Inequalities and Approximation

WILLIAM W. HAGER

In this survey, we discuss a class of inequalities related to the following topics:

- (1) Error estimates for variational inequality and optimal control approxima-
 - (2) Stability for mathematical programs
 - (3) Solution regularity for optimal control problems

The material discussed in Sections 4–8 will be developed more fully in forthcoming papers [6–8].

1. ERROR ESTIMATES FOR QUADRATIC COST

Consider the problem

minimize
$$\{J(v) = a(v, v) + l(v) : v \in K\},$$
 (1.1)

where K is a convex subset of the Banach space \mathcal{U} , $l(\cdot)$ is a bounded linear functional on \mathcal{U} , and $a(\cdot, \cdot)$ is a symmetric, bounded bilinear form on \mathcal{U} . Suppose that there exists a solution $u \in K$ to (1.1), and let $K^h \subset \mathcal{U}$ be an approximation to K. No assumptions are made regarding K^h ; in particular, it need not be convex. If $u^h \in K^h$ solves the problem

minimize
$$\{J(v): v \in K^h\},$$
 (1.2)

we shall estimate the error $u - u^h$ in terms of energy $a(u - u^h, u - u^h)$.

Since K is convex and $J(\cdot)$ is differentiable, we have the standard variational inequality [12].

$$DJ[u](v-u) \ge 0 \quad \text{for all} \quad v \in K, \tag{1.3}$$

where

$$DJ[u](v) = 2a(u, v) + l(v).$$
 (1.4)

Expanding $J(\cdot)$ about u gives us

$$J(u^h) = J(u) + DJ[u](u^h - u) + a(u^h - u, u^h - u).$$
 (1.5)

Moreover, (1.3) implies that

$$DJ[u](u^{h} - u) = DJ[u](u^{h} - v) + DJ[u](v - u)$$

$$\geq DJ[u](u^{h} - v)$$
(1.6)

for all $v \in K$. On the other hand, since u^h minimizes $J(\cdot)$ over K^h , we have

$$J(u^h) \le J(v^h) = J(u) + DJ[u](v^h - u) + a(v^h - u, v^h - u)$$
 (1.7)

for all $v^h \in K^h$. Finally combining (1.5)–(1.7), we get

$$a(u^{h} - u, u^{h} - u) \le DJ[u](v - u^{h}) + DJ[u](v^{h} - u) + a(v^{h} - u, v^{h} - u)$$
(1.8)

for all $v \in K$ and $v^h \in K^h$.

Special cases of (1.8) are the following:

(i)
$$K^h \subset K$$
. Choosing $v = u^h$ in (1.8) gives
$$a(u^h - u, u^h - u) \le DJ[u](v^h - u) + a(v^h - u, v^h - u)$$
 (1.9)

for all $v^h \in K^h$.

(ii) $K = \mathcal{U}$. Hence (1.3) implies that DJ[u](v) = 0 for all $v \in K$ and (1.8) yields

$$a(u^h - u, u^h - u) \le a(v^h - u, v^h - u)$$
 (1.10)

for all $v^h \in K^h$.

A classical application of (1.8) is the obstacle problem [3, 4] where we have

$$\mathcal{U} = H_0^1(\Omega),$$

$$K = \{ v \in \mathcal{U} : v \ge \psi \text{ on } \Omega \},$$

$$J(v) = \int_{\Omega} [|\nabla v|^2 - 2fv].$$
(1.11)

Here $\Omega \subset \mathbb{R}^2$ is a bounded open set, $f \in L^2(\Omega)$, $H^m(\Omega)$ is the standard Sobolev space consisting of functions whose derivatives through order m are square integrable on Ω , $H^1_0(\Omega) \subset H^1(\Omega)$ is the subspace consisting of functions vanishing on $\partial\Omega$, and $\psi \in H^2(\Omega)$ is the given obstacle. If $\partial\Omega$ is sufficiently regular, there exists a solution $u \in H^2(\Omega)$ for problem (1.1). To simplify the exposition we assume that Ω is a polygon although this restriction is easily removed [3].

Let $S^h \subset H^1_0(\Omega)$ denote a piecewise linear subspace that satisfies the standard interpolation bound

$$\|g - g^{\mathbf{I}}\|_{H^k} \le ch^{2-k} \tag{1.12}$$

for all $g \in H^2(\Omega)$ and k = 0, 1, where h denotes the diameter of the biggest triangle in the triangulation of Ω and c denotes a generic constant that is independent of h. Finally, we define the set

$$K^h = \{ v^h \in S^h : v^h \ge \psi^I \quad \text{on} \quad \Omega \}. \tag{1.13}$$

Integrating by parts DJ[u](v) given by (1.4) gives us

$$DJ[u](v) = \langle w, v \rangle, \qquad w = -2(\Delta u + f), \tag{1.14}$$

where $\langle \cdot, \cdot \rangle$ denotes the $L^2(\Omega)$ inner product. Furthermore, using the variational inequality, it can be shown that

$$w \ge 0$$
, $w(u - \psi) = 0$ almost everywhere on Ω . (1.15)

We now substitute v = u and $v^h = u^I$ into (1.8); applying (1.14) leads to

$$DJ[u](u - u^{h}) + DJ[u](u^{I} - u)$$

$$= \langle w, u^{I} - u^{h} \rangle$$

$$= \langle w, \psi^{I} - u^{h} \rangle + \langle w, \psi - \psi^{I} \rangle + \langle w, u - \psi \rangle + \langle w, u^{I} - u \rangle$$

$$\leq Ch^{2}$$

$$(11)$$

since $w \ge 0$ by (1.15), $\psi^{\rm I} - u^h \le 0$ by (1.13), $\|\psi - \psi^{\rm I}\|_{H^0} = O(h^2) = \|u - u^{\rm I}\|_{H^0}$ by (1.12), and $\langle w, u - \psi \rangle = 0$ by (1.15). Similarly, we have

$$a(u - u^{I}, u - u^{I}) \le ||u - u^{I}||_{H^{1}}^{2} = O(h^{2}).$$
 (1.17)

Combining (1.8), (1.16), and (1.17), we obtain the estimate

$$a(u - u^h, u - u^h) \le O(h^2).$$
 (1.18)

Using quadratic elements and sharper regularity results established by Brézis [1, 2], it can be shown that

$$||u - u^h||_{H^1} = O(h^{1\cdot 5-\varepsilon})$$
 for any $\varepsilon > 0$ [3].

2. ERROR ESTIMATES FOR DIFFERENTIABLE COST

Now let us consider the equation: Find $u \in H_0^1(\Omega)$ such that

$$u''(x) = e^{u(x)}$$
 for all $x \in \Omega$ (2.1)

where $\Omega = (0, 1)$ and let $u \in H^2(\Omega)$ denote the solution. Defining the functional

$$J(v) = \int_{\Omega} [(v')^2 + 2e^v], \qquad (2.2)$$

(2.1) is equivalent to the variational problem

$$minimize \{J(v) : v \in K\}$$
 (2.3)

where $K \equiv H_0^1(\Omega)$. Letting $S^h \subset H_0^1(\Omega)$ denote the space of continuous, piecewise linear polynomials with h = maximum grid interval, we select $K^h = S^h$ and consider the approximation (1.2).

The estimate (1.8) no longer applies due to the e^v term included in J(v). To generalize our earlier results, suppose that $J: \mathcal{U} \to R$ is differentiable; hence, (1.3) holds [12]. Moreover, suppose that there exists $\alpha > 0$ such that

$$J(v) - J(w) - DJ[w](v - w) \ge \alpha ||v - w||^2$$
 (2.4)

for all $v, w \in \mathcal{U}$ where $\|\cdot\|$ denotes the norm on \mathcal{U} . Consequently, (1.5) can be replaced by

$$J(u^h) \ge J(u) + DJ[u](u^h - u) + \alpha ||u - u^h||^2.$$
 (2.5)

In addition, define the parameter

$$c(v, w) = \frac{J(v) - J(w) - DJ[w](v - w)}{\|v - w\|^2}$$
(2.6)

for all $v \neq w$. Hence (1.7) can be replaced by

$$J(u^h) \le J(u) + DJ[u](v^h - u) + c(v^h, u)||v^h - u||^2$$
(2.7)

for all $v^h \in K^h$. Combining (2.5), (1.6), and (2.7), we get

$$\alpha \|u^h - u\|^2 \le DJ[u](v - u^h) + DJ[u](v^h - u) + c(v^h, u)\|v^h - u\|^2 \quad (2.8)$$

for all $v \in K$ and $v^h \in K^h$.

Now let us apply (2.8) to our particular equation (2.1). Observe that

$$DJ[w](v) = 2 \int_{\Omega} [w'v' + e^w v]$$
$$= 2\langle -w'' + e^w, v \rangle$$
(2.9)

and

$$J(v) - J(w) - DJ[w](v - w) = \langle (v - w)', (v - w)' \rangle + \langle e^{\gamma}(v - w), v - w \rangle$$
(2.10)

by Taylor's theorem where $\gamma(x)$ lies between v(x) and w(x). Hence we have

$$(2.10) \begin{cases} \ge \langle (v-w)', (v-w)' \rangle, \\ \le \langle (v-w)', (v-w)' \rangle [\exp\{\|v'\|_{L^2} + \|w'\|_{L^2}\} + 1], \end{cases}$$

$$(2.11)$$

since

$$||v||_{L^{\infty}} \leq ||v'||_{L^{2}} \qquad \text{for all} \quad v \in H_{0}^{1}(\Omega),$$

$$\gamma(x) \leq ||v||_{L^{\infty}} + ||w||_{L^{\infty}} \qquad \text{for all} \quad x \in \Omega.$$

$$(2.12)$$

Finally (2.1) implies that DJ[u](v) = 0 for all $v \in H_0^1(\Omega)$ and (2.8)–(2.11) yield for $v = u^h$ and $v^h = u^I$

$$\langle (u - u^h)', (u - u^h)' \rangle \le ch^2. \tag{2.13}$$

3. ERROR ESTIMATES FOR NONDIFFERENTIABLE COST

Consider the Bingham fluid problem that is given by (1.1) with the choices

$$\mathcal{U} = H_0^1(\Omega) = K,$$

$$J(v) = \int_{\Omega} [|\nabla v|^2 + |\nabla v| - 2fv]$$
(3.1)

with $f \in L^2(\Omega)$. Letting $S^h \subset \mathcal{U}$ denote the piecewise linear subspace of Section 2, we again take $K^h = S^h$ and study the approximation (1.2).

Observe that (2.8) cannot be utilized since $J(\cdot)$ is nondifferentiable. To generalize (1.8) or (2.8), suppose that

$$J(v) = J_{n}(v) + J_{d}(v),$$
 (3.2)

where $J_n(\cdot)$ is convex but possibly nondifferentiable, and

$$J_{\rm d}(v) = a(v, v) + l(v).$$
 (3.3)

If $u \in K$ solves (1.1), then the following variational inequality holds [12]:

$$DJ_{d}[u](v-u) + J_{n}(v) \ge J_{n}(u)$$
 (3.4)

for all $v \in K$ where

$$DJ_{d}[u](v) = 2a(u, v) + l(v).$$
 (3.5)

Hence we have

$$J(u^h) = J_n(u^h) + J_d(u) + DJ_d[u](u^h - u) + a(u^h - u, u^h - u).$$
 (3.6)

Moreover, by (3.4), we find that

$$DJ_{d}[u](u^{h} - u) \ge DJ_{d}[u](u^{h} - v) + J_{n}(u) - J_{n}(v)$$
(3.7)

for all $v \in K$. On the other hand, we observe that

$$J(u^h) \le J(v^h) = J_n(v^h) + J_d(u) + DJ_d[u](v^h - u) + a(v^h - u, v^h - u)$$
 (3.8)

for all $v^h \in K^h$. Finally the combination (3.6)–(3.8) yields

$$a(u^{h} - u, u^{h} - u) \leq J_{n}(v^{h}) - J_{n}(u) + J_{n}(v) - J_{n}(u^{h}) + DJ_{d}[u](v^{h} - u) + DJ_{d}[u](v - u^{h}) + a(v^{h} - u, v^{h} - u)$$
(3.9)

for all $v \in K$ and $v^h \in K^h$.

Applying (3.9) to the Bingham fluid problem using $v = u^h$ and $v^h = u^l$, we obtain

$$\|\nabla(u^h - u)\|_{H^0}^2 \le \langle |(u^I - u)|, 1\rangle - 2\langle \Delta u + f, u^I - u\rangle + \|\nabla(u^I - u)\|_{H^0}^2$$

$$\le ch.$$
 (3.10)

With a more careful analysis, one can establish the estimate

$$\|\nabla(u^h - u)\|_{H^0}^2 \le ch^{2-\varepsilon} \tag{3.11}$$

for any $\varepsilon > 0$. See Glowinski [5] for the details of (3.11).

4. PERTURBATIONS IN THE COST

In the previous sections, we studied the effect of replacing the constraint set K in (1.1) by an approximation K^h . Now let us consider the case where the constraint set is fixed, but the cost functional is permitted to depend on a parameter.

For example, consider the quadratic programs

minimize
$$\{u^T R_i u + 2r_i^T u : u \in K\}$$
 (4.1)

for j = 1, 2 where $K \subset \mathbb{R}^n$ is convex. Suppose that there exist solutions (u_1, u_2) to (4.1) associated with j = 1, 2, respectively. Hence the following variational inequality holds:

$$(R_i u_i + r_i)^{\mathsf{T}} (v - u_i) \ge 0 \quad \text{for all} \quad v \in K$$
 (4.2)

and i = 1, 2.

Choosing $(j = 1, v = u_2)$ and $(j = 2, v = u_1)$ and adding the resulting relations yields:

$$(u_2 - u_1)^{\mathsf{T}} R_2(u_2 - u_1) \le (r_1 - r_2)^{\mathsf{T}} (u_2 - u_1) + u_1^{\mathsf{T}} (R_1 - R_2)(u_2 - u_1).$$
(4.3)

If the smallest eigenvalue, α , of R_2 is positive, (4.3) implies that

$$\alpha |u_2 - u_1| \le |r_1 - r_2| + |u_1||R_1 - R_2|, \tag{4.4}$$

where $|\cdot|$ denotes the Euclidean norm. If K is compact or R_1 is positive definite, then an a priori bound can be given for $|u_1|$; hence (4.4) implies that the solution to (4.1) depends Lipschitz continuously on the perturbation.

We introduce the following notation: If $g: R^{m_1} \times R^{m_2} \times \cdots \times R^{m_l} \to R$, we let $\nabla_j g$ denote the gradient of $g(y_1, \ldots, y_l)$ with respect to y_j where $y_k \in R^{m_k}$ for $k = 1, \ldots, l$.

The following generalization of (4.4) is easily established [7]:

Theorem 4.1. Let $K \subset \mathbb{R}^n$ be nonempty, closed, and convex, $E \subset \mathbb{R}^m$, $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ be differentiable in its first n arguments on $K \times \mathbb{R}^m$, and assume that there exists $\alpha > 0$ such that

$$f(y,\xi) \ge f(x,\xi) + \nabla_1 f(x,\xi)(y-x) + \alpha |x-y|^2$$
 (4.5)

for all $x, y \in K$ and $\xi \in E$. Then for all $\xi \in E$, there exists a unique $x(\xi) \in K$ satisfying

$$f(x(\xi), \xi) = \min\{f(y, \xi) : y \in K\};$$
 (4.6)

and given $\bar{x} \in K$, we have

$$|x(\xi) - \bar{x}| \le |\nabla_1 f(\bar{x}, \xi)|/\alpha. \tag{4.7}$$

Also, if $\nabla_1 f(z, \cdot)$ is continuous for all $z \in K$, then $z(\cdot)$ is continuous on E, and if, moreover, $\nabla_2 \nabla_1 f(\cdot, \cdot)$ is continuous, then

$$|x(\xi_1) - x(\xi_2)| \le \frac{|\xi_1 - \xi_2|}{2\alpha} \max_{0 \le s \le 1} |\nabla_2 \nabla_1 f(x(\xi_2), \xi_1 + s(\xi_2 - \xi_1))|.$$
 (4.8)

5. DUAL APPROXIMATIONS

One case where the perturbation parameter appears linearly in the cost of a program arises in the study of dual methods for mathematical programs. Consider the program

minimize
$$\{f(z): z \in \mathbb{R}^n, g(z) \leq 0\}$$
 (5.1)

where $g: \mathbb{R}^n \to \mathbb{R}^m$ and $f: \mathbb{R}^n \to \mathbb{R}$. The Lagrange dual function is given by

$$\mathcal{L}(\eta) = \inf\{f(z) + \eta^{\mathrm{T}}g(z) : z \in \mathbb{R}^n\}$$
 (5.2)

and the associated dual problem becomes

$$\sup\{\mathcal{L}(\eta): \eta \in R^m, \, \eta \ge 0\}. \tag{5.3}$$

Under suitable assumptions, there exist solutions η^* to (5.3) and z^* to (5.1). Moreover, z^* achieves the minimum in (5.2) for $\eta = \eta^*$.

Now define the set

$$K = \{ \eta \in \mathbb{R}^m : \eta \ge 0 \}, \tag{5.4}$$

and let K^h be an approximation to K. The following approximation to (5.3) is considered:

$$\sup\{\mathcal{L}(\eta): \eta \in K^h\}. \tag{5.5}$$

If η^h solves (5.5) and z^h achieves the minimum in (5.2) for $\eta = \eta^h$, let us estimate $z^* - z^h$.

Referring to our development in Section 1-3, we see the need for an inequality of the form (2.4) and an estimate of the parameter c in (2.6). To attack these estimates, define the Lagrangian

$$\mathcal{L}(z,\eta) = f(z) + \eta^{\mathrm{T}} g(z) \tag{5.6}$$

and assume the following:

- (i) $f, g \in C^2$;
- (ii) there exists $\alpha > 0$ such that

$$\nabla_1^2 \mathcal{L}(z, \eta) > \alpha I$$
 for all $z \in \mathbb{R}^n$ and $\eta \in E$.

where $E \subset \mathbb{R}^m$ and ∇_1^2 denotes the Hessian of $\mathcal{L}(z, \eta)$ with respect to z.

Letting $z(\eta)$ denote the minimizing value of z in (5.2), we know that

$$\nabla_1 \mathcal{L}(z(\eta), \eta) = 0 \tag{5.7}$$

since the minimization is unconstrained. Moreover, by Theorem 4.1, $z(\cdot)$ is differentiable almost everywhere on E. Hence the chain rule and (5.7) give us

$$D\mathscr{L}[\mu](\eta) = \eta^{\mathsf{T}} g(z(\mu)) \tag{5.8}$$

for almost every $\mu \in E$. Motivated by relation (5.8) and our earlier development in Section 1–3, we study the quantity

$$\mathcal{L}(\eta_1) - \mathcal{L}(\eta_2) - g(z(\eta_2))^{\mathrm{T}}(\eta_1 - \eta_2). \tag{5.9}$$

The following result can be established [7]:

$$(5.9) \begin{cases} \leq -(\alpha/2)|z(\eta_1) - z(\eta_2)|^2, \\ \geq -|\nabla g(z(\eta_2))^{\mathsf{T}}(\eta_1 - \eta_2)|^2/\alpha. \end{cases}$$
 (5.10)

Therefore, proceeding as in Section 2, we get the estimate:

$$(\alpha^{2}/2)|z(\eta^{h}) - z(\eta^{*})|^{2} \leq \alpha g(z(\eta^{*}))^{T}(\eta^{h} - \mu + \eta^{*} - \mu^{h}) + |\nabla g(z(\eta^{*}))^{T}|^{2}|\mu^{h} - \eta^{*}|^{2}$$
(5.11)

for all $\mu^h \in K^h$ and $\mu \in K$.

6. RITZ-TREFFTZ FOR OPTIMAL CONTROL

As an application of the results in Section 5, consider the following control problem:

minimize
$$\left\{ C(x,u) = \int_0^1 f(x(t), u(t), t) dt \right\}$$
subject to
$$\dot{x}(t) = Ax(t) + Bu(t) \quad \text{for almost every} \quad t \in [0, 1],$$

$$x(0) = x_0,$$

$$G(u(t), t) \leq 0 \quad \text{for all} \quad t \in [0, 1],$$

$$x \in \mathscr{A}(R^n), \quad u \in L^{\infty}(R^m),$$

where $x: [0, 1] \to R^n$, $u: [0, 1] \to R^m$, and \mathscr{A} denotes absolutely continuous functions. The Lagrange dual functional associated with (6.1) is given by

$$\mathcal{L}(p,\lambda) = \inf\{C(x,u) + \langle p, \dot{x} - Ax - Bu \rangle + \langle G(u), \lambda \rangle : x \in \mathcal{A}(R^n), u \in L^{\infty}(R^m), x(0) = x_0\}, \quad (6.2)$$

and the dual problem becomes [9]

$$\sup \{ \mathcal{L}(p,\lambda) : (p,\lambda) \in K \},$$

$$K \equiv \{ (p,\lambda) : p \in BV, p(1) = 0, \lambda \in L^1, \lambda \ge 0 \},$$
(6.3)

where BV denotes the space of functions with bounded variation. Under suitable assumptions [7, 9], there exist solutions (x^*, u^*) to (6.1) and (p^*, λ^*) to (6.3). Moreover,

$$G(u^*(t), t)^T \lambda^*(t) = 0$$
 for almost every $t \in [0, 1]$ (6.4)

and (x^*, u^*) achieve the minimum in (6.2) for $(p, \lambda) = (p^*, \lambda^*)$.

Now let $K^h \subset K$ denote the subset consisting of continuous, piecewise linear functions p such that p(1) = 0 and piecewise constant functions λ such that $\lambda \ge 0$. As usual, the superscript h denotes the maximum grid interval. Consider the following approximation to (6.3):

$$\sup \{ \mathcal{L}(p,\lambda) : (p,\lambda) \in K^h \}. \tag{6.5}$$

Suppose that (6.5) has the solution $(p^h, \lambda^h) \in K^h$ and that (x^h, u^h) achieve the minimum in (6.2) for $(p, \lambda) = (p^h, \lambda^h)$. Let us estimate the errors $(x^h - x^*)$ and $(u^h - u^*)$.

Assume that $f, G \in \mathbb{C}^2$, the components of $G(\cdot, t)$ are convex for all $t \in [0, 1]$, and there exists $\alpha > 0$ such that

$$\nabla_1^2 f(z, t) > \alpha I \tag{6.6}$$

for all $z \in \mathbb{R}^{n+m}$ and $t \in [0, 1]$. Integrating by parts in (6.2), it can be shown that [7]

$$\mathscr{L}(p,\lambda) = -p(0)^{\mathrm{T}} x_0 + \int_0^1 F(t) \, dt, \qquad (6.7)$$

where

$$F(t) = \inf\{f(x, u, t) - \dot{p}(t)^{\mathsf{T}} x - p(t)^{\mathsf{T}} (Ax + Bu) + G(u, t)^{\mathsf{T}} \lambda(t) : x \in \mathbb{R}^n, u \in \mathbb{R}^m\}.$$
(6.8)

That is, $\mathcal{L}(p, \lambda)$ can be expressed as the integral of a pointwise minimum.

Moreover, with the identifications

$$\eta = \begin{bmatrix} \dot{p}(t) \\ p(t) \\ \lambda(t) \end{bmatrix}, \qquad z = \begin{bmatrix} x \\ u \end{bmatrix},$$

and

$$g(z) = \begin{bmatrix} -x \\ -Ax - Bu \\ G(u, t) \end{bmatrix},$$

(6.9)

we can apply the results of Section 5 for each time t and integrate over $t \in [0, 1]$ to get

$$(\alpha/2)\{\|x^{h} - x\|_{L^{2}}^{2} + \|u^{h} - u^{*}\|_{L^{2}}^{2}\}$$

$$\leq \langle G(u^{*}), \lambda^{*} - \mu^{h} \rangle + C\{\|\dot{p}^{*} - \dot{q}^{h}\|_{L^{2}}^{2} + \|p^{*} - q^{h}\|_{L^{2}}^{2} + \|\lambda^{*} - \mu^{h}\|_{L^{2}}^{2}\}$$

$$(6.10)$$

for all $(q^h, \mu^h) \in K^h$ satisfying $q^h(0) = p^*(0)$ where C depends on A, B, and $\nabla_1 G(u^*(\cdot), \cdot)$.

Now suppose that (\dot{p}^*, λ^*) are Lipschitz continuous [6], select $q^h = p^I$, and let $\mu^h = \lambda^I$ = the piecewise constant function agreeing with the minimum value of λ^* on each grid interval. Since $G(u^*(t), t) \le 0 \le \lambda^*(t)$ for all $t \in [0, 1]$ and (6.4) holds, we conclude that

$$\langle G(u^*), \lambda^* - \lambda^{\mathrm{I}} \rangle = 0$$
 (6.11)

while the remaining terms on the right side of (6.10) are $O(h^2)$. To summarize,

$$\|x^h - x^*\|_{L^2}, \|u^h - u^*\|_{L^2} = O(h).$$
 (6.12)

(For additional results in this area, see [7 and 11].

7. SEMIDUAL METHODS IN OPTIMAL CONTROL

In the previous section, we introduced a dual multiplier for both the differential equation and the control constraint. Now let us consider a semidual approach where a dual multiplier is only used for the differential equation. In particular, let us consider the problem

minimize
$$\left\{C(x, u) = \frac{1}{2} \int_0^1 \left[x(t)^T Q x(t) + u(t)^T R u(t)\right] dt\right\}$$
 subject to
$$\dot{x}(t) = A x(t) + B u(t) \quad \text{for almost every} \quad t \in [0, 1],$$

$$x(t) = Ax(t) + Bu(t) \qquad \text{for almost every} \quad t \in [0, 1], \qquad (7.1)$$

$$x(0) = x_0,$$

$$G(u(t), t) \leq 0$$
 for all $t \in [0, 1]$, $x \in \mathcal{A}(R^n)$, $u \in L^{\infty}(R^m)$.

Define the set

$$U = \{ u \in L^{\infty}(\mathbb{R}^m) : G(u(t), t) \le 0 \text{ for all } t \in [0, 1] \},$$

and the semidual functional

$$\mathscr{L}(p) = \inf\{C(x, u) + \langle p, \dot{x} - Ax - Bu \rangle : x \in \mathscr{A}(R^n), \, x(0) = x_0, \, u \in U\}.$$

$$(7.2)$$

The semidual problem becomes

$$\sup \{ \mathcal{L}(p) : p \in K \} \qquad \text{where} \quad K \equiv \{ p \in BV : p(1) = 0 \}. \tag{7.3}$$

Suppose that Q and R are positive definite; hence, it follows from [7, 9] that there exist solutions (x^*, u^*) to (7.1) and p^* to (7.3). Moreover, (x^*, u^*) achieve the minimum in (7.2) for $p = p^*$ and the following adjoint equation and minimum principle hold:

$$\dot{p}^{*}(t) = -A^{T}p^{*}(t) + Qx^{*}(t) \quad \text{for almost every} \quad t \in [0, 1], \quad (7.4)$$

$$M(u^{*}(t), p^{*}(t)) = \min\{M(u, p^{*}(t)) : u \in R^{m}, G(u, t) \leq 0\}$$
for almost every $t \in [0, 1], \quad (7.5)$

where

$$M(u, p(t)) \equiv \frac{1}{2}u^{\mathrm{T}}Ru - p(t)Bu.$$

Let $K^h \subset K$ be the space of continuous, piecewise linear polynomials, and consider the following approximation to (7.3):

$$\sup\{\mathcal{L}(p): p \in K^h\}. \tag{7.6}$$

Suppose that p^h solves (7.6) and that $(x, u) = (x^h, u^h)$ achieves the minimum in (7.2) for $p = p^h$. We study the errors $(x^* - x^h)$ and $(u^* - u^h)$.

Integrating by parts in (7.2), it can be shown that

$$\mathcal{L}(p) = \mathcal{L}_1(p) + \mathcal{L}_2(p), \tag{7.7}$$

where

$$\mathcal{L}_1(p) = -\frac{1}{2} \int_0^1 (\dot{p}(t) + A^{\mathsf{T}} p(t))^{\mathsf{T}} Q(\dot{p}(t) + A^{\mathsf{T}} p(t)) dt, \tag{7.8}$$

$$\mathcal{L}_2(p) = -p(0)^{\mathrm{T}} x_0 + \int_0^1 \gamma(p(t)) dt, \tag{7.9}$$

$$\gamma(p(t)) \equiv \inf\{M(u, p(t)) : u \in \mathbb{R}^m, G(u, t) \le 0\}. \tag{7.10}$$

Furthermore, it can be shown that (x^h, u^h) satisfy relations (7.4)–(7.5) with superscript * replaced by h.

Since $\mathcal{L}_1(p)$ is a quadratic functional and $\mathcal{L}_2(p)$ is possibly nondifferentiable, we can apply the bound (3.9) choosing $v = p^h$ and $v^h = p^I$:

$$-\mathcal{L}_{1}(p^{h} - p^{*}) \leq -\mathcal{L}_{1}(p^{I} - p^{*}) + \langle \dot{p}^{*} + A^{T}p^{*}, Q[\dot{p}^{I} - \dot{p}^{*} + A^{T}(p^{I} - p^{*})] \rangle + \mathcal{L}_{2}(p^{*}) - \mathcal{L}_{2}(p^{I}).$$
(7.11)

If there exists a continuous control \overline{u} such that $G(\overline{u}(t), t) \leq 0$ for all $t \in [0, 1]$, it follows from (7.4)–(7.5) that $\ddot{p}^* \in L^{\infty}$. Integrating by parts the $\dot{p}^I - \dot{p}^*$ term appearing in (7.11) and applying the interpolation estimate $||p^* + p^I||_{L^2} = O(h^2)$, we get:

$$-\mathcal{L}_{1}(p^{h} - p^{*}) \leq ch^{2} + \mathcal{L}_{2}(p^{*}) - \mathcal{L}_{2}(p^{I})$$

$$\leq ch^{2} + \int_{0}^{1} (p^{I}(t) - p^{*}(t))^{T} Bu^{I}(t) dt, \qquad (7.12)$$

where $u = u^{I}(t)$ achieves the minimum in (7.10) for $p(t) = p^{I}(t)$. Applying (4.7), $||u^{I}||_{L^{\infty}}$ is bounded uniformly in h, and (7.12) gives us:

$$-\mathcal{L}_1(p^h - p^*) \le ch^2. \tag{7.13}$$

Since $p^h(1) = p^*(1) = 0$, we show in [10] that there exists a constant $\beta > 0$ such that

$$\beta \| p^h - p^* \|_{H^1}^2 \le -\mathcal{L}_1(p^h - p^*). \tag{7.14}$$

Therefore, we obtain

$$||p^h - p^*||_{H^1} \le ch. \quad . \tag{7.15}$$

Since (p^h, x^h) satisfy (7.4) with superscript * replaced by h, (7.14) also implies that

$$||x^* - x^h||_{L^2} \le ch. \tag{7.16}$$

Finally we combine the inequality (7.14), relation (7.5) with superscript * replaced by h, and the quadratic program stability bound (4.4) to get:

$$||u^* - u^h||_{L^2} \le ch. \tag{7.17}$$

8. LIPSCHITZ CONTINUITY FOR CONSTRAINED PROCESSES

In the previous sections, we studied the effect on a program of replacing a constraint set K by an approximation K^h , and the dependence of the solution to a program on a parameter appearing in the cost. Now we study stability (or more specifically Lipschitz continuity) in the abstract setting of a "constrained process."

A constrained process can be described as follows: Let \mathscr{S} be a Banach space, \mathscr{D} be a convex subset of a Banach space, $z: \mathscr{D} \to \mathscr{S}$, and $c: \mathscr{D} \to$ (power set of $\{1, \ldots, n\}$). Two examples of constrained processes are the following:

- (1) A control problem such as (6.1) with optimal solution (x^*, u^*) ; we choose $\mathcal{D} = [0, 1]$, the time interval, $z(d) = (x^*(d), u^*(d))$, and c(d) = indices of the binding constraints associated with $u^*(d)$.
 - (2) A mathematical program such as

minimize
$$\{f(x,\xi): x \in \mathbb{R}^n, g(x,\xi) \leq 0\},$$
 (8.1)

where $\xi \in R^m$ is a given parameter. Suppose that there exists a solution $x(\xi)$ to (8.1) for $\xi \in \mathcal{D} \subset R^m$, a convex subset. We then choose z(d) = x(d) and c(d) indices of the binding constraints associated with x(d).

Our goal is to estimate the Lipschitz constant for $z(\cdot)$. First consider the program (8.1), and let #c(d) denote the number of elements in the set c(d). Recall that the Kuhn-Tucker conditions give us a system of $n + \#c(\xi)$ equations in the same number of unknowns: $x(\xi)$ and the dual multipliers associated with binding constraints. If $c(\xi_1) = c(\xi_2)$, then $|x(\xi_1) - x(\xi_2)|$ can often be estimated in terms of $|\xi_1 - \xi_2|$ using the implicit function theorem. Similar results apply to the control problem but with the Kuhn-Tucker conditions replaced by the Pontryagin minimum principle and the adjoint equation.

On the other hand, suppose that $c(\xi_1) \neq c(\xi_2)$. A key result on this subject is given in [6]; namely, a Lipschitz constant that is valid for compatible parameters (where the binding constraints agree) is also valid for noncompatible parameters. To be more precise, assume that $z(\cdot)$ is continuous, and $c(\cdot)$ has the following property: If $\{d_k\} \subset \mathcal{D}, d_k \to d \in \mathcal{D} \text{ as } k \to \infty$, and $I \subset c(d_k)$ for all k, then $I \subset c(d)$.

Given $d, e \in \mathcal{D}$, we define the segment

$$\lceil d, e \rceil = \{ (1 - \lambda)d + \lambda e : 0 \le \lambda \le 1 \}$$

and we say that (d, e) are compatible if c(d) = c(e) and $c(\delta) \subset c(d)$ for all $\delta \in [d, e]$.

Theorem 8.1. If γ satisfies

$$||z(d) - z(e)||_{\mathscr{L}} \le \gamma ||d - e||_{\mathscr{D}}$$
(8.2)

for all compatible data $(d, e) \in \mathcal{D} \times \mathcal{D}$, then γ satisfies (8.2) for all data $(d, e) \in \mathcal{D} \times \mathcal{D}$.

The application of Theorem 8.1 to derive Lipschitz continuity results for both mathematical programs and optimal control problems is given in [6].

REFERENCES

- 1. H. Brézis, Nouveaux théorèmes de régularité pour les problèmes unilatéraux, Recontre Physiciens Théoriciens Mathématiciens, Strasbourg 12 (1971).
- H. Brézis, Seuil de régularité pour certain problèmes unilateraux, C. R. Acad. Sci., Ser. A 273 (1971), 35-37.
- F. Brezzi, W. W. Hager, and P. A. Raviart, Error estimates for the finite element solution of variational inequalities, Numer. Math. 28 (1977), 431-443.
- R. S. FALK, Error estimates for the approximation of a class of variational inequalities, Math. Comp. 28 (1974), 308-312.
- R. GLOWINSKI, Sur l'approximation d'une inéquation variationnelle elliptique, RAIRO Anal. Numer. 10, No. 12 (1976), 13-30.
- W. W. HAGER, Lipschitz continuity for constrained processes, SIAM J. Control Optim. 17 (1979), 321-338.
- 7. W. W. HAGER, Convex control and dual approximations, Control Cybernet. 8 (1979), 5-22.
- $8. \ \ W.\ W.\ Hager\ and\ G.\ Iancules cu, Semidual\ approximations\ in\ optimal\ control\ (to\ appear).$
- 9. W. W. HAGER AND S. K. MITTER, Lagrange duality theory for convex control problems, SIAM J. Control Optim. 14 (1976), 843-856.
- W. W. HAGER, Rates of Convergence for Discrete Approximations to Problems in Control Theory, Ph.D. Thesis, Mass. Inst. of Tech., Cambridge, Massachusetts, 1974.
- W. W. HAGER, The Ritz-Trefftz method for state and control constrained optimal control problems, SIAM J. Numer. Anal. 12 (1975), 854-867.
- J. L. LIONS, "Optimal Control of Systems Governed by Partial Differential Equations" (transl. by S. K. Mitter), Springer-Verlag, Berlin and New York, 1971.

This research was supported in part by Office of Naval Research Grant N00014-76-C-0369, and the Naval Surface Weapons Center, Silver Springs, Maryland.

DEPARTMENT OF MATHEMATICS CARNEGIE-MELLON UNIVERSITY PITTSBURGH, PENNSYLVANIA