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THE APPLICA TION OF EIGENP AIR ST ABILITY TO BLOCK
DIA GONALIZA TION B

NILOTP AL GHOSH ', WILLIAM ~W. HAGER *, AND PURAND AR SARMAH *

Abstract. An algorithm presented in Hager [Comput. Math. Appl., 14 (1987), pp. 561-572]
for diagonalizin g a matri x is generalized to a block matrix setting. It is shown that the resulting
algorithm is locally quadratically convergent. A global convergence proof is given for matrices with
separated eigenvalues and with relati vely small off-diagonal elements. Numerical examples along
with comparisons to the QR method are presented.
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1. Intro duction. Let A denotean nx n block nﬁltrix; that is, the (i, j) element
Ay of A is itself a matrix of dimension n; X n;, where {:1 n; = n for somer < n. In
this paper, we develop and analyze an algorithm for computing a block diagonalization
X AX =1 of A, assuming one exists. Here A is a block diagonal matrix with diagonal
blocks Aj,i =1 tor, and X is an invertible matrix whose ith block of columns is
denoted by X ;. Hence, the equation A = X AX = is equivalent to the relation

AXiZXi/\i, i=1tor

The algorithm developed in this paper is based on a stabilit y result, Prop osition 1,
for a perturbation A(g)X (g) = X (g)A( €) of the original eigenequation. We show that
if the spectrum of A; and A; are disjoint for each i # j, then there exist continuously
differentiable solutions X (€) and A(¢€) to the perturb ed equation. After differentiat-
ing the perturb ed equation and applying Taylor's theorem, we obtain the following
algorithm (throughout the paper, the subscript k denotes the iteration number while
the subscripts i and j denote elements or submatrices of larger matrices).

BLOCK DIAGONALIZA TION ALGORITHM . If X k/\ka‘1 is the current approxi-
mate diagonalization of A, then

(M Aws1 =diag X 'AX « and  Xyur = X«(l + D),
where
) diagD =0 and DAy — Ay D =off X "AX k.

The notation “diag” and “off” above are defined in the following way: given a block
matrix B, “diag B ” denotes the block diagonal matrix whose diagonal blocks coincide
with the diagonal blocks of B, and “off B” denotes the matrix that coincides with B
except for the diagonal blocks which are replaced by blocks of zeros.
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