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Abstract. The gradient projection algorithm for function minimization is often implemented using
an approximate local minimization along the projected negative gradient. On the other hand, for
some difficult combinational optimization problems, where a starting guess may be far from a
solution, it may be advantageous to perform a nonlocal (exact) line search. In this paper we show
how to evaluate the piece-wise smooth projection associated with a constraint set described by
bounds on the variables and a single linear equation. When the NP hard graph partitioning problem
is formulated as a continuous quadratic programming problem, the constraints have this structure.
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1. Introduction

We consider the problem

min
x∈�

f �x�� (1)

where � is a closed, convex subset of �n, and f � �→�. The gradient projection
method is

xk+1=P�xk−sk
f �xk�
��� (2)

where 
f�xk� is the gradient of f at xk (the gradient is a row vector), sk is the
stepsize at iteration k, and P denotes projection into �. That is, given y∈�n,

P�y�=arg min
x∈�

�y−x�� (3)

where �·� is the Euclidean norm. Choices for the stepsize include constant
stepsize [11, 14], Goldstein’s or Armijo’s rule [1, 5, 7–10], and exact minimization
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along the projected negative gradient [6, 15]. In the case of exact minimization,
the stepsize is given by

sk=argmin
s�0

f �P�xk−s
f �xk�
���� (4)

Frequently, exact minimization is not used since it is impractical to evaluate
the projection for all choices of s. On the other hand, for difficult optimization
problems, where the structure of � is relatively simple, line search using exact
minimization may be useful since it provides a mechanism for making a large
step to escape from one valley of the cost function and move to another (possibly
distant) valley with a smaller minimum cost.
The NP hard graph partitioning problem is an example of a difficult optimization

problem whose constraints are relatively simple. We show in [13] that the problem
of partitioning the n nodes of graph into two sets of size m and n−m, while
minimizing the number of edges that connect the two sets, can be formulated as
the following continuous quadratic programming problem:

min �1−x��Ax subject to 0�x�1� 1�x=m� (5)

where 1 is the vector containing n ones and aij=1 if and only if either i=j or
there is an edge between nodes i and j. This continuous quadratic programming
problem has a solution x∗ whose entries are either 0 or 1. The indices of x∗

associated with 1s correspond to a set of m nodes in an optimal partition.
For (5) the constraints consist of a single linear equation and bound constraints

on the components of x. In this paper, we show how to evaluated P�x+sd� as
a function of s in this case. For any given s, this projection is the solution of
a knapsack problem, which can be solved in time proportional to n�4�. Also,
see [16] where an O�n� algorithm is given for more general convex quadratic
programs subject to a single linear constraint and bounds on the variables. In this
paper, however, we consider a different problem, that of evaluating the projection
as a function of s. The projection is a piecewise linear function of s, with a
finite set of break points where the derivative with respect to s is discontinuous.
We provide an algorithm for computing the break points, and the active indices
between break points. The effort involved in computing the new active set after
a break point is related to the size of the change in the active set across the break
point.

2. Global Convergence

For completeness, we prove that convergent subsequences generated by the gra-
dient projection method with exact line search approach a stationary point. This
is proved in [15] for some special cases; also see [6, p. 153] where the analysis is
similar to ours, except that our assumptions are local. Here we consider a general
closed, convex set �, and a cost function whose gradient is locally Lipschitz. It is
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well-known [2, p. 201] that the projection operator has the following properties:

�y−P�y����x−P�y���0 for all x∈�� (6)

�P�x�−P�y����x−y� for all x�y∈�n� (7)

The first inequality (6) is the first-order optimality condition satisfied by the
solution of (3), while the second inequality (7) is the nonexpansive property of
the projection. If f is differentiable along the line segment �x�y� connecting x
and y∈�n, and the following Lipschitz condition holds:

�
f�x+t�y−x��−
f�x���Lt�y−x� for all t∈ �0�1��
where L is a scalar, then by a second-order Taylor expansion, we have

f �y��f �x�+
f�x��y−x�+L

2
�y−x�2� (8)

THEOREM 1. Suppose the following conditions hold:

• f is differential on �,
• the gradient projection iterates (2)–(4) are defined,
• a subsequence �xj � j∈� � converges to a limit x̄,
• f is Lipschitz continuous in a neighborhood of x̄.

Then we have


f�x̄��x− x̄��0 for all x∈��
In other words, x̄ is a stationary point for (1).

Proof. If 
f�x̄�=0, then we are done, so assume that 
f�x̄� �=0. Let � be a
neighborhood of x̄ where f is Lipschitz continuous. Choose L large enough that

�
f�x�−
f�y���L�x−y�
for all x and y∈�. If �� is the ball with center x̄ and radius � , then choose
� small enough that �� ⊂� and �
f�x���2�
f�x̄�� for all x∈�� . Choose L
larger, if necessary, so that

2�
f�x̄��/L��/2� (9)

Choose j∈� large enough that xj ∈��/2, and let yj denote the projection P�xj−
gj/L�, where gj=
f�xj�

� and ḡ=
f�x̄��. Since xj ∈�, we have P�xj�=xj , and
by (7) and (9),

�yj−xj�=�P�xj−gj/L�−P�xj����gj�/L�2�ḡ�/L��/2�

Since xj ∈��/2, it follows that yj ∈�� . By (8) and the relation f �xk+1��f �yk�
for each k, we have

f �xj+1�−f �xj� � f �yj�−f �xj�

� 
f�xj��yj−xj�+
L

2
�yj−xj�2� (10)
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The optimality condition (6) for the projection, with y=xj−gj/L, can be
expressed:

�xj−gj/L−yj�
��x−yj��0 for all x∈��

Taking x=xj yields:


f�xj��yj−xj��−L�yj−xj�2� (11)

Combining this with (10) gives

�yj−xj�2�
2
L
�f �xj�−f �xj+1��� (12)

Since f �xk� is a monotone decreasing function of k and since f �xj�, j∈� ,
approaches f �x̄�, it follows, that the entire sequence f �xk� converges monotoni-
cally to f �x̄�. As a result, (12) implies that

lim
j∈�

yj= x̄� (13)

By the nonexpansive property (7) of the projection operator, we have

�yj−P�x̄− ḡ/L�� = �P�xj−gj/L�−P�x̄− ḡ/L��
� �xj−gj/L−�x̄− ḡ/L��
� �xj− x̄�+�gj− ḡ�/L� (14)

By the Lipschitz continuity of 
f , the right side of (14) approaches 0. Combining
this with the convergence (13) of yj to x̄, the left side yields:

lim
j∈�

�yj−P�x̄− ḡ/L��=�x̄−P�x̄− ḡ/L��=0�

It follows that

x̄=P�x̄− ḡ/L��

Finally, (6) with y= x̄− ḡ/L completes the proof. �

3. Structure of the Projection

Given y0 and d∈�n, let y��� be the affine function of �∈� defined by

y���=y0+�d�

Let x��� be the solution of the problem

min
x∈�n

1
2
�x−y����2 subject to 0�x�1� a�x=b� (15)

where a∈�n and b∈�. We assume that y0 satisfies the constraints of (15). That
is, 0�y0�1 and a�y0=b. Without loss of generality, we can assume that a�0;
that is, for each i such that ai<0, we make the change of variables given by
x̄i=1−xi, while x̄i=xi otherwise. After modifying y in the same way and writing



THE GRADIENT PROJECTION METHOD WITH EXACT LINE SEARCH 107

the resulting problem in the form (15), the new a is nonnegative. If ai=0 for
some i, then xi does not appear in the linear constraint of (15). Since the ith term
in the cost function is independent of the other terms, we see that when ai=0,

xi���=



0 if yi���<0�

1 if yi���>1�

yi��� otherwise�

Since these components of x��� corresponding to indices i where ai vanishes can
be expressed independently of the other components, we simplify the discussion
further by assuming that a>0.
We now formulate the first-order optimality system associated with (15). Define

the index sets

���� = �i∈ �1�n� � xi���=1��

���� = �i∈ �1�n� � xi���=0��

� ��� = �i∈ �1�n� � 0<xi���<1��

Since the first-order optimally system is necessary and sufficient for optimality
in this convex setting, it follows that x=x��� achieves the minimum in (15) if
and only if 0�x����1 and there exist ����∈� such that

xi���−yi���+ai����



�0 if i∈�����
�0 if i∈�����
=0 if i∈� ����

(16)

It follows from (16) that xi���=yi���−ai���� for each i∈� ���. If � ��� �=∅,
then we can substitute for xi���, i∈� ���, in the constraint a�x=b and solve for
����:

����=
∑

i∈� ���aiyi���+
∑

i∈��a�ai−b∑
i∈� ���a

2
i

� (17)

If � ���=∅, then in general, there is a closed interval of multipliers satisfying
the optimality conditions. More precisely, when � ���=∅, the equalities in (16)
are vacuous, and since ai>0 for each i, the inequalities imply that

������yi���−xi����/ai for each i∈����� (18)

������yi���−xi����/ai for each i∈����� (19)

The smallest upper bound combined with the largest lower bound yields an
interval ��l�����u���� of possible multipliers (if one of the bounds is infinite,
the interval becomes semi-infinite). We let !��� denote the set of multipliers
satisfying (18) and (19), while ����∈!��� denotes a multiplier chosen from the
set.
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LEMMA 1. If ���1�=���2� and ���1�=���2�, then ����=���1� and
����=���1� for all �∈ ��1��2�.

Proof. Let x̄�·�� �→�n and �̄�·�� �→� be affine functions satisfying the
conditions

x̄���=x��� and �̄���∈!���� �=�1��2�

Since ���1�=���2� and ���1�=���2�, it follows that for all �∈ ��1��2�,
x̄i���=1 if i∈���1�, x̄i���=0 if i∈���1�, and

0< x̄i���<1 if i∈� ��1��

Since x̄, �̄, and y satisfy (16) for �=�1 and �=�2, we have for all �∈ ��1��2�,

x̄i���−yi���+ai�̄���



�0 if i∈���1��

�0 if i∈���1��

=0 if i∈� ��1��

Hence, x̄��� satisfies the first-order optimality conditions associated with (15)
and x���= x̄��� for each �∈ ��1��2�. �

Remark 1. By [12, (4.4)], x��� depends Lipschitz continously on � and the
following estimate holds:

�x��1�−x��2��� ��1−�2��d�� (20)

Suppose that at some "∈�, � �"� is empty and �l�"�<�u�"�. Since x and y
depend continuously on � in (18) and (19), �l���<�u��� for � near ". Hence,
x�"� is the solution of (15) for � near ".

Although !��� can be a set when � ��� is empty , !��� must be a singleton
when � ��� �=∅. That is, for any i∈� ��� (16) implies that

����=�yi���−xi����/ai�

We now show that ! possesses continuity properties, despite the fact that it
can switch between a single-valued and a multi-values function. We say that "
is a break point if either ��"−#� �=��"+#� or ��"−#� �=��"+#� for all #
sufficiently close to 0. We attach a + or - superscript to a set to denote its value
just to the right or just to the left of its evaluation point. For example, �−�"� and
�+�"� denote the free set just to the left and just to the right of ", respectively.
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LEMMA 2. The multiplier set has the following properties:

(a) If �+�"� �=∅ �=�−�"� and � �"�=∅, then !�·� is single-valued and
continuous at ".

(b) If � �"�=�−�"�=∅, but �+�"� �=∅ then !�·� is single-valued and
continuous on an interval �"�"+#� for some #>0.

(c) On any interval ��1��2� where ! is single-valued, it is Lipschitz continuous.

Proof. In case (a), if !�"� is multivalued, then as observed above, x���=
x�"� for � near ", and � ��� is empty for � near ". Since this contradicts the
assumption that �+�"� �=∅ �=�−�"�, !�"� is single-valued, and �l�"�=�u�"�.
For � near ", it follows from the continuity of x�·�, that for each i∈��"�, either
i∈���� or i∈� ���. In either case, (16) implies that

������yi���−xi����/ai for each i∈��"�� (21)

Let j be any index in ��"� for which �u�"�=�yj�"�−xj�"��/aj . Utilizing (21)
with i=j and (20) gives

������u�"�+2�d���−"�/aj�

In the same fashion, but with � replaced by �, we have

������l�"�−2�d���−"�/aj�

As � approaches ", we deduce that ���� approaches �u�"�=�l�"�=��"�. This
completes the proof of (a). In case (b), the same analysis can be used to conclude
that !�"� is single-valued and !��� approaches !�"� as � approaches " from
the right.
In case (c), let �"1�"2�⊂��1��2� be any interval that contains no break points.

Suppose that �∈�"1�"2�, � ��� is nonempty, and j∈� ���. By (16) we have
����=�yj���−xj����/aj for all �∈�"1�"2�. Due to the Lipschitz estimate(20),
� is Lipschitz continuous on ��1��2�. If � ��� is empty for all �∈��1��2�, then
by the assumption that ! is single-valued, by the bounds (18) and (19), and
by the Lipschitz continuity of x and y, we conclude, again, that � is Lipschitz
continuous on ��1��2�. Finally, let " be any break point in ��1��2�. If � �"� is
nonempty, then the relation ����=�yj���−xj����/aj for any j∈� �"� and �
near " implies that � is continuous at ". If � �"� is empty, then by either (a)
or (b), we have continuity of � at ". Lipschitz continuity between break points
combined with continuity across break points yields (c). �

As a consequence of Lemma 1, there is a finite set of break points. Let "1 and
"2 be adjacent break points. If � �·� is empty on �"1�"2�, then x�·� is constant.



110 W.W. HAGER AND S. PARK

If � �·� is nonempty, then ��·� is affine due to (17), while xi�·� for i∈� ���,
�∈�"1�"2�, is affine due to (16). Moreover, we have

�′���=
∑

i∈� ���aidi∑
i∈� ���a

2
i

(22)

and

x′
i���=di−ai�

′��� for each i∈� ���� (23)

Hence, at the break point "2, either some component of xi�·� that was previously
free reaches a bound, or one of the inequalities in (16) changes from strict
inequality to equality. In other words, at "2 one of the following conditions holds:

xi�"2� = 0 or 1 for some i∈�+�"1�� or (24)

xi�"2� = yi�"2�−ai��"2�� i∈�+�"1� with di �=ai�
′���� (25)

Here ����=����∪���� are the active indices at �. Given any interval, where
��·� is constant, it is easy to determine the break point to the right by checking
when either (24) or (25) is first satisfied. We now examine the more difficult
problem of determining the active set �+�"2� just to the right of the break
point "2.

4. Active Set Transition at a Break Point

In this section, we give an algorithm for evaluating �+�"� either at a break point
" or at the starting point "=0. If "=0 and � �"� is empty with �l�0�<�u�0�,
then as noted in Section 3, �+�0�=��0� and �+�0�=��0�. In the case that !�"�
is single-valued, the algorithm for evaluating �+�"� involves a nested sequence
of sets ��m� and ��m� with the following initializations:

�0 = �i∈��"� � xi�"�−yi�"�+ai��"�<0�� (26)

�0 = �i∈��"� � xi�"�−yi�"�+ai��"�>0�� (27)

For any m, we also define

�m=��m∪�m�
c and d̄m=

∑
i∈�m

aidi∑
i∈�m

a2
i

� (28)

Here lower case superscript ‘c’ is used to denote the ordinary complement relative
to the entire set of indices. We use an upper case superscript ‘C’ to denote a
restricted complement, relative to the set ��"� or ��"�, defined in the following
way:

�C
m = �i∈��"�� i �∈�m�di�aid̄m��

�C
m = �i∈��"�� i �∈�m�di�aid̄m��
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The new sets �m+1 and �m+1 are computed as follows:

�m+1 = �m∪�C
m and �m+1=�m if �m�'m� (29)

�m+1 = �m∪�C
m and �m+1=�m otherwise� (30)

where

�m=
∑
i∈�C

m

aidi−a2
i d̄m and 'm=

∑
i∈�Cm

a2
i d̄m−aidi� (31)

When the summation limits in (31) are empty, we define the sum to be −1. That
is,
∑

i∈∅=−1. Since di � aid̄m in the definition of �m and since di � aid̄m in the
definition of 'm, it follows that both �m and 'm are nonnegative when their limits
are nonempty. The construction is terminated at the first value of m, denoted M ,
for which both �C

m and �C
m are empty.

THEOREM 2. If either " is a break point, or "=0 and !�"� is a singleton,
then

�+�"�=�M and �+�"�=�M�

Thus to obtain �+�"� and �+�"�, we let the sets �m and �m grow until both
�C
m and �C

m are empty. Let M1 be the parameter defined by:

M1=
{
M if �M is nonempty�

M−1 otherwise�

Note that although �M and �M are defined, d̄M is undefined when �M is empty
since it reduces to 0/0. The following lemma, which is the basis for Theorem 2,
establishes a relationship between d̄m and d̄k, k∈�m�M1�.

LEMMA 3. If �m�'m, then d̄m� d̄k for all k∈�m�M1�, and if �m<'m, then
d̄m� d̄k for all k∈�m�M1�.

Proof. We begin with the cases corresponding to k=m+1�M1. That is, we
prove the following:

(P1) If �m�'m, then d̄m� d̄m+1.
(P2) If �m<'m, then d̄m� d̄m+1.

Since a>0, the relation dj�ajd̄m for each j∈�C
m implies that

ajdi�a2
j d̄m=a2

j

∑
i∈�m

aidi∑
i∈�m

a2
i

�
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Summing over j∈�C
m gives

∑
j∈�C

m

ajdj�


∑

j∈�C
m

a2
j


∑i∈�m

aidi∑
i∈�m

a2
i

�

Multiplying by the denominator yields(∑
i∈�m

a2
i

) ∑
j∈�C

m

ajdj�


∑

j∈�C
m

a2
j


∑

i∈�m

aidi� (32)

In the case �m�'m, we add the expression( ∑
j∈�m+1

a2
j

) ∑
i∈�m+1

aidi−

∑

i∈�C
m

a2
i


∑

j∈�C
m

ajdj

to both sides of (32); after observing that the indices �C
m added to �m to obtain

�m+1 are the same indices removed from �m to obtain �m+1, we obtain( ∑
i∈�m+1

a2
i

) ∑
j∈�m

ajdj�

(∑
j∈�m

a2
j

) ∑
i∈�m+1

aidi�

This implies that d̄m� d̄m+1, which give (P1). The case (P2) can be analyzed in
a similar fashion.
Next, we prove the following generalization:

(P3) If �m�'m and �k<'k for all k∈�m�L�, L�M1, then d̄m� d̄L.
(P4) If �m<'m and �k�'k for all k∈�m�L�, L�M1, then d̄m� d̄L.

Focusing first on (P3), it follows from (P1) that

d̄m� d̄m+1 and d̄k� d̄k+1 for k∈�m�L�� (33)

We now show that d̄m� d̄L (see Figure 1).
The proof is by induction. For l=m+1 we have d̄m� d̄k for all k∈ �m�l�.

Suppose that for some l∈�m�L�, we have d̄m� d̄k for all k∈ �m�l�. We prove
that d̄m� d̄l+1� d̄l. The last inequality d̄l+1� d̄l follows directly from (33). To
prove the first inequality d̄m� d̄l+1, we recall the definition (28) of d̄m, which can
be rearranged as follows:∑

i∈�m

�aidi−a2
i d̄m�=0� (34)

We partition the terms in this sum into three separate terms. Observe that both �C
m

and �C
m are (disjoint) subsets of �m. The remaining indices in �m are denoted 	:

	=�m\ ��C
m∪�C

m��
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Figure 1. �m�'m and �k<'k for m<k<L.

Since the terms in sum (34) corresponding to �C
m are used to form �m and the

terms corresponding to �C
m are used to form 'm, (34) is equivalent to

�m−'m+
∑
i∈	
�aidi−a2

i d̄m�=0�

By assumption, �m�'m. Hence, �m−'m�0, which implies that∑
i∈	
�aidi−a2

i d̄m��0� (35)

By the induction hypothesis, d̄m� d̄k for all k∈ �m�l�. Since the set �C
k is

composed of indices for which di�aid̄k, the relation d̄k� d̄m implies that �C
k ⊂�C

m

for each k∈ �m�l�. Since �k<'k for k∈ �m�l�, it follows from (28) and (30) that

�k\�k+1=�C
k ⊂�C

m�

To summarize, for k=m, the set �m+1 is obtained from �m by removing all the
indices in �C

m , while for k∈�m�l�, �k+1 is obtained from �k by removing indices
that are elements of �C

m. Since 	 is the subset of �m obtained by deleting the
indices from �C

m∪�C
m, we conclude that

	⊂�l+1⊂	∪�C
m�

Hence for each i∈�l+1\	, we have i∈�C
m and di�aid̄m, combining this with

(35) gives∑
i∈�l+1

�aidi−a2
i d̄m��

∑
i∈	
�aidi−a2

i d̄m��0�

After dividing by
∑

i∈�l+1
a2
i , we obtain

d̄l+1=
∑

i∈�l+1
aidi∑

�l+1
a2
i

� d̄m�
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This completes the induction step. The (P4) case is similar, except that (P2) is
used in place of (P1).
We now prove the lemma by contradiction. The first claim of the lemma is

that d̄m� d̄k for all k∈�m�M1� when �m�'m. Let L>m be the first index for
which d̄m<d̄L. Let l<L be the index closest to L with the property that �l�'l.
Since �m�'m, such an index l�m exists. Since �l�'l while �k<'k for all
k∈�l�L�, it follows from (P3) that d̄l� d̄L>d̄m This contradicts the fact that L
was the smallest index with the property that d̄L>d̄m. The proof that d̄m� d̄k for
k∈�m�M1� when �m<'m is similar, using (P4) in place of (P3). �

LEMMA 4. If !�"� is multivalued, or !�"� is single-valued and �M is empty,
then there exists #>0 such that x���=x�"� for all �∈ �"�"+#�.

Proof. If !�"� is multivalued, then by Remark 1, x���=x�"� for all �>",�
near ". If !�"� is single-valued and �M is empty, then for �>", � near ",
define

���� = ��"�+��−"�d̄M−1�

x��� = x�"��

We show that for this choice of �, the optimality conditions (16) are satisfied for
�>", � near ".
If i∈�M and i∈�0, then the relation

xi�"�−yi�"�+ai��"�<0

implies that the first inequality in (16) is satisfied for � near ". If i∈�m+1\�m

for some m�0, we have

xi�"�−yi�"�+ai��"�=0� (36)

�m�'m, and di�aid̄m. Since d̄m� d̄k for all k∈�m�M� by Lemma 3, di�aid̄M−1,
or equivalently,

aid̄M−1−di�0�

For the proposed solution, it follows that

x′
i���−y′i���+ai�

′���=aid̄M−1−di�0

Combining this with (36), we conclude that the first inequality in (16) is satisfied
for all �>". The second inequality in (16) is analyzed in the same way. Since
the first-order optimality conditions are necessary and sufficient for optimality,
we conclude that the proposed x��� is the solution of (15) for �>", � near ".

�
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We now prove Theorem 2. The proof is constructive in the sense that we
exhibit the solution. In particular, for �>" and � near ", we show that

xi��� = 1 for i∈�M�

xi��� = 0 for i∈�M�

xi��� = xi�"�+��−"��di−aid̄M� for i∈�M� (37)

We simply check that this proposed solution satisfies the optimality conditions. In
the case where �M is empty, the optimality of the proposed solution follows from
Lemma 4. Suppose that �M is nonempty. If for some i∈�M , we have xi�"�=1,
then since i �∈�M and �C

M is empty, it follows that di<aid̄M . By (37) xi���<1
for �>". In the same fashion, if i∈�M and xi�"�=0, then xi���>0 for �>".
Hence, for the proposed solution 0<xi���<1 for all i∈�M and �>". Also,
for the proposed solution (37), x′

i���=di−aid̄M , which matches the slope of the
optimal solution given in (22) and (23). As a result, the equality in (16) holds.
Now consider the inequalities in (16). If i∈�M , then either i∈�0 and the first

inequality in (16) is strict, or i∈�m+1\�m for some m�0. In this latter case,

xi�"�−yi�"�+ai��"�=0� (38)

�m�'m, and di�aid̄m. Since d̄m� d̄k for all k∈�m�M� by Lemma 3, di�aidM ,
or equivalently,

aid̄M−di�0� (39)

For the proposed solution, it follows from (22) that �′���= d̄M for �>". Com-
bining this with (39), we conclude that the derivative of the left side of (16) is
�0. Due to (38), the first inequality in (16) is satisfied for �>". The second
inequality in (16) is treated in a similar manner. This completes the proof of
Theorem 2.

5. Conclusions

To summarize, the projection (15) is evaluated by the following procedure:

5.1. PROJECTION ALGORITHM

1. Initialize k=0, �0=0, x�0�=y0. If !�0� is single-valued, then proceed to
step 2. Otherwise, �1 is the largest value of ">0 with the property that
�l�����u��� for all �∈ �0�"�, set x���=x�0� for �∈ �0�"�, increment k, and
set ��"�=�l�"�.

2. Initialize �0 and �0 using (26) and (27) with "=�k.
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3. Perform the iteration (29) and (30) until both sets �C
m and �C

m are empty. Let
�M and �M be the final sets. If �M is nonempty, proceed to step 4. Otherwise,
�k+1 is the largest value of "��k with the property that �l�����u��� for
all �∈ ��k�"�. Set x���=x��k� for �∈ ��k�"�, set ��"�=�l�"�, increment k,
and branch to step 2.

4. Evaluate the slopes

�′��� =
∑

i∈�M
aidi∑

i∈�M
a2
i

�

x′
i��� = di−ai�

′��� for each i∈�M�

x′
i��� = 0 otherwise�

5. Using these slopes, evaluate x��� and ���� for ���k. Compute the next
break point " that satisfies

xi�"� = 0 or 1 for some i∈�M� or

xi�"� = yi�"�−ai��"�� i∈� c
M with di �=ai�

′����

6. Set �k+1=", increment k, and branch to step 2.

This process is continued until we reach the last break point. For the graph
partitioning problem (5), where the cost function is quadratic, the minimization
between each break point amounts to minimizing a quadratic function of one
variable. Moreover, due to the special form of the linear constraint in (5), it can
be shown (see Appendix) that if �M is empty at a break point ", then x���=x�"�
for all �>". Hence, in this special case, the statement of the projection algorithm
can be simplified further.

6. Appendix: Extreme Points for the Graph Partitioning Problem

Let us consider (5) where the linear constraint has the special form 1�x=m,
where 1 is the vector of ones and m is an integer. In this case, the extreme points
of the constraint set are the vectors in �n whose components contain m ones and
n−m zeros.

LEMMA A1. If x is an extreme point for the feasible set � of (5), then for all
a�b∈�, we have �a−x���b−x��0.

Proof. First, suppose that a and b are extreme points of �. Since x is an
extreme point, ai<xi only when xi=1, and in this case bi−xi�0 since bi�1.
Hence, the product �ai−xi��bi−xi� is nonnegative for each i. It follows that
�a−x���b−x��0. By the Krein–Milman theorem [3,p.181], � is a convex hull
of its extreme points. Let )i, i=1�����N , denote the extreme points of �. Given
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arbitrary a and b∈�, there exist nonnegative scalars +i and ,i, i=1�����N , such
that

N∑
i=1

+i)i=a and
N∑
i=1

,i)i=b� where
N∑
i=1

+i=1=
N∑
i=1

,i�

Hence , we what

�a−x���b−x�=
(

N∑
i=1

+i�)i−x�

)�
N∑
j=1

,j�)j−x��

Since each of the products �)i−x���)j−x� is nonnegative, the proof is
complete. �

The normal cone to � at the point x∈� is defined by

N��x�=�z∈�n� z��y−x��0 for all y∈���

By Lemma, A1, it follows that �−x⊂−N��x� when x is an extreme point of �.
Also notice that the first-order optimality condition (6) describing the projection
P�y� is equivalent to the inclusion y−P�y�∈N��P�y��.

LEMMA A2. If x is an extreme point for the feasible set � of (5), and P�y0+
"d�=x, where y0∈� and ">0, then P�y0+�d�=x for all ��".

Proof. Since �−x⊂−N��x� and y0∈�, it follows that

−�y0−x�∈N��x�� (40)

The assumption P�y0+"d�=x along with (6) implies that

y0+"d−x∈N��x�� (41)

The convexity of the normal cone combined with (40) and (41) give

1
2
�−�y0−x��+ 1

2
�y0+"d−x�= 1

2
"d∈N��x��

Hence, all positive multiples of d lie in N��x�. Since N��x� is a convex cone
containing both y0+"d−x and all positive multiples of d,

y0+�d−x∈N��x�

for all ��". Consequently, by (6) P�y0+�d�=x for all ��". �
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