CONSTRUCTIVE APPROACHES TO MATHEMATICAL MODELS

Inequalities and Approximation

WILLIAM W. HAGER

In this survey, we discuss a class of inequalities related to the following topics:

(1)  Error estimates for variational inequality and optimal control approxima-
tion

(2) Stability for mathematical programs

(3) Solution regularity for optimal control problems
The material discussed in Sections 4-8 will be developed more fully in forthcoming
papers [6-8). :

1. ERROR ESTIMATES FOR QUADRATIC COST

Consider the problem
minimize {J(v) = a(v, v) + l(v): ve K}, (1.1)

where K is a convex subset of the Banach space %, I(-) is a bounded linear
functional on %, and a(-, -) is a symmetric, bounded bilinear form on %.
Suppose that there exists a solution ue K to (1.1), and let K* = % be an
approximation to K. No assumptions are made regarding K"; in particular,
it need not be convex. If u* € K* solves the problem

minimize {J(v):ve K"}, (12

we shall estimate the error u — u" in terms of energy a(u — ", u — u").
Since K is convex and J(-) is differentiable, we have the standard varia-
tional inequality [12].

DIu]l](v —u) =0 forall veKk, (1.3)
where )
DJ[u](v) = 2a(u, v) + I(v). (1.9
Expanding J(-) about u gives us .
J") = J@w) + DI[u] (" — u) + a(u’ — u, u* — u). (1.5)

Moreover, (1.3) implies that
DJ[u](u" — u) = DJ[u](u" — v) + DJ[u](v — u)
= DJ[u](u" — v) (1.6)
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for all ve K. On the other hand, since «* minimizes J(-) over K" we have
Juh < I = J@W) + DIu](" — u) + a(" —u, " —uw)  (L7)
for all v" € K" Finally combining (1.5)—(1.7), we get

a(u" — u, u" — u) £ DJ[u](v — u") + DI[u](W" — u) + a(" — u, v* — u)
(1.8)
for all ve K and v" e K",
Special cases of (1.8) are the following:

(i) K" < K. Choosing v = u” in (1.8) gives
a(u — u, u* — u) < DI[u](@" — u) + a(" — u, v* — u) 1.9)
for all v" € K. ;
(i) K = %. Hence (1.3) implies that DJ[u](v) = O for all veK and
(1.8) yields
a@" — u, u" — u) < a@" — u, v" — u) (1.10)
for all v" e K",

A classical application of (1.8) is the obstacle problem [3, 4] where
we have

U = Hy(Q),

K={ve:v=yonQ} (1.11)

J(v) = L[wvﬁ - 2],

Here Q — R?is a bounded open set, f € L%(Q), H™(Q) is the standard Sobolev
space consisting of functions whose derivatives through order m are square
integrable on Q, H}(Q) = H'(Q) is the subspace consisting of functions
vanishing on 9Q, and € HX(Q) is the given obstacle. If 0Q is sufficiently
regular, there exists a solution u € H*(Q) for problem (1.1). To simplify the
exposition we assume that Q is a polygon although this restriction is easily
removed [3].

Let S" = HL(Q) denote a piecewise linear subspace that satisfies the
standard interpolation bound

lg — gl < ch?™ . (1.12)

for all ge H*(Q) and k = 0, 1, where h denotes the diameter of the biggest
triangle in the triangulation of Q and ¢ denotes a generic constant that is
independent of h. Finally, we define the set

K'={"eSt:v"=y' on Q}. (1.13)
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| Integrating by parts DJ[u](v) given by (1.4) gives us
DJTu]l(v) = {w, v), w= —2(Au + f), (1.14)

where (-, -) denotes the L*(Q) inner product. Furthermore, using the varia-
tional inequality, it can be shown that

w20, wiu—y)=0 almost everywhere on Q. (1.15)
We now substitute v = u and " = ' into (1.8); applying (1.14) leads to
DJ[u]l(u — v") + DI[u] (' — u)
= (w, ut — u"y
=<&|//‘—u">l +(w,¢—¢'2+&w,u—¢}+&mu'—u2
<0 h =0(h?) =0 =0(h?)
< ch? ' (1.16)

since w20 by (L15), ¥'—u" <0 by (L.13), ¥ — ¢z = O(h?) =
lu — w4 by (1.12), and {w, u — > = 0 by (1.15). Similarly, we have

a(u —uu — ") < |lu — Wl Z = O(h?). (1.17)
Combining (1.8), (1.16), and (1.17), we obtain the estimate
a(u — u" u — u") < O(h?). (1.18)

Using quadratic elements and sharper regularity results established by
Brézis [1, 2], it can be shown that

lu— u'|g: = Oh*>7%)  forany e¢>0 [3].

2. ERROR ESTIMATES FOR DIFFERENTIABLE COST
Now let us consider the equation: Find u € HA(Q) such that
w(x) =e® forall xeQ .1

where Q = (0,1) and let ue H*(Q) denote the solution. Defining the
functional

J@) = f [(v)* + 2¢"], 2.2
Q
(2.1) is equivalent to the variational problem !
minimize {J(v):ve K} 2.3)

where K = H(Q). Letting S* = HA(Q) denote the space of continuous,
piecewise linear polynomials with & = maximum grid interval, we select
K" = §" and consider the approximation (1.2).
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The estimate (1.8) no lenger applies due to the e’ term included in J(v).
To generalize our earlier results, suppose that J:% — R is differentiable;
hence, (1.3) holds [12]. Moreover, suppose that there exists a > 0 such that

J(@) — Jw) — DIl — w) Z aflv — w||? 24

for all v, we % where ||| denotes the norm on %. Consequently, (1.5) can
be replaced by

JW") = Jw) + DI[u] (" — u) + alu — u*|> 2.5)
In addition, define the parameter

_J(@®) — J(w) — DJ[w](v — w)
K lo — w|?

c(v, w) (2.6)

for all v # w. Hence (1.7) can be replaced by
J@W") £ Jw) + DIu] (" — u) + c(v", w)|v" — ul)? 2.7
for all v" € K*. Combining (2.5), (1.6), and (2.7), we get
allu' — ul)? £ DI[ul(w — u") + DI[u] (" — u) + c@", w)||v" — u|?® (2.8)

for all ve K and v* e K.
Now let us apply (2.8) to our particular equation (2.1). Observe that

DJ[w]() =2 L[w’y’ + e"v]

=2{—w"+ ¢e"v) 2.9)

and !
J@) — Jw) — DIJ[w](v —w) = (v — w), (v — w)) + e’(v — w), v — w)
(2.10)

by Taylor’s theorem where y(x) lies between v(x) and w(x). Hence we have

210 { =< —w),@©—w), @11)
<= w), (= w)>lexp{lv/ll= + w2} + 11,
since
[Vl = (V]| 2 for all »eHyQ), @212)

P(x) £ Iv]lpe + W)L forall xeQ.

Finally (2.1) implies that DJ[u](v) = O for all ve H}(Q) and (2.8)-(2.11)
yield for v = u* and " = '

L —uy, (= utyy < ch (2.13)
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3. ERROR ESTIMATES FOR NONDIFFERENTIABLE COST
Consider the Bingham fluid problem that is given by (1.1) with the choices
% = HyQ) =K,

J@) = L[wugz + |Vo| — 2] G-

with f e L*(Q). Letting S* = % denote the piecewise linear subspace of Sec-
tion 2, we again take K" = S" and study the approximation (1.2).

Observe that (2.8) cannot be utilized since J(-) is nondifferentiable. To
generalize (1.8) or (2.8), suppose that

J(v) = J,(v) + J4(0), (32
where J () is convex but possibly nondifferentiable, and
J4(v) = a(v, v) + v). 3.3)
If u € K solves (1.1), then the following variational inequality holds [12]:
DJy[u](v — u) + Jo(v) 2 Jo(w) (34
for all v € K where

DJ [u] (v) = 2a(u, v) + I(v). 3.5)
Hence we have '
J@h) = J, (") + Jy@) + DJ[u] " — u) + a@® — u, u" — u). (3.6)
Moreover, by (3.4), we find that
DJful " — u) = DJ [ul (" — v) + J,(u) — Jo(v) (X))
for all v € K. On the other hand, we observe that
JW") < J(W") = T (") + Jgu) + DI Lul (" — u) + a@* — u, v" — u) (3.8)
for all v*e K*. Finally the combination (3.6)—(3.8) yields |
a(" — u, u* — u) < J,(") ~ T, () + J,(v) — T (")

+ DJg[ul(v" — u) + DJ4[u](v — u")
+ a(" — u, v" — u) (3.9)
for all ve K and v" e K", ’
Applying (3.9) to the Bingham fluid problem using v = u* and v* = i/,
we obtain
IV@W* — wliEo < (I — w)|, 1> — 2¢Au + f,u' — u) + VW' — w)|Zo
< ch. (3.10)
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With a more careful analysis, one can establish the estimate
IV — w)lfo < ch*~* (3.11)
for any ¢ > 0. See Glowinski [5] for the details of (3.11).

4. PERTURBATIONS IN THE COST

In the previous sections, we studied the effect of replacing the constraint
set K in (1.1) by an approximation K" Now let us consider the case where
the constraint set is fixed, but the cost functional is permitted to depend on a
parameter.

For example, consider the quadratic programs

minimize {u"Rju + 2rfu:ueK} 4.1)

for j = 1,2 where K = R" is convex. Suppose that there exist solutions
(uy, u,) to (4.1) associated with j = 1, 2, respectively. Hence the following
variational inequality holds:

(Rlul + rj)T(v - uj) g 0 fOI' all v EK (4.2)
andj=1, 2.

Choosing (j = 1,v = u,) and (j = 2, v = u,) and adding the resulting
relations yields:

(u, — ul)TRz(uz —u) S(ry — rz)T(uz —uy) + “‘{(R1 — Ry)(uy — uy).
4.3)

If the small€st eigenvalue, «, of R, is positive, (4.3) implies that
aluy —uy| £ |ry — ra] + [u]IRy — Ry, (CX)

where |-| denotes the Euclidean norm. If K is compact or R, is positive
definite, then an a priori bound can be given for |u,|; hence (4.4) implies
that the solution to (4.1) depends Lipschitz continuously on the perturbation.
We introduce the following notation: If g: R™ x R™ X ..+ x R™ — R,
we let V;g denote the gradient of g(y,, ..., y)) with respect to y; where
weR™fork=1,...,1L
The following generalization of (4.4) is easily established [7]:

Theorem4.1. Let K = R" be nonempty, closed, and convex, E < R™,
f:R" x R™ — R be differentiable in its first n arguments on K x R™, and
assume that there exists o. > 0 such that

fO, 026+ Y, f(x( —x) +alx -yl (4.5)
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Jor all x,ye K and £ e E. Then for all £ € E, there exists a unique x(£)e K
satisfying
S(x(€), &) = min{f(y, {): ye K}; (4.6)

and given X € K, we have
1%() — X| = |V f(%, O)l/e 4.7

Also, if Vy f(z, -) is continuous for all z € K, then z(-) is continuous on E, and if,
moreover, V, V, f (-, -) is continuous, then

Ix(E) — x(E)] = 022l oy 19, v, (x(E), &1 + 52 — ED)I. @8)

2a 0<s<1

5. DUAL APPROXIMATIONS

One case where the perturbation paratheter appears linearly in the cost
of a program arises in the study of dual methods for mathematical programs.
Consider the program

minimize {f(z):zeR" g(z) < 0} 5.1
where g : R" - R™ and f: R" — R. The Lagrange dual function is given by
Z(n) = inf{f(z) + n"g(2): ze R"} (52)
and the associated dual problem becomes
sup{&L(n):neR", n 2 O} (5.3)

Under suitable @ssumptions, there exist solutions * to (5.3) and z* to (5.1).
Moreover, z* achieves the minimum in (5.2) for n = 5*.
Now define the set

K = {neR™:nz 0}, (54)

and let K" be an approximation to K. The following approximation to (5.3)
is considered:

sup{#(n) :n e K"}. ’ (5.5)

If #* solves (5.5) and z" achieves the minimum in (5.2) for n = 7", let us
estimate z* — z".

Referring to our development in Section 1-3, we see the need for an
inequality of the form (2.4) and an estimate of the parameter c in (2.6). To
attack these estimates, define the Lagrangian

L(z,n) = f(2) + 179(2) (5.6)
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and assume the following:
() f,geC?
(ii) there exists o > 0 such that
V3%(z,n)>al forall zeR" and nekE.
where E = R™ and V? denotes the Hessian of #(z, n) with respect to z.
Letting z(n) denote the minimizing value of z in (5.2), we know that
Vi &Lz, n) =0 (5.7

since the minimization is unconstrained. Moreover, by Theorem 4.1, z(-)
is differentiable almost everywhere on E. Hence the chain rule and (5.7)
give us

DL[ul(n) = n"g(z(w) (5.8)

for almost every u € E. Motivated by relation (5.8) and our earlier develop-
ment in Section 1-3, we study the quantity

L) — L) — 9(z(12) (11 — 12). (59
The following result can be established [7]:

< —(/2)|z(ny) — 2(mz) 1%,
5.9 5.10
5.9 {g — Vg1 s — 1) e 10
Therefore, proceeding as in Section 2, we get the estimate:
@*/2)12(1") — 2(n*)|* £ o0gz*) (0" — u + n* — 4
+ [Vgm*) P " — n* (5.11)

for all y"e K" and pe K.

6. RITZ-TREFFTZ FOR OPTIMAL CONTROL

As an application of the results in Section 5, consider the following
control problem:

minimize {C(x,u) = J: f(x(@), u(®), t) dt_}
subject to
x(t) = Ax(t) + Bu(t) for almost ever); tel0, 1], (6.1)
x(0) = xo,
G(u(),t) <0 forall te[0, 1],
x € Z(R"), ue L®(R™),
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where x: [0, 1] = R", u: [0, 1] - R™ and o/ denotes absolutely continuous
functions. The Lagrange dual functional associated with (6.1) is given by

L(p, ) = inf{C(x, u) + {p, x — Ax — Bu)
+ (G(u), Ay : x € Z(R™), ue L°(R™), x(0) = xo}, (6.2)
and the dual problem becomes [9]
sup{ZL(p, D :(p, ) e K}, 63)
K = {(p, ):peBV,p(1) =0, eL!, 1 = 0}, '

where BV denotes the space of functions with bounded variation. Under
suitable assumptions [7, 9], there exist solutions (x*, u*) to (6.1) and (p*, 1*)
to (6.3). Moreover,

G(u*(t), )TA*(t) =0  for almost every te[0, 1] 6.4)

and (x*, u*) achieve the minimum in (6.2) for (p, 1) = (p*, 1*).

Now let K" = K denote the subset consisting of continuous, piecewise
linear functions p such that p(1) = 0 and piecewise constant functions A
such that 1 = 0. As usual, the superscript # denotes the maximum grid
interval. Consider the following approximation to (6.3):

sup{ZL(p, 1) : (p, ) e K"}. (6.5

Suppose that (6.5) has the solution (p", 1*) € K" and that (x", u") achieve the
minimum in (6.2) for (p, 1) = (p", A*). Let us estimate the errors (x" — x*)
and (u" — u*). |

Assume that f, Ge C?, the components of G(-,t) are convex for all
t€[0, 1], and there exists a« > 0 such that

Vif(z, t) > ol (6.6)

for all ze R"*™ and t € [0, 1]. Integrating by parts in (6.2), it can be shown
that [7]

ZL(p, ) = —p(0)Tx, + J:F(t) dt, ' 6.7)

where

F(t) = inf{ f(x, u, t) — p()"x
—p(®)"(Ax + Bu) + G(u, )TA(t): x e R", ue R™}. (6.8)

That is, £(p, A) can be expressed as the integral of a pointwise minimum.
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Moreover, with the identifications

a(r) .
n= p(t) ) z= [ ]s

u

At)
and (6.9)
—X
g(z) = | —Ax — Bu|,
G(u, t)

we can apply the results of Section 5 for each time ¢ and integrate over
te [0, 1] to get

(@/2){lIx" = x||f2 + llu" — u*|{2}
< (G*), A* — p*y + C{lIp* — d"IE: + Ip* — ¢"E= + 1A% — p"l2:}
(6.10)
for all (¢", u*) e K" satisfying ¢"(0) = p*(0) where C depends on 4, B, and
ViGW*(+), )
Now suppose that (p*, A*) are Lipschitz continuous [6], select q" =p,
and let y* = A' = the piecewise constant function agreeing with the minimum

value of A* on each grid interval. Since G(u*(t), t) < 0 < A¥(t)forallt € [0, 1]
and (6.4) holds, we conclude that

(Gu*), A* — A =0 6.11)
while the remaining terms on the right side of (6.10) are O(h?). To summarize,
Ix* = x*|l 2, U — u¥[l 2 = OB). (6.12)

(For additional results in this area, see [7 and 11].

7. SEMIDUAL METHODS IN OPTIMAL CONTROL

In the previous section, we introduced a dual multiplier for both the
differential equation and the control constraint. Now let us consider a
semidual approach where a dual multiplier is only used for the differential
equation. In particular, let us consider the problem
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minimize {C(x, u) = % J; l Dx(®OTOx(t) + u(®)TRu(i)] dt}

subject to
X(t) = Ax(t) + Bu(t) for almost every te[0, 1], (7.1)
x(0) = xo,
Gu@), ) =0 forall te[0, 1],
x € &(R"), ue L®(R™).
Define the set
U = {ue L°(R™): G(u(t), t) < O for all t [0, 1]},
and the semidual functional
ZL(p) = inf{C(x, u) + {(p, x — Ax — Bu):xe H(R"), x(0) = x,,uec U}.
7.2)
The semidual problem becomes
sup{Z(p):pe K} where K = {pe BV:p(1) = 0}. (7.3)

Suppose that Q and R are positive definite; hence, it follows from [7, 9]
that there exist solutions (x*, u*) to (7.1) and p* to (7.3). Moreover, (x*, u*)
achieve the minimum in (7.2) for p = p* and the following adjoint equation
and minimum principle hold:

P*(t) = < ATp*(t) + Qx*()  for almostevery te[0,1], (7.4)
M(@u*(t), p*(¢)) = min{M(u, p*(t)):ue R™, G(u, t) < 0}
for almost every te[0, 1], (7.5)
where

M(u, p(2)) = Lu™Ru — p(t)Bu.

Let K" = K be the space of continuous, piecewise linear polynomials,
and consider the following approximation to (7.3):

sup{Z(p): pe K"}. - (7.6)

Suppose that p" solves (7.6) and that (x, u) = (x", u") achieves the minimum
in (7.2) for p = p". We study the errors (x* — x") and (u* — u").
Integrating by parts in (7.2), it can be shown that

£p) = Z.0p) + Z,0), (7.7)
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where
1
20 =3 f () + ATPOQGW) + ATp)dr,  (1.8)
. 1
L2@) = —pOxo + fo Y0 db, (1.9)
y(p(t)) = inf{M(u, p(t)): u e R™, G(u, t) < 0}. (7.10)

Furthermore, it can be shown that (x", u") satisfy relations (7.4)—(7.5)
with superscript * replaced by h.
Since #,(p) is a quadratic functional and %,(p) is possibly nondif-
ferentiable, we can apply the bound (3.9) choosing v = p" and v" = p:
—Z,(" — p*) = —Z1(p' - p¥)

+ p* + ATp*, Q[P — p* + AT - PN

+ Z,(p*) — Z,(P". (7.11)
If there exists a continuous control # such that G(u(t), t) < Ofor all t € [0, 1],
it follows from (7.4)—(7.5) that j* € L. Integrating by parts the p' — p*
term appearing in (7.11) and applying the interpolation estimate ||p* + p'|| .-
= 0(h?), we get:

—Z,(" — p*) = ch® + Z,(0*) — £

Sch® + fl@'(t) — P*O)"Bu'(2) dt, (7.12)

where u = u'(t) achieves the minimum in (7.10) for p(t) = p'(t). Applying
@, 4 L= is bounded uniformly in h, and (7.12) gives us:
—-Z,(" — p*) £ ch. (7.13)

Since p*(1) = p*(1) = 0, we show in [10] that there exists a constant
B > 0 such that

Blp" — p*I&: £ — 210" — p¥). (7.14)
Therefore, we obtain
Ip"* = p*llg < ch. - (7.15)

Since (p", x*) satisfy (7.4) with superscript * replaced by h, (7.14) also implies
that .

[x* — x*| . < ch. (7.16)

Finally we combine the inequality (7.14), relation (7.5) with superscript *
replaced by h, and the quadratic program stability bound (4.4) to get:

lu* — ut|| . £ ch. (7.17)
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8. LIPSCHITZ CONTINUITY FOR CONSTRAINED PROCESSES

In the previous sections, we studied the effect on a program of replacing
a constraint set K by an approximation K" and the dependence of the
solution to a program on a parameter appearing in the cost. Now we study
stability (or more specifically Lipschitz continuity) in the abstract setting of a
“constrained process.”

A constrained process can be described as follows: Let & be a Banach
space, 9 be a convex subset of a Banach space, z: 2 — ., and ¢: 2 — (power
set of {1,..., n}). Two examples of constrained processes are the following:

(1) A control problem such as (6.1) with optimal solution (x*, u*); we
choose 2 = [0, 1], the time interval, z(d) = (x*(d), u*(d)), and c(d) = indices
of the binding constraints associated with u*(d).

(2) A mathematical program such as

minimize {f(x, £): x€R", g(x, &) < 0}, 8.1)

where £ € R™ is a given parameter. Suppose that there exists a solution x(&)
to (8.1) for £€ 92 = R™, a convex subset. We then choose z(d) = x(d) and
¢(d) = indices of the binding constraints associated with x(d).

Our goal is to estimate the Lipschitz constant for z(-). First consider the
program (8.1), and let #c(d) denote the number of elements in the set c(d).
Recall that the Kuhn-Tucker conditions give us a system of n + #c(&)
equations in the same number of unknowns: x(£) and the dual multipliers
associated with binding constraints. If ¢(¢,) = c(&,), then |x(&,) — x(&,)|
can often be estimated in terms of |&; — &,| using the implicit function
theorem. Similar results apply to the control problem but with the Kuhn-
Tucker conditions' replaced by the Pontryagin minimum principle and the
adjoint equation.

On the other hand, suppose that c¢(£,) # ¢(&,). A key result on this subject
is given in [6]; namely, a Lipschitz constant that is valid for compatible
parameters (where the binding constraints agree) is also valid for noncom-
patible parameters. To be more precise, assume that z(-) is continuous, and
¢(-) has the following property: If {d,} = 2, d, >de D as k — o0, and
I < c(d,) for all k, then I < c(d).

Given d, e € 9, we define the segment

[del={1—-N)d+A:0<1< 1}

and we say that (d, e) are compatible if c(d) = c(e) and ¢(6) = c(d) for all
oeld, el
Theorem 8.1. If y satisfies

l2(d) — 2]l = 7lld — ello (82
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for all compatible data (d,e)e D x D, then y satisfies (8.2) for all data
d,e)e D x 2.

The application of Theorem 8.1 to derive Lipschitz continuity results for

both mathematical programs and optimal control problems is given in [6].

REFERENCES

. H. Brézis, Nouveaux théorémes de régularité pour les problémes unilatéraux, Recontre
Physiciens Théoriciens Mathématiciens, Strasbourg 12 (1971).

. H. Breézs, Seuil de régularité pour certain problémes unilateraux, C. R. Acad. Sci., Ser. A
273 (1971), 35-37. ‘

. F. Brezz1, W. W. HAGER, AND P. A. RAVIART, Error estimates for the finite element solu-
tion of variational inequalities, Numer. Math. 28 (1977), 431-443.

. R. S. FaLk, Error estimates for the approximation of a class of variational inequalities,
Math. Comp. 28 (1974), 308-312.

. R. GLOWINSKI, Sur I'approximation d’une inéquation variationnelle elliptique, RAIRO
Anal. Numer. 10, No. 12 (1976), 13-30.

. W. W. HAGER, Lipschitz continuity for constrained processes, SIAM J. Control Optim.
17.(1979), 321-338.

. W. W. HAGER, Convex control and dual approximations, Control Cybernet. 8 (1979), 5-22.

. W.W. HAGER AND G. IANCULESCU, Semidual approximations in optimal control (to appear).

. W. W. HAGER AND S. K. MITTER, Lagrange duality theory for convex control problems,
SIAM J. Control Optim. 14 (1976), 843-856.

. 'W. W. HAGER, Rates of Convergence for Discrete Approximations to Problems in Control
Theory, Ph.D. Thesis, Mass. Inst. of Tech., Cambridge, Massachusetts, 1974.

. W. W. HAGER, The Ritz-Trefftz method for state and control constrained optimal control

problems, SIAM J. Numer. Anal. 12 (1975), 854-867.
. J. L. Lions, “Optimal Control of Systems Governed by Partial Differential Equations”
(transl. by S. K. Mitter), Springer-Verlag, Berlin and New York, 1971.

?

This research was supported in part by Office of Naval Research Grant N00014-76-C-0369,
and the Naval Surface Weapons Center, Silver Springs, Maryland.

DEPARTMENT OF MATHEMATICS
CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PENNSYLVANIA

Ay




