�

k

+ tg)�rL(�

k

)kkgkdt

�

Z

s

0




0

tkgk

2

dt =

1

2




0

s

2

krL(�

k

)k

2

(3.13)

for ea
h s 2 [0; �s℄. Combining (3.12) and (3.13) gives

L(�

k

+ sg) � L(�

k

) + (s�

1

2




0

s

2

)krL(�

k

)k

2

(3.14)

for ea
h s 2 [0; �s℄. If �s < 1=


0

, then (3.14) implies that

L(�

k

+ sg) � L(�

k

) +

s

2

krL(�

k

)k

2

(3.15)
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for ea
h s 2 [0; �s℄.

Due to the 
ontinuity of L (see II), (3.15) yields L(�

k

+ sg) � L(�

k

) for s near

�s. This violates the fa
t that �s was the largest s su
h that �

k

+ sg 2 S. Hen
e,

we have a 
ontra
tion and our original supposition �s < 1=


0


annot hold. In other

words, �s � 1=


0

. Hen
e, (3.15) holds for all s 2 [0; 1=


0

℄.

VII. Stri
t as
ent of L

B

0

:

We now derive a similar lower bound for L

B

0

. In IV we observe that L(�

k

) =

L

B

0

(�

k

). Again, by [4, Theorem 2.1℄ we have rL

B

0

(�

k

) = r

�

L(�

k

;y) where y is

the solution to

min

x

B

0

�0

L(�

k

;x): (3.16)

As observed in (3.7), x

k

= x(�

k

) a
hieves the minimum in (3.16). Consequently,

y = x

k

and rL(�

k

) = rL

B

0

(�

k

). Combining the fa
t that rL

B

is Lips
hitz 
on-

tinuous over S with Lips
hitz 
onstant 


0

, that L(�

k

) = L

B

0

(�

k

), that rL(�

k

) =

rL

B

0

(�

k

), and that L

B

0

(�) � L(�) for ea
h � 2 R

m

, we 
on
lude that L

B

0

has a

lower bound analogous to that of L in (3.15):

L

B

0

(�

k

+ srL(�

k

)) � L(�

k

) +

s

2

krL(�

k

)k

2

(3.17)

whenever s 2 [0; 1=


0

℄. In the dual subiteration, �

1

maximizes L

B

0

along the ray

R(�

k

;rL(�

k

)). Hen
e, taking s = 1=


0

in (3.17) yields the lower bound

L

B

0

(�

1

) � L(�

k

) +

1

2


0

krL(�

k

)k

2

: (3.18)

VIII. Convergen
e:

Utilizing the lower bound (3.18) in the monotoni
ity inequalities IV gives:

L(�

k+1

) � L(�

k

) +

1

2


0

krL(�

k

)k

2

:

Summing this inequality over k, we have

L(�

k+1

) � L(�

0

) +

1

2


0

k

X

j=0

krL(�

j

)k

2

: (3.19)

Sin
e S is 
ompa
t and L is 
ontinuous, L attains a �nite-valued maximum on S.

Hen
e, the gradients rL(�

j

) in (3.19) tend to zero. By the 
on
avity of L, the

maximizers of L 
oin
ide with the points where the gradient vanishes. Hen
e, by

the 
ontinuity of the gradients of L, any 
onvergent subsequen
e of the iterates

approa
hes a maximizer of L, and the proof is 
omplete.

4 LPs and proximal approximations

Now let us 
onsider the linear programming problem

min 


T

x subje
t to Ax = b; x � 0; (4.1)

where b 2 R

m

, 
 2 R

n

, and A is an m by n matrix. In this 
ase, the asso
iated

Lagrangian has the following spe
ial form:

L(�;x) = 


T

x+ �

T

(b�Ax):

In this linear setting, L does not satisfy the strong 
onvexity assumption used in

the previous se
tion. One way to deal with the la
k of stri
t 
onvexity is to examine

the DASA in the limit, as a strong 
onvexity parameter tends to zero. This limit

analysis leads to the LPDASA, as presented in [12℄, in whi
h the minimization in
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the DASA subiteration is repla
ed by a proje
tion. A related approa
h for handling

the la
k of strong 
onvexity in the Lagrangian, whi
h we dis
uss here, involves a

proximal regularization. In the proximal approa
h, additional \small" terms are

added to the Lagrangian to a
hieve suitable strong 
onvexity. Let Æ and � denote

small positive parameters, and let y 2 R

n

and � 2 R

m

denote the proximal \shift"

ve
tors. Typi
ally, the shift ve
tors are zero before any estimate of the primal or

dual solutions are known. After approximations to the primal or dual solutions

have been determined, y or � might be repla
ed by these approximations. There

is a substantial body of resear
h on proximal point methods. Referen
es in
lude

[7, 16, 19, 20, 22, 23, 24, 26℄.

The proximal Lagrangian L

p


orresponding to (4.1) is

L

p

(�;x) =

�

2

kx� yk

2

�

Æ

2

k�� �k

2

+ 


T

x+ �

T

(b�Ax); (4.2)

and the proximal dual is

L

p

(�) = min

x�0

L

p

(�;x):

If Æ = � = 0, then the proximal Lagrangian 
oin
ides with the original Lagrangian.

If y and � are 
hosen to be a solution x

�

and a dual multiplier �

�

for the original

LP (4.1), then for any 
hoi
e of Æ and �, � = �

�

maximizes the proximal dual

fun
tion and x = x

�

is the asso
iated minimizer in the proximal Lagrangian.

Observe that the DASA 
an be applied to the proximal Lagrangian (4.2) sin
e

L

p

(�;x) is 
on
ave in � and strongly 
onvex in x. In this LP setting, !

j

in the

DASA subiteration is the solution � of the following linear equation:

(A

F

A

T

F

+ �I)� = ��+A

F




F

+ �(b�A

F

y

F

); (4.3)

where � = Æ�, F (the free set) is the 
omplement of B

j

(the bound set), and A

F

is

the submatrix of A 
orresponding to the 
olumn indi
es in F . We now show that

the inverse of the matrix in (4.3) is approximately a proje
tion matrix; 
onsequently,

the proximal iterates generated by the solution of (4.3) tra
k, in a sense, the dual

subiterates generated in [12℄ by a proje
tion.

Without loss of generality, we 
an assume that the 
olumns of A

F

are linearly

independent; that is, there exists a matrix L with linearly independent 
olumns su
h

that LL

T

= A

F

A

T

F

where A

T

F

= QL

T

is the fa
torization of A

T

F

into the produ
t

of a matrix with orthonormal 
olumns and a triangular matrix with nonzero row.

The nonzero rows of L

T

, or equivalently, the nonzero 
olumns of L are trivially

independent due to the triangular stru
ture of L.

Returning to the matrix in (4.3), the matrix modi�
ation formula [8℄ gives

(I+ �

�1

A

F

A

T

F

)

�1

= I� �

�1

A

F

(I+ �

�1

A

T

F

A

F

)

�1

A

T

F

: (4.4)

Re
all the geometri
 series expansion

(I+C)

�1

= C

�1

�C

�2

+C

�3

� : : : ;

whi
h is valid when C is invertible and the spe
tral radius of C

�1

is less than one.

Using this in (4.4) with C = �

�1

A

T

F

A

F

, we see that when � is suÆ
iently small,

(I+�

�1

A

F

A

T

F

)

�1

= I�A

F

[(A

T

F

A

F

)

�1

� �(A

T

F

A

F

)

�2

+ �

2

(A

T

F

A

F

)

�3

� : : :℄A

T

F

:

Sin
e the matrix P = I � A

F

(A

T

F

A

F

)

�1

A

T

F

proje
ts a ve
tor into the spa
e or-

thogonal to the 
olumns of A

F

, and sin
e � is typi
ally a small number, it follows
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Table 1 LPs asso
iated with the quadrati
 assignment problem

Problem Rows Columns Nnz

qap08 912 1632 7296

qap12 3192 8856 38304

qap15 6330 22275 94,950

nug05 210 225 1050

nug06 372 486 2232

nug07 602 931 4214

nug08 912 1632 7296

nug12 3192 8856 38,304

nug15 6330 22275 94,950

nug20 15240 72600 304,800

nug30 52260 379350 1,567,800

that

(A

F

A

T

F

+ �I)

�1

�

1

�

P:

Thus the solution of (4.3) is nearly proportional to the proje
tion of the right side

into the spa
e orthogonal to the 
olumns of A

F

.

5 Numeri
al results

We 
ompare CPLEX (V7.0.0) with our iterative implementation of the LP-

DASA using the SSOR pre
onditioned 
onjugate gradient s
heme of Bj�or
k and

Elfving [3℄ to solve (4.3), or equivalently, to as
end the fun
tion L

0

B

j

in the dual

subiteration. The test problems, derived from lower bounds for the quadrati
 as-

signment problem, are available at several web sites in
luding:

� http://www.resear
h.att.
om/�mg


� http://www.netlib.org/lp

� http://www.
ise.ufl.edu/�davis

� http://www.math.ufl.edu/�
oap

A des
ription of the matri
es in these problems is given in Table 1. The 
olumn

labeled Nnz gives the number of nonzeros in A. The problems qap08, qap12, and

qap15, found at the netlib site, appear to be permutations of the problems nug08,

nug12, and nug15 found at Res
ende's site.

Run time statisti
s for CPLEX dual simplex and CPLEX barrier routines, on

an IBM RS6000 
omputer, appear in Table 2. There was insuÆ
ient memory to

solve the nug30 problem using either the barrier method or the simplex method.

The barrier method also ran out of memory on nug20. The statisti
s for the dual

simplex method on nug20, 
agged by *, were estimated in the following way: After

974,000 se
onds and 418,000 iterations, CPLEX dual simplex a
hieved the relative

error .15 in the 
ost. In the CPLEX run for nug15, 97.6% of the run time was

spent after the relative 
ost error rea
hed .15. By using the same 
onstant of

proportionality in nug20, we arrived at the estimates for time and iterations given

in Table 2.

Run time statisti
s for iterative LPDASA appear in Table 3. In these experi-

ments, we solved the problems to 3 and 7-digit a

ura
y. That is, when the primal
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Table 2 CPLEX dual simplex and barrier: time (se
onds) and iterations (its)

Problem Simplex Barrier Simplex Barrier

Name (se
s) (se
s) (its) (its)

qap08 8.6 2.6 4,924 8

qap12 1,568 95 102,310 12

qap15 84,606 750 1,538,300 15

nug05 .03 .11 100 8

nug06 .19 .36 400 8

nug07 1.7 1.0 1,700 9

nug08 8.4 2.6 4,900 8

nug12 4,525 95 284,788 12

nug15 150,128 648 265,0179 11

nug20 40,248,000

�

??? 17,273,000

�

???

nug30 ??? ??? ??? ???

Table 3 Iterative LPDASA: time, iterations, 3 and 7-digit a

ura
y

Problem 3-digit 7-digit 3-digit 7-digit

Name (se
s) (se
s) (its) (its)

qap08 .7 6.3 542 6,000

qap12 56 427 12,600 103,300

qap15 187 1,339 17,400 173,200

nug05 .2 .5 900 2,400

nug06 .7 1.9 1,600 5,100

nug07 1.5 39.5 2,200 67,100

nug08 3.5 7.4 3,100 7,100

nug12 49 399 10,800 96,800

nug15 282 1,463 27,300 152,200

nug20 832 13,870 25,100 480,200

nug30 16,200 215,000 68,600 1,007,300

and dual solutions were normalized to be unit ve
tors, the Kuhn-Tu
ker 
onditions

were satis�ed with a relative error, in the L

1

norm, of either 10

�3

or 10

�7

. In


omparing Tables 2 and 3, we see that the simplex method is 
ompetitive only for

the very smallest problems. Iterative LPDASA a
hieved the best 
omputing time

for 3-digit a

ura
y. For 7-digit a

ura
y and moderate size problems (up to 6330

rows), the barrier method had the lowest 
omputing time. For larger problems,

however, there was insuÆ
ient memory for the fa
torization used in the barrier

method.

The solid line of Figure 1 plots the relative error versus 
omputing time (se
-

onds) for iterative LPDASA and test problem qap12 (3192 rows). Observe that a

low a

ura
y solution is obtained relatively qui
kly: 2-digit a

ura
y in 13 se
onds,

3-digit a

ura
y in 56 se
onds. For between 4 and 8 digits, the 
pu time in
reases

more rapidly, and about 380 se
onds are needed to boost the a

ura
y from 4 to
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Figure 1 Iterative LPDASA time (solid) and simplex s
aled time (dashed)

versus relative error for qap12

8 digits. For more than 8 digits, the 
pu time in
reases more slowly{about 81 se
-

onds are needed to in
rease a

ura
y from 8 to 12 digits. Roughly, we observe the

following behavior in the iterations: For between 4 and 8 signi�
ant digits, mu
h

of the 
pu time is 
onsumed identifying the a
tive 
onstraints. After 8 signi�
ant

digits have been a
hieved, the a
tive 
onstraints are fairly well identi�ed, and the

iterative method is essentially solving a linear system with ever in
reasing a

ura
y.

The 
onvergen
e of both the simplex and barrier methods is mu
h di�erent

from the 
onvergen
e of iterative LPDASA shown in Figure 1. For 
omparison, we

s
ale the 
omputing time in the CPLEX dual simplex run and plot with a dashed

line in Figure 1 the relative 
ost error versus s
aled time. Observe that 3-digit

a

ura
y is a
hieved after 76% of the run, while in iterative LPDASA, 3-digit error

is a
hieved after 10% of the run. With the simplex method, the 
onvergen
e speed

is relatively slow until the very end of the run when there is a huge improvement

in a

ura
y. Iterative LPDASA exhibits steady 
onvergen
e throughout the run.

The set of test problems used in this paper has the property that A is relatively

sparse while fa
torizations of A or AA

T

are relatively dense. For example, A in

qap15 is 99.93% zero, while if AA

T

is ordered using approximate minimum degree

[1℄, then the Cholesky fa
tor is only 53.36% zero. Hen
e, as the size of the problems

in
reases, a point is rea
hed where it is no longer possible to store the Cholesky

fa
tor. For problems like these with relatively dense fa
tors, the time to fa
tor the

matrix grows proportional to m

3

, the number of rows of A 
ubed. Hen
e, even if it

were possible to store fa
tors of the larger matri
es in this test set, the 
omputing

time should be
ome quite large. For 
omparison, with iterative LPDASA and 7-

digit a

ura
y, the ratio of running times for nug30 and nug20 is 15.6, while the
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ratio of row dimensions is 3.4. This implies that running time grew proportional

to m

2:2

. Thus iterative LPDASA was able to exploit the sparsity of A in order to

a
hieve a 
omputing time whi
h grew more slowly with m than CPLEX barrier;

the number of nonzeros in A grows more slowly than m

3

, whi
h is re
e
ted in a


omputing time that grows more slowly than m

3

.

In these experiments with iterative LPDASA, the matrix A was stored in a

standard sparse matrix format, the same format used in Malab. Note though

that iterative s
hemes su
h as 
onjugate gradients, diagonal pre
onditioned 
onju-

gate gradients, or SSOR pre
onditioned 
onjugate gradients, applied to (4.3), only

involves the produ
t of submatri
es of A and a ve
tor. Hen
e, it is possible to im-

plement iterative LPDASA without storing A. In problems like qapxx and nugxx,

where the produ
t of submatri
es of A with a ve
tor amount to summing various


omponents of the ve
tor, these 
oded produ
ts should run mu
h qui
ker than a

produ
t whi
h is implemented by looking up 
oeÆ
ients stored in a sparse format.

In summary, iterative LPDASA is relatively eÆ
ient for 
ertain 
lasses of linear

programming problems. In the test set investigated in this paper, iterative LDASA

a
hieved the best 
omputing time for up to 3 digit a

ura
y, when 
ompared to

CPLEX dual simplex and CPLEX barrier. Although the iterative approa
h 
ould

be used to 
ompute high a

ura
y solutions, CPLEX barrier was more eÆ
ient

for problems of size up to 6330 rows (whose fa
torization also �t in the available

memory). With iterative LPDASA, we solved problems with up to 52260 rows. In

the 
urrent implementation of our 
ode, we need enough memory to store A itself

(not a fa
torization of A or AA

T

). By 
oding the produ
ts of submatri
es of A

with ve
tors, this memory 
onstraint 
ould be removed, and it should be possible

to solve problems in spa
e proportional to that required by the primal and dual

solutions.
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