
Computational Optimization and Applications, 1, (1993), 349-373
@ 1993 Kluwer Academic Publishers. Manufactured in The Netherlands.

Application of the Dual Active Set Algorithm
to Quadratic Network Optimization
WILLIAM W. HAGER
Department of Mathematics, University of Florida, Gainesville, FL 32611

DONALD W. HEARN
Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611

Received May 6, 1991; Revised August 14, 1992

Abstract. A new algorithm, the dual active set algorithm, is presented for solving a minimization
problem with equality constraints and bounds on the variables. The algorithm identifies the active
bound constraints by maximizing an unconstrained dual function in a finite number of iterations.
Convergence of the method is established, and it is applied to convex quadratic programming. In its
implementable form, the algorithm is combined with the proximal point method. A computational
study of large-scale quadratic network problems compares the algorithm to a coordinate ascent
method and to conjugate gradient methods for the dual problem. This study shows that combining
the new algorithm with the nonlinear conjugate gradient method is particularly effective on difficult
network problems from the literature.

Keywords: dual algorithm, active set algorithm, conjugate gradients, quadratic networks, proximal
point method

1. Introduction

We consider the problem

minimize f(z) subject to h(z) = 0, I 5 2 < U, (1)

where f and h are continuously differentiable with f real-valued and h mapping
IRn to BP. The n-vectors 1 and u are constant upper and lower bounds on the
vector z. Hence, the constraints in (1) consist of both equality constraints

h(x) = 0, (2)

and inequality bound constraints

l~x<u. (3)

(Components of 1 or u can take the values --oo or +CXJ respectively.) Introducing
a multiplier X E ZF” for the equality constraint in (2) we obtain the Lagrangian L
defined by

L(X, z) = f(x) + X%(z), (4)

350 HAGERANDHEARN

and the associated dual functional

L(X) = inf L(X, CC) subject to 1 5 z 5 u. (5)
A fundamental new algorithm, the dual active set algorithm, is presented for

solving the unconstrained dual problem

maximize L(X) subject to X E LR”. (6)
The initial algorithm that we present is conceptual in the sense that the var-
ious minimizers and maximizers appearing in an iteration may not always ex-
ist. The implementable version of the algorithm is embedded in the proximal
point method.

The dual active set algorithm is motivated by the fact that for each X E W’, the
evaluation of L(X) in (5) yields a minimizing x = x(X), which identifies an active
set of bound constraints (3), that is, those constraints for which xi(X) is equal
to either li or ui. Starting from an arbitrary X0, the dual active set algorithm
obtains a solution X* to the unconstrained optimization problem (6) in a finite
number of iterations. Under appropriate hypotheses, there exists a minimizing
z = x(X’) in (5), corresponding to X = X*, which is a solution to the primal
problem (1). Hence, in a finite number of iterations, the algorithm identifies
the active set of bound constraints associated with an optimal solution. This
algorithm is similar in spirit to the well-known primal active set method ([35])
that determines a solution of (l), and an optimal active set, by evaluating a finite
number of primal iterates that satisfy the constraints (2) and (3). However, there
are major differences in these two distinct approaches that will be examined later
in the context of quadratic programming.

The remainder of this paper is organized as follows. In Section 2, we present
the conceptual form of the dual active set algorithm, which is based on the
work of Hager [24] and [25]. Finite convergence of the method is established,
and the differences between dual and primal active set methods are discussed.
Section 3 gives the implementable form of the algorithm. Section 4 specializes
the method to convex quadratic programming, including quadratic networks.
Section 5 discusses how conjugate gradient techniques are applied to the quadratic
network dual. Finally, Section 6 gives the results of our numerical experiments
with quadratic network problems from the literature.

2. The dual active set algorithm

To emphasize the generality of the dual active set algorithm, we first present it in
its conceptual form. That is, it will be assumed that all entities introduced in the
statement of the algorithm exist, and can be readily calculated. As mentioned
above, implementation techniques are dealt with in the following sections.

To solve the dual problem (6), the dual active set algorithm employs two
auxiliary functions that depend on a subset B of the indices (1, 2, . . . , n}. Given

APPLICATION OF THE DUAL ACTIVE SET ALGORITHM 351

a.vector Z, let Zg denote the vector with components Z; associated with indices
i E B. Given a vector z E lR”, we define:

LB(A) = inf L(X, E) subject t0 lB 5 2B 5 UB, (7)

and

L&(X) = inf L(X, Cc) subject to XB = .zB. (8)

Note that the variable xi in (7) and (8) is unconstrained if i # B. L;(X) is
defined by fixing XB and carrying out the Lagrangian minimization in (8) with
respect to the “free” variables xi, i 6 B. As we will see in Section 4, L&(X)
is often much smoother than L(X), and the maximum of L%(X) over X is much
easier to evaluate than the maximum of L(X). Within an iteration of the dual
active set algorithm, we adjust the set B until the maxima of L&(X) and LB(X)
coincide. From the inequality LB(X) 5 L(X) for any B and all X, it follows
that the maximum of LB(X) is a lower bound for the maximum of L(X). In
successive iterations of the dual active set algorithm, the set B and the vector z
are adjusted until the maxima of LB and L are also equal.

The strategy of the iteration is as follows: At any dual iterate Xk, z is given by

z = x(Xk) = arg min L(Xk, x) subject to 1 < x 5 U,

while the set B is

B = (i : pi = li or zi = ui}.

The maximizer of Lf, is denoted by p:

I-1 = argmax L&(X) subject to X E ZIP.

Since Li is concave, L:(X) 2 L&(X12) whenever X lies on the line segment
connecting XI, and CL. At X = Xk, L&(X) and LB(X) are equal. Starting at Xk,
the direction p - & is searched until the first point is found where L$ and LB
are no longer equal. At this point, B is updated and the process continues
through a sequence of subiterates to produce &+l. In the precise statement of
the iteration that follows, subiterates between & and &+I are denoted by uj.

Dual active set iteration:

Given Xk, let j = 0, u. = &, and define

BO = {i : zi = li or zi = ui}

where

z = x(X,) = arg min L(&, z) subject to 2 5 x _< U.

3.52 HAGERANDHEARN

Subiteration: Let pj maximize Lij(X) over X and define p(t) =
vj + qpj - Vj).

Determine the largest interval [0, ?J, T 2 0, such that

Lkj(p(t)) = L~~(p(t)) for every t E [0, Z].

If 5 < 1, then put q+l = &)). The set &+I is obtained
by deleting from Bj those indices i E Bj with the
property that

(9)

where 3 is a minimizer in (8) associated with 1 = p(Z).
Increment j and repeat the subiteration.

If t 2 1, then set &+I = pj, increment k, and proceed
to the next iteration.

Since the dual problem is unconstrained, the dual active set iterations terminate
when VL(Xk) = 0 for some &. By the concavity of the dual functional, XI, = A*
at termination. The convergence of this scheme is examined under a strong
convexity assumption. That is, we assume that there exists a constant Q > 0
such that

L(k Y> L L(4 x> + V&A X)(Y - x) + ally - #> (10)

where LY is independent of 2, y, and A; and where 11.11 denotes the Euclidean norm.

THEOREM 1. If f and h are continuously differentiable on IR”, L satisfies the strong
convexity assumption (lo), and there exists a maximizer pj of Lhj for each j, then
the dual active set algotithm reaches a solution of (6) in a finite number of iterations
and subiterations.

Proo$ The proof has the following structure: We show that Bj+, is strictly
contained in Bj so that the subiteration eventually terminates. Then we show
that the final Bj set generated in the subiteration does not repeat so that the
algorithm reaches a solution to the dual problem in a finite number of iterations.

Finite termination of the subiteration

By the convexity assumption, L&,((Xk) = L&(&) = L(Xk). By the continuous
differentiability of f and h and by (lo), there exists a minimizer x(t) in (7)
associated with X = p(t) and B = Bj, and z(t) is a continuous function of t
(see [20, Theorem 4.11). Since L&$(t)) = Ls,(p(t)) for 0 5 t 5 3, and since

APPLICATION OF THE DUAL ACTIVE SET ALGORITHM 353

(8) also has a unique minimizer, which is feasible in (7), we conclude that z(t)
is the minimizer in (8) for 0 5 t 5 i. It follows that z(?)B, = YEB, = ZB~. Since
J%j (P(9) ’ LBj (At)) as t extends beyond Z, we conclude that x(t) becomes
infeasible for (8) as t extends beyond Z. Since z(t) is feasible for (7), we see
that Zi < z&t) < ZG~ for some i E X?j and for t > i: with t near 5. Since both the
constraints zi 2 li and xi 5 2~~ are inactive at x = xi(t), the first-order necessary
conditions imply that

Wk x>
3X<

A= /J(t) = 0
3: = Cc(t)

for t > ? with t near 5. Since x(t) and p(t) are continuous functions of t, we let
t approach 5 to obtain

Wh x>
dXi

_ = 0
x=x ’
LZ=TlT

(11)

where f = x(9. Hence, Bj+r is strictly contained in Bj, and the subiterations
terminate in a finite number of steps.

Convergence to optima&

Since L;(X) is a concave function of X for any choice of B and pj maximizes
L$(X) over A, we have

By the convexity assumption (lo), the first-order necessary conditions associated
with (8) are sufficient for optimality. Since ?i? satisfies the first-order necessary
conditions associated with (8) and with the choice B = Bj and X = 1, and
since (11) holds for each i E Bj\Bj+l, f also satisfies the first-order necessary
conditions associated with (8) and the choice B = Bj+l and X = 1. It follows that

If B denotes the final set Bj generated by the subiterations, then by (9) we have

L$ (&+1> = Lg(b+d.

Since L&X) 2 L(X) for any choice of B, we conclude that

L$+,(~j+d I L(b+1)-

Combining these inequalities gives

354 HAGER AND HEARN

If the algorithm has not terminated at iteration Ic, then VL(Xk) # 0, and thus

VL(Xk) = h(z) = VL&(X,) = VL&(UO) # 0.

(See Clarke [7, Proposition 1.13 and Theorem 2.1.1) Since L&(X) is a concave
function of A, ~0 maximizes L&, and vl lies between vo and ~0, it follows that
L&,(vo) < L&((Y~) unless vo = VI. However, in this special case,

WA x> A=A +o 8% ZE;
for each i E Br, which implies that L&(vl) < L&(y). Hence, by (12), we have

L(Ak) < qjok+l) I L(Xk,l).

Since the components of z~ are chosen from a finite set, the dual active set
algorithm reaches a maximizer of (6) in a finite number of iterations. I7

Studying the convergence proof, we make two observations:

1. In the final subiteration, Xk+r can be chosen to maximize L along the line
through uj and pj - all the inequalities in the proof remain valid.

2. The subiterations can be terminated whenever a point is found for which
the value of L increases. This leads to the following quick step form of
the iteration.

Dual active set iteration, quick step:

The iteration is identical to the previous iteration; however, the
subiteration terminates whenever L(c~j) > L(h), and we set Xk+r = /Lj
(or alternatively, we maximize L along the line through uj and pj to
get Xk+d.

It is interesting to contrast the dual active set algorithm with the primal active
set algorithm which, as noted by Luenberger [35, p. 4251 is often employed
for quadratic programs where f(z) is quadratic and h(s) = Ax - b is linear.
Since the latter method is described in detail in this reference, we only highlight
its attributes:

0 Each iterate xk satisfies all constraints.
l Each iteration attempts to minimize f over a working set of constraints defined

by Ax = b, and a subset B of the bound constraints treated as equalities.

APPLICATION OF THE DUAL ACTIVE SET ALGORITHM 355

l If, in the process of optimizing over the current working set, some zi for i $! B
encounters its lower or upper bound, the working set is expanded and the
optimization continues over the updated working set.

l Once the optimal solution is found for a given working set, the multipliers asso-
ciated with the bound constraints are computed, and if all have the appropriate
sign to satisfy the Karush-Kuhn-Tucker conditions, the algorithm terminates.
Otherwise, bound constraints associated with multipliers of incorrect sign are
dropped from the working set, and the algorithm continues.

Of course, it is possible to introduce the multipliers for the bound constraints
as well as the X multipliers for the constraint Aa: = b, construct a constrained
dual problem, and apply the primal active set algorithm to this dual problem.
(See Goldfarb and Idnani [18, p. 241 for an interesting discussion of algorithmic
strategies applied to primal and dual formulations of quadratic programs.)

The dual active set algorithm, by contrast, maximizes the objective L(X) of an
unconstrained dual problem. It has the following features:

l The bound constraints are maintained at each iteration, while the constraint
Ax = b is relaxed, until termination.

l It is the dual iterates Xk that force the selection of the set B and that identify
those xi(&) at a bound. The multipliers of the bound constraints are not used
in the computation.

l The move from iterate XI, to Xk+t is more involved than a line search step; in
particular, the algorithm utilizes certain approximations to L(X) which change
during the move as the set B changes.

l In an implementable form of the algorithm, developed in the next section, the
approximations to L(X) include the use of the proximal point method, without
which the iterations could diverge.

Despite these differences, the dual active set algorithm shares one important
feature of the primal active set algorithm: It produces the primal active set in
a finite number of iterations as proven in Theorem 1.

3. The dual active set algorithm: Implementable form

The existence of the maximizer pj in the conceptual form of the dual active set
algorithm is related to the indices in B+ In particular, whenever the set

{x E II?” : h(x) = 0, XBj = zg,}

is empty, pj may not exist. For the large network optimization problems solved
in Section 6, we observed that in every test problem, a set Bj was encountered
for which the maximizer pj failed to exist. In this section, we “regularize” L by
the addition of a strongly concave term to ensure the existence of a maximum.

356 HAGERANDHEARN

Letting e denote a positive regularization parameter and letting n denote a fixed
vector in IR”, one of the simplest regularized functions is

M(X) = L(X) - E(JX - AlIZ.

The regularized forms of the modified functions are

ME(X) = LB(X) - allA - n11* and M;(X) = L&(X) - E(]X - A]]‘.

In the regularized problem, the maximization of L is replaced by a maximization
of M:

maximize M(X) subject to X E IRm. (13)
Maximizing the regularized function M rather than L is the essence of the

proximal point algorithm. This scheme has been studied extensively in the
literature; some references include the papers [37] and [38] by Martinet, [45]
and [46] by Rockafellar, [36] by Luque, [47] by Spingarn, and [19] by Ha. If nk
is the current iterate in the proximal point algorithm, then the new iterate Ak+r
is computed by maximizing the M associated with the choice E = EL and /1 = &
If the &k are sufficiently small, then under suitable assumptions, the proximal
point algorithm converges linearly; if the &k tend to zero, then the convergence
is superlinear. For example, if there exists a neighborhood R of X* and an cr > 0
such that

L(X) _< L(x*) - a((X - x*1/*

for every X E Q, then we have (see [46]):
04)

LEMMA 1. Zf (14) holds and the &k are uniformly bounded, then for k sufficiently
large, Ak+I satisfies the inequality

Ilnk+l - A*[(I g-$$ln, - A*ll.

Hence, the /II, approach A* superlinearly if ek tends to zero.
The dual active set algorithm can be used to maximize M. Again, if xk

is the current iterate and z denotes an x in (5) that attains the minimum
when X = xk, then &+i is computed through subiterations that start with the
initialization ~0 = XI, and BO = the set of active indices of Z. The iteration
becomes the following.

Dual active set iteration (regularized form):

The iteration is identical to the previous one except that pj is chosen to
maximize M&(X) over A, and MB,(X) replaces LB,(X). If a quick step
is employed, then the subiteration is terminated whenever M&j) >
M(Xk), and we set Xk+r = pj (or alternatively, we maximize M along
the line through z+ and /Lj to get &+I).

APPLICATION OF THE DUAL ACTIVE SET ALGORITHM 357

Since Mf3, is strongly concave, it has a maximum. The same proof given for the
original dual active set algorithm, also applies to the regularized form, although
each L in the former proof must be replaced by M. Hence, we state

THEOREM 2. If f and h are continuously differentiable on IR” and L satisjies the
strong convexity assumption (lo), then the regularized version of the dual active set
algorithm reaches a solution of (13) in a finite number of iterations and subiterations.

4, Quadratic programs and quadratic networks

Now we examine the dual active set algorithm in the context of quadratic
programming, examining in detail various implementation issues and the special-
ization to quadratic networks. We consider the optimization problem (1) in the
case where

f(s) = $J?QE + cT% and h(z) = Az - b; (15)

here A is an m x n matrix; and Q is a symmetric, positive definite n x n matrix.
Observe that a quadratic program of the form

.
minimize ~z’Qz + cTa: subject to Ca: 5 d

is equivalent to the program

(16)

1. minimize Z~ QZ + il]Cz + y - dJ1’ + cTs subject to CX + y = d, y 2 0.

Hence, if Q is positive definite, then (16) is equivalent to a quadratic program
in the form (15) with positive definite Hessian.

Now let us obtain a formula for the dual function Li. Given a subset B of
the indices (1, 2, . . . , n), let N denote the complement of B. After partitioning
Q, A, and c in the natural way, L$ is expressed

L”,(X) = ;z;QBBzg + c$zB + XT(ABzn - b)

+ inf Iz;Q~,vzj~ + xsQNBzB + &xN + XTA~x~.
XN 2 (17)

Here Qsr denotes the submatrix of Q formed by the intersection of rows
associated with indices i E S and columns associated with indices j E 2’. The
matrix AN is the submatrix of A formed by the columns associated with indices
i E N. And after carrying out the minimization, we have

L;(x) = l T pQ~j.p~ + c& + XT(ABq - b)

- $&A + CN + QNB.zB)~Q&~A%X + CN + QNB.Q).

358 HAGERANDHEARN

Computation of p

Computing the point ~1 in the dual subiteration is equivalent to solving a linear
system of equations whose coefficient matrix is ANQ~~A$. In successive subit-
erations, we add a column to AN, and we add both a row and a column to QNN.
An important numerical issue is how to evaluate p efficiently after adding these
rows and column. As we now show, these additions yield a rank-one change
in ANQG~A~. Hence, its inverse can be updated using Sherman-Morrison-
Woodbury techniques- see [23] for a discussion of these techniques.

We use + superscript to denote the matrix generated after adding a column
to AN and a row and a column to QNN (the new rows and column are placed
on the borders of the matrices). Suppose that Q is positive definite and let CNN
denote the lower triangular Cholesky factor of QNN. Then C$N is the same as
CNN except for the addition of a new row along the bottom and zeros along the
right border. Likewise, the inverse of CiN is the same as the inverse of CNN
except for the addition of a new row along the bottom and zeros along the right
border. If uT denotes the last row of the inverse of C$N, then

T+
(ANQG~NAN) = ANQ~‘NA~ + wwT where w = A$J.

Thus, in each subiteration of the dual active set algorithm, the coefficient matrix
of the linear system associated with the computation of p is modified by a
rank-one term.

Computation of T

The parameter Z in (9) can be evaluated in the following way. Let p(t) denote
the vector appearing in the statement of the dual active set iteration, and let
z(t) be defined as follows:

si(t) = zi for i E B and si(t) = - [Q~~(&NBzB + CN+ &~(t))]~ for i E N.

Observe that z(t) is the vector that attains the minimum in (8) when X = p(t).
Since p(t) is a linear function of t, z(t) is also a linear function of t. For each
value of i, let ti denote the root of the linear equation

(&z(t) + c + ATp(t))i = 0, (18)

when a root exists. When the coefficient of t in (18) vanishes, set ti = 00. With
these definitions, Z is expressed:

z= minimum ti.
iEB,k>O

Thus 5 corresponds to the first value of t with the property that li < zi(t) < ‘Eli
for some i E B and for each t near 5 with t > ?.

APPLICATION OF THE DUAL ACTIVE SET ALGORITHM 359

Iteration transitions

Now let us consider the transition between two consecutive major iterations.
In making the transition between the final set B of the previous iteration and
the initial set Ba of the new iteration, rank-one corrections are both added and
subtracted from the coefficient matrix A&&LA;. We now show that like the
rank-one addition to ANQ~~ N, -’ AT the rank-one subtractions can be treated in an
incremental fashion.

Suppose that S and T satisfy the relation

T=S-UUT

where U is arbitrary. The modification formula gives

T-’ = 3-l + S-‘U(I - UTS-‘U)-‘UTS-‘.

The following lemma gives a condition under which the matrix I - UTS-‘U is
positive definite so that it can be stored in Cholesky factored form, and the
factorization can be updated stably. This lemma clearly applies to the dual
quadratic problems considered here where S and T have the form ANQ;;INA~
for different choices of N. Moreover, when T is positive definite, any matrix of
the form UTT-‘U is positive semidefinite, so that the hypotheses of the lemma
will be satisfied.

LEMMA 2. If T = S - UUT where S is symmetric and invertible, T is invertible,
and the smallest eigenvalue of UTT-‘U is larger than -1, then I - UT,!-‘U is
positive definite.

Proof Observe that

I - UTS-‘U = I - UT(T + UUT)-‘U.

By the modification formula,

(T + UUT)-’ = T-’ - T-‘U(I + UTT-‘U)-‘uTT-1,

so we have

I - UTS-‘U = I - UTT-‘U + UTT-‘U(I + UTT-‘U)-‘UTT-‘U.

If R denotes the product UTT-‘U, then

I - UTS-‘U = I - R + R(I + R)-‘R.

Hence, the eigenvectors of R and I -UTFIU are the same. If T is an eigenvalue
of R, then the associated eigenvalue of I - UTS-‘U is l/(1 + T). Since T > -1,
the matrix I - @S-‘U is positive definite. q

360 HAGERANDHEARN

Quadratic networks

Next, we formulate the important quadratic network problem, which has been
considered by many researchers, (see [2], [3], [4], [5], [8], [9], [lo], [12], [13],
P41, 1171, [26], [28], [291, [30], 1321, [33], [34], [39], [40], [41], [@I, [SOI and
[51]), and we describe an additional implementation idea that we call null space
steps. The problem that we consider has the form

minimize f(z) subject to AZ = 6, 1 5 z 5 u, (19)

where

(20)

Here z is a vector in lR’“; D is a diagonal matrix; 2 is a vector of lower bounds;
u is a vector of upper bounds; 2 < U, b is a vector whose components sum to
zero; and A is an m x n node-arc incidence matrix (see Strang [48]); that is, the
number of nodes in the network is m, the number of arcs in the network is n,
and if arc Ic connects node i to node j, then each element in column Ic of A is
zero except for a -1 in row i and a +1 in row j. We assume that the diagonal
of D is positive so that f is strictly convex. Since the rows of A sum to zero,
we discard the last row to eliminate this dependency.

As in the prior development, the Lagrangian L is given by

L(A, zc) = f(s) + XT(Aa: - b),

while the dual functional is

L(X) = minimum L(X, E) subject to E 5 CC 5 U. (21)

The dual problem is an unconstrained maximization:

maximize L(/\) subject to X E Z/Y. (22)

By duality theory (see [35] or [44]), we know that if X* solves the dual problem
and if the primal problem (19) has a solution z*, then Z* attains the minimum
in (21) corresponding to X = X*.

Given a vector X, let y denote the unconstrained minimizer of L(X, Z) over
all Z. From the structure of f, y can be expressed as

Y = -D-‘(c + A?,).

Let us partition the set (1, 2, . . . , n} into B UN where

i E N if li < ?/i < Ui, while i E B if yi 5 li or yi 2 Ui.

(23)

(24)

APPLICATION OF THE DUAL ACTIVE SET ALGORITHM 361

Due to the special form of f, the dual functional can be expressed

--c ;(‘N + XTAN)D;;‘N(c~ + AT,X), (25)

where DBB and DNN are appropriate submatrices of D; and the ith component
of xn is equal to Zi if yi < &, while it is equal to IJ~ if yi > Ui. From (25) we
see that L is a piecewise quadratic function. In addition, it is well known that
a function like L, defined through minimization of a strictly convex quadratic, is
continuously differentiable with

VL(X) = AZ(X) - b

where x = CC(X) achieves the minimum in (21) corresponding to X.

Null space steps

If for some given X and for some i, the y given by (23) has the property that
yj < lj or yj > uj whenever a~ # 0, then row i of AN is completely zero, and both
row i and column i of AND;;‘,AT, are zero. Since the quadratic terms in (25)
associated with component i vanish, the function L(X) is a linear function of the
ith component of X. In other words, when all the primal variables associated with
node i in the network are at their bounds, the only term in (25) involving Xi is

&(ABZB - b)i.

When the coefficient of Xi is nonzero, Xi can be adjusted to strictly increase L(X),
provided this is done without changing the set B in (24). A cycle through all the
components of X in which the value of those components associated with linearity
is adjusted in order to increase L, while not changing the minimizer in (21), we
refer to as a “null space step” since this adjustment takes place in the null space
of the matrix AND~~A$. In our implementation of the dual active set algorithm,
the results of which appear in Section 6, each iteration begins with a null space
step. Finite convergence of the method is not affected by a null space step since
L strictly increases, and the proof of Theorem 1 is based on the fact that the
final set ?? generated by the subiterations cannot repeat when L strictly increases.

5. Conjugate gradient techniques for quadratic networks

It has been shown by Lin and Pang [34] that gradient or conjugate gradient
techniques can be used to maximize L (or M). In implementing one of these
techniques, a line search is required. In our computational study of the quadratic

362 HAGERANDHEARN

network problem (19), we have included two versions of the nonlinear conjugate
gradient algorithm. One of these versions uses the Polak-Rib&e update formula
[46] as given in Luenberger [35, p. 2531, and the other adds a preconditioner.
Ventura and Hearn [50] found that the Polak-Ribikre conjugate gradient update
is more efficient than others in numerical experiments involving networks. This
section describes our line search procedure and the preconditioner.

We consider an exact line search, although global convergence can be achieved
using an inexact line search (see [22] for example). If Xk is the current iterate
and pk is the current search direction, then with exact line search, we have

Ak+l = AI, + Skpkr

where the step size Sk is given by

Sk = argmaxL(& + Spk). (26)
820

Let Sk denote the gradient VA(&), and let us assume that pzgk > 0 so that pk

is a direction of ascent. At a maximum in (26), the derivative vanishes, and
we have

P:(A&) - b) = 0,

where Z(S) iS the minimizer in (21) corresponding t0 A = XI, + Spk. Let Q(S)
denote the expression pl(Az(s) - b). The problem of determining a root of
the equation

4s) = 0 (27)

has been studied extensively in the literature (see [6], [27], and [42]). The
following proposition shows that this equation will have a root unless the primal
problem is infeasible:

PROPOSITION. The function q(s) is (I continuous, piecewise lineal; monotone nonin-
creasing function of s. If prgk > 0, then either the equation q(s) = 0 has a root, or
the primal problem (19) is infeasible, and L grows without bound in the direction pk.

Proof: The fact that q(s) is continuous, piecewise linear, monotone nonincreasing
follows from the formula (23) for the unconstrained minimizer associated with
(21) (see [27]). Suppose that (27) does not have a root. Since $gk > 0, we
conclude that q(0) > 0 and q(s) > 0 for every s 2 0. If y(s) is defined by

y(S) = D-’ [C + AT@,, + spk)] ,

then xi(s) = YJ(S) if Zi 5 yi(s) 5 ‘Eli, xi(s) = Zi if yi(s) < Zi, and xi(~) = ui if
Yi(s) > ‘Iii* From the construction of Z(S), we see that there exists t such that
Z(S) = z(t) for s 3 t. Hence, q(s) = q(t) for s > t, from which it follows that

APPLICATION OF THE DUAL ACTIVE SET ALGORITHM 363

L(Xk + spk) = f(z(t)) + X;(Az(t) - 6) + sq(t) for s > t.

Since q(t) > 0, the maximum in (22) is infinite. Since the minimum in the primal
problem (19) bounds the maximum in the dual problem, the primal problem
is infeasible. El

We now make a few practical observations which provide the basis for the line
search routine used in the numerical experiments reported in Section 6. The
function q is monotone nonincreasing with a finite number of “kinks” where the
slope changes. Each kink has an associated “breakpoint” on the axis. A Newton
iteration, starting from any point where q is positive (such as s = 0), generates
a point to the right. (If an iterate is a breakpoint of q, then either slope of the
adjacent linear segments of q is used in the Newton iteration.) There are three
possibilities for the resulting Newton iterate: (i) It is a zero of q (in which case
the iteration terminates); (ii) it lies to the right of a zero; or (iii) it lies to the
left of a zero, to the right of the starting point, and at a point corresponding
to a different linear segment on the graph of q. In case (iii), we can continue
to apply Newton’s method, and in a finite number of iterations, either a zero
of q is generated, or a point to the right of a zero is found. In summary, after
a finite number of Newton iterations, starting from s = 0, we either locate or
bracket a zero of q. Once a zero is bracketed, we sort the bracketed breakpoints.
Starting at one bracketing point (we use the point where the absolute value
of q is smallest), we march to the other bracketing point to determine a pair
of breakpoints where the graph of q crosses the axis. In Figure 1, the line
search algorithm, starting from SO, generates s1 and s2 by Newton steps, thereby
bracketing the zero of q(s). It then calculates and sorts the four breakpoints
between s1 and ~2, and locates the zero between the first and second of these.
We have observed in our numerical experiments connected with the conjugate
gradient method, that 1 or 2 Newton iterations typically generate a point that
brackets a zero of q. Moreover, the number of bracketed break points is often a
small fraction of n, and the time to sort these points is relatively insignificant.

Now consider the problem of finding the step size Sk that maximizes M in the
search direction Pk:

Sk = arg max hf(Xk + Spk).

320

Again, let us assume that pk is a direction of ascent. Since the derivative vanishes
at the maximum, we have

pz(Az(sk) - b) - 2&p;& + skpk - A) = 0.

Let T-(S) denote the expression q(s) - 2&&(& + Spk -A). Since q(s) is continuous,
piecewise linear, monotone nonincreasing, it follows that T(S) is continuous,
piecewise linear, strictly decreasing. Consequently, the algorithm described
above for finding a zero of q can be used to find a zero of T.

HAGER AND HEARN

Figure I. Line search example.

Our preconditioned version of the conjugate gradient method is motivated by
the dual active set algorithm. Recall from the previous section that the dual active
set algorithm successively adds rank-one corrections to the matrix associated with
the quadratic part of L& as additional primal variables are freed. This suggests
a related diagonal preconditioner for the conjugate gradient method in which we
successively add the diagonal part of the rank-one corrections as primal variables
are freed. The preconditioned conjugate gradient method (see [21]) has the
following form:

xk+l = xk + SlipA,

Pk+l = p-%k+l + Pkpk,

where gk is the gradient of the cost function L, evaluated at &; and P is the
preconditioner. For the Polak-Rib&e update, we have

pk =
g;+lP-l(gk+l - Sk)

g;ETp-‘gk ’

Observe that the matrix associated with the quadratic part of L in (25) has
the following form:

where di denotes the ith diagonal element of D; and ai denotes the ith column
of A. In iteration k of the preconditioned conjugate gradient method, we utilize
a diagonal preconditioner whose diagonal has the form

APPLICATION OF THE DUAL ACTIVE SET ALGORITHM 365

diagonal P = 1 2 & $ diagonal {c&},
ZEF E

where the initial F is given by

F = {i : Zi 5 y(X& 5 u;}. (28)

In each preconditioned iteration, the gradient is multiplied by the “inverse” of
P. Since some diagonal elements of P may be zero, our convention is that
0-1 = 1. The set F is updated in the following way: If y(X,)i < Zi or y(Xk)i > u(li
whenever i @ F, then F does not change. Otherwise, F is augmented:

F Oew = Fold U {i @ Fold : Zi 5 y(X,)i 5 Ui},

and the conjugate gradient iteration is restarted using this new F for the pre-
conditioner. If F remains invariant for some preset number of iterations, then
the conjugate gradient scheme is restarted and the set F is reinitialized using
(28). In our numerical experiments, a restart was performed after m iterations,
where m is the number of nodes in the network.

6. Numerical experiments

The numerical performance of the dual active set algorithm was evaluated using
16 of the quadratic network test problems studied by Bertsekas et al. [5] as well
as a test problem considered by Toint and Tuyttens [49] (only one of their test
problems, P(8, 0, 102, 1 , &), had a quadratic cost). These experiments were
performed using an Apollo DNlOOOO computer and the Fortran f77 compiler
without optimization. All computing times reported below are in seconds.
The starting guess was always X0 = 0. Each algorithm was terminated when
IlVL(Xk)ll/llbll 5 10e6. Since VL(Xk) = Azk - b, where ~12 achieves the minimum
in (21) corresponding to X = Xk, the termination criterion is equivalent to a
bound on the relative residual associated with the linear system Az = b.

The test problems in [5] are randomly generated networks constructed using
Zenios’ modification of the NETGEN program [31]. This modification generates
a quadratic term for the cost function as well as a linear term. The test problems
that we considered are summarized in Table 1. As in [5], problems l-8 are
constructed using the code of Zenios while problem 9 is P(8, 0, 102, 1, &) from
[49]. We considered the same two versions of the test problems studied in [5];
a well-conditioned version where the coefficients of the quadratic part range
between 5 and 10, and an ill-conditioned version where 50% of the arcs are
randomly set to a small positive number that appears in the fourth column of
Table 1. The coefficients for problem 9 range between 0.02 and about 3.86.

To begin, we examine the efficiency of the conjugate gradient method on
well-conditioned problems relative to a dual coordinate ascent code discussed

366 HAGER AND HEARN

‘able 1. Test problem summary.

Problem Number of
Nodes Number

1
2

3

4

5

6

7

8

9 324

200

200

300

400

400

400

400

400

Number of Small Quadratic
Arcs Coefficient
1300 .OOOl
2900 .OOl
4500 .OOOl
1500 .OOOl
4500 .Ol

1306 .OOl
1306 .OOl
1382 .OOl

612

RbIe 2. Execution times for well-conditioned test problems.

Problem
Number

1
2

3

4

5

6

7

8

9

T

Dual Coordinate
Ascent

1.72

4.22

4.23

3.38

5.40

3.48

3.42

2.95

76.73

Unconditioned Preconditioned
CG CG

1.63 1.52

4.77 4.22

4.28 3.53

2.17 1.75

7.32 6.45

2.62 3.07

2.03 1.93

2.27 1.72

5.42 4.35

in [5]. Table 2 gives the execution times for the nine test problems. The
total execution times for well-conditioned problems 1-8 is 28.80 (dual coordinate
ascent), 27.09 (unconditioned conjugate gradients), and 24.19 (preconditioned
conjugate gradients). Thus, the codes are somewhat comparable on the first
eight problems. On problem 9, which was not considered in [5], the conjugate
gradient method is significantly faster.

Now consider the ill-conditioned versions of problems l-8. Similar to the
observations reported in [5], we found that the dual coordinate ascent code did
not achieve more than a few digits of accuracy so that the convergence criterion
]]VL(X,)]]/]]b]] 5 10m6 could not be satisfied. The conjugate gradient method con-
verged for the ill-conditioned problems, but the computing times were relatively
large. The times in Table 3 correspond to a restart of the conjugate gradient

APPLICATION OF THE DUAL AmIVE SET ALGORITHM

Table 3. Execution times for ill-conditioned test problems.

367

Problem
Number

1
2
3
4
5
6
I

8
Total 1993.25 1317.53 856.00

Preconditioned
CG

159.90
87.35

378.35
329.88
49.70

100.87
123.28

Active Set
Scheme Alone

42.43
67.30

t

226.93
94.50

188.52
75.92
74.00

106.62 I 88.20 1 86.40

Active Set
Scheme With CG

8.07
18.25
35.95
19.37
26.13
15.18
14.05
16.75

153.75

method every m iterations. The total execution times for ill-conditioned prob-
lems l-8 is L993.25 (unconditioned) and 1,317.53 (preconditioned), more than 50
times slower than the corresponding times for the well-conditioned problems.

In implementing the dual active set algorithm, we factored the coefficient
matrix of the associated linear system at the start of each iteration using the
minimum degree ordering routine of Sparspak [16]. During the subiterations,
the associated linear systems were solved using Sherman-Morrison-Woodbury
updating techniques as explained in Section 4. We chose EO = 0.001 so that
the initial value of the regularization parameter is about 100 times smaller than
the smallest nonzero coefficient in the linear system associated with the dual
iteration. In successive iterations of the underlying proximal point iteration
discussed in Section 3, we took elctl = O.lak. Since the rows of A sum to zero,
we eliminated the last row, and we normalized the dual variable so that X, = 0.
(It was observed that eliminating a redundant row of A and normalizing the dual
variable slows the convergence of the conjugate gradient method; consequently,
this reduction was not used with the conjugate gradient method.)

By itself, the dual active set algorithm is more efficient than preconditioned
conjugate gradient iterations - see column 4 of Table 3. The total execution
time is 856 (dual active set algorithm) compared to 1,317.53 (preconditioned
conjugate gradients). Moreover, if we switch to the dual active set algorithm
after performing a small number of conjugate gradient iterations, then there is a
substantial speedup. The execution times in column 5 of Table 3 correspond to
0.37~2 unconditioned conjugate gradient iterations, a number determined experi-
mentally on problem 1 to be the best point at which to switch to the dual active
set algorithm. The total time in column 5 is 153.75, around an 8.5-fold speedup
relative to preconditioned conjugate gradients alone, and a 13-fold speedup rel-
ative to unconditioned conjugate gradients. Another attractive feature of the
dual active set algorithm, besides its speed near an optimum, is that it generates

368 HAGERANDHEARN

Table 4. Number of subiterations for ill-conditioned test problems.

Iteration

Number

1

2

3

4

5

6

7

8

9

10

11

1

133

27

11

3

2’

2

2

172

43

34

8

3*

I

-T

3

231

44

25

18

5

7

1

1*

1

pro

4

183

49

5

1

1’

4

5

1

1*

1

ble :m

5

68

2

1*

1

I

6

173

21

8

3

3

I*

3

2

1’

2

L

7

204

26

8

1*

2

1*

1

8

159

20

8

1

1*

3

4’

1

very accurate solutions-after a few iterations (typically between 5 and 15), the
algorithm reaches nearly the exact solution. The number of subiterations asso-
ciated with the combined conjugate gradient/dual active set algorithm appear in
Table 4. The iterations where the solution to the proximal point subproblem are
achieved (and where Ek is multiplied by 0.1) are flagged with an asterisk.

We also investigated a slightly different implementation of the proximal point
iteration in which the regularization parameter was kept fixed at &k = 0.001,
while the true maximizer of the proximal point function M was replaced by
an approximation computed by applying one iteration of the dual active set
algorithm. In other words, &+r was obtained by applying one iteration of the
dual active set algorithm to the function

L(x) - .oolll~ - &#.

We observed that the total computing time for problems l-8 was reduced from
153.75 to 144.25.

To compare the dual active set algorithm to the tigorithms investigated in
[49], we solved problem 9 using the same type computer (VAX 8600) and
the same compiler (VMS Fortran Compiler with optimization) employed in
[49]. The computing time that we obtained was 7.97 seconds (for the original
implementation of the proximal point iteration and with 0.3m unconditioned
conjugate gradient iterations before switching to the dual active set algorithm),
more than a lo-fold speedup over the times reported in Table 4 of [49]. Note,
however, that the code in [49] is designed for general nonlinear networks, while
our code is tailored to quadratic networks.

APPLICATION OF THE DUAL ACTIVE SET ALGORITHM 369

In summary, the dual active set algorithm is a highly effective method for
quadratic network flow problems, especially when used in conjunction with the
nonlinear conjugate gradient method.

Acknowledgment

The authors thank D.I? Bertsekas and I? Tseng for providing a copy of their dual
coordinate ascent code. The authors thank H-D. Chen for his assistance with
the numerical experiments.

This research was supported by the U.S. Army Research Office contract
DAAL 03-89-G-0082, the National Science Foundation grant DDM-8814075,
and the Southwest Florida Water Management District.

Appendix. A Matlab program

This appendix provides a Matlab implementation of the dual active set algorithm
for a quadratic program in which the matrix associated with the quadratic part
is diagonal with positive diagonal elements.

% dasa solves the separable strictly convex quadratic program:
% minimize f(z) = 0.5 x’Dx + dx subject to Ax = b, 1 <= z <= u
% by the dual active set algorithm.
% Reference to this function is made by:
% [f, x, lambda] = dasa(D, c, A, b, I, u, Lambda)
% where D, c, A, b, 1, and 21 are the problem data and Lambda is an
% initial guess for the dual variables associated with Ax = b,
% f is the final objective value, and x and lambda are the final primal
% and dual variables.
%
function [f, z, lambda]=dasa(D, c, A, b, 1, 21, Lambda)

[m, n] = size(A);
x= 0 * c; %initialize x as a column vector

% Set tolerances for each loop
to12 = norm(b) * lO*(-6); to13 = to12;
lambda = Lambda; epsilon = 0.01; % epsilon used in proximal point iterations

% proximal point outer loop -loop3-

loop3 = 1;
while 100~3,

epsilon = 0.1 * epsilon;
% dual iteration middle loop -loop2- - - - - - - - - - - - - - - - - -

loop2 = 1;

370 HAGERANDHEARN

while 100~2,
a = -D \ (c + A’ * lambda); % unrestricted min of the Lagrangian
B = zeros(c); % B will index the variables at bounds
for i = 1: n % set variables to their bounds

if z(i) <= Z(i), B(i) = -1; z(i) = Z(i);
elseif z(i) >= u(i), B(i) = 1; z(i) = u(i); end

end
% Dual subiteration inner loop -loopl- - - - - - - - - - -

loop1 = 1; v = lambda; % Y = dual subiterates
while 100~1,
% - - - solve for mu - - -
fr = find(B = = 0); bd = find(B” = 0); % indices of free and bound variables
if length(fr) == 0;

mu = Lambda + (A * z - b)/(2 * epsilon);
z = z;

else
DN = D(fr,fr); AN = A(:&);
Q = AN * inv(DN) * AN’ + 2 * epsilon * eye(m):

= -4 + 2 * epsilon * Lambda - AN * (DN\c(fr));
i length(M) > 0, q = q + A(:,bd) * z(bd); end
mu = Q\q;
% find 2 at the point mu
4fr) = -DN\(AN’ * mu + c(fr));
if length(M) > 0, z(M) = z(M); end

end
% - - - linear search for tbar - - -
% t contains the stepsizes where partials equal 0

num = -(D\(c + A’ * v) + z);
denom = (D\A’ * (mu - v)));
t = (le20) * ones(72, 1);
for i =l:n

if denom(i)” = 0, t(i) =num(i)/denom(i); end
end;
% find tbar
indices = find(t >= 0 & B” = 0);
if length(indices) == 0, loop1 = 0;
else [tbar,i] = min(t(indices));

B(indices(i)) = 0;
mutbar = w+tbar * (mu - v);

end
if tbar > = 1, loop1 = 0, else v = mutbar; end

end 70 _ end of loop1

APPLICATION OF THE DUAL ACTIVE SET ALGORITHM 371

lambda = mu;
if norm(A * x - b - 2 * epsilon * (lambda - Lambda))<to12, loop2=0; end

end y. _ _ _ _ _ _ _ __ __ _ _ _ _ _ __ _ _ _ - end &loop 2

Lambda = lambda;
if norm(A * x - b) < to13, loop3 = 0; end

end y. _ end of loop3

lambda = Lambda;
f = c’ * x + 0.5 * x’ * D * x;

References

1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The design and analysis of computer algorithms,
Addison-Wesley: Reading, MA, 1974.

2. A. Bachem and B. Korte, “Minimum norm problems over transportation polytopes,” Linear
Algebra and Ifs Applications 31 (1980), 103-118.

3. P. Beck, L. Lasdon, and M. Engquist, “A reduced gradient algorithm for nonlinear network
problems,” ACM Trans. on Math. Software 9 (1983), 57-70.

4. D.P. Bertsekas and D. El Baz, “Distributed asynchronous relaxation methods for convex network
flow problems,” SIAM J. on Control and Optimization 25 (1987). 74-85.

5. D.F’. Bertsekas, I?A. Hosein, and P. Tseng, “Relaxation methods for network flow problems with
convex arc costs,” SIAM J. on Control and Optimization 25 (1987), 1219-1243.

6. G.R. Bitran and A.C. Hax, “Disaggregation and resource allocation using convex knapsack
problems with bounded variables,” Mgt. Sci. 27 (1981), 431-441.

7. F.H. Clarke, “Generalized gradients and applications,” Trans. of the American Mathematical
Society 205 (1975), 247-262.

8. M. Collins, L. Copper, R. Helgason, J. Kennington, and L. LeBlanc, “Solving the pipe network
analysis problem using optimization techniques,” Mgt. Sci. 24 (1978), 747-760.

9. L. Cooper and J. Kennington, “Steady state analysis of nonlinear resistive electrical networks
using optimization techniques,” Tech. Report IEOR 77012, Southern Methodist University,
Dallas, TX, 1977.

10. R.W. Cottle, S.G. Duvall, and K. Zikan, “A Lagrangean relaxation algorithm for the constrained
matrix problem,” Nav. Res. Logistics Q. 33 (1986), 55-76.

11. L.H. Cox, “Solving statistical confidentiality problems via network optimization,” TIMS/ORSA
Joint National Meeting, New Orleans, LA, 1987.

12. J.L. Debiesse and G. Matignon, “Comparison of different methods for the calculation of traffic
matrices,” Annales des Telecommunications 35 (1980), 91-102.

13. R.S. Dembo and J.G. Klincewicz, “A scaled reduced gradient algorithm for network flow problems
with convex separable costs,” Mafh. Programming Study 15 (1981), 124-147.

14. R.S. Dembo, “A primal truncated Newton algorithm with application to large-scale nonlinear
network optimization,” Math. Programming Study 31 (1987), 43-72.

15. M.E. El-Hawary and G.S. Christensen, Optimal economic operation of elecfric power systems,
Academic Press: New York, NY, 1979.

16. A. George and J.W.H. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-
Hall: Englewood Cliffs, NJ, 1981.

17. C.R. Glassey, “A quadratic network optimization model for equilibrium of single commodity
trade flows,” Math. Programming 14 (1978). 98-107.

18. Goldfarb and Idnani, “A numerically stable dual method for solving strictly convex quadratic
programs,” Math. Programming 27 (1983). l-33.

372 HAGER AND HEARN

19. C.D. Ha, “A generalization of the proximal point algorithm,” SIAMJ. on Control and Optimization
28 (1990), 503-512.

20. W.W. Hager, “Inequalities and approximation,” in Constructive Approaches to Mathematical
Models, C.V. Coffman and G.J. Fix, eds., Academic Press: New York, NY, 1979 189-202.

21. W.W. Hager, “Dual techniques for constrained optimization,” J. of Optimization Theory and
Applications 55 (1987), 37-71.

22. W.W. Hager, “A derivative-based bracketing scheme for univariate minimization and the conjugate
gradient method,” Computers and Math. with Applications 18 (1989) 779-795.

23. W.W. Hager, “Updating the inverse of a matrix,” SIAM Review 31 (1989), 221-239.
24. W.W. Hager, “The dual active set algorithm, ” in Advances in Optimization and Parallel Computing,

PM. Pardalos, ed., North Holland: Amsterdam, The Netherlands, 1992, 137-142.
25. W.W. Hager and G.D. Ianculescu, “Dual approximations in optimal control,” SIAM J. on Control

and Optimization 22 (1984), 423-465.
26. D.W. Heam, S. Lawphongpanich, and J.A. Ventura, “Restricted simplicial decomposition: Com-

putation and extensions,” Math. Programming Study 31 (1987), 99-118.
27. R.V. Helgason, J. L. Kennington, and H. Lall, “Polynomially bounded algorithm for a single

constrained quadratic program,” Math. Progmmming 18 (1980), 338-343.
28. PV. Kamesam and R.R. Meyer, “Multipoint methods for nonlinear networks,” Math. Programming

Study 22 (1984) 185-205.
29. J.G. Klincewicz, “A Newton method for convex separable network flow problems,” Networks 13

(1983), 427-442.
30. J.G. Klincewicz, “Implementing an ‘exact’ Newton method for separable convex transportation

problems,” Networks 19 (1989).
31. K. Klingman, A. Napier, and J. Stutz, “NETGEN: A program for generating large scale

capacitated assignment, transportation, and minimum cost flow network problems,” Mgt. Sci. 20
(1974). 814-821.

32. L.J. LeBlanc, R.V. Helgason, and D.E. Boyce, “Improved efficiency of the Frank-Wolfe algorithm
for convex network programs,” Transp. Sci. 19 (1985). 445-462.

33. L.J. LeBlanc, “The conjugate gradient technique for certain quadratic network problems,” Nav.
Res. Logistics Q. 23 (1976), 597-602.

34. Y.Y. Lin and J.S. Pang, “Iterative methods for large convex quadratic programs: A survey,”
SIAM J. on Control and Optimization 25 (1987), 383-441.

35. D.G. Luenberger, Introduction to Linear and Nonlinear Programming, Addison-Wesley: Reading
MA, 1984.

36. F.J. Luque, “Asymptotic convergence analysis of the proximal point algorithm,” SIAM i. on
Control and Optimization 22 (1984), 277-293.

37. B. Martinet, “Regularisation d’inbquations variationelles par approximations successives,” Revue
Francaise Informatique et Recherche Opkrationnelle (1970), 154-1.59.

38. B. Martinet, “Determination approach&e dun point fixe dune application pseudocontractante,”
Comptes Rendus des Seances de I’Academie des Sciences, Paris 274 (1972), 163-165.

39. M. Minoux, “A polynomial algorithm for minimum quadratic cost flow problems,” European J.
of Operational Res. 18 (1984), 377-387.

40. J.M. Mulvey, S.A. Zenios, and D.l? Ahlfeld, “Simplicial decomposition for convex generalized
networks,” Research Report No. EES-85-8, Civil Engineering Department, Princeton University,
Princeton, NJ, 1985.

41. A. Ohuchi and I. Kaji, “Lagrangian dual coordinatewise maximization algorithm for network
transportation probIems with quadratic costs,” Nefivo&.r 14 (1984), 515-530.

42. PM. Pardalos and N. Kovoor, “An algorithm for singly constrained quadratic programs,” Math.
Programming 46 (1990), 321-328.

43. E. Polak and G. Rib&e, “Note sur la convergence de methods de directions conjugres,” Revue
Francaise Informatique et Recherche Optmtionnelle 16 (1969), 35-43.

44. R.T. Rockafellar, Convex Analysis, Princeton University Press: Princeton, NJ, 1970.

APPLICATION OF THE DUAL ACTIVE SET ALGORITHM 373

45. R.T. Rockafellar, “Augmented Lagrangians and applications of the proximal point algorithm in
convex programming,” Math. of Operations Res. 2 (1976), 97-116.

46. R.T. Rockafellar, “Monotone operators and the proximal point algorithm,” SIAM I; on Control
and Optimization 14 (1976), 877-890.

47. J.E. Spingam, “Submonotone mappings and the proximal point algorithm,” Numerical Functional
Analysis and Optimization 4 (1982), 123-150.

48. G. Strang, Introduction to Applied Mathematics, Wellesley-Cambridge Press: Wellesley, MA, 1986.
49. P.L. Toint and D. Tuyttens, “On large scale nonlinear network optimization.” Math. Programming

48 (1990), 125-159.
50. J.A. Ventura and D.W. Hearn, “Computational development of a Lagrangian dual approach for

quadratic networks,” Industrial and Systems Engineering Department, Report 87-8, University
of Florida, Gainesville, FL, 1987.

51. S.A. Zenios and J.M. Mulvey, “Relaxation techniques for strictly convex network problems,”
Annals of Operations Research 5 (1985/6), 517-538.

