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Abstract. A new algorithm, the dual active set algorithm, is presented for solving a minimization 
problem with equality constraints and bounds on the variables. The algorithm identifies the active 
bound constraints by maximizing an unconstrained dual function in a finite number of iterations. 
Convergence of the method is established, and it is applied to convex quadratic programming. In its 
implementable form, the algorithm is combined with the proximal point method. A computational 
study of large-scale quadratic network problems compares the algorithm to a coordinate ascent 
method and to conjugate gradient methods for the dual problem. This study shows that combining 
the new algorithm with the nonlinear conjugate gradient method is particularly effective on difficult 
network problems from the literature. 
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1. Introduction 

We consider the problem 

minimize f(z) subject to h(z) = 0, I 5 2 < U, (1) 

where f and h are continuously differentiable with f real-valued and h mapping 
IRn to BP. The n-vectors 1 and u are constant upper and lower bounds on the 
vector z. Hence, the constraints in (1) consist of both equality constraints 

h(x) = 0, (2) 

and inequality bound constraints 

l~x<u. (3) 

(Components of 1 or u can take the values --oo or +CXJ respectively.) Introducing 
a multiplier X E ZF” for the equality constraint in (2) we obtain the Lagrangian L 
defined by 

L(X, z) = f(x) + X%(z), (4) 
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and the associated dual functional 

L(X) = inf L(X, CC) subject to 1 5 z 5 u. (5) 
A fundamental new algorithm, the dual active set algorithm, is presented for 

solving the unconstrained dual problem 

maximize L(X) subject to X E LR”. (6) 
The initial algorithm that we present is conceptual in the sense that the var- 
ious minimizers and maximizers appearing in an iteration may not always ex- 
ist. The implementable version of the algorithm is embedded in the proximal 
point method. 

The dual active set algorithm is motivated by the fact that for each X E W’, the 
evaluation of L(X) in (5) yields a minimizing x = x(X), which identifies an active 
set of bound constraints (3), that is, those constraints for which xi(X) is equal 
to either li or ui. Starting from an arbitrary X0, the dual active set algorithm 
obtains a solution X* to the unconstrained optimization problem (6) in a finite 
number of iterations. Under appropriate hypotheses, there exists a minimizing 
z = x(X’) in (5), corresponding to X = X*, which is a solution to the primal 
problem (1). Hence, in a finite number of iterations, the algorithm identifies 
the active set of bound constraints associated with an optimal solution. This 
algorithm is similar in spirit to the well-known primal active set method ([35]) 
that determines a solution of (l), and an optimal active set, by evaluating a finite 
number of primal iterates that satisfy the constraints (2) and (3). However, there 
are major differences in these two distinct approaches that will be examined later 
in the context of quadratic programming. 

The remainder of this paper is organized as follows. In Section 2, we present 
the conceptual form of the dual active set algorithm, which is based on the 
work of Hager [24] and [25]. Finite convergence of the method is established, 
and the differences between dual and primal active set methods are discussed. 
Section 3 gives the implementable form of the algorithm. Section 4 specializes 
the method to convex quadratic programming, including quadratic networks. 
Section 5 discusses how conjugate gradient techniques are applied to the quadratic 
network dual. Finally, Section 6 gives the results of our numerical experiments 
with quadratic network problems from the literature. 

2. The dual active set algorithm 

To emphasize the generality of the dual active set algorithm, we first present it in 
its conceptual form. That is, it will be assumed that all entities introduced in the 
statement of the algorithm exist, and can be readily calculated. As mentioned 
above, implementation techniques are dealt with in the following sections. 

To solve the dual problem (6), the dual active set algorithm employs two 
auxiliary functions that depend on a subset B of the indices (1, 2, . . . , n}. Given 
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a.vector Z, let Zg denote the vector with components Z; associated with indices 
i E B. Given a vector z E lR”, we define: 

LB(A) = inf L(X, E) subject t0 lB 5 2B 5 UB, (7) 

and 

L&(X) = inf L(X, Cc) subject to XB = .zB. (8) 

Note that the variable xi in (7) and (8) is unconstrained if i # B. L;(X) is 
defined by fixing XB and carrying out the Lagrangian minimization in (8) with 
respect to the “free” variables xi, i 6 B. As we will see in Section 4, L&(X) 
is often much smoother than L(X), and the maximum of L%(X) over X is much 
easier to evaluate than the maximum of L(X). Within an iteration of the dual 
active set algorithm, we adjust the set B until the maxima of L&(X) and LB(X) 
coincide. From the inequality LB(X) 5 L(X) for any B and all X, it follows 
that the maximum of LB(X) is a lower bound for the maximum of L(X). In 
successive iterations of the dual active set algorithm, the set B and the vector z 
are adjusted until the maxima of LB and L are also equal. 

The strategy of the iteration is as follows: At any dual iterate Xk, z is given by 

z = x(Xk) = arg min L(Xk, x) subject to 1 < x 5 U, 

while the set B is 

B = (i : pi = li or zi = ui}. 

The maximizer of Lf, is denoted by p: 

I-1 = argmax L&(X) subject to X E ZIP. 

Since Li is concave, L:(X) 2 L&(X12) whenever X lies on the line segment 
connecting XI, and CL. At X = Xk, L&(X) and LB(X) are equal. Starting at Xk, 
the direction p - & is searched until the first point is found where L$ and LB 
are no longer equal. At this point, B is updated and the process continues 
through a sequence of subiterates to produce &+l. In the precise statement of 
the iteration that follows, subiterates between & and &+I are denoted by uj. 

Dual active set iteration: 

Given Xk, let j = 0, u. = &, and define 

BO = {i : zi = li or zi = ui} 

where 

z = x(X,) = arg min L(&, z) subject to 2 5 x _< U. 
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Subiteration: Let pj maximize Lij(X) over X and define p(t) = 
vj + qpj - Vj). 

Determine the largest interval [0, ?J, T 2 0, such that 

Lkj( p(t)) = L~~(p(t)) for every t E [0, Z]. 

If 5 < 1, then put q+l = &)). The set &+I is obtained 
by deleting from Bj those indices i E Bj with the 
property that 

(9) 

where 3 is a minimizer in (8) associated with 1 = p(Z). 
Increment j and repeat the subiteration. 

If t 2 1, then set &+I = pj, increment k, and proceed 
to the next iteration. 

Since the dual problem is unconstrained, the dual active set iterations terminate 
when VL(Xk) = 0 for some &. By the concavity of the dual functional, XI, = A* 
at termination. The convergence of this scheme is examined under a strong 
convexity assumption. That is, we assume that there exists a constant Q > 0 
such that 

L(k Y> L L(4 x> + V&A X)(Y - x) + ally - #> (10) 

where LY is independent of 2, y, and A; and where 11.11 denotes the Euclidean norm. 

THEOREM 1. If f and h are continuously differentiable on IR”, L satisfies the strong 
convexity assumption (lo), and there exists a maximizer pj of Lhj for each j, then 
the dual active set algotithm reaches a solution of (6) in a finite number of iterations 
and subiterations. 

Proo$ The proof has the following structure: We show that Bj+, is strictly 
contained in Bj so that the subiteration eventually terminates. Then we show 
that the final Bj set generated in the subiteration does not repeat so that the 
algorithm reaches a solution to the dual problem in a finite number of iterations. 

Finite termination of the subiteration 

By the convexity assumption, L&,((Xk) = L&(&) = L(Xk). By the continuous 
differentiability of f and h and by (lo), there exists a minimizer x(t) in (7) 
associated with X = p(t) and B = Bj, and z(t) is a continuous function of t 
(see [20, Theorem 4.11). Since L&$(t)) = Ls,(p(t)) for 0 5 t 5 3, and since 
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(8) also has a unique minimizer, which is feasible in (7), we conclude that z(t) 
is the minimizer in (8) for 0 5 t 5 i. It follows that z(?)B, = YEB, = ZB~. Since 
J%j (P(9) ’ LBj (At)) as t extends beyond Z, we conclude that x(t) becomes 
infeasible for (8) as t extends beyond Z. Since z(t) is feasible for (7), we see 
that Zi < z&t) < ZG~ for some i E X?j and for t > i: with t near 5. Since both the 
constraints zi 2 li and xi 5 2~~ are inactive at x = xi(t), the first-order necessary 
conditions imply that 

Wk x> 
3X< 

A= /J(t) = 0 
3: = Cc(t) 

for t > ? with t near 5. Since x(t) and p(t) are continuous functions of t, we let 
t approach 5 to obtain 

Wh x> 
dXi 

_ = 0 
x=x ’ 
LZ=TlT 

(11) 

where f = x(9. Hence, Bj+r is strictly contained in Bj, and the subiterations 
terminate in a finite number of steps. 

Convergence to optima& 

Since L;(X) is a concave function of X for any choice of B and pj maximizes 
L$(X) over A, we have 

By the convexity assumption (lo), the first-order necessary conditions associated 
with (8) are sufficient for optimality. Since ?i? satisfies the first-order necessary 
conditions associated with (8) and with the choice B = Bj and X = 1, and 
since (11) holds for each i E Bj\Bj+l, f also satisfies the first-order necessary 
conditions associated with (8) and the choice B = Bj+l and X = 1. It follows that 

If B denotes the final set Bj generated by the subiterations, then by (9) we have 

L$ (&+1> = Lg(b+d. 

Since L&X) 2 L(X) for any choice of B, we conclude that 

L$+,(~j+d I L(b+1)- 

Combining these inequalities gives 
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If the algorithm has not terminated at iteration Ic, then VL(Xk) # 0, and thus 

VL(Xk) = h(z) = VL&(X,) = VL&(UO) # 0. 

(See Clarke [7, Proposition 1.13 and Theorem 2.1.1) Since L&(X) is a concave 
function of A, ~0 maximizes L&, and vl lies between vo and ~0, it follows that 
L&,(vo) < L&((Y~) unless vo = VI. However, in this special case, 

WA x> A=A +o 8% ZE; 
for each i E Br, which implies that L&(vl) < L&(y). Hence, by (12), we have 

L(Ak) < qjok+l) I L(Xk,l). 

Since the components of z~ are chosen from a finite set, the dual active set 
algorithm reaches a maximizer of (6) in a finite number of iterations. I7 

Studying the convergence proof, we make two observations: 

1. In the final subiteration, Xk+r can be chosen to maximize L along the line 
through uj and pj - all the inequalities in the proof remain valid. 

2. The subiterations can be terminated whenever a point is found for which 
the value of L increases. This leads to the following quick step form of 
the iteration. 

Dual active set iteration, quick step: 

The iteration is identical to the previous iteration; however, the 
subiteration terminates whenever L(c~j) > L(h), and we set Xk+r = /Lj 
(or alternatively, we maximize L along the line through uj and pj to 
get Xk+d. 

It is interesting to contrast the dual active set algorithm with the primal active 
set algorithm which, as noted by Luenberger [35, p. 4251 is often employed 
for quadratic programs where f(z) is quadratic and h(s) = Ax - b is linear. 
Since the latter method is described in detail in this reference, we only highlight 
its attributes: 

0 Each iterate xk satisfies all constraints. 
l Each iteration attempts to minimize f over a working set of constraints defined 

by Ax = b, and a subset B of the bound constraints treated as equalities. 
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l If, in the process of optimizing over the current working set, some zi for i $! B 
encounters its lower or upper bound, the working set is expanded and the 
optimization continues over the updated working set. 

l Once the optimal solution is found for a given working set, the multipliers asso- 
ciated with the bound constraints are computed, and if all have the appropriate 
sign to satisfy the Karush-Kuhn-Tucker conditions, the algorithm terminates. 
Otherwise, bound constraints associated with multipliers of incorrect sign are 
dropped from the working set, and the algorithm continues. 

Of course, it is possible to introduce the multipliers for the bound constraints 
as well as the X multipliers for the constraint Aa: = b, construct a constrained 
dual problem, and apply the primal active set algorithm to this dual problem. 
(See Goldfarb and Idnani [18, p. 241 for an interesting discussion of algorithmic 
strategies applied to primal and dual formulations of quadratic programs.) 

The dual active set algorithm, by contrast, maximizes the objective L(X) of an 
unconstrained dual problem. It has the following features: 

l The bound constraints are maintained at each iteration, while the constraint 
Ax = b is relaxed, until termination. 

l It is the dual iterates Xk that force the selection of the set B and that identify 
those xi(&) at a bound. The multipliers of the bound constraints are not used 
in the computation. 

l The move from iterate XI, to Xk+t is more involved than a line search step; in 
particular, the algorithm utilizes certain approximations to L(X) which change 
during the move as the set B changes. 

l In an implementable form of the algorithm, developed in the next section, the 
approximations to L(X) include the use of the proximal point method, without 
which the iterations could diverge. 

Despite these differences, the dual active set algorithm shares one important 
feature of the primal active set algorithm: It produces the primal active set in 
a finite number of iterations as proven in Theorem 1. 

3. The dual active set algorithm: Implementable form 

The existence of the maximizer pj in the conceptual form of the dual active set 
algorithm is related to the indices in B+ In particular, whenever the set 

{x E II?” : h(x) = 0, XBj = zg,} 

is empty, pj may not exist. For the large network optimization problems solved 
in Section 6, we observed that in every test problem, a set Bj was encountered 
for which the maximizer pj failed to exist. In this section, we “regularize” L by 
the addition of a strongly concave term to ensure the existence of a maximum. 
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Letting e denote a positive regularization parameter and letting n denote a fixed 
vector in IR”, one of the simplest regularized functions is 

M(X) = L(X) - E(JX - AlIZ. 

The regularized forms of the modified functions are 

ME(X) = LB(X) - allA - n11* and M;(X) = L&(X) - E(]X - A]]‘. 

In the regularized problem, the maximization of L is replaced by a maximization 
of M: 

maximize M(X) subject to X E IRm. (13) 
Maximizing the regularized function M rather than L is the essence of the 

proximal point algorithm. This scheme has been studied extensively in the 
literature; some references include the papers [37] and [38] by Martinet, [45] 
and [46] by Rockafellar, [36] by Luque, [47] by Spingarn, and [19] by Ha. If nk 
is the current iterate in the proximal point algorithm, then the new iterate Ak+r 
is computed by maximizing the M associated with the choice E = EL and /1 = & 
If the &k are sufficiently small, then under suitable assumptions, the proximal 
point algorithm converges linearly; if the &k tend to zero, then the convergence 
is superlinear. For example, if there exists a neighborhood R of X* and an cr > 0 
such that 

L(X) _< L(x*) - a((X - x*1/* 

for every X E Q, then we have (see [46]): 
04) 

LEMMA 1. Zf (14) holds and the &k are uniformly bounded, then for k sufficiently 
large, Ak+I satisfies the inequality 

Ilnk+l - A*[( I g-$$ln, - A*ll. 

Hence, the /II, approach A* superlinearly if ek tends to zero. 
The dual active set algorithm can be used to maximize M. Again, if xk 

is the current iterate and z denotes an x in (5) that attains the minimum 
when X = xk, then &+i is computed through subiterations that start with the 
initialization ~0 = XI, and BO = the set of active indices of Z. The iteration 
becomes the following. 

Dual active set iteration (regularized form): 

The iteration is identical to the previous one except that pj is chosen to 
maximize M&(X) over A, and MB,(X) replaces LB,(X). If a quick step 
is employed, then the subiteration is terminated whenever M&j) > 
M(Xk), and we set Xk+r = pj (or alternatively, we maximize M along 
the line through z+ and /Lj to get &+I). 
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Since Mf3, is strongly concave, it has a maximum. The same proof given for the 
original dual active set algorithm, also applies to the regularized form, although 
each L in the former proof must be replaced by M. Hence, we state 

THEOREM 2. If f and h are continuously differentiable on IR” and L satisjies the 
strong convexity assumption (lo), then the regularized version of the dual active set 
algorithm reaches a solution of (13) in a finite number of iterations and subiterations. 

4, Quadratic programs and quadratic networks 

Now we examine the dual active set algorithm in the context of quadratic 
programming, examining in detail various implementation issues and the special- 
ization to quadratic networks. We consider the optimization problem (1) in the 
case where 

f(s) = $J?QE + cT% and h(z) = Az - b; (15) 

here A is an m x n matrix; and Q is a symmetric, positive definite n x n matrix. 
Observe that a quadratic program of the form 

. 
minimize ~z’Qz + cTa: subject to Ca: 5 d 

is equivalent to the program 

(16) 

1. minimize Z~ QZ + il]Cz + y - dJ1’ + cTs subject to CX + y = d, y 2 0. 

Hence, if Q is positive definite, then (16) is equivalent to a quadratic program 
in the form (15) with positive definite Hessian. 

Now let us obtain a formula for the dual function Li. Given a subset B of 
the indices (1, 2, . . . , n), let N denote the complement of B. After partitioning 
Q, A, and c in the natural way, L$ is expressed 

L”,(X) = ;z;QBBzg + c$zB + XT(ABzn - b) 

+ inf Iz;Q~,vzj~ + xsQNBzB + &xN + XTA~x~. 
XN 2 (17) 

Here Qsr denotes the submatrix of Q formed by the intersection of rows 
associated with indices i E S and columns associated with indices j E 2’. The 
matrix AN is the submatrix of A formed by the columns associated with indices 
i E N. And after carrying out the minimization, we have 

L;(x) = l T pQ~j.p~ + c& + XT(ABq - b) 

- $&A + CN + QNB.zB)~Q&~A%X + CN + QNB.Q). 
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Computation of p 

Computing the point ~1 in the dual subiteration is equivalent to solving a linear 
system of equations whose coefficient matrix is ANQ~~A$. In successive subit- 
erations, we add a column to AN, and we add both a row and a column to QNN. 
An important numerical issue is how to evaluate p efficiently after adding these 
rows and column. As we now show, these additions yield a rank-one change 
in ANQG~A~. Hence, its inverse can be updated using Sherman-Morrison- 
Woodbury techniques- see [23] for a discussion of these techniques. 

We use + superscript to denote the matrix generated after adding a column 
to AN and a row and a column to QNN (the new rows and column are placed 
on the borders of the matrices). Suppose that Q is positive definite and let CNN 
denote the lower triangular Cholesky factor of QNN. Then C$N is the same as 
CNN except for the addition of a new row along the bottom and zeros along the 
right border. Likewise, the inverse of CiN is the same as the inverse of CNN 
except for the addition of a new row along the bottom and zeros along the right 
border. If uT denotes the last row of the inverse of C$N, then 

T+ 
(ANQG~NAN) = ANQ~‘NA~ + wwT where w = A$J. 

Thus, in each subiteration of the dual active set algorithm, the coefficient matrix 
of the linear system associated with the computation of p is modified by a 
rank-one term. 

Computation of T 

The parameter Z in (9) can be evaluated in the following way. Let p(t) denote 
the vector appearing in the statement of the dual active set iteration, and let 
z(t) be defined as follows: 

si(t) = zi for i E B and si(t) = - [Q~~(&NBzB + CN+ &~(t))]~ for i E N. 

Observe that z(t) is the vector that attains the minimum in (8) when X = p(t). 
Since p(t) is a linear function of t, z(t) is also a linear function of t. For each 
value of i, let ti denote the root of the linear equation 

(&z(t) + c + ATp(t))i = 0, (18) 

when a root exists. When the coefficient of t in (18) vanishes, set ti = 00. With 
these definitions, Z is expressed: 

z= minimum ti. 
iEB,k>O 

Thus 5 corresponds to the first value of t with the property that li < zi(t) < ‘Eli 
for some i E B and for each t near 5 with t > ?. 
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Iteration transitions 

Now let us consider the transition between two consecutive major iterations. 
In making the transition between the final set B of the previous iteration and 
the initial set Ba of the new iteration, rank-one corrections are both added and 
subtracted from the coefficient matrix A&&LA;. We now show that like the 
rank-one addition to ANQ~~ N, -’ AT the rank-one subtractions can be treated in an 
incremental fashion. 

Suppose that S and T satisfy the relation 

T=S-UUT 

where U is arbitrary. The modification formula gives 

T-’ = 3-l + S-‘U(I - UTS-‘U)-‘UTS-‘. 

The following lemma gives a condition under which the matrix I - UTS-‘U is 
positive definite so that it can be stored in Cholesky factored form, and the 
factorization can be updated stably. This lemma clearly applies to the dual 
quadratic problems considered here where S and T have the form ANQ;;INA~ 
for different choices of N. Moreover, when T is positive definite, any matrix of 
the form UTT-‘U is positive semidefinite, so that the hypotheses of the lemma 
will be satisfied. 

LEMMA 2. If T = S - UUT where S is symmetric and invertible, T is invertible, 
and the smallest eigenvalue of UTT-‘U is larger than -1, then I - UT,!-‘U is 
positive definite. 

Proof Observe that 

I - UTS-‘U = I - UT(T + UUT)-‘U. 

By the modification formula, 

(T + UUT)-’ = T-’ - T-‘U(I + UTT-‘U)-‘uTT-1, 

so we have 

I - UTS-‘U = I - UTT-‘U + UTT-‘U(I + UTT-‘U)-‘UTT-‘U. 

If R denotes the product UTT-‘U, then 

I - UTS-‘U = I - R + R(I + R)-‘R. 

Hence, the eigenvectors of R and I -UTFIU are the same. If T is an eigenvalue 
of R, then the associated eigenvalue of I - UTS-‘U is l/(1 + T). Since T > -1, 
the matrix I - @S-‘U is positive definite. q 
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Quadratic networks 

Next, we formulate the important quadratic network problem, which has been 
considered by many researchers, (see [2], [3], [4], [5], [8], [9], [lo], [12], [13], 
P41, 1171, [26], [28], [291, [30], 1321, [33], [34], [39], [40], [41], [@I, [SOI and 
[51]), and we describe an additional implementation idea that we call null space 
steps. The problem that we consider has the form 

minimize f(z) subject to AZ = 6, 1 5 z 5 u, (19) 

where 

(20) 

Here z is a vector in lR’“; D is a diagonal matrix; 2 is a vector of lower bounds; 
u is a vector of upper bounds; 2 < U, b is a vector whose components sum to 
zero; and A is an m x n node-arc incidence matrix (see Strang [48]); that is, the 
number of nodes in the network is m, the number of arcs in the network is n, 
and if arc Ic connects node i to node j, then each element in column Ic of A is 
zero except for a -1 in row i and a +1 in row j. We assume that the diagonal 
of D is positive so that f is strictly convex. Since the rows of A sum to zero, 
we discard the last row to eliminate this dependency. 

As in the prior development, the Lagrangian L is given by 

L(A, zc) = f(s) + XT(Aa: - b), 

while the dual functional is 

L(X) = minimum L(X, E) subject to E 5 CC 5 U. (21) 

The dual problem is an unconstrained maximization: 

maximize L(/\) subject to X E Z/Y. (22) 

By duality theory (see [35] or [44]), we know that if X* solves the dual problem 
and if the primal problem (19) has a solution z*, then Z* attains the minimum 
in (21) corresponding to X = X*. 

Given a vector X, let y denote the unconstrained minimizer of L(X, Z) over 
all Z. From the structure of f, y can be expressed as 

Y = -D-‘(c + A?,). 

Let us partition the set (1, 2, . . . , n} into B UN where 

i E N if li < ?/i < Ui, while i E B if yi 5 li or yi 2 Ui. 

(23) 

(24) 
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Due to the special form of f, the dual functional can be expressed 

--c ;( ‘N + XTAN)D;;‘N(c~ + AT,X), (25) 

where DBB and DNN are appropriate submatrices of D; and the ith component 
of xn is equal to Zi if yi < &, while it is equal to IJ~ if yi > Ui. From (25) we 
see that L is a piecewise quadratic function. In addition, it is well known that 
a function like L, defined through minimization of a strictly convex quadratic, is 
continuously differentiable with 

VL(X) = AZ(X) - b 

where x = CC(X) achieves the minimum in (21) corresponding to X. 

Null space steps 

If for some given X and for some i, the y given by (23) has the property that 
yj < lj or yj > uj whenever a~ # 0, then row i of AN is completely zero, and both 
row i and column i of AND;;‘,AT, are zero. Since the quadratic terms in (25) 
associated with component i vanish, the function L(X) is a linear function of the 
ith component of X. In other words, when all the primal variables associated with 
node i in the network are at their bounds, the only term in (25) involving Xi is 

&(ABZB - b)i. 

When the coefficient of Xi is nonzero, Xi can be adjusted to strictly increase L(X), 
provided this is done without changing the set B in (24). A cycle through all the 
components of X in which the value of those components associated with linearity 
is adjusted in order to increase L, while not changing the minimizer in (21), we 
refer to as a “null space step” since this adjustment takes place in the null space 
of the matrix AND~~A$. In our implementation of the dual active set algorithm, 
the results of which appear in Section 6, each iteration begins with a null space 
step. Finite convergence of the method is not affected by a null space step since 
L strictly increases, and the proof of Theorem 1 is based on the fact that the 
final set ?? generated by the subiterations cannot repeat when L strictly increases. 

5. Conjugate gradient techniques for quadratic networks 

It has been shown by Lin and Pang [34] that gradient or conjugate gradient 
techniques can be used to maximize L (or M). In implementing one of these 
techniques, a line search is required. In our computational study of the quadratic 
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network problem (19), we have included two versions of the nonlinear conjugate 
gradient algorithm. One of these versions uses the Polak-Rib&e update formula 
[46] as given in Luenberger [35, p. 2531, and the other adds a preconditioner. 
Ventura and Hearn [50] found that the Polak-Ribikre conjugate gradient update 
is more efficient than others in numerical experiments involving networks. This 
section describes our line search procedure and the preconditioner. 

We consider an exact line search, although global convergence can be achieved 
using an inexact line search (see [22] for example). If Xk is the current iterate 
and pk is the current search direction, then with exact line search, we have 

Ak+l = AI, + Skpkr 

where the step size Sk is given by 

Sk = argmaxL(& + Spk). (26) 
820 

Let Sk denote the gradient VA(&), and let us assume that pzgk > 0 so that pk 

is a direction of ascent. At a maximum in (26), the derivative vanishes, and 
we have 

P:(A&) - b) = 0, 

where Z(S) iS the minimizer in (21) corresponding t0 A = XI, + Spk. Let Q(S) 
denote the expression pl(Az(s) - b). The problem of determining a root of 
the equation 

4s) = 0 (27) 

has been studied extensively in the literature (see [6], [27], and [42]). The 
following proposition shows that this equation will have a root unless the primal 
problem is infeasible: 

PROPOSITION. The function q(s) is (I continuous, piecewise lineal; monotone nonin- 
creasing function of s. If prgk > 0, then either the equation q(s) = 0 has a root, or 
the primal problem (19) is infeasible, and L grows without bound in the direction pk. 

Proof: The fact that q(s) is continuous, piecewise linear, monotone nonincreasing 
follows from the formula (23) for the unconstrained minimizer associated with 
(21) (see [27]). Suppose that (27) does not have a root. Since $gk > 0, we 
conclude that q(0) > 0 and q(s) > 0 for every s 2 0. If y(s) is defined by 

y(S) = D-’ [C + AT@,, + spk)] , 

then xi(s) = YJ(S) if Zi 5 yi(s) 5 ‘Eli, xi(s) = Zi if yi(s) < Zi, and xi(~) = ui if 
Yi(s) > ‘Iii* From the construction of Z(S), we see that there exists t such that 
Z(S) = z(t) for s 3 t. Hence, q(s) = q(t) for s > t, from which it follows that 
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L(Xk + spk) = f(z(t)) + X;(Az(t) - 6) + sq(t) for s > t. 

Since q(t) > 0, the maximum in (22) is infinite. Since the minimum in the primal 
problem (19) bounds the maximum in the dual problem, the primal problem 
is infeasible. El 

We now make a few practical observations which provide the basis for the line 
search routine used in the numerical experiments reported in Section 6. The 
function q is monotone nonincreasing with a finite number of “kinks” where the 
slope changes. Each kink has an associated “breakpoint” on the axis. A Newton 
iteration, starting from any point where q is positive (such as s = 0), generates 
a point to the right. (If an iterate is a breakpoint of q, then either slope of the 
adjacent linear segments of q is used in the Newton iteration.) There are three 
possibilities for the resulting Newton iterate: (i) It is a zero of q (in which case 
the iteration terminates); (ii) it lies to the right of a zero; or (iii) it lies to the 
left of a zero, to the right of the starting point, and at a point corresponding 
to a different linear segment on the graph of q. In case (iii), we can continue 
to apply Newton’s method, and in a finite number of iterations, either a zero 
of q is generated, or a point to the right of a zero is found. In summary, after 
a finite number of Newton iterations, starting from s = 0, we either locate or 
bracket a zero of q. Once a zero is bracketed, we sort the bracketed breakpoints. 
Starting at one bracketing point (we use the point where the absolute value 
of q is smallest), we march to the other bracketing point to determine a pair 
of breakpoints where the graph of q crosses the axis. In Figure 1, the line 
search algorithm, starting from SO, generates s1 and s2 by Newton steps, thereby 
bracketing the zero of q(s). It then calculates and sorts the four breakpoints 
between s1 and ~2, and locates the zero between the first and second of these. 
We have observed in our numerical experiments connected with the conjugate 
gradient method, that 1 or 2 Newton iterations typically generate a point that 
brackets a zero of q. Moreover, the number of bracketed break points is often a 
small fraction of n, and the time to sort these points is relatively insignificant. 

Now consider the problem of finding the step size Sk that maximizes M in the 
search direction Pk: 

Sk = arg max hf(Xk + Spk). 

320 

Again, let us assume that pk is a direction of ascent. Since the derivative vanishes 
at the maximum, we have 

pz(Az(sk) - b) - 2&p;& + skpk - A) = 0. 

Let T-(S) denote the expression q(s) - 2&&(& + Spk -A). Since q(s) is continuous, 
piecewise linear, monotone nonincreasing, it follows that T(S) is continuous, 
piecewise linear, strictly decreasing. Consequently, the algorithm described 
above for finding a zero of q can be used to find a zero of T. 
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Figure I. Line search example. 

Our preconditioned version of the conjugate gradient method is motivated by 
the dual active set algorithm. Recall from the previous section that the dual active 
set algorithm successively adds rank-one corrections to the matrix associated with 
the quadratic part of L& as additional primal variables are freed. This suggests 
a related diagonal preconditioner for the conjugate gradient method in which we 
successively add the diagonal part of the rank-one corrections as primal variables 
are freed. The preconditioned conjugate gradient method (see [21]) has the 
following form: 

xk+l = xk + SlipA, 

Pk+l = p-%k+l + Pkpk, 

where gk is the gradient of the cost function L, evaluated at &; and P is the 
preconditioner. For the Polak-Rib&e update, we have 

pk = 
g;+lP-l(gk+l - Sk) 

g;ETp-‘gk ’ 

Observe that the matrix associated with the quadratic part of L in (25) has 
the following form: 

where di denotes the ith diagonal element of D; and ai denotes the ith column 
of A. In iteration k of the preconditioned conjugate gradient method, we utilize 
a diagonal preconditioner whose diagonal has the form 
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diagonal P = 1 2 & $ diagonal {c&}, 
ZEF E 

where the initial F is given by 

F = {i : Zi 5 y(X& 5 u;}. (28) 

In each preconditioned iteration, the gradient is multiplied by the “inverse” of 
P. Since some diagonal elements of P may be zero, our convention is that 
0-1 = 1. The set F is updated in the following way: If y(X,)i < Zi or y(Xk)i > u(li 
whenever i @ F, then F does not change. Otherwise, F is augmented: 

F Oew = Fold U {i @ Fold : Zi 5 y(X,)i 5 Ui}, 

and the conjugate gradient iteration is restarted using this new F for the pre- 
conditioner. If F remains invariant for some preset number of iterations, then 
the conjugate gradient scheme is restarted and the set F is reinitialized using 
(28). In our numerical experiments, a restart was performed after m iterations, 
where m is the number of nodes in the network. 

6. Numerical experiments 

The numerical performance of the dual active set algorithm was evaluated using 
16 of the quadratic network test problems studied by Bertsekas et al. [5] as well 
as a test problem considered by Toint and Tuyttens [49] (only one of their test 
problems, P(8, 0, 102, 1 , &), had a quadratic cost). These experiments were 
performed using an Apollo DNlOOOO computer and the Fortran f77 compiler 
without optimization. All computing times reported below are in seconds. 
The starting guess was always X0 = 0. Each algorithm was terminated when 
IlVL(Xk)ll/llbll 5 10e6. Since VL(Xk) = Azk - b, where ~12 achieves the minimum 
in (21) corresponding to X = Xk, the termination criterion is equivalent to a 
bound on the relative residual associated with the linear system Az = b. 

The test problems in [5] are randomly generated networks constructed using 
Zenios’ modification of the NETGEN program [31]. This modification generates 
a quadratic term for the cost function as well as a linear term. The test problems 
that we considered are summarized in Table 1. As in [5], problems l-8 are 
constructed using the code of Zenios while problem 9 is P(8, 0, 102, 1, &) from 
[49]. We considered the same two versions of the test problems studied in [5]; 
a well-conditioned version where the coefficients of the quadratic part range 
between 5 and 10, and an ill-conditioned version where 50% of the arcs are 
randomly set to a small positive number that appears in the fourth column of 
Table 1. The coefficients for problem 9 range between 0.02 and about 3.86. 

To begin, we examine the efficiency of the conjugate gradient method on 
well-conditioned problems relative to a dual coordinate ascent code discussed 
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‘able 1. Test problem summary. 

Problem Number of 
Nodes Number 

1 
2 

3 

4 

5 

6 

7 

8 

9 324 

200 

200 

300 

400 

400 

400 

400 

400 

Number of Small Quadratic 
Arcs Coefficient 
1300 .OOOl 
2900 .OOl 
4500 .OOOl 
1500 .OOOl 
4500 .Ol 

1306 .OOl 
1306 .OOl 
1382 .OOl 

612 

RbIe 2. Execution times for well-conditioned test problems. 

Problem 
Number 

1 
2 

3 

4 

5 

6 

7 

8 

9 

T 

Dual Coordinate 
Ascent 

1.72 

4.22 

4.23 

3.38 

5.40 

3.48 

3.42 

2.95 

76.73 

Unconditioned Preconditioned 
CG CG 

1.63 1.52 

4.77 4.22 

4.28 3.53 

2.17 1.75 

7.32 6.45 

2.62 3.07 

2.03 1.93 

2.27 1.72 

5.42 4.35 

in [5]. Table 2 gives the execution times for the nine test problems. The 
total execution times for well-conditioned problems 1-8 is 28.80 (dual coordinate 
ascent), 27.09 (unconditioned conjugate gradients), and 24.19 (preconditioned 
conjugate gradients). Thus, the codes are somewhat comparable on the first 
eight problems. On problem 9, which was not considered in [5], the conjugate 
gradient method is significantly faster. 

Now consider the ill-conditioned versions of problems l-8. Similar to the 
observations reported in [5], we found that the dual coordinate ascent code did 
not achieve more than a few digits of accuracy so that the convergence criterion 
]]VL(X,)]]/]]b]] 5 10m6 could not be satisfied. The conjugate gradient method con- 
verged for the ill-conditioned problems, but the computing times were relatively 
large. The times in Table 3 correspond to a restart of the conjugate gradient 
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Table 3. Execution times for ill-conditioned test problems. 

367 

Problem 
Number 

1 
2 
3 
4 
5 
6 
I 

8 
Total 1993.25 1317.53 856.00 

Preconditioned 
CG 

159.90 
87.35 

378.35 
329.88 
49.70 

100.87 
123.28 

Active Set 
Scheme Alone 

42.43 
67.30 

t 

226.93 
94.50 

188.52 
75.92 
74.00 

106.62 I 88.20 1 86.40 

Active Set 
Scheme With CG 

8.07 
18.25 
35.95 
19.37 
26.13 
15.18 
14.05 
16.75 

153.75 

method every m iterations. The total execution times for ill-conditioned prob- 
lems l-8 is L993.25 (unconditioned) and 1,317.53 (preconditioned), more than 50 
times slower than the corresponding times for the well-conditioned problems. 

In implementing the dual active set algorithm, we factored the coefficient 
matrix of the associated linear system at the start of each iteration using the 
minimum degree ordering routine of Sparspak [16]. During the subiterations, 
the associated linear systems were solved using Sherman-Morrison-Woodbury 
updating techniques as explained in Section 4. We chose EO = 0.001 so that 
the initial value of the regularization parameter is about 100 times smaller than 
the smallest nonzero coefficient in the linear system associated with the dual 
iteration. In successive iterations of the underlying proximal point iteration 
discussed in Section 3, we took elctl = O.lak. Since the rows of A sum to zero, 
we eliminated the last row, and we normalized the dual variable so that X, = 0. 
(It was observed that eliminating a redundant row of A and normalizing the dual 
variable slows the convergence of the conjugate gradient method; consequently, 
this reduction was not used with the conjugate gradient method.) 

By itself, the dual active set algorithm is more efficient than preconditioned 
conjugate gradient iterations - see column 4 of Table 3. The total execution 
time is 856 (dual active set algorithm) compared to 1,317.53 (preconditioned 
conjugate gradients). Moreover, if we switch to the dual active set algorithm 
after performing a small number of conjugate gradient iterations, then there is a 
substantial speedup. The execution times in column 5 of Table 3 correspond to 
0.37~2 unconditioned conjugate gradient iterations, a number determined experi- 
mentally on problem 1 to be the best point at which to switch to the dual active 
set algorithm. The total time in column 5 is 153.75, around an 8.5-fold speedup 
relative to preconditioned conjugate gradients alone, and a 13-fold speedup rel- 
ative to unconditioned conjugate gradients. Another attractive feature of the 
dual active set algorithm, besides its speed near an optimum, is that it generates 
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Table 4. Number of subiterations for ill-conditioned test problems. 

Iteration 

Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

1 

133 

27 

11 

3 

2’ 

2 

2 

172 

43 

34 

8 

3* 

I 

-T 

3 

231 

44 

25 

18 

5 

7 

1 

1* 

1 

pro 

4 

183 

49 

5 

1 

1’ 

4 

5 

1 

1* 

1 

ble :m 

5 

68 

2 

1* 

1 

I 

6 

173 

21 

8 

3 

3 

I* 

3 

2 

1’ 

2 

L 

7 

204 

26 

8 

1* 

2 

1* 

1 

8 

159 

20 

8 

1 

1* 

3 

4’ 

1 

very accurate solutions-after a few iterations (typically between 5 and 15), the 
algorithm reaches nearly the exact solution. The number of subiterations asso- 
ciated with the combined conjugate gradient/dual active set algorithm appear in 
Table 4. The iterations where the solution to the proximal point subproblem are 
achieved (and where Ek is multiplied by 0.1) are flagged with an asterisk. 

We also investigated a slightly different implementation of the proximal point 
iteration in which the regularization parameter was kept fixed at &k = 0.001, 
while the true maximizer of the proximal point function M was replaced by 
an approximation computed by applying one iteration of the dual active set 
algorithm. In other words, &+r was obtained by applying one iteration of the 
dual active set algorithm to the function 

L(x) - .oolll~ - &#. 

We observed that the total computing time for problems l-8 was reduced from 
153.75 to 144.25. 

To compare the dual active set algorithm to the tigorithms investigated in 
[49], we solved problem 9 using the same type computer (VAX 8600) and 
the same compiler (VMS Fortran Compiler with optimization) employed in 
[49]. The computing time that we obtained was 7.97 seconds (for the original 
implementation of the proximal point iteration and with 0.3m unconditioned 
conjugate gradient iterations before switching to the dual active set algorithm), 
more than a lo-fold speedup over the times reported in Table 4 of [49]. Note, 
however, that the code in [49] is designed for general nonlinear networks, while 
our code is tailored to quadratic networks. 
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In summary, the dual active set algorithm is a highly effective method for 
quadratic network flow problems, especially when used in conjunction with the 
nonlinear conjugate gradient method. 
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Appendix. A Matlab program 

This appendix provides a Matlab implementation of the dual active set algorithm 
for a quadratic program in which the matrix associated with the quadratic part 
is diagonal with positive diagonal elements. 

% dasa solves the separable strictly convex quadratic program: 
% minimize f(z) = 0.5 x’Dx + dx subject to Ax = b, 1 <= z <= u 
% by the dual active set algorithm. 
% Reference to this function is made by: 
% [f, x, lambda] = dasa(D, c, A, b, I, u, Lambda) 
% where D, c, A, b, 1, and 21 are the problem data and Lambda is an 
% initial guess for the dual variables associated with Ax = b, 
% f is the final objective value, and x and lambda are the final primal 
% and dual variables. 
% 
function [f, z, lambda]=dasa(D, c, A, b, 1, 21, Lambda) 

[m, n] = size(A); 
x= 0 * c; %initialize x as a column vector 

% Set tolerances for each loop 
to12 = norm(b) * lO*(-6); to13 = to12; 
lambda = Lambda; epsilon = 0.01; % epsilon used in proximal point iterations 

% proximal point outer loop -loop3- - - - - - - - - - - - - - - - - - - - - - 

loop3 = 1; 
while 100~3, 

epsilon = 0.1 * epsilon; 
% dual iteration middle loop -loop2- - - - - - - - - - - - - - - - - - 

loop2 = 1; 
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while 100~2, 
a = -D \ (c + A’ * lambda); % unrestricted min of the Lagrangian 
B = zeros(c); % B will index the variables at bounds 
for i = 1: n % set variables to their bounds 

if z(i) <= Z(i), B(i) = -1; z(i) = Z(i); 
elseif z(i) >= u(i), B(i) = 1; z(i) = u(i); end 

end 
% Dual subiteration inner loop -loopl- - - - - - - - - - - 

loop1 = 1; v = lambda; % Y = dual subiterates 
while 100~1, 
% - - - solve for mu - - - 
fr = find(B = = 0); bd = find(B” = 0); % indices of free and bound variables 
if length(fr) == 0; 

mu = Lambda + (A * z - b)/(2 * epsilon); 
z = z; 

else 
DN = D(fr,fr); AN = A(:&); 
Q = AN * inv(DN) * AN’ + 2 * epsilon * eye(m): 

= -4 + 2 * epsilon * Lambda - AN * (DN\c(fr)); 
i length(M) > 0, q = q + A(:,bd) * z(bd); end 
mu = Q\q; 
% find 2 at the point mu 
4fr) = -DN\(AN’ * mu + c(fr)); 
if length(M) > 0, z(M) = z(M); end 

end 
% - - - linear search for tbar - - - 
% t contains the stepsizes where partials equal 0 

num = -(D\(c + A’ * v) + z); 
denom = (D\A’ * (mu - v))); 
t = (le20) * ones(72, 1); 
for i =l:n 

if denom(i)” = 0, t(i) =num(i)/denom(i); end 
end; 
% find tbar 
indices = find(t >= 0 & B” = 0); 
if length(indices) == 0, loop1 = 0; 
else [tbar,i] = min(t(indices)); 

B(indices(i)) = 0; 
mutbar = w+tbar * (mu - v); 

end 
if tbar > = 1, loop1 = 0, else v = mutbar; end 

end 70 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ end of loop1 
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lambda = mu; 
if norm(A * x - b - 2 * epsilon * (lambda - Lambda))<to12, loop2=0; end 

end y. _ _ _ _ _ _ _ __ __ _ _ _ _ _ __ _ _ _ - end &loop 2 

Lambda = lambda; 
if norm(A * x - b) < to13, loop3 = 0; end 

end y. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ end of loop3 

lambda = Lambda; 
f = c’ * x + 0.5 * x’ * D * x; 
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