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Joint Transceiver Design for MIMO Communications
Using Geometric Mean Decomposition
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Abstract—In recent years, considerable attention has been
paid to the joint optimal transceiver design for multi-input
multi-output (MIMO) communication systems. In this paper,
we propose a joint transceiver design that combines the geo-
metric mean decomposition (GMD) with either the conventional
zero-forcing VBLAST decoder or the more recent zero-forcing
dirty paper precoder (ZFDP). Our scheme decomposes a MIMO
channel into multiple identical parallel subchannels, which can
make it rather convenient to design modulation/demodulation and
coding/decoding schemes. Moreover, we prove that our scheme
is asymptotically optimal for (moderately) high SNR in terms of
both channel throughput and bit error rate (BER) performance.
This desirable property is not shared by any other conventional
schemes. We also consider the subchannel selection issues when
some of the subchannels are too poor to be useful. Our scheme
can also be combined with orthogonal frequency division multi-
plexing (OFDM) for intersymbol interference (ISI) suppression.
The effectiveness of our approaches has been validated by both
theoretical analyses and numerical simulations.

Index Terms—Channel capacity, dirty paper precoding, inter-
symbol interference suppression, joint transceiver design, matrix
decomposition, MIMO, VBLAST, water filling.

I. INTRODUCTION

OMMUNICATIONS over multiple-input multiple-output

(MIMO) channels have been the subject of intense re-
search over the past several years because MIMO channels
can support much greater data rate and higher reliability over
their single-input single-output (SISO) counterpart [1]-[4].
Two main approaches have been proposed to exploit the many
advantages of MIMO channels. One is the space-time coding
method that aims at improving communication reliabilities by
exploiting the diversity gain (e.g., [5]-[7]). The other is the
spatial multiplexing method, e.g., the Bell Labs Space-Time
Architecture (BLAST) [2], [8], [9], which focuses on maxi-
mizing the channel throughput.

Both methods assume that the channel state information
(CSI) is available at the receiver (CSIR) only. However, if
the communication environment is slowly time varying, such
as communications via indoor wireless local area networks
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(WLANS) or the bonded digital subscriber lines (DSLs), the
availability of CSI at the transmitter (CSIT) is also possible
via feedback or the reciprocal principle when time division
duplex (TDD) is used. In fact, in the third-generation WCDMA
standard [10], both CSIR and CSIT are assumed available and
are referred to as the closed-loop transmit diversity or transmit
adaptive array (TxAA) technique. Based on this assumption,
the joint optimal transceiver design (which is also referred to
as precoding at the transmitter and equalization at the receiver)
has recently attracted considerable attention [11]-[20].

Several designs have been proposed based on a variety of
criteria, including minimum mean-squared-error (MMSE) [11],
[14], [15], maximum signal-to-noise ratio (SNR) [14], max-
imum information rate [12], [13], [15], and bit error rate (BER)
based criteria [16]-[18]. More recently, a unified framework
has been presented to accommodate all these criteria, under
which the design problems can be solved via convex optimiza-
tion methods [19].

The aforementioned literature on joint transceiver design
considered linear transformations only. It is widely understood
that the singular value decomposition (SVD), which decom-
poses a MIMO channel into multiple parallel subchannels, and
water filling can be used to achieve the channel capacity [3].
However, due to the very different SNRs of the subchannels,
this apparently simple scheme requires careful bit allocation
(see, e.g., [12], [13], and [16]) to match the subchannel capacity
and achieve a prescribed BER. Bit allocation not only increases
the coding/decoding complexity but is also inherently capacity
lossy because of the finite constellation granularity. An alter-
native is to use the same constellation in all the subchannels
(or subcarriers), like the schemes adopted by the European
standard HIPERLAN/2 and the IEEE 802.11 standards for
WLANS. However, for this alternative, the BER is dominated
by the subchannels with the lowest SNRs. To optimize the
BER performance, more signal power could be allocated to
the poorer subchannels. Yet this approach causes significant
capacity loss due to “inverse water filling” like power alloca-
tion. There is apparently a fundamental tradeoff between the
capacity and the BER performance.

In this paper, we propose a novel transceiver design based on
the geometric mean decomposition (GMD) [21]. By combining
GMD with either the conventional VBLAST decoder [8], which
is in fact a generalized decision feedback equalizer (GDFE)
[22], or the more recent zero-forcing dirty paper precoder
(ZFDP),! our scheme decomposes a MIMO channel into mul-
tiple identical parallel subchannels. This desirable property can

IIn the sequel, we refer to the two versions of this method as GMD-VBLAST
and GMD-ZFDP, respectively, and refer to either of them as the GMD scheme.
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bring about much convenience in coding/decoding and mod-
ulation/demodulation processes. Moreover, we prove that our
scheme is asymptotically optimal for (moderately) high SNR
in terms of both channel throughput and BER performance.
Hence, the GMD scheme does not make tradeoffs between the
throughput and the BER performance. Instead, it attempts to
get the best of the both worlds simultaneously.

The remainder of the paper is organized as follows. Section II
introduces the MIMO flat-fading channel model and some rel-
evant results on channel capacity. The capacity loss due to
the linearity constraints of transceiver designs is analyzed in
Section III. After reviewing the VBLAST and ZFDP briefly, we
propose the GMD scheme in Section IV. Section V addresses
the performance analyses and implementation issues of the
GMD scheme. The relationship between GMD and the paper
[23] is also discussed. Section VI presents several numerical ex-
amples showing the superior performance of the GMD scheme
from both the information theoretic and the BER aspects. The
advantages of the GMD scheme over its linear counterparts and
the open-loop counterpart, i.e., the conventional VBLAST, are
clearly demonstrated. Section VII gives the conclusions of this

paper.

II. CHANNEL MODEL AND CHANNEL CAPACITY

In this section, we introduce the flat fading channel model.
We also discuss several results of channel capacity needed by
the GMD scheme.

A. Channel Model

We first consider a communication system with M, trans-
mitting and M, receiving antennas in a frequency flat-fading
channel. The sampled baseband signal is given by

y=Hx+1z @9)

where x € CM:*! is the transmitted signal, y € CM~*! is the
received signal, and H € CM-*M: ig the channel matrix with
the (4,7)th element denoting the fading coefficient between
the jth transmitting and sth receiving antennas. Throughout
this paper, we let K denote the rank of H. We assume that
z ~ N (0,021, ) is zero-mean circularly symmetric complex
Gaussian noise, where I, denotes the identity matrix with
dimension M,.. We define the SNR as
*
_E [x2 x| )

z

g

where (-)* denotes the conjugate transpose, and E[-] stands for
the expected value. Throughout this paper, we assume perfect
CSIR and CSIT, i.e., H is known exactly at both the transmitter
and receiver. Yet a combination of the GMD scheme with blind
channel subspace tracking technique is also possible, as we will
discuss in Section V-B.

B. Channel Capacity
The capacity of the channel of (1) with CSIT is

021 + HR, H" |
Crr BT (R 3

= maxlog
R g2
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where Rx = E[xx*], and | - | denotes the determinant of a
matrix. Here, the subscript of C'r1 stands for “informed trans-
mitter.” We assume that the transmitted signal is power con-
strained, say Tr{Rx} < P, where Tr{R} denotes the trace
of R. The SNR is p = (P/o?). Calculating the channel ca-
pacity is equivalent to solving the following convex optimiza-
tion problem:

Crr = Trr{nsafc< log, |I+ HSH*|. )
The solution to (4) is (cf. [3])
K
Crr =Y _logy (14 AsnAy,) bit/s/Hz 5)

n=1

where K is the rank of H, {\gr,, }£_; are the K nonzero sin-
gular values of H, and Ag ,, is found via “water filling” to be

1 +
Asp(p) = | = 5—
At

1 As;n(p) = pand (a)t

(6)
where 41 is chosen such that 3% =
max{0,a}.

If the CSIT is not available, the optimal transmission strategy
is to evenly allocate power to each antenna [3]. For this case,
S = (p/M;)Iy,, and the channel capacity with a uninformed
transmitter (UT) is

M /\2
Cur = nzllogQ ( Mt ) bit/s/Hz. @)
It is proven in [24] that if K = M,
C
IT—»lasp—>oo. ®)

Cur
We claim a stronger relationship as follows.2

Lemma II.1: For the data model in (1), if the channel matrix
H is of full column rank, i.e., K = M,;, then

Crr — Cyt — 0as p — oo. )
Proof: Inserting (6) into (5) yields
K
Crr =Y logy (u\y,)" (10)
n=1

Observe that Ag ,, (1) is an increasing function of . Assuming
that p is large enough that A ,, (1) is strictly positive for each n
when p is chosen such that

Koo
_;/\%{

(11)

or

__|__

12)

from (7), (10), and (12) and using the fact that K = M;, we
have

K
+ >

ne=1 “H.n

K
Crr—Cur = Y log,

n=1

(13)

2A similar, but somewhat vague, statement is found in [9].
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Note that
K
Pt Y 5
lim n=l =1, forl<n<K (14)
P00 p 45—

H,n

and that f(z) = logx is a continuous function of z if z > 0.
The lemma follows immediately from (13). |

We note that this lemma is more informative than (8) since
Crr tends to infinity as p increases. Lemma II.1 shows that
the CSIT becomes useless for high SNR from the capacity
perspective.

On the other hand, we note that CSIT can be very helpful in
the following cases:

A) The SNR is low or moderate.
B) H is rank deficient or ill-conditioned.
C) There are more transmitting antennas than receiving
ones, i.e., M; > M,.
Moreover, the availability of CSIT provides more freedom,
which makes it easier to design a joint transceiver to achieve
the underlying channel capacity.

III. RATE PERFORMANCE OF LINEAR TRANSCEIVERS

To gain insights into the limitations of the linear transceiver
designs, we analyze the asymptotic rate performances of two
typical linear transceiver designs for high SNR. We will show
that the linear transceivers may suffer from considerable ca-
pacity loss, and there is apparently a fundamental tradeoff be-
tween the throughput and the BER performance.

For all the linear transceiver designs (cf. [19]), the informa-
tion symbol s is precoded to be x = F's, and without loss of
generality (w.l.o.g.), we assume E[ss*] = I. According to the
channel model of (1), the received data vector is

y = HFs + z. (15)

The optimal linear receiver is always the Wiener filter (see, e.g.,
[16])

Gop = F*H* (HFF*H* + 021) (16)
which yields the optimal estimate of the information symbol

§ = G,pty. The mean-squared-error (MSE) matrix of § is

-1
= (I + F*H*HF%) . (17)
Note that E is a function of the linear precoder F. In the fol-
lowing, we analyze two linear precoder designs based on the
minimization of the trace of the MSE matrix (MTM) and the
minimization of the maximum diagonal elements of MSE ma-
trix (MMD) criteria, which are referred to as ARITH-MSE and
MAX-MSE in [19], respectively. We choose these two schemes
because they appear to be the most typical ones, and the MMD
scheme yields the optimal (or very close to the optimal) per-
formance among all the linear transceivers. Indeed, the MMD
is equivalent to the linear MIN-BER scheme in the flat-fading
channel case (see [19]). We do not consider the SVD plus water
filling scheme herein since it requires complicated bit loading.
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The MTM scheme, or ARITH-MSE, which has appeared in
several linear transceiver design papers (see, e.g., [15], [16], and
[19]), attempts to minimize Tr(E) with respect to F. The MTM
precoder turns out to be

Fyry = V@2 (18)

where V is as defined in the SVD H = UAV*, and ® is a di-
agonal matrix whose ith diagonal element ¢; denotes the signal
power loaded to the sth subchannel. According to the literature
(see, e.g., [16, Sec.III-A])

) +

bi = o o2
‘ 2 xmi o Ny

where p is the Lagrange multlpher that controls the loaded
power such that ZL L $i = po2. Suppose p is sufficiently
large. Then, all the K subchannels are used, and

19)

0'2 2
Z il vl el I (20)
or
X 2
P+ > A
pott = e tm— @n
Z /\H 20'2

Substituting (18), (19), and (21) into (17), we see that E is di-
agonal with the :th diagonal element

K
Ntk

E; = = (22)

(p " kz—:l AHZk) A

Then [cf. (28) of [19]]
Ci= —log, E (23)
p+ Z /\I_{ k
= log, | —— +logy Ami  (24)
> N

Hence, the sum rate of the channel using the MTM scheme is

K
Cyvrvm = Z s
i=1
K =2
P+ 20 Auk K
=Klog, | —2=—— [+ log, Ami. (29)
> Ak =1
k=1

The channel capacity with uniform power loading in the K sub-
channels is

K
p

CupL = Z;ng (1 ¥ ?A%u) : (26)

Here, C'ypr, is different from C'yt defined in (7) in that Cypr,

corresponds to the channel with the transmitter knowing the

range space of H.
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It follows from (25) and (26) that

K
CupL — Cvurm = Zlng (1 + %/\%{z)
=1

K =2
—K log, K’L=1 - Z logy A (27)
> A =t
i=1
After some straightforward calculations, we have
plil{.lo CupL — CutMm
LS
b4 Zl )‘H,i bit
- : = S
= Klog, UK H (28)
(Hi:l )‘H,i)

Note that for any real-valued sequence {\p; }£; > 0, the arith-
metic mean is greater than or equal to the geometric mean, or

(1/K) ZLK=1 g > (I_LKZ1 )\;111) I/A. Hence, we conclude
that lim,_, Cupr. — Cmrm 2> 0, and the equality holds if and
only if {\g;}/<; are all the same. We infer from (28) that the
capacity loss of the MTM transceiver can be quite large if the
channel matrix H has a large condition number, which is veri-
fied in Section VL.

If the same constellation is used for each subchannel,
then the substream corresponding to the largest F; dom-
inates the overall BER performance. Recall that E;
(Zszl )\;I_lk/ (p + Zszl A;I?k) )\H,i) , which is propor-
tional to the inverse of Mg ;. Hence, the subchannels may have
very different SNRs, especially when H has a large condition
number. To mitigate this undesirable effect, one can use the
MMD transceiver, or MAX-MSE (cf. [19, Sec. V-AS5], with

(29)

Fyvip = Furv©

where © is a unitary matrix that makes all the diagonal elements
of E in (17) the same, that is

1 K
E:E;Ei.

According to (23), the capacity of the channel using the MMD
linear transceiver is

(30)

K
_ 1
Crvip = —K log, E = —K log, — > E. (3D
=1

Thus
| K K
Cyry — Cavp = Klog, —- > Ei—> log, B (32)
i=1 i=1
LK
x 2 B
=K log, —— N (33)
(H7‘,=1 E;
1S -1
K Z )\H %
= K log, =1 (34)
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where, to get (34) from (33), we have used (22). Note that the
relative capacity loss of MMD compared with MTM is indepen-
dent of SNR, given that all the subchannels are used. Interest-
ingly, we can see from (28) and (34) that Cyytyi — Cvimp =
lim, o CupL — CvMm. We conclude that asymptotically, for
high SNR, the MMD transceiver has twice the capacity loss of
MTM, i.e.,

lim Cypr, — Cvivp

p—o0

-1
* 2 Ami
=1

(I, aqt) "

although it may yield better BER performance. An intuitive ex-
planation of the capacity loss of the MMD transceiver is as fol-
lows. Note that the only difference between MTM and MMD is
the prerotation matrix ©, which is an invariant operator in terms
of information capacity. However, ©® makes the MSE matrix E
nondiagonal, which means that the elements of § = G,y are
correlated. Clearly, the correlation contains useful information
for symbol detection and decoding. However, the linear equal-
izer ignores the correlation, which results in the additional ca-
pacity loss quantified in (34).

In summary, the MTM transceiver suffers from capacity loss
of (28) due to the information theoretically nonoptimal power
loading defined in (19). The MMD transceiver suffers from ad-
ditional capacity loss because it makes the MSE matrix non-
diagonal. Hence, there is an apparently inevitable tradeoff be-
tween the information rate and BER performance if the same
symbol constellation is used in the different subchannels. The
main contribution of this paper is to introduce the GMD scheme
and clarify that there is not necessarily a tradeoff between BER
performance and channel capacity. Indeed, the GMD scheme at-
tempts to achieve the best of both worlds simultaneously.

= 2K log, bit/s/Hz (35)

IV. GEOMETRIC MEAN DECOMPOSITION
FOR TRANSCEIVER DESIGN

In this section, we first give a brief introduction to the
VBLAST architecture [8], which is equivalent to the GDFE
[22]. We also introduce the more recent ZFDP applied to the
MIMO broadcast channels [25], [26]. Then, we introduce the
novel GMD algorithm, which can be combined with either
VBLAST or ZFDP.

A. VBLAST and ZFDP

VBLAST is a simple suboptimal receiver interface that is
used in the MIMO system, assuming that only CSIR is avail-
able. For a MIMO system (1) with M; < M,. andrank K = M,,
the transmitter allocates independent bit streams across the M,
transmitting antennas with no precoding. To decode the trans-
mitted information symbol, VBLAST first estimates the signal
with the spatial structure hjy,, where h; denotes the ith column
of H and then cancels it out from the received signal vector.
Next, it estimates the signal with spatial structure hps, —1, and
so on. The signal estimator can be either the ZF or MMSE es-
timator. Some proper reordering of the columns of H is helpful
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to improve the BER performance [8]. This decoding scheme in-
volves sequential nulling and cancellation, which is proven to
be equivalent to the GDFE [22].

The ZF nulling step in the VBLAST scheme can be repre-
sented by the QR decomposition H = QR, where Q is an
M, x K matrix with orthonormal columns, and Risa K x K
upper triangular matrix. Let us rewrite (1) as

y=QRx +z. (36)
Multiplying Q* with both sides of (36) yields
y=Rx+12 37
or
71 Ti1 T12 TK T Z1
gz 0 T22 e ToK T 22
.= . . . . N e (38)
:IjK 0 PN 0 TKK TK 2}(

The sequential signal detection is as follows:

for i= K :-1:1
N - K .
& =C [(y =D imit1 mj:vj)/m,,:}

end

Here, C stands for mapping to the nearest symbol in the
symbol constellation. Ignoring the error-propagation effect,
we see that the MIMO channel is decomposed into K parallel
scalar subchannels

gl:r”arb—}—él/ 1217277]( (39)

Next, we consider a broadcast MIMO channel with M, trans-
mitting antennas and M,. receiving antennas (M; > M,.). The
channel model is exactly the same as (1), and the CSIT is avail-
able. However, the receiving antennas cannot cooperate with
each other. A vector transmission scheme was proposed in [27],
which combines the QR decomposition and “dirty paper” pre-
coding. We refer to this approach as the ZFDP. (The use of the
“dirty paper” phrase is due to Costa [28].)

The ZFDP scheme resembles the zero-forcing VBLAST
method. It also goes through the sequential nulling and cancel-
lation procedure. The only difference is that all these operations
are done by the transmitter.

By assuming H to be of full row rank, i.e., K = M,., ZFDP
also begins with the QR decomposition H* = le{ Let us
rewrite (1) as

y = R*Q*x + z. (40)
Denoting x = Qx yields
y=R'%+z 41)
or
Y1 7%11 0 e 0 5)1 Z1
Y2 Tor T2 ... 0 Ty 22
L= . : o+ . (42)
YK TK1 . Tkl LIx ZK
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Denote s € CK*! as the symbol vector destined for the K
receivers. We wish to have x, satisfying

%1181 7\’{11 0 e 0 i‘l
7\%2282 7\"/21 7\‘/22 e 0 :ﬁz
. = . . . . . . 43)
TKKSr TK1 Tl LTk
The solution to (43) is
% =R * diag{R}s. (44)

However, the matrix inversion can amplify the norm of x
significantly, which can lead to additional power consumption
at the transmitter. By exploiting the finite alphabet property
of the communication signals, the modulo arithmetic precoder
(more recently known as the Tomlinson—Harashima Precoder
[29], [30]) can be applied to bound the value of the transmitted
signal. Moreover, the trellis precoding can be used to eliminate
the 1.53-dB shape-loss of Tomlinson—Harashima precoding
[31]. The ZFDP transmission scheme decomposes the MIMO
channel into K parallel scalar channels (see [27] for more
details)
yi =TT +z 1=1,2,... K. 45)
Several remarks are now in order. a) VBLAST is shown to
be able to achieve only about 72% of the capacity [8]. That
is because imposing the same rate of transmission on all the
transmitters makes the channel capacity limited by the worst of
the K scalar subchannels. b) ZFDP can achieve the broadcast
channel capacity for high SNR [26], but the subchannels have
different fading levels. Hence, the transmitter, just like the afore-
mentioned linear transceivers, has to consider the tradeoffs be-
tween the BER performance and the channel throughput. ¢) The
ZFDP scheme causes no error propagation, and thus, (45) is pre-
cise. d) Both VBLAST and ZFDP involve nonlinear operations.

B. Geometric Mean Decomposition

Note that VBLAST assumes no cooperation among trans-
mitting antennas, and ZFDP assumes no cooperation at the re-
ceivers. Then, a natural question arises: Can we exploit both the
CSIR and CSIT to make things better if both CSIR and CSIT
are available? We attempt to address this question next.

In the sequel, we assume that the same signal constellation
is used in all the independent symbol streams to reduce the
system complexity. This is consistent with the HIPERLAN/2
and IEEE 802.11 standards. Then the overall BER performance
of the system will be limited by the subchannel with the lowest
SNR. To mitigate this problem, based on (39) and (45), we con-
sider the following optimization problem

maxmin {r; :1<i< K}
QP

subjectto R = Q*HP
R € RE*XK =0, fori > j
1y >0, forl <1< K

Q'Q=PP=1Ik (40)
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where the semi-unitary matrices Q and P denote the linear op-
erations at the receiver and transmitter, respectively.

Since both Q and P are semi-unitary matrices, we have
Hf=1 Tnn Hle A, where {Ag,}E | are the K
nonzero singular values of H. In [21], we show that if there
exist semi-unitary matrices P and Q satisfying

H = QRP*, or equivalently, R = Q*HP (47a)

where the diagonal elements of R are given by

K 1/K
rii = A £ <H AH> , 1<i<K  (47b)
n=1

then the R in (47) is the solution to (46). The existence of the
decomposition (47) is a corollary to the following theorem due
to Horn [32].

Theorem IV.1: Ifr € R"™ and A € R™ satisfy

k k
[Tl <IN 1<k<K (48a)
ZI:<1 z;{l
[Liml =TI (48b)
i=1 i=1

where r; is the ith largest (in magnitude) element of r, and Ay >
Ao > -+ > Ak > 0, then there exists an upper triangular matrix
R € REXK with singular values \;, 1 < ¢ < n and with r on
the diagonal of R.

From Theorem IV.1, we can prove the following lemma.

Lemma 1: For any rank K matrix H € CM-*M: with sin-
gular values Ag1 > Ago2 > -+ > Ag,x > 0, there exists
an upper triangular matrix R € RE>*X with identical diagonal
elements

K

1/K
mzAHé<HAH,n) , 1<i<K (49

n=1

and semi-unitary matrices Q and P such that H = QRP*.

Proof: It can be readily verified that {r;; = Mg}k,
and {\g;} X, satisfy the conditions given in (48). According
to Theorem IV.1, there exists an upper triangular matrix
R € REXE with SVD

R = URAV3 (50)

with the ith diagonal element 7;; = \. Here, A is a diagonal
matrix whose diagonal elements are equal to {\rr; } X ;. On the
other hand

H=UAV"*.

Combining (50) and (51) yields H = UULRVRV* =
QRP*. [ |

Hence, the matrix decomposition of (47) exists, which we
refer to as the GMD since the diagonal elements of R are the
geometric mean of { g, }X_;. A computationally efficient and
numerically stable algorithm is proposed in [21] to calculate the
decomposition. To make this paper self-contained, we include
the algorithm in the Appendix.
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It seems reasonable to constrain the linear equalizer Q to be
semi-unitary since it will keep the background noise white. Yet
it seems unnecessary to constrain P to be semi-unitary as well.
Indeed, the constraint that P and Q should be semi-unitary is
in fact inactive, as shown in the following lemma established in
[21].

Lemma 2: The GMD of (47) is also the solution to the fol-
lowing optimization problem with relaxed constraints:

maxmin {r; :1<i< K}
P.Q

subjectto R=Q*HP, r;; =0, fori>j

R c RKXK

i >0, 1<i<K

r(Q'Q <K, w(PP)<K. (52
Proof: The proof is omitted. See [21] for details. |

The GMD, which can be viewed as an extended QR decom-
position, can be readily combined with the aforementioned
VBLAST (GDFE) or ZFDP. GMD-VBLAST is implemented
as follows: We first calculate the GMD H = QRP*. Next, we
encode the information symbol s via the linear precoder P to
be x = Ps. Then, the equivalent data model is

y = QRs +z. (53)

The next step is nothing but the VBLAST decoder.

Ignoring the error propagation effect, we can regard the re-
sulting subchannels as K independent and identical subchan-
nels

yi = Aga; + 2, fori=1,... K. (54)

The GMD-ZFDP scheme is similar to GMD-VBLAST be-

cause of the duality between VBLAST and ZFDP.

V. PERFORMANCE ANALYSES AND IMPLEMENTATION ISSUES

In this section, we first present the performance analyses of
the GMD scheme from a capacity perspective, from which we
demonstrate the advantages of our GMD scheme over the linear
transceivers. Next, we consider combining the GMD scheme
with the blind two-way channel subspace tracking in the TDD
scenario. To achieve close to optimal performance at low SNR,
we propose to combine GMD with subchannel selection. Fi-
nally, we discuss the relationship between our GMD scheme and
[23].

A. Performance Analyses

As we have mentioned earlier, the overall BER performance
of a MIMO communication system is dominated by the worst
subchannels asymptotically for high SNR. Hence, the scheme
optimizing the worst subchannel can enjoy the optimal BER
performance for high SNR. This observation is also the moti-
vation of the aforementioned MMD scheme. As a major advan-
tage over the linear transceiver schemes, the GMD scheme is
also asymptotically optimal in terms of the channel capacity for
high SNR, as we will show below.
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If the signal power is allocated evenly to the K subchannels,
then based on (54), we get
Ceup = Klog, (1 + %;\%{)
where p is defined in (2). The channel capacity with uniform
power loading on the K subchannels is [see (26)]

(55)

K
Cupr, = ;ng (1 + %/\%M) . (56)
It follows from (55) and (56) that
CupL — Camp = log, -, ( —l: p)\fj’n) . (57
(1+pA%)
From (47b) and (57), we have
pli_)H;o CypL — Camp = 0. (58)
Based on Lemma II.1
,,1520 Cir — CypL = 0. (59
Hence, it follows from (58) and (59) that
lim Crr — Cgup =0 (60)

p—00

i.e., for high SNR the GMD scheme is asymptotically optimal.

Hence, the GMD scheme does not need to make the tradeoff
between the information rate and BER performance as the
conventional linear transceivers. Instead, our GMD scheme can
achieve the optimum on both aspects simultaneously for high
SNR.

As we have mentioned before, VBLAST may suffer
from error propagation. Hence, the BER performance of
GMD-VBLAST will be inferior to the scalar equivalence in
(54). We calculate the upper bound of the GMD-VBLAST BER
as follows. For a fixed SNR p, we assume that the system of
(54) has symbol error rate (SER) P, i.e., each subchannel has
SER P./K. We consider the worst case that decoding errors in
some subchannels will cause the failure of the decoding in all
the subsequent subchannels. The SER upper bound is readily
calculated as

| Kol
Pe gmp-vBLAST = Ve 2 (1—-P.)"(K —n)P.
| Kol
<% nZO(K —n)P,
- %Pe. 61)

For a moderate K, say K < 10, the performance loss caused
by the error propagation is rather small. For a system with high
dimensionality, GMD-ZFDP is a better choice since it causes no
error propagation. On the other hand, the Tomlinson—Harashima
precoder leads to an input power increase of M /(M — 1) for
M -quadrature amplitude modulation (QAM).

B. Combination of GMD With Two-Way Channel Subspace
Tracking

In TDD systems, the GMD scheme may be combined with
two-way channel subspace tracking techniques. Our algorithm
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for computing the GMD of H, given in the Appendix, starts with
the SVD. To calculate the matrix P [cf. (46)], we only need to
know the singular values A and the right singular vectors V (cf.
the Appendix). Similarly, only A and U are used to calculate Q.
Rewriting (1) with the transmitted signal x precoded as x = Ps
yields

y = HPs + z. (62)
Since the GMD scheme uses the same signal constellation and
uniform power allocation, the covariance matrix of s is a scaled
identity matrix, i.e., E[ss*] = o2I. Hence

R, = E[yy*] = HH*0? + ¢’1. (63)

If the signal power o2 and the noise power o2 are known a

priori, we have HH* = (Ry — 031) /o?. Applying SVD to
HH*, we get

HH* = UA?U* (64)
where U and A are the same as those defined in (51). The GMD
algorithm can be applied based on U and A to get the matrices
Q and R, which are sufficient for decoding. If a TDD system
is used, the reverse channel, where the roles of previous trans-
mitter and receiver are exchanged, can be modeled as

Yrev = HTQ*SI‘E‘,V + Zrev (65)

where (-)T denotes the transpose, and the subscript “rev”’ means
“reverse channel.” Define

Ry... =F [yrevyz;v] (66)

where ¥ denotes the complex conjugate of y. Using the similar
argument, we have

H'H = VA*V*. (67)
Then, the reverse receiver, i.e., the previous transmitter, can cal-
culate R and P from V and A. Channel subspace tracking tech-
niques (see, e.g., [33] and [34]) can be used to estimate U,
V, and A efficiently. Hence, our GMD scheme can be applied
without the need to use training symbols for channel estima-
tion. We note that this merit of GMD is not shared by the con-
ventional transceiver schemes introduced in Section I since all
those methods allocate different powers to different subchan-
nels, which makes it difficult, if not impossible, to estimate
the singular values in A. Of course, if the same power is allo-
cated to each eigen-subchannel, this blind two-way channel sub-
space tracking idea can also be combined with the SVD-based
schemes at the cost of significant capacity loss.

The GMD scheme can be made backward compatible with
the TDD systems using VBLAST decoders. By using CSIT or
blind subspace tracking techniques, the transmitter can calculate
the linear precoder P. Hence, it can always precode the trans-
mitted data s to be x = P's, even when sending the training data.
Thus, the receiver is “fooled” to believe that the channel is the
virtual one H,; = HP = QR. Although the linear precoder P
is made transparent to the VBLAST decoder, the decoder still
enjoys the multiple identical subchannels due to the linear pre-
coder P.
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C. Subchannel Selection

The previous discussion is based on the assumption that all
the subchannels corresponding to positive singular values are
used for signal transmission. However, in practical scenarios,
some of the positive singular values of the channel matrix H
can be very small. This situation occurs for spatially correlated
flat-fading channels, or even i.i.d. Rayleigh flat-fading channels
with M,. =~ M; > 1. From (47b), we see that it will influ-
ence the overall channel quality, and hence, subchannel selec-
tion is helpful. The other situation where subchannel selection
is needed is the case when the input power is low or moderate.
In this section, we propose a simple algorithm to select the sub-
channels, which is numerically verified to be able to achieve
near optimal capacity, even at low SNR.

Let us sort the singular values of H as A1 > Aga--- >
Am,x > 0. If GMD is constrained to the first n < K eigen

subchannels, we obtain n identical subchannels
Yi = Az + 2, fori=1,....n

(68)

where

(69)

To maximize the channel throughput with our GMD scheme,
we need to solve the following problem:

n

2 P
lgiaéxKnlog 1+ HAH’ig (70)
or
205 @

The solution to this problem is straightforward. We can use ei-
ther linear search or bisection method to find the optimal n.
Several remarks are in order. i) It is straightforward to in-

corporate the channel selection into the GMD algorithm. In the
Appendix, we show that GMD starts from SVD H = UAV*
and then applies a series of Givens transformation to A to make
it upper triangular (see Appendix). The Givens transformation
can be constrained to the first n < K diagonal elements of A.
ii) The blind channel subspace tracking can be combined with
the subchannel selection strategy seamlessly. If only the sub-
channels corresponding to the largest n < K singular values
are selected, the blind channel tracking technique will track
the n dimensional subspace automatically. iii) The performance
loss of the GMD scheme at a low SNR region is due to the
well-known fact that the zero-forcing equalizer is inherently

suboptimal. In a subsequent paper, we propose a so-called uni-

form channel decomposition (UCD) scheme, which can decom-

pose a MIMO channel into multiple identical subchannels in a
strictly capacity lossless manner [35].

D. Further Remarks

When this paper was under review, we noticed [23], in which
an idea similar to GMD was proposed to approach the perfor-
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Fig. 1. Average capacity over 1000 Monte Carlo trials versus SNR with M, =

4 and M, = 4 for i.i.d. Rayleigh flat-fading channels.
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Fig. 2. Complementary cumulative distribution functions of the capacities of
five subchannels of the i.i.d. Rayleigh flat-fading channel with A/, = 5 and
M, = 5. Results based on 2000 Monte Carlo trials.

mance of the ML detector in the ISI suppression scenario. For a
SISO ISI channel, if symbols are precoded and transmitted in a
block manner, then the data model (15) can be used to represent
the received block data. Note that for this case, H is a Toeplitz
matrix due to the time-invariant property of the ISI channel. A
linear precoder design F' was proposed in [23] such that the vir-
tual channel H,,; = HF can be decomposed, via QR decompo-
sition, to be H,; = QR, where R has equal diagonal elements.
We see that this equal diagonal idea is equivalent to GMD. How-
ever, our GMD scheme, which is independently motivated by
the MIMO transceiver design problem, has several major ad-
vantages over the algorithm in [23].
1) Our GMD scheme represents a paradigm shift from the
conventional linear transceiver designs to nonlinear de-
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1000 Monte Carlo trials. SNR = (a) 0 dB, (b) 10 dB, (c) 20 dB, and (d) 30 dB.

signs and can be proven, both numerically and theoreti-
cally, to have superior performance from both BER and
information theoretic aspects.

2) Our GMD algorithm is computationally much more
efficient than that of [23]. Both algorithms start from
the SVD of H, which is followed by K — 1 iterations.
The GMD involves 2K — 2 fast Givens rotations. For
a channel H with M; = M, = K, the SVD requires
O(K?) flops, whereas the GMD requires additional
O(K?) flops. Thus, the computational complexity of
the GMD scheme is comparable to the conventional
linear transceiver schemes. However, the algorithm in
[23] involves multiplications and inversions of matrices
in each iteration, and the overall computational burden
turns out to be an additional O(K*) flops.
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For the GMD algorithm, only the information for HH*,
and hence A and U, are needed to calculate Q. However,
for the algorithm in [23], the equalizer needs to know
both the precoder F and H and, hence, H,, = HF,
in order to apply the traditional QR to H,;. Hence,
it cannot be combined with the aforementioned blind
two-way channel subspace tracking algorithm introduced
in Section V-B.

The techniques proposed in the GMD algorithm, i.e.,
permutations and Givens rotations, can be used to
achieve any possible upper triangular decomposition
predicted by Theorem IV.1, which we refer to as the
generalized triangular decomposition (GTD) [36]. The
GTD can be used in MIMO transceiver designs with
QoS constraints [37].
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Like the algorithm in [23], the GMD scheme can also be com-
bined with orthogonal frequency division multiplexing (OFDM)
for ISI suppression. For a SISO ISI channel with memory L

L-1

y(n) = Z hiz(n—1)+ z(n) (72)
=0

after applying OFDM with block length IV, we get a MIMO

channel

where D is a diagonal matrix with the diagonal elements
equal to the N-point fast Fourier transform (FFT) of
h [ho, h1,...,hr_1]T. Hence, the GMD scheme can
be applied directly. We expect that GMD-ZFDP may have
better BER performance than GMD-VBLAST if N > 1, in
which case, the GMD-VBLAST may suffer from considerable
performance degradation due to error propagations.

VI. PERFORMANCE EXAMPLES

We present next several numerical examples to demonstrate
the effectiveness of the GMD scheme. In all the examples, we
assume Rayleigh independent flat-fading channels.

In the first example, we consider a Rayleigh flat-fading
channel with M; = 4 and M, = 4. We compute the Shannon
capacities of the channel with both CSIR and CSIT [Cir,
(5)], the channel with uninformed transmitter [C'yr, (7)], the
channel using the GMD scheme [Cgnp, (55)[, the channel
using the MTM scheme [Cyitw, (25)], and the channel using
the MMD scheme [Cyvp, (31)]. We average the capacities
of 1000 Monte Carlo-generated H realizations. The result is
presented in Fig. 1. We note that the capacity loss of the MMD
scheme is about twice that of the MTM scheme at high SNR, as
predicted in Section III. The relative capacity loss of the MMD
scheme compared with MTM is smaller at low SNR because
some subchannels are not used at low SNR. The GMD scheme
outperforms the linear transceiver designs when the SNR is
moderate or high and is asymptotically capacity lossless at high
SNR.

Fig. 2 shows the complementary cumulative distribution
functions (CCDFs) of the channel capacities of a 5 X 5 inde-
pendent Rayleigh flat-fading channel with SNR equal to 23 dB.
The five thin dashed curves denote the channel capacities of
the five subchannels obtained via SVD plus water filling. Note
that the left-most thin curve crosses the vertical axis at a value
less than one, which means that the worst subchannel (corre-
sponding to the smallest singular value of the channel matrix)
is sometimes discarded by water filling. The thick line is the
CCDF of each subchannel capacity obtained via GMD. Fig. 2
further illustrates the disadvantages of the conventional “SVD
plus bit allocation” scheme (see, e.g., [12], [13], and [16]). The
channel capacities of the five subchannels obtained via SVD
plus water filling range from O to about 10 bit/s/Hz, which sug-
gests that the binary phase shift keying (BPSK) or quaternary
phase shift keying (QPSK) modulation should be used to match
the capacity of the worst subchannel and something like 512
or 1024 QAM to the best subchannel. This bit allocation sig-
nificantly increases the modulation/demodulation complexity.
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Fig. 4. BER performance averaged over 1000 Monte Carlo trials of i.i.d.
Rayleigh flat-fading channel versus SNR with (a) M; = 2 and M, = 4 and
(b) M, = 4and M, = 4.

25

Moreover, using a constellation with size greater than 256 is
impractical for the current RF circuit design technology. For
the GMD scheme, on the other hand, the same constellation
with a moderate size, say 64-QAM, can be applied to reap most
of the channel capacity.

To demonstrate the effectiveness of the subchannel selec-
tion approach, we consider a 10 x 10 independent Rayleigh
flat-fading channel. The channel is usually ill-conditioned since
some singular values of H are very close to zero. Without the
subchannel selection strategy, GMD suffers from performance
degradation, especially at low SNR, as seen in Fig. 3. On the
other hand, with the subchannel selection scheme, there is only
about 0.2 bit/sec/Hz rate loss compared with the Crr, even at
very low SNR.
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GMD+OFDM, N = 64, L = 4, 64-QAM
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Fig. 5. BER performances of GMD-VBLAST and GMD-ZFDP. Both are
combined with OFDM for ISI suppression.

We compare the BER performance of the GMD-VBLAST
scheme with the unprecoded MMSE-VBLAST scheme with
the optimal detection ordering, the MTM scheme, and the
MMD scheme. No error correcting code is used in the simu-
lations. In Fig. 4(a), H € C**2 has identically independent
Rayleigh fading elements. Hence, the channel matrix is usually
well-conditioned. Two independent symbol streams modulated
as 16-QAM are transmitted. The figure is obtained by averaging
1000 Monte Carlo trials of H. We see that the GMD scheme
has more than a 1-dB improvement over the MMD scheme at
moderate to high SNR. In Fig. 4(b), H € C*** usually has a
large condition number, in which case, the MMD scheme is
subject to more capacity loss, as analyzed in Section III. Four
independent symbol streams are transmitted. The BER perfor-
mance of the GMD scheme is much better than the others. We
did not include MTM because it discards some bad subchannels
and, hence, cannot be used to transmit four independent data
streams.

In the final example, we combine the GMD scheme with
64-point FFT-based OFDM for ISI suppression in a SISO
channel (see Fig. 5). We assume that the channel responses
hy,1 = 0,1,...,L — 1 are independent zero-mean circularly
symmetric Gaussian random variables with unit variance. The
channel length is L = 4. The GMD-ZFDP is about 2 dB better
than GMD-VBLAST. This is because GMD-VBLAST suffers
from considerable error propagation effect. This result suggests
that GMD-ZFDP may be preferred over GMD-VBLAST if the
channel has a large dimensionality.

VII. CONCLUSIONS

We have introduced a novel joint transceiver design scheme
when the CSI is available at both the transmitter and receiver of
a MIMO communication system. We show that the geometric
mean decomposition (GMD), combined with the VBLAST
decoder or dirty paper precoder, can decompose a MIMO
channel into multiple identical scalar subchannels. This desir-
able property can bring about much convenience to the practical
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Fig. 6. Operation displayed in (74).

system design, particularly the symbol constellation selection.
Moreover, we have shown that the GMD scheme is optimal
asymptotically for high SNR in terms of both information rate
and BER performance, whereas the computational complexity
of our scheme is comparable with the conventional linear
transceiver scheme. Furthermore, we have shown that the GMD
scheme can be applied without the need to use training symbols
for channel estimation if combined with subspace tracking
techniques. We have also considered the issue of subchannel
selection when some of the subchannels are too poor to be
useful. The GMD scheme can also be combined with OFDM
for ISI suppression. Both the theoretical analyses and empirical
simulations have been provided to validate the effectiveness of
our approaches.

APPENDIX
GEOMETRIC MEAN DECOMPOSITION

‘We now give an algorithm that evaluates the GMD that starts
with the SVD H = UAV*. The algorithm generates a sequence
of upper triangular matrices R 1< K < K, withR® =
A. Each matrix R has the following properties.

a) v = 0 wheni > j orj > max{K,i}.

b) #{) = Xp foralli < K, and the geometric mean of

rfOK <i < Kis g
We express Rt = QTR Py, where Qy, and Py, are or-
thogonal for each k.

These orthogonal matrices are constructed using a symmetric
permutation and a pair of Givens rotations. Suppose that R(¥)
satisfies a) and b). If r,(c]z,) > Mg, thenletII be a permutation ma-
trix with the property that ITR(*)II exchanges the (k + 1)st di-
agonal element of R®*) with any element 7, p > k, for which
Tpp < Ag. If r,(cll? < Ap, then let IT be chosen to exchange the
(k + 1)st diagonal element with any element 7,,, p > k for
which r,, > Ag. Let §; = r,(clz) and 6> = r,(,]; denote the new
diagonal elements at locations k£ and k + 1 associated with the
permuted matrix ITR(1I.

Next, we construct orthogonal matrices G1 and G by mod-
ifying the elements in the identity matrix that lie at the intersec-
tion of rows k and k + 1 and columns % and k£ + 1. We multiply
the permuted matrix ITR.)II on the left by GI and on the right
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3ol cdy 862 61 0 c -8 _ Ay
H | _58, c¢b 0 6 s ¢ - 0 y (74)
(G3) (ORMI)  (Gy) (RUHD)

by G1. These multiplications will change the elements in the 2
by 2 submatrix at the intersection of rows & and k& + 1 with
columns % and k + 1. Our choice for the elements of G; and
G is shown below, where we focus on the relevant 2 by 2 sub-
matrices of GT, IR(M1II, and G, as in (74), shown at the top
of the page. If §; = 6, = Ay, wetake ¢ = 1 and s = 0; if
01 # 62, we take

X2, — 62
67 — 63

and s = /1 — 2.

(75)

Since A lies between 6; and &5, s and c are non-negative
real-valued scalars.

Fig. 6 depicts the transformation from R®) to
GITIRM™IIG,. The dashed box is the 2 by 2 submatrix
displayed in (74). Note that ¢ and s, which are defined in (75),
are real-valued scalars that are chosen so that

¢+ 5% =1and (¢61)? + (562)% = A%

With these identities, the validity of (74) follows by direct com-
putation. Defining Qj = IG5 and Py, = IIG, we set

R*HD = QIRMP,. (76)

It follows from Fig. 6, (74), and the identity |R(**+1)| = [R(*)|
that a) and b) hold for K = k+1. Thus, there exists a real-valued
upper triangular matrix R, with Az on the diagonal, and
unitary matrices Q; and P;, 2 = 1,2, ..., K — 1 such that

’

Combining this identity with the SVD, we obtain H = QRP*,
where

K-1 K-1
Q=U(J][Qi), R=R¥, andP=V | ][] P:
=1 =1
A Matlab implementation of this algorithm for
the GMD is posted at the following website:

http://www.sal.ufl.edu/yjiang/papers/gmd.m.

Given the SVD, this algorithm for the GMD requires
O((M, + M;)K) flops. For comparison, a reduction of H to
bidiagonal form by the Golub—Kahan bidiagonalization scheme
[38], which is often the first step in the computation of the
SVD, requires O(M,.M; K) flops.
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