SIAM J. N UMER . A NAL
V ol. 34, No. 3, pp. 1255-1268, June 1997

THE APPLICA TION OF EIGENP AIR ST ABILITY TO BLOCK DIA GONALIZA TION ®

NILOTP AL GHOSH ${ }^{\dagger}$, W ILLIAM W. HA GER \ddagger, AND PURAND AR SARMAH \ddagger

Abstract. An algorithm presented in Hager [Comput. Math. Appl., 14 (1987), pp. 561-572] for diagonalizin g a matri x is generalized to a block matrix setting. It is shown that the resulting algorithm is locally quadratically convergent. A global convergence proof is given for matrices with separated eigenvalues and with relati vely small off-diagonal elements. Numerical examples along with comparisons to the QR method are presented.

Key wo rds. block diagonalization, eigenpair stabilit y, eigenvalues, eigenvectors

AMS sub ject classifications. 65F05, 65F15, 65F35

PI I. S0036142995261252

1. In tro duction. Let A denote an $n \times n$ block mạtrix; that is, the (i, j) element $A_{i j}$ of A is itself a matri x of dimension $n_{i} \times n_{j}$, where ${ }_{i=1}^{r} n_{i}=n$ for somer $\leq n$. In this paper, we develop and analyze an algorithm for computing a block diagonalization $X \wedge X^{-1}$ of A, assuming one exists. Here Λ is a block diagonal matri x with diagonal blocks $\Lambda_{i}, i=1$ to r, and X is an invertible matrix whose ith block of columns is denoted by X_{i}. Hence, the equation $A=X \wedge X^{-1}$ is equivalent to the relation

$$
A X_{i}=X_{i} \Lambda_{i}, \quad i=1 \text { to } r .
$$

The algorithm developed in this paper is based on a stabilit y result, Prop osition 1, for a perturbation $\mathrm{A}(\varepsilon) \mathrm{X}(\varepsilon)=\mathrm{X}(\varepsilon) \wedge(\varepsilon)$ of the original eigenequation. We show that if the spectrum of Λ_{i} and Λ_{j} are disjoint for each $\mathrm{i} \neq \mathrm{j}$, then there exist continuously differentiable solutions $X(\varepsilon)$ a nd $\Lambda(\varepsilon)$ to the perturb ed equation. After differentiating the perturb ed equation and applying Ta ylor's theorem, we obtain the following algorithm (throughout the paper, the subscript k denotes the iteration number while the subscripts i and j denote elements or submatrices of larger matrices).

Block Dia gonaliza tion Algorithm . If $X_{k} \Lambda_{k} X_{k}^{-1}$ is the current approximate diagonalization of A, then

$$
\begin{equation*}
\Lambda_{\mathrm{k}+1}=\operatorname{diag} X_{k}^{-1} A X_{k} \quad \text { and } \quad X_{k+1}=X_{k}(I+D) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{diag} D=0 \quad \text { and } D \Lambda_{k+1}-\Lambda_{k+1} D=\text { off } X_{k}^{-1} A X_{k} . \tag{2}
\end{equation*}
$$

The notation "diag" and "off" above are defined in the following way: given a block matrix B," diag B" denotes the block diagonal matrix whose diagonal blocks coincide with the diagonal blocks of B, and "off B " denotes the matrix that coincides with B except for the diagonal blocks which are replaced by blocks of zeros.

[^0]
[^0]: ${ }^{\boxtimes}$ Recei ved by the editors Jan uary 4, 1995; accepted for publication (in revised form) Septem ber 22, 1995. This research was supp orted by U.S. Arm y Research Office contract DAALO3-89-G-0082 and by the National Science Foundation.
 http://www.siam.org/journals/sin um/34-3/26125.h tml
 ${ }^{\dagger}$ Departmen t of M athematics, Catonsville Comm unity College, Baltimore, MD 21228. Visiting Professor, Departmen t of M athematics, Univ ersity of Florida, Gainesville, FL, 1990-1991.
 ${ }^{\ddagger}$ Departmen t of M athematics, Univ ersity of Florida, Gainesville , F L 32611 (hager@math.ufl.edu, puran@sw amp.bellcore.com).

