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Abstract. The Dual Active Set Algorithm (DASA), presented in Hager, Advances in Optimization and Parallel
Computing, P.M. Pardalos (Ed.), North Holland: Amsterdam, 1992, pp. 137–142, for strictly convex optimization
problems, is extended to handle linear programming problems. Line search versions of both the DASA and the
LPDASA are given.
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1. Introduction

In [6, 8, 9] we present the Dual Active Set Algorithm (DASA) and prove its convergence
when a strict convexity assumption holds. In this approach, a series of subproblems are
solved in which some of the inequality constraints are treated as equalities while other
inequality constraints are ignored. Using the multipliers associated with the subproblem,
the active and inactive sets are updated and the iteration repeats. The first paper [9] gives
a local quadratic convergence result for a “full step” version of this algorithm applied to
control problems in which the cost function is defined in terms of an integral. Also, in
the very recent paper [1], convergence is established for the full step version in quadratic
optimization problems where the matrix in the cost function has a diagonal dominance
property. For general optimization problems, however, this full step version of the DASA
may not converge.

The paper [6] gives an adjusted way for updating the active set which yields convergence
in a finite number of steps when the cost function is strictly convex. The adjustment in-
volves taking a partial step in the direction of the multipliers gotten from the subproblem,
decreasing the active set size, and resolving the subproblem using this smaller active set.
After a finite number of partial steps, each one decreasing the size of the active set, it is
possible to take a full step; then the iteration repeats, terminating after a finite number of full
steps.

The paper [8] focuses on problems with quadratic cost and linear equality and inequality
constraints. In this case, the subproblems are equivalent to a linear system of equations,
and changes in the active set amount to small rank changes in the matrix for the quadratic
term. Changes in the Cholesky factors of a sparse matrix after these small rank changes
can be computed efficiently using the techniques developed in [3, 4]. In [8] we apply the
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DASA to quadratic network optimization, and compare it to other approaches. For linear
programming, the strict convexity assumption used in [6, 8, 9] is not satisfied. Here we
give a modification of the algorithm to handle linear programming problems, and we prove
convergence in a finite number of steps. We also give line search versions of both the DASA
and LPDASA.

We briefly compare the LP dual active set approach to both simplex and interior point
approaches for the following linear programming problem:

min cTx subject to Ax = b, x ≥ 0. (1)

In the dual active set approach, we start with a guess for the dual multiplier associated with
the constraint Ax = b, and we ascend the dual function, eventually obtaining a subset of
the columns of A which contains b, adjusted by the nonbasic variables, in its span. Either a
linear combination of these columns of A yields an optimal solution to (1) (that satisfies the
constraint x ≥ 0) and the iteration stops, or one or more of these columns are discarded, and
the iteration repeats. Since the algorithm constantly ascends the dual function, the collection
of columns obtained in each iteration does not repeat, and convergence is obtained in a finite
number of steps. This finite convergence property is similar to that of the simplex method,
where the iterates travel along edges of the feasible set, descending the cost function in a finite
number of steps. Unlike the simplex method, neither rank nor nondegeneracy assumptions
are either invoked or facilitate the analysis. In essence, one is able to prove finite convergence
without any assumptions. In the simplex method, as presented in text books, typically one
constraint is activated and one constraint is deactivated in each iteration. There has been
some work on multiple pivots in a simplex context; for example, [5] considers a more
general descent step that might be intermingled with simplex steps. With the LPDASA,
constraints typically come and go in groups.

In interior point approaches, the iterates move through the relative interior of the feasible
region. In the LPDASA, the iterates are infeasible, and the algorithm often terminates at a
basic feasible solution for the linear programming problem. Each iteration of the interior
point algorithm involves a scaled projection of the cost vector into the null space of A.
The LPDASA projects the constraint violation vector into the space orthogonal to the “free
columns” of A.

2. Dual active set algorithm

We begin with a statement of a new line-search version of the DASA followed by its
convergence proof. Consider a problem of the form:

max
λ

min
x≥0

L(λ, x), (2)

where L : Rm × Rn → R. The inequality x ≥ 0 could be replaced by 1 ≤ x ≤ u with essen-
tially no change in the analysis (see [6, 8]). We assume that L is continuously differentiable,
that L(λ, x) is concave in λ for each fixed x ∈ Rn , and uniformly strongly convex in x for
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each fixed λ∈ Rm . That is, there exists a constant α > 0 such that

(∇xL(λ, y) − ∇xL(λ, x))(y − x) ≥ α‖y − x‖2,

where α is independent of λ, x, and y.
If B ⊂ {1, 2, . . . , n}, let xB be the subvector of x consisting of those components xi

associated with i ∈ B. Two different functions enter into the statement of the DASA:

LB(λ) = min
xB ≥ 0

L(λ, x) and L0
B(λ) = min

xB = 0
L(λ, x). (3)

In carrying out the minimizations in (3), the components of x corresponding to indices in the
complement of B are unconstrained. By the strong convexity ofL(λ, ·), there exists a unique
minimizer x(λ, B) over the set xB ≥ 0, for each choice of λ and B. Since L is continuously
differentiable and L(λ, x) is strongly convex in x, x(λ, B) depends continuously on λ. To
see this (well-known) property, suppose the xi is the unique minimizer of LB(λi , ·) for
i = 1, 2. We add together the first-order optimality conditions

∇xLB(λ1, x1)(x2 − x1) ≥ 0 and ∇xLB(λ2, x2)(x1 − x1) ≥ 0,

and rearrange to obtain

α‖x1 − x2‖ ≤ ‖∇xLB(λ2, x2) − ∇xLB(λ1, x2)‖.

The continuity of x(λ, B) with respect to λ follows directly.
The unique minimizer of (2) corresponding to B = {1, 2, . . . , n} in (3) is denoted x(λ).

We let L(λ) denote the dual function L(λ, x(λ)):

L(λ) =L(λ, x(λ)) = min
x ≥ 0

L(λ, x).

In the DASA, we start from an arbitrary λ0 and generate a finite sequence of iterates. If
λk denotes the current iterate (initially k = 0), then either λk maximizes the dual function
and we stop, or we move to the next iterate λk+1 using a finite sequence of subiterates
ν0 = λk, ν1, ν2, . . . The algorithmic steps are the following:

Dual Active Set Algorithm (with line search)

• Convergence test: If λk maximizes the dual function, then stop.
• Dual initialization: Set j = 0, ν0 = λk, B0 = {i : xi (λk) = 0}.
• Dual subiteration:

µ j ∈ arg max
λ

L0
B j

(λ) and ν j+1 ∈ arg max
λ∈[ν j ,µ j ]

LB j (λ).

If there are multiple maxima on the line segment [ν j , µ j ] connecting ν j and µ j , then
ν j+1 should be the point closest to ν j .
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• Constraint deletion:

B j+1 = {i ∈ B j : yi = 0, (∇xL(ν j+1, y))i > 0}

where y = x(ν j+1, B j ).
• Stopping criterion: If LB j (ν j+1) =L0

B j
(µ j ), then increment k, set λk = ν j+1, and go to

convergence test. Otherwise, increment j and continue the dual subiteration.

Remark 1. Since L(λ, x) is concave in λ, the dual function L(λ) is concave in λ and
differentiable by [2, Theorem 2.1]. Hence, the dual function is maximized if and only if its
derivative vanishes.

Remark 2. Implicitly, we assume in the dual subiteration that the maximum of L0
B exists.

For the LPDASA in the next section, this existence follows naturally. In the nonlinear case,
the original L could be modified by a proximal term to ensure existence. See [8] for further
discussion of existence.

Remark 3. In [6, 8] we took ν j+1 to be the last point λ on the line segment [ν j , µ j ] for
which the following equality held:

L0
B j

(λ) =LB j(λ) for all λ ∈ [ν j , ν j+1].

In this case B j+1 is often one element smaller than B j . However, in practice it is often more
efficient to perform a line search along the line segment [ν j , µ j ], as is done in the version
of the DASA given above.

Remark 4. In the full step version of the DASA mentioned in the introduction, we take
λk+1 = µ0. The resulting algorithm is convergent in certain situation, as shown in [1, 9],
but not in general.

Remark 5. For quadratic programming problems, the iterates in successive dual subiter-
ations are the solutions of linear systems whose matrices differ by a rank k matrix, where
k is the size of the set B j+1\B j . The methods developed in [3, 4] show how the Cholesky
factorization of a sparse symmetric, positive definite matrix changes after either a rank one
[3] or a multiple rank [4] change in the matrix.

Remark 6. All the indices contained in the final B j of the dual subiteration will be inclu-
ded in the initial B0 of the next iteration. Hence, the dual initialization step adds indices to
the current B set, while the constraint deletion step removes indices.

We now give a convergence proof for the line-search version of the DASA given above.

Theorem 1. Assume that L is continuously differentiable with L(λ, x) uniformly strongly
convex in x for each fixed λ ∈ Rm , and concave in λ for each fixed x ∈ Rn. If in each step
of the DASA, a maximizer µ j in the dual subiteration exists, then the DASA generates a
solution of (2) in a finite number of iterations.
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Proof: We first show that B j+1 is strictly contained in B j for each j when the stopping
criterion is not satisfied. The proof is by contradiction. If B j+1 = B j , then L0

B j
(ν j+1) =

LB j (ν j+1). Since L(λ, x) is concave in λ, it follows that L0
B j

(λ) is concave in λ. Hence,
if L0

B j
(µ j ) =L0

B j
(ν j ), then since µj maximizes L0

B j
, we have L0

B j
(λ) =L0

B j
(µ j ) for each

λ ∈ [ν j , µ j ]. In particular, LB j (ν j+1) =L0
B j

(ν j+1) =L0
B j

(µ j ), and the stopping criterion
is satisfied. Now suppose that L0

B j
(µ j ) >L0

B j
(ν j+1). Again, since L0

B j
(λ) is concave in λ,

L0
B j

(λ) >L0
B j

(ν j+1) (4)

when λ ∈ (ν j+1, µ j ]. Since LB j (ν j+1) =L0
B j

(ν j+1), (∇xL(ν j+1, y))i > 0 for each i ∈
B j+1 where y = x(ν j+1, B j ), and x(λ, B j ) depends continuously on λ, it follows that
xi (λ, B j ) = 0 for all i ∈ B j and λ near ν j+1, and hence,

LB j (λ) =L0
B j

(λ) (5)

for λ near ν j+1. Together, (4) and (5) contradict the fact the ν j+1 maximizes LB j over the
line segment [ν j , µ j ]. Hence, B j+1 is strictly contained in B j when the stopping criterion
is not satisfied, and the dual subiteration will eventually stop.

Let Ck denote the final set B j at iteration k. We now show that if the derivative of the dual
function does not vanish at λk , then Ck �= Cl for all l < k. Since there are a finite number
of distinct choices for Ck , the DASA reaches a stationary point in a finite number of steps.
Since the dual function is concave, this stationary point is a maximizer.

Recall that xk = x(λk) is the solution to the problem

min
x≥0

L(λk, x).

Since the first-order optimality conditions are both necessary and sufficient for optimality
when L(λ, ·) is convex (see [10, Chap. 7]), we have

L(λk) =L(λk, xk) =LB0(λk) =LB0(ν0). (6)

For the same reason, we have

LB j (ν j+1) =LB j+1(ν j+1) (7)

for each j ≥ 0. Since ν j+1 is obtained from a line search,LB j (ν j ) ≤LB j (ν j+1). Combining
this with (6) and (7) gives

L(λk) ≤LB j (ν j ) ≤LB j (ν j+1) ≤LB j+1(ν j+1) (8)

for each j ≥ 0. This implies that

L(λk) ≤LCk (λk+1) ≤L(λk+1). (9)
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The final inequality here is due to the fact that the optimization problem associated with
the evaluation of L(λk+1) involves more constraints than the corresponding optimization
problem for LCk (λk+1). We now show that the first inequality in (9) is strict.

If ν0 �= ν1, then since ν1 is the first maxima on the interval [ν0, µ0], it follows that
LB0(ν1) >LB0(ν0), in which case the first inequality in (9) is strict by (8). Now suppose that
ν0 = ν1 = λk . By [2, Theorem 2.1],L′

B1
(λk) = ∇λL(λk, xk) =L′(λk). Hence, ifL′(λk) �= 0

and ν0 = ν1 = λk we have

L0
B1

(µ1) >L0
B1

(ν1) =L(λk). (10)

Again, by the concavity of L0
B , (10) implies that

L0
B1

(λ) >L0
B1

(ν1) (11)

for λ∈ (ν1, µ1]. Since x(B1, λ) depends continuously on λ, it follows from the definition
of B1 that

L0
B1

(λ) =LB1(λ)

for λ near ν1. Combining this with (11), we see that LB1(λ) >LB1(ν1), λ∈ (ν1, µ1], λ
near ν1. As a consequence, LB1(ν2) >LB1(ν1). Again, the first inequality in (9) is strict
due to (8). In summary, the first inequality in (9) is strict whenever the derivative of the dual
function does not vanish at λk . Since L0

Ck
(λk+1) = maxλ L0

Ck
(λ), it follows from (9) and

the stopping criterion that

max
λ

L0
Cl

(λ) < max
λ

L0
Ck

(λ)

for each l < k. Hence, Cl �= Ck for l < k, and the proof is complete. ✷

3. LP dual active set algorithm

For the linear program (1), L has the following special form:

L(λ, x) = cTx + λT(b − Ax).

For a linear program, unlike the strictly convex setting appearing in the previous section, the
dual function achieves the value −∞ when λ is “dual infeasible.” One approach for dealing
with an infeasible starting guess would be a phase one process, similar to what is done in
implementations of the simplex method for linear programming. However, in the LPDASA
context, another practical approach for dealing with dual infeasibility is to simply introduce
large upper bounds u. In other words, impose the constraint x ≤ u. For u sufficiently large,
this additional constraint does not effect the optimal value of the linear program, and the
choices for λ which were previously dual infeasible now yield small (but finite) values for
the dual function. Typically, a small number of steps of the LPDASA generates a λ that is
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dual feasible for the orginal LP (1). Hence, in this section we focus on linear programs in
the following form:

min cTx subject to Ax = b, l ≤ x ≤ u, (12)

where l < u, with the components of l and u finite. If a dual feasible solution of (1) is
available as a starting guess in the LPDASA, then we could allow components of l and u to
take the values ±∞. These infinite value never enter into any of the steps of the algorithm
since the value of the dual function increases.

In the context of (12), the dual function becomes

L(λ) = min
l≤x≤u

L(λ, x). (13)

By the usual LP duality theory, we know that minimizing the primal problem (12) is, in
a certain sense, equivalent to maximizing the dual function. In particular, if (12) has a
solution, then the dual function L has a maximizer and maxλ L(λ) is equal to the minimum
in (12). In applying the DASA to the dual function, we need to take into account the fact
that the minimizers in (13) are typically not unique, and the dual function L is typically not
differentiable. Instead, L has a subgradient ∂L (see [11]) consisting of a set of vectors:

∂L(λ) =
{

b − Ax : x ∈ arg min
l≤x≤u

L(λ, x)
}
.

The dual variable λ maximizes L if and only if 0 ∈ ∂L(λ), or equivalently, Ax = b for some
x that attains the minimum in (13).

The algorithmic steps of the LPDASA parallel the steps of the DASA. We start from
an arbitrary λ0 and generate a finite sequence of iterates. If λk denotes the current iterate
(initially k = 0), then either λk maximizes the dual function and we stop, or we move to the
next iterate λk+1 using a finite sequence of subiterates ν0, ν1, ν2, . . . as follows:

LP Dual Active Set Algorithm

• Convergence test: Choose y ∈ arg minl≤x≤u L(λk, x), and let z denote any solution to
the problem

min ‖Ax − b‖ subject to xB = yB, l ≤ x ≤ u, (14)

where B = {i : (c − ATλk)i �= 0}. If Az = b, then z is a solution to (12) and λk maximizes
the dual function. Otherwise, define µ(t) = λk + t (b−Az), and let t̄ be the smallest t > 0
for which (c − ATµ(t))i = 0 for some i ∈ B if it exists; otherwise put t̄ = +∞, and (12)
is infeasible (no choice for x satisfies the constraints).

• Dual initialization: Set j = 0, ν0 = µ(t̄), and B0 = {i : (c − ATν0)i �= 0}.
• Dual subiteration: Let p be the orthogonal projection of b − AB j zB j into the null space of

AT
Fj

, where Fj is the complement of B j . Define µ(t) = ν j + tp, and let t̄ be the smallest
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t > 0 such that (c − ATµ(t))i = 0 for some i ∈ B j , if it exists; otherwise put t̄ = +∞, and
(12) is infeasible.

• Constraint deletion: If t̄ < ∞, set

B j+1 = {i ∈ B j : (c − ATµ(t̄))i �= 0}.

• Stopping criterion: If p = 0, then increment k, set λk = ν j , and go to the convergence
test. Otherwise, increment j , set ν j = µ(t̄), and continue the dual subiteration.

The version of the LPDASA given above takes the largest step in the search direction p
for which Lz

B j
matches LB j where

LB(λ) = min
lB≤xB≤uB

L(λ, x) and Lz
B(λ) = min

xB=zB

L(λ, x).

This is the same stepsize discussed in Remark 3 for the DASA. The line search version of
the LPDASA, analogous to the line search version of the DASA in Section 2, is given later.

The LP analogue of Theorem 1 is the following:

Theorem 2. In a finite number of iterations, the LPDASA either determines that (12) is
infeasible, or it obtains an optimal solution.

Theorem 2 is obtained from the union of Lemmas 1–3 which follow.

Lemma 1. If Az = b where z is a solution to (14), then z is an optimal solution to the
linear program (12) and λk maximizes the dual function L.

Proof: By the first-order optimality conditions associated with y, we have

(c − ATλk)i = 0 if li < yi < ui ,

(c − ATλk)i ≥ 0 if yi = li ,

(c − ATλk)i ≤ 0 if yi = ui .

Thus we have

L(λk) = cTy + λT
k (b − Ay)

= (c − ATλk)
Ty + bTλk

= (
cB − AT

Bλk
)T

yB + bTλk

= (
cB − AT

Bλk
)T

zB + bTλk

= (cB − ATλk)
Tz + bTλk

= cTz + λT
k (b − Az)

= cTz.
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Since z is feasible for the primal problem (12), and the value of the primal equals the
value of the dual, we conclude that z is optimal in the primal and λk maximizes the dual
function. ✷

Lemma 2. If t̄ is infinite, then (12) is infeasible.

Proof: In the LPDASA, there are two places where t̄ is computed, in the convergence test
and in the subiteration.

Case 1 (Convergence Test). Let Ai denote column i of A and let F denote the complement
of B. By the first-order necessary conditions for the solution z of (14), the following relations
hold:

(Az − b)TAi = 0 if i ∈ F, li < zi < ui ,

(Az − b)TAi ≥ 0 if i ∈ F, zi = li ,

(Az − b)TAi ≤ 0 if i ∈ F, zi = ui .


 (15)

By the definition of B,

(c − ATλk)i = 0 for each i ∈ F. (16)

Combining (15) and (16), the following relations hold for each t ≥ 0:

(c − ATµ(t))i = 0 if i ∈ F, li < zi < ui ,

(c − ATµ(t))i ≥ 0 if i ∈ F, zi = li ,

(c − ATµ(t))i ≤ 0 if i ∈ F, zi = ui .


 (17)

Since zB = yB where

y ∈ arg min
l≤x≤u

L(λ, x),

the first-order necessary conditions and the definition of B imply that

(c − ATλk)i > 0 if i ∈ B, zi = li ,

(c − ATλk)i < 0 if i ∈ B, zi = ui .

}
(18)

When t̄ is infinite, the inequalities in (18) also hold when λk is replaced by µ(t) for any
t ≥ 0:

(c − ATµ(t))i > 0 if i ∈ B, zi = li ,

(c − ATµ(t))i < 0 if i ∈ B, zi = ui .

}
(19)
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Combining (17) and (19) yields for any t ≥ 0:

(c − ATµ(t))i = 0 if li < zi < ui ,

(c − ATµ(t))i ≥ 0 if zi = li ,

(c − ATµ(t))i ≤ 0 if zi = ui .

Consequently, we have

z ∈ arg min{cTx + µ(t)T(b − Ax) : l ≤ x ≤ u} (20)

for each t ≥ 0. Putting x = z in the extremand of (20) gives us:

L(µ(t)) = cTz + (λk + t (b − Az))T(b − Az) =L(λk) + t‖b − Az‖2. (21)

If Az �= b, then L(µ(t)) tends to infinity as t increases. Since any feasible point in the
primal problem yields an upper bound for the dual function, we conclude that the primal
problem is infeasible.

Case 2 (Subiteration). Since the signs of the components of the vector (c − ATν j ) do
not change during the subiteration, z satisfies (20) during the subiteration. Since p is the
projection of b − AB j zB j into the null space of AT

Fj
, we conclude that

pT(b − Az) = pT(b − AB j zB j ) = pTp.

Hence, we have

L(µ(t)) = cTz + (ν j + tp)T(b − Az)

= cTz + νT
j (b − Az) + tpT(b − Az)

= L(ν j ) + tpTp. (22)

As t tends to infinity, the dual function L tends to infinity; again, the primal problem is
infeasible. ✷

Since B j+1 is strictly contained in B j for each j , the subiterations in the LPDASA
terminate in a finite number of steps. Let zk denote the solution of (14) employed at iteration
k, and let Ck denote the final set B j generated in the subiteration. As a consequence of the
next lemma, the LPDASA reaches an optimal solution of (11), when it exists, in a finite
number of iterations.

Lemma 3. (Ci , (zk)ci ) �= (C j , (zk)c j ) for each i �= j.

Proof: Let us consider the optimization problem

max
λ

min
xB=zB

L(λ, x). (23)
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Since the minimum in (23) is −∞ unless AT
Fλ = cF , where F is the complement of B,

this problem is equivalent to

max
λ

L(λ, z) subject to AT
Fλ = cF . (24)

Discarding the constant term cT
BzB from the extremand of (24) yields the equivalent problem

max
λ

λT(b − ABzB) subject to AT
Fλ = cF . (25)

Assuming (25) is feasible, the maximum is +∞ unless b − ABzB is orthogonal to the null
space of AF ; and if b − ABzB is orthogonal to the null space of AF , then any λ satisfying
the constraint of (25) is an optimal solution. Returning to the final LP dual subiteration,
b − ACk zCk is orthogonal to the null space of AT

Fk
, where Fk is the complement of Ck , and

AT
Ck

λk+1 = cFk . Hence, λk+1 achieves the maximum in (23) corresponding to F = Fk and
by the equivalence between (23) and (24), the maximum value is L(λk+1, z). During the
proof of Lemma 2, we saw that for each subiterate,

z ∈ arg min
{
cTx + νT

j (b − Ax) : l ≤ x ≤ u
}
.

In particular, replacing ν j by λk+1, it follows that L(λk+1) = L(λk+1, z), the optimal value
in (23). Since t̄ is strictly positive, relations (21) and (22) imply that

L(λk) <L(ν0) <L(ν1) < · · · < L(λk+1).

Hence, the optimal value in (23) corresponding to B = Ck is strictly increasing as a function
of k, which implies that the pair (Ck, (zk)ck) never repeats. ✷

Since (zk)i = li or ui for each i ∈ Ck , Lemma 3 implies finite termination of the LPDASA.
The line search version of the LPDASA is basically the same as the orginal LPDASA, except
for the line search feature and the treatment of z.

LP Dual Active Set Algorithm (with line search)

• Convergence test: Choose y ∈ arg minl≤x≤u L(λk, x), and let z denote any solution to the
problem

min ‖Ax − b‖ subject to xB = yB, 1 ≤ x ≤ u,

where B = {i : (c − AT λk)i �= 0}. If Az = b, then z is a solution to (12) and λk maximizes
the dual function. Otherwise, define µ(t) = λk + t (b − Az), and let t̄ be the first maxi-
mizer, if it exists, of LB(µ(t)) over t > 0; otherwise put t̄ = +∞, and (12) is infeasible.
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If t̄ < ∞, define

z̄i =




li if (c − ATµ(t̄))i > 0,

ui if (c − ATµ(t̄))i < 0,

zi otherwise.


 (26)

• Dual initialization: Set j = 0, ν0 = µ(t̄), z = z̄, and

B0 = {i : (c − ATν0)i �= 0}

• Dual subiteration: Let p be the orthogonal projection of b − AB j zB j into the null space
of AT

j , where Fj is the complement of B j . Define µ(t) = ν j + tp, and let t̄ be the
first maximizer, if it exists, of LB(µ(t)); over t > 0; otherwise put t̄ = +∞ and (12) is
infeasible. If t̄ < ∞, set z̄ according to (26).

• Constraint deletion: If t̄ < ∞, set

B j+1 = {i ∈ B j : (c − AT µ(t̄))i �= 0}

• Stopping criterion: If p = 0, then increment k, set λk = ν j , and go to the convergence
test. Otherwise, increment j , set ν j = µ(t̄), set z = z̄, and continue the dual subiteration.

Remark 7. The function LB j (µ(t)) is piecewise linear in t , and the t̄ given in the original
statement of the LPDASA corresponds to the first kink in the graph. In the line search version
of the LPDASA, we go beyond this first kink, and find the maximum of the piecewise linear
function LB j (µ(·)). The convergence proof for the line search version is nearly the same as
the convergence proof for the original version. Lemma 1 is unchanged. Lemma 2 becomes
a triviality since LB(λ) ≤L(λ) for any choice of B. Hence, if LB tends to infinity for some
choice of B, then L is unbounded as well. Finally, consider Lemma 3 and the nonrepetition
of the sets Ck . As in Section 2, the iterates satisfy relations (8) and (9); in fact, in the LP
context, the second inequality in (9) is an equality:

L(λk) ≤ LCk (λk+1) = L(λk+1). (27)

From the proof of Lemma 2, we know that t̄ > 0 and L(ν0) =LB0(ν0) >L(λk) when
optimality has not yet been achieved. As a result, the first inequality in (27) is strict. In the
proof of Lemma 3, we show that λk+1 maximizes Lzk

Ck
, where zk is the final z̄ at iteration k,

and

L(λk+1) = max
λ

Lzk
Ck

(λ).

For i ∈ Ck, (zk)i is equal to either li or ui . Since Ck and (zk)i for i ∈ Ck are chosen from a
finite set, we again achieve convergence in a finite number of iterations.
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