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Abstract. In an abstract framework, we study local convergence properties of Newton’s method
for a sequence of generalized equations which models a discretized variational inequality. We identify
conditions under which the method is locally quadratically convergent, uniformly in the discretiza-
tion. Moreover, we show that the distance between the Newton sequence for the continuous problem
and the Newton sequence for the discretized problem is bounded by the norm of a residual. As
an application, we present mesh-independence results for an optimal control problem with control
constraints.
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1. Introduction. In this paper we study local convergence properties of Newton-
type methods applied to discretized variational problems. Our target problem is the
variational inequality representing the first-order optimality conditions in constrained
optimal control. In an abstract framework, the optimality conditions are modeled by
a “generalized equation,” a term coined by S. Robinson [12], where the normal cone
mapping is replaced by an arbitrary map with closed graph. In this setting, Newton’s
method solves at each step a linearized generalized equation. When the generalized
equation describes first-order optimality conditions, Newton’s method becomes the
well-known sequential quadratic programming (SQP) method.

We identify conditions under which Newton’s method is not only locally quadrat-
ically convergent, but the convergence is uniform with respect to the discretization.
Moreover, we derive an estimate for the number of steps required to achieve a given
accuracy. Under some additional assumptions, which are natural in the context of
the target problem, we prove that the distance between the Newton sequence for the
continuous problem and the Newton sequence for the discretized problem, measured
in the discrete metric, can be estimated by the norm of a residual. Normally, the
residual tends to zero when the approximation becomes finer, and the two Newton
sequences approach each other. In the context of the target optimal control problem,
the residual is proportional to the mesh spacing h, uniformly along the Newton se-
quence. In particular, this implies that the least number of steps needed to reach a
point at distance ε from the solution of the discrete problem does not depend on the
mesh spacing; that is, the method is mesh independent.
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962 A. L. DONTCHEV, W. W. HAGER, AND V. M. VELIOV

The convergence of the SQP method applied to nonlinear optimal control prob-
lems has been studied in several papers recently. In [5, 6] we proved local convergence
of the method for a class of constrained optimal control problems. In parallel, Alt
and Malanowski obtained related results for state constrained problems [3]. Along the
same lines, Tröltzsch [13] studied the SQP method for a problem involving a parabolic
partial differential equation.

Kelley and Sachs [10] were the first to obtain a mesh-independence result in con-
strained optimal control; they studied the gradient projection method. More recently,
uniform convergence and mesh-independence results for an augmented Lagrangian
version of the SQP method, applied to a discretization of an abstract optimization
problem with equality constraints, were presented by Kunisch and Volkwein [11]. Alt
[2] studied the mesh independence of Newton’s method for generalized equations in
the framework of the analysis of operator equations in Allgower et al. [1]. An ab-
stract theory of mesh independence for infinite-dimensional optimization problems
with equality constraints, together with applications to optimal control of partial dif-
ferential equations and an extended survey of the field, can be found in the thesis of
Volkwein [14].

The local convergence analysis of numerical procedures is closely tied to the prob-
lem’s stability. The analysis is complicated for optimization problems with inequality
constraints or for related variational inequalities. In this context, the problem solution
typically depends on perturbation parameters in a nonsmooth way. In section 2 we
present an implicit function theorem which provides a basis for our further analysis.
In section 3 we obtain a result on uniform convergence of Newton’s method applied to
a sequence of generalized equations, while section 4 presents our mesh-independence
results. Although in part parallel, our approach is different from the one used by Alt
in [2], who adopted the framework of [1]. First, we study the uniform local conver-
gence of Newton’s method, which is not considered in [2]. In the mesh-independence
analysis, we avoid consistency conditions for the solutions of the continuous and the
discretized problems; instead, we consider the residual obtained when the Newton se-
quence of the continuous problem is substituted into the discrete necessary conditions.
This allows us to obtain mesh independence under conditions weaker than those in
[2] and, at the same time, to significantly simplify the analysis.

In section 5 we apply the abstract results to the constrained optimal control
problem studied in our previous paper [5]. We show that under the smoothness and
coercivity conditions given in [5] and assuming that the optimal control of the continu-
ous problem is a Lipschitz continuous function of time, the SQP method applied to the
discretized problem is Q-quadratically convergent, and the region of attraction and
the constant of the convergence are independent of discretization, for a sufficiently
small mesh size. Moreover, the l∞ distance between the Newton sequence for the
continuous problem at the mesh points and the Newton sequence for the discretized
problem is of order O(h). In particular, this estimate implies the mesh-independence
result in Alt [2].

2. Lipschitzian localization. Let X and Y be metric spaces. We denote both
metrics by ρ(·, ·); it will be clear from the context which metric we are using. Br(x)
denotes the closed ball with center x and radius r. In writing “f maps X into Y ”
we adopt the convention that the domain of f is a (possibly proper) subset of X.
Accordingly, a set-valued map F from X to the subsets of Y may have empty values.

Definition 2.1. Let Γ map Y to the subsets of X and let x∗ ∈ Γ(y∗). We say
that Γ has a Lipschitzian localization with constants a, b, and M around (y∗, x∗), if
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MESH INDEPENDENCE OF NEWTON’S METHOD 963

the map y �→ Γ(y) ∩Ba(x
∗) is single valued (a function) and Lipschitz continuous in

Bb(y
∗) with a Lipschitz constant M .
Theorem 2.1. Let G map X into the subsets of Y and let y∗ ∈ G(x∗). Let

G−1 have a Lipschitzian localization with constants a, b, and M around (y∗, x∗). In
addition, suppose that the intersection of the graph of G with Ba(x

∗)×Bb(y
∗) is closed

and Ba(x
∗) is complete. Let the real numbers λ, M̄ , ā, m, and δ satisfy the relations

λM < 1, M̄ =
M

1− λM
, m+ δ < b, and ā+ M̄δ < a.(1)

Suppose that the function g : Ba(x
∗) �→ Y is Lipschitz continuous with a constant λ

in the ball Ba(x
∗), that

sup
x∈Ba(x∗)

ρ(g(x), y∗) ≤ m,(2)

and that the set

∆ := {x ∈ Bā(x
∗) : dist(g(x), G(x)) ≤ δ}(3)

is nonempty.
Then the set {x ∈ Ba(x

∗) | g(x) ∈ G(x)} consists of exactly one point, x̂, and for
each x′ ∈ ∆ we have

ρ(x′, x̂) ≤ M̄dist(g(x′), G(x′)).(4)

Proof. Let us choose positive λ, M̄,m, ā, and δ such that the relations in (1) hold.
We first show that the set T := {x ∈ Ba(x

∗) | g(x) ∈ G(x)} is nonempty. Let x′ ∈ ∆
and put x0 = x′. Take an arbitrary ε > 0 such that

m+ δ + ε ≤ b and ā+ M̄(δ + ε) ≤ a.

Choose an y′ ∈ G(x′) such that ρ(y′, g(x′)) ≤ dist(g(x′), G(x′)) + ε. Since

ρ(y′, y∗) ≤ ρ(y∗, g(x′)) + dist(g(x′), G(x′)) + ε ≤ m+ δ + ε ≤ b

and

ρ(g(x0), y
∗) ≤ m ≤ b,

from the Lipschitzian localization property, there exists x1 such that

g(x0) ∈ G(x1), ρ(x1, x0) ≤ Mρ(y′, g(x0)) ≤ M(dist(g(x′), G(x′)) + ε).(5)

We define inductively a sequence xk in the following way. Let x0, . . . , xk be already
defined for some k ≥ 1 in such a way that

ρ(xi, xi−1) ≤ (λM)i−1ρ(x1, x0), i = 1, . . . , k,(6)

and

g(xk−1) ∈ G(xk).(7)

Clearly, x0 and x1 satisfy these relations. Using the second inequality in (5), we
estimate

ρ(xi, x
∗) ≤ ρ(x0, x

∗) +
i∑

j=1

ρ(xj , xj−1) ≤ ρ(x′, x∗) +
∞∑
j=0

(λM)jρ(x1, x0)

≤ ā+
1

1− λM
M(dist(g(x′), G(x′)) + ε) ≤ ā+ M̄(δ + ε) ≤ a.
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964 A. L. DONTCHEV, W. W. HAGER, AND V. M. VELIOV

Thus both xk−1 and xk are in Ba(x
∗) from which we obtain by (2)

ρ(g(xi), y
∗) ≤ m ≤ b

for i = k − 1 and for i = k. Due to the assumed Lipschitzian localization property of
G, there exists xk+1 such that (7), with k replaced by k + 1, is satisfied and

ρ(xk+1, xk) ≤ Mρ(g(xk), g(xk−1)).

By (6) we obtain

ρ(xk+1, xk) ≤ Mλρ(xk, xk−1) ≤ (λM)kρ(x1, x0),

and hence (6) with k replaced by k+1, is satisfied. The definition of the sequence xk
is complete.

From (6) and the condition λM < 1, {xk} is a Cauchy sequence. Since all
xk ∈ Ba(x

∗), the sequence {xk} has a limit x′′ ∈ Ba(x
∗). Passing to the limit in (7),

we obtain g(x′′) ∈ G(x′′). Hence x′′ ∈ T and the set T is nonempty. Note that x′′

may depend on the choice of ε. If we prove that the set T is a singleton, say x̂, the
point x′′ = x̂ would not depend on ε.

Suppose that there exist x′′ ∈ T and x̄′′ ∈ T with ρ(x′′, x̄′′) > 0. It follows that
ρ(g(x), y∗) ≤ m ≤ b for x = x′′ and x = x̄′′. From the definition of the Lipschitzian
localization, we obtain

ρ(x′′, x̄′′) ≤ Mρ(g(x′′), g(x̄′′)) ≤ Mλρ(x′′, x̄′′) < ρ(x′′, x̄′′),

which is a contradiction. Thus T consists of exactly one point, x̂, which does not
depend on ε. To prove (4) observe that for any choice of k > 1,

ρ(x′, x′′) ≤ ρ(x0, xk) + ρ(xk, x
′′) ≤

k−1∑
i=0

ρ(xi+1, xi) + ρ(xk, x
′′)

≤
k−1∑
i=0

(λM)iρ(x1, x0) + ρ(xk, x
′′).

Passing to the limit in the latter inequality and using (5), we obtain

ρ(x′, x′′) ≤ M̄(dist(g(x′), G(x′)) + ε).(8)

Since x′′ = x̂ does not depend on the choice of ε, one can take ε = 0 in (8) and the
proof is complete.

3. Newton’s method. Theorem 2.1 provides a basis for the analysis of the error
of approximation and the convergence of numerical procedures for solving variational
problems. In this and the following section we consider a sequence of so-called gener-
alized equations. Specifically, for each N = 1, 2, . . . , let XN be a closed and convex
subset of a Banach space, let Y N be a linear normed space, let fN : XN �→ Y N be

a function, and let FN : XN �→ 2Y
N

be a set-valued map with closed graph. We
denote by ‖ · ‖N the norms of both XN and Y N . We study the following sequence of
problems:

Find x ∈ XN such that 0 ∈ fN (x) + FN (x).(9)

We assume that there exist constants α, β, γ, and L, as well as points x∗N ∈ XN and
z∗N ∈ Y N , that satisfy the following conditions for each N :
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MESH INDEPENDENCE OF NEWTON’S METHOD 965

(A1) z∗N ∈ fN (x∗N ) + FN (x∗N ).
(A2) The function fN is Frechét differentiable in Bα(x

∗
N ) and the derivative ∇fN

is Lipschitz continuous in Bα(x
∗
N ) with a Lipschitz constant L.

(A3) The map

y �→
(
fN (x∗N ) +∇fN (x∗N )(· − x∗N ) + FN (·)

)−1

(y)

has a Lipschitzian localization with constants α, β, and γ around the point
(z∗N , x

∗
N ).

We study the Newton method for solving (9) for a fixed N which has the following
form: If xk is the current iterate, the next iterate xk+1 satisfies

0 ∈ fN (xk) +∇fN (xk)(xk+1 − xk) + FN (xk+1), k = 0, 1, . . . ,(10)

where x0 is a given starting point. If the range of the map F is just the origin, then
(9) is an equation and (10) becomes the standard Newton method. If F is the normal
cone mapping in a variational inequality describing first-order optimality conditions,
then (10) represents the first-order optimality condition for the auxiliary quadratic
program associated with the SQP method.

In the following theorem, by applying Theorem 2.1, we obtain the existence of a
locally unique solution of the problem (9) which is at a distance from the reference
point proportional to the norm of the residual z∗N . We also show that the method (10)
converges Q-quadratically and this convergence is uniform in N and in the choice of
the initial point from a ball around the reference point x∗N with radius independent
of N . Note that for obtaining this result we do not pass to a limit and consequently
we do not need to consider sequences of generalized equations.

Theorem 3.1. For every γ′ > γ there exist positive constants κ and σ such that
if ‖z∗N‖ ≤ σ, then the generalized equation (9) has a unique solution xN in Bκ(x

∗
N );

moreover, xN satisfies

‖xN − x∗N‖N ≤ γ′‖z∗N‖N .(11)

Furthermore, for every initial point x0 ∈ Bκ(x
∗
N ) there is a unique Newton sequence

{xk}, with xk ∈ Bκ(x
∗
N ), k = 1, 2, . . . , and this Newton sequence is Q-quadratically

convergent to xN , that is,

‖xk+1 − xN‖N ≤ Θ‖xk − xN‖2
N , k = 0, 1, . . . ,(12)

where Θ is independent of k,N and x0 ∈ Bκ(x
∗
N ).

Proof. Define

κ = min

{
α, γβ,

γ′ − γ

Lγγ′
,

1

5Lγ′

}
, σ =

1

γ′
min

{
κ

4
,

√
κ

3Lγ′
,

1

6Lγ′

}
, Θ =

γ′L
2

.

We will prove the existence and uniqueness of xN by using Theorem 2.1 with

a = κ, b = κ/γ, M = γ, λ = κL, M̄ = γ′, ā = 0, m = κ2L/2 + σ, δ = σ

and

g(x) = −fN (x) + fN (x∗N ) +∇fN (x∗N )(x− x∗N ),

G(x) = fN (x∗N ) +∇fN (x∗N )(x− x∗N ) + FN (x).
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966 A. L. DONTCHEV, W. W. HAGER, AND V. M. VELIOV

Observe that a ≤ α, b ≤ β and γb ≤ a. By (A3) the map G has a Lipschitzian
localization around (x∗N , z

∗
N ) with constants a, b, and γ. One can check that the

relations (1) are satisfied. Further, for x, x′, and x′′ ∈ Bκ(x
∗
N ), we have

‖g(x)− z∗N‖N ≤ ‖z∗N‖N + L‖x− x∗N‖2
N/2 ≤ σ + Lκ2/2 = m,

‖g(x′)− g(x′′)‖N ≤ ‖ − fN (x′) + fN (x′′) +∇f(x∗N )(x′ − x′′)‖N
≤ Lκ‖x′ − x′′‖N = λ‖x′ − x′′‖N ,

dist(g(x∗N ), G(x∗N )) = dist(0, fN (x∗N ) + F (x∗N )) ≤ ‖z∗N‖N ≤ σ = δ.

Obviously, x∗N ∈ B0(x
∗
N ) and x∗N ∈ ∆, with ∆ defined in (3). The assumptions

of Theorem 2.1 are satisfied; hence there exists a unique xN in Bκ(x
∗
N ) for which

g(xN ) ∈ G(xN ). Hence xN is a unique solution of (9) in Bκ(x
∗
N ) and (11) holds. This

completes the first part of the proof.
Given xk ∈ Bκ(x

∗
N ), a point x is a Newton step from xk if and only if x satisfies

the inclusion

g(x) ∈ G(x),(13)

where G is the same as above, but now

g(x) = −fN (xk)−∇fN (xk)(x− xk) + fN (x∗N ) +∇fN (x∗N )(x− x∗N ).

The proof will be completed if we show that (13) has a unique solution xk+1 in
Bκ(x

∗
N ) and this solution satisfies (12). To this end we apply again Theorem 2.1 with

a, b,M, M̄ , and λ the same as in the first part of the proof and with

ā = σγ′, m = σ +
5Lκ2

2
, δ =

L

2
(γ′σ + κ)2.

With these identifications, it can be checked that the assumptions (1) and (2) hold,
and that g is Lipschitz continuous in Bκ(x

∗
N ) with a Lipschitz constant λ. Further,

by using the solution xN obtained in the first part of the proof, we have

dist(g(xN ), G(xN )) = dist(0, fN (xk) +∇fN (xk)(xN − xk) + FN (xN ))

≤ L

2
‖xN − xk‖2

N + dist(0, f(xN ) + FN (xN )) =
L

2
‖xN − xk‖2

N .(14)

The last expression has the estimate

L

2
‖xN − xk‖2

N ≤ L

2

(
‖xN − x∗N‖N + ‖x∗N − xk‖N

)2

≤ L

2
(γ′σ + κ)2 = δ.

Thus xN ∈ ∆ �= ∅ and the assumptions of Theorem 2.1 are satisfied. Hence, there
exists a unique Newton step xk+1 in Bκ(x

∗
N ) and by Theorem 2.1 and (14) it satisfies

‖xk+1 − xN‖N ≤ γ′L
2

‖xk − xN‖2
N = Θ‖xk − xN‖2

N .
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MESH INDEPENDENCE OF NEWTON’S METHOD 967

4. Mesh independence. Consider the generalized equation (9) under the as-
sumptions (A1)–(A3). We present first a lemma in which, for simplicity, we suppress
the dependence of N .

Lemma 4.1. For every γ′ > γ, every µ > 0, and every sufficiently small ξ > 0,
there exists a positive η such that the map

(y, w) �→ P (y, w) := (f(w) +∇f(w)(· − w) + F (·))−1(y) ∩Bα(x
∗)(15)

is a Lipschitz continuous function from Bη(z
∗) × Bξ(x

∗) into Bξ(x
∗) with Lipschitz

constants γ′ for y and µ for w.
Proof. Let γ′ > γ and µ > 0. We choose the positive constants ξ and η as a

solution of the following system of inequalities:

γLξ < 1, ξ ≤ γ − γ′

γγ′L
, 3η +

15

2
Lξ2 + Lξα ≤ β,

ξ + γ′(2η + 6Lξ2) ≤ α, 3Lξγ′ ≤ µ, γ′(η + 3Lξ2) ≤ ξ.

This system of inequalities is satisfied by first taking ξ sufficiently small and then
taking η sufficiently small. In particular, we have ξ ≤ α and η ≤ β.

Take (y′′, w′′) ∈ Bη(z
∗) × Bξ(x

∗). We apply Theorem 2.1 with a = α, b = β,
M = γ, ā = ξ, b̄ = η, M̄ = γ′, λ = Lξ, m = η + 3

2Lξ
2 + Lξα, δ = 2η + 6Lξ2,

g(x) = y′′ + f(x∗) +∇f(x∗)(x− x∗)− f(w′′)−∇f(w′′)(x− w′′),

and

G(x) = f(x∗) +∇f(x∗)(x− x∗) + F (x).

We have

‖g(x1)− g(x2)‖ = ‖(∇f(x∗)−∇f(w′′))(x1 − x2)‖
≤ L‖w′′ − x∗‖‖x1 − x2‖ ≤ Lξ‖x1 − x2‖

for all x1, x2 ∈ Bα(x
∗). Hence the function g is Lipschitz continuous with a Lipschitz

constant λ. For x ∈ Bα(x
∗) we have

‖g(x)− z∗‖ ≤ ‖y′′ − z∗‖+ ‖f(w′′)− f(x∗)−∇f(x∗)(w′′ − x∗)‖
+ ‖(∇f(x∗)−∇f(w′′))(x− w′′)‖
≤ η +

L

2
‖w′′ − x∗‖2 + L‖w′′ − x∗‖‖x− w′′‖

≤ η +
1

2
Lξ2 + Lξ(ξ + α) = m.

Note that a point x is in the set P (y′′, w′′) if and only if g(x) ∈ G(x). Since

dist(g(x∗), G(x∗)) ≤ ‖y′′ − z∗‖+ dist(z∗ − f(w′′)−∇f(w′′)(x∗ − w′′), F (x∗))

≤ η + dist(z∗, f(x∗) + F (x∗)) +
L

2
‖x∗ − w′′‖2 ≤ η +

L

2
ξ2 < δ,

the set ∆ defined in (3) is not empty. Hence, from Theorem 2.1 the set P (y′′, w′′) ∩
Bα(x

∗) consists of exactly one point. Let us call it x′′. Applying the same argument
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968 A. L. DONTCHEV, W. W. HAGER, AND V. M. VELIOV

to an arbitrary point (y′, w′) ∈ Bη(z
∗)× Bξ(x

∗), we obtain that there is exactly one
point x′ ∈ P (y′, w′) ∩Bα(x

∗). Furthermore,

dist(g(x′), G(x′)) ≤ ‖y′ − y′′‖+ ‖f(w′′)−∇f(w′′)(x′ − w′′)− f(w′)−∇f(w′)(x′ − w′)‖
≤ ‖y′ − y′′‖+ ‖f(w′′)− f(w′)−∇f(w′)(w′′ − w′)‖

+‖∇f(w′′)−∇f(w′)‖‖x′ − w′′‖
≤ ‖y′ − y′′‖+ L

2
‖w′ − w′′‖2 + 2Lξ‖w′ − w′′‖

≤ ‖y′ − y′′‖+ 3Lξ‖w′ − w′′‖.
Hence x′ ∈ ∆ and we obtain

ρ(x′, x′′) ≤ γ′(‖y′ − y′′‖+ 3Lξ‖w′ − w′′‖) ≤ γ′‖y′ − y′′‖+ µ‖w′ − w′′‖.
It remains to prove that P maps Bη(z

∗) × Bξ(x
∗) into Bξ(x

∗). From the last
inequality with x′ = x∗ and w′ = x∗, we have

ρ(x′′, x∗) ≤ γ′(‖y′′ − z∗‖+ 3Lξ‖w′′ − x∗‖) ≤ γ′(η + 3Lξ2) ≤ ξ.

Thus x′′ ∈ Bξ(x
∗).

In the remaining part of this section, we fix γ′ > γ and 0 < µ < 1, and we choose
the constants κ and σ according to Theorem 3.1. For a positive ξ with ξ ≤ κ, let η
be the constant whose existence is claimed in Lemma 4.1. Note that η can be chosen
arbitrarily small; we take 0 < η ≤ σ. Also, we assume that ‖z∗N‖ ≤ η and consider
Newton sequences with initial points x0 ∈ Bξ(x

∗
N ). In such a way, the assumptions

of Theorem 3.1 hold and we have a unique Newton sequence which is convergent
quadratically to a solution.

Suppose that Newton’s method (10) is supplied with the following stopping test:
Given ε > 0, at the kth step the point xk is accepted as an approximate solution if

dist(0, fN (xk) + FN (xk)) < ε.(16)

Denote by kε the first step at which the stopping test (16) is satisfied.
Theorem 4.1. For any positive ε < η, if xkε is the approximate solution obtained

using the stopping test (16) at the step k = kε, then

‖xkε − xN‖N ≤ γ′ε
1− µ

(17)

and

kε ≤ 2 +
1

2
logµ

(
ε

2Lξ2

)
.(18)

Proof. Choose an ε such that 0 < ε < η. If the stopping test (16) is satisfied at
xkε , then there exists vkε with ‖ vkε ‖N≤ ε such that

vkε ∈ fN (xkε) + FN (xkε).

Let PN be defined as in (15) on the basis of fN and FN . Since

xkε = PN (vkε , x
kε) and xN ∈ PN (0, xN ),
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MESH INDEPENDENCE OF NEWTON’S METHOD 969

Lemma 4.1 implies that

‖xkε − xN‖N ≤ γ′ ‖ vkε ‖N +µ‖xkε − xN‖N .

The latter inequality yields (17). For all k < kε, we obtain

ε ≤ dist(0, fN (xk) + FN (xk)).

Since xk is a Newton iterate, we have

fN (xk)− fN (xk−1)−∇fN (xk−1)(xk − xk−1) ∈ fN (xk) + FN (xk).

Hence

dist(0, fN (xk) + FN (xk)) ≤ ‖ fN (xk)− fN (xk−1)−∇fN (xk−1)(xk − xk−1) ‖N
≤ L‖xk − xk−1‖2

N/2.(19)

By the definition of the map PN , the Newton step x1 from x0 satisfies

x1 = PN (0, x0),

while the Newton step x2 from x1 is

x2 = PN (0, x1).

Since PN is Lipschitz continuous with a constant µ, we have

‖x2 − x1‖N ≤ µ‖x1 − x0‖N .

By induction, the (k + 1)st Newton step xk+1 satisfies

‖xk+1 − xk‖N ≤ µk‖x1 − x0‖N .(20)

Combining (19) and (20) and we obtain the estimate

ε ≤ 2Lξ2µ2(k−1),

which yields (18).
Our next result provides a basis for establishing the mesh independence of New-

ton’s method (10). Namely, we compare the Newton sequence xkN for the “discrete”
problem (9) and the Newton sequence for a “continuous” problem which is again de-
scribed by (9) but with index N = 0. Let us assume that the conditions (A1)–(A3)
hold for the generalized equation (9) with N = 0. According to Theorem 3.1, for each
starting point x0

0 close to a solution x0, there is a unique Newton sequence xk0 which
converges to x0 Q-quadratically. To relate the continuous problem to the discrete
one, we introduce a mapping πN from X0 to XN . Having in mind the application
to optimal control presented in the following section, X0 can be thought as a space
of continuous functions x(·) in [0, 1] and, for a given natural number N , t0 = 0 and
ti = i/N , XN will be the space of sequences {xi, i = 0, 1, . . . , N}. In this case the
operator πN is the interpolation map πN (x(·)) = (x(t0), . . . , x(tN )).

Theorem 4.2. Suppose that for every k and N there exists rkN ∈ Y N such that

rkN ∈ fN (πN (xk0)) +∇fN (πN (xk0))(πN (xk+1
0 )− πN (xk0)) + FN (πN (xk+1

0 ))
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970 A. L. DONTCHEV, W. W. HAGER, AND V. M. VELIOV

and

ωN := sup
k

‖ rkN ‖N< η.(21)

In addition, let

‖πN (xk0)− x∗N‖N ≤ ξ

for all k and N . Then for all k = 1, 2, . . . and N

‖xk+1
N − πN (xk+1

0 )‖N ≤ γ′

1− µ
ωN + µk+1‖x0

N − πN (x0
0)‖N .(22)

Proof. By definition, we have

πN (xk+1
0 ) = PN (rkN , πN (xk0)) and xk+1

N = PN (0, xkN ).

Using Lemma 4.1 we have

‖xk+1
N −πN (xk+1

0 )‖N ≤ γ′ ‖ rkN ‖N +µ‖xkN −πN (xk0)‖N ≤ γ′ωN +µ‖xkN −πN (xk0)‖N .
By induction we obtain (22).

The above result means that, under our assumptions, the distance between the
Newton sequence for the continuous problem and the Newton sequence for the dis-
cretized problem, measured in the discrete metric, can be estimated by the sup-norm
ωN of the residual obtained when the Newton sequence for the continuous problem
is inserted into the discretized generalized equations. If the sup-norm of the residual
tends to zero when the approximation becomes finer, that is, when N → ∞, then the
two Newton sequences approach each other. In the next section, we will present an
application of the abstract analysis to an optimal control problem for which the resid-
ual is proportional to the mesh spacing h, uniformly along the Newton sequence. For
this particular problem Theorem 4.2 implies that the distance between the Newton
sequences for the continuous problem and the Newton sequence for the discretized
problem is O(h).

For simplicity, let us assume that if the continuous Newton process starts from
the point x0

N , then the discrete Newton process starts from πN (x0
0). Also, suppose

that for any fixed w, v ∈ X0,

‖πN (w)− πN (v)‖N → ‖w − v‖0 as N → ∞.(23)

In addition, let

ωN → 0 as N → ∞,(24)

where ωN is defined in (21). Letting k tend to infinity and assuming that πN is a
continuous mapping for each N , Theorem 4.2 gives us the following estimate for the
distance between the solution xN of the discrete problem and the discrete represen-
tation πN (x0) of the solution x0 of the continuous problem:

‖xN − πN (x0)‖N ≤ γ′

1− µ
ωN .(25)

Choose a real number ε satisfying

0 < ε < 1/(5Θ),(26)
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MESH INDEPENDENCE OF NEWTON’S METHOD 971

where Θ is as in Theorem 3.1. Theorem 4.2 yields the following result.
Theorem 4.3. Let (23) and (24) hold and let ε satisfy (26). Then for all N

sufficiently large,

|min
{
k ∈ N : ‖xk0 − x0‖0 < ε

}−min
{
k ∈ N : ‖xkN − xN‖N < ε

}| ≤ 1.(27)

Proof. Let m be such that

‖xm+1
0 − x0‖0 < ε ≤ ‖xm0 − x0‖0.(28)

Choose N so large that

γ′

1− µ
ωN < ε/2

and

‖πN (xm+1
0 )− πN (x0)‖N ≤ ε.

Using Theorem 3.1, Theorem 4.2, (25), and (29), we obtain

‖xm+2
N − xN‖N ≤ Θ‖xm+1

N − xN‖2
N

≤ Θ
(‖xm+1

N − πN (xm+1
0 )‖N + ‖πN (xm+1

0 )− πN (x0)‖N + ‖πN (x0)− xN‖N
)2

≤ Θ(ε/2 + ε+ ε/2)2 = 4Θε2 < ε.

This means that if the continuous Newton sequence achieves accuracy ε (measured
by the distance to the exact solution) at the mth step, then the discrete Newton
sequences should achieve the same accuracy ε at the (m + 1)st step or earlier. Now
we show that the latter cannot happen earlier than at the (m− 1)st step. Choose N
so large that

‖xm−1
0 − x0‖2

0 ≤ ‖πN (xm−1
0 )− πN (x0)‖2

N + ε2(29)

and suppose that

‖xm−1
N − xN‖N < ε.

From Theorem 3.1, (22), (25), (28), and (29), we get

ε ≤ ‖xm0 − x0‖0 ≤ Θ‖xm−1
0 − x0‖2

0 ≤ Θ‖πN (xm−1
0 )− πN (x0)‖2

N + ε2

≤ Θ
(‖πN (xm−1

0 )− xm−1
N ‖N + ‖xm−1

N − xN‖N + ‖xN − πN (x0)‖N
)2

+ ε2

≤ Θ(ε/2 + ε+ ε/2)2 + ε2 = 5Θε2,

which contradicts the choice of ε in (26).

5. Application to optimal control. We consider the following optimal control
problem:

minimize G(y(1)) +

∫ 1

0

ϕ(y(t), u(t)) dt(30)

subject to ẏ(t) = g(y(t), u(t)) and u(t) ∈ U for almost every (a.e.) t ∈ [0, 1],

y(0) = y0, y ∈ W 1,∞(Rn), and u ∈ L∞(Rm),
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972 A. L. DONTCHEV, W. W. HAGER, AND V. M. VELIOV

where ϕ : R
n+m → R, g : R

n+m → R
n, G : R

n → R, U is a nonempty, closed
and convex set in R

m, and y0 is a fixed vector in R
n. L∞(Rm) denotes the space of

essentially bounded and measurable functions with values in R
m and W 1,∞(Rn) is

the space of Lipschitz continuous functions with values in R
n.

We are concerned with local analysis of the problem (30) around a fixed local min-
imizer (y∗, u∗) for which we assume certain regularity. Our first standing assumption
is the following:

Smoothness. The optimal control u∗ is Lipschitz continuous in [0, 1]. There
exists a positive number δ such that the first three derivatives of ϕ and g exist and are
continuous in the set {(y, u) ∈ R

n+m : |y − y∗(t)|+ |u− u∗(t)| ≤ δ for all t ∈ [0, 1]}.
Defining the Hamiltonian H by

H(y, u, ψ) = ϕ(y, u) + ψTg(y, u),

it is well known that the first-order necessary optimality conditions at the solution
(y∗, u∗) can be expressed in the following way: There exists ψ∗ ∈ W 1,∞(Rn) such
that (y∗, u∗, ψ∗) is a solution of the variational inequality

ẏ(t) = g(y(t), u(t)), y(0) = y0,(31)

ψ̇(t) = −∇yH(y(t), u(t), ψ(t)), ψ(1) = ∇G(y(1)),(32)

0 ∈ ∇uH(y(t), u(t), ψ(t)) +NU (u(t)) for a.e. t ∈ [0, 1],(33)

where NU (u) is the normal cone to the set U at the point u; that is, NU (u) is empty
if u �∈ U , while for u ∈ U ,

NU (u) = {p ∈ R
m : pT(q − u) ≤ 0 for all q ∈ U}.

Although the problem (30) is posed in L∞ and the optimality system (31)–(33) is
satisfied a.e. in [0, 1], the regularity we assume for the particular optimal solution
implies that at (y∗, u∗, ψ∗) the relations (31)–(33) hold everywhere in [0, 1].

Defining the matrices

A(t) = ∇yg(z
∗(t)), B(t) = ∇ug(z

∗(t)), V = ∇2G(y∗(1)),
Q(t) = ∇2

yyH(x∗(t)), R(t) = ∇2
uuH(x∗(t)), S(t) = ∇2

yuH(x∗(t)),

where z∗ = (y∗, u∗) and x∗ = (y∗, u∗, ψ∗), we employ the following coercivity condi-
tion.

Coercivity. There exists α > 0 such that

y(1)TV y(1)+

∫ 1

0

[y(t)TQ(t)y(t)+u(t)TR(t)u(t)+2y(t)TS(t)u(t)] dt ≥ α

∫ 1

0

|u(t)|2 dt
(34)
whenever y ∈ W 1,2(Rn), y(0) = 0, u ∈ L2(Rn), ẏ = Ay + Bu, u(t) ∈ U − U for a.e.
t ∈ [0, 1].

Let N be a natural number, let h = 1/N be the mesh spacing, let ti = ih, and
let y′i denote the forward difference operator defined by

y′i =
yi+1 − yi

h
.

We consider the following Euler discretization of the optimality system (31)–(33):

y′i = ∇ψH(yi, ui, ψi),(35)

ψ′
i−1 = −∇yH(yi, ui, ψi), ψN−1 = ∇G(yN ),(36)

0 ∈ ∇uH(yi, ui, ψi) +NU (ui), i = 0, 1, . . . , N − 1.(37)
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MESH INDEPENDENCE OF NEWTON’S METHOD 973

The system (35)–(37) is a discrete-time variational inequality depending on the step
size h. It represents the first-order necessary optimality condition for the following
discretization of the original problem (30):

minimize G(yN ) +

N−1∑
i=0

hϕ(yi, ui)

subject to y′i = g(yi, ui), ui ∈ U, i = 0, 1, . . . , N − 1.

(38)

In this section we examine the following version of the Newton method for solving
the variational system (35)–(37), which correspond to the SQP method for solving
the optimization problem (38). Let xk = (yk, uk, ψk) denote the kth iterate. Let the
superscript k and the subscript i attached to the derivatives of H and G denote their
values at xki . Then the new iterate xk+1 = (yk+1, uk+1, ψk+1) is a solution of the
following linear variational inequality for the variable x = (y, u, ψ):

y′i = ∇ψH
k
i +∇2

ψxH
k
i (xi − xki ),(39)

ψ′
i−1 = −∇yH

k
i −∇2

yxH
k
i (xi − xki ), ψN−1 = ∇Gk +∇2Gk(yN − ykN ),(40)

0 ∈ ∇uH
k
i +∇2

uxH
k
i (xi − xki ) +NU (ui), i = 0, 1, . . . , N − 1.(41)

In [5, Appendix 2], it was proved that the coercivity condition (34) is stable under
the Euler discretization, then the variational system (39)–(41) is equivalent, for xk

near x∗ = (y∗, u∗, ψ∗), to the following linear-quadratic discrete-time optimal control
problem which is expressed in terms of the variables y, u, and z = (y, u):

minimize

(
∇Gk +

1

2
∇2Gk(yN − ykN )

)T

(yN − ykN )

+ h

N−1∑
i=0

(
∇zϕ

k
i +

1

2
∇2
zzH

k
i (zi − zki )

)T

(zi − zki )

subject to y′i = gki +∇zg
k
i (zi − zki ), ui ∈ U, i = 0, 1, . . . , N − 1.

A natural stopping criterion for the problem at hand is the following: Given ε > 0,
a control ũk obtained at the kth iteration is considered an ε-optimal solution if

max
0≤i≤N−1

dist(∇uH(ỹki , ũ
k
i , ψ̃

k
i ), NU (ũ

k
i )) ≤ ε,(42)

where ỹki and ψ̃ki are the solutions of the state and the adjoint equations (35) and
(36) correspond to u = ũk.

We now apply the general approach developed in the previous section to the
discrete-time variational inequality (35)–(36). The discrete L∞

N norm is defined by

‖v‖∞N = max
0≤i≤N−1

|vi|.

The variable x is the triple (y, u, ψ) while XN is the space of all finite sequences
x0, x1, . . . , xN−1, with y0 given, equipped with the L∞

N norm. The space Y N is the
Cartesian product L∞

N ×L∞
N ×R

n×L∞
N corresponding to the four components of the

function fN defined by

fN (x)i =




y′i − g(yi, ui)
−ψ′

i−1 +∇yH(yi, ui, ψi)
ψN−1 −∇G(yN )
−∇uH(yi, ui, ψi)


 and FN (x)i =




0
0
0

NU (ui)


 .D
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974 A. L. DONTCHEV, W. W. HAGER, AND V. M. VELIOV

With the choice (x∗N )i = (y∗(ti), u∗(ti), ψ∗(ti)), the general condition (A1) is satisfied
by taking

(z∗N )i =




(y∗(ti+1)− y∗(ti))/h− g(y∗(ti), u∗(ti))
(ψ∗(ti−1)− ψ∗(ti))/h−∇xH(y∗(ti), u∗(ti), ψ∗(ti))

0
0


 .

The first component of z∗N is estimated in the following way:

sup
i

∣∣∣∣y
∗(ti+1)− y∗(ti)

h
− g(y∗(ti), u∗(ti))

∣∣∣∣
≤ sup

i

1

h

∫ ti+1

ti

|g(y∗(ti), u∗(ti))− g(y∗(t), u∗(t))|dt.

Since g is smooth and both y∗ and u∗ are Lipschitz continuous, the above expression
is bounded by O(h). The same bound applies for the second component of z∗N , while
the third and fourth components are zero. Thus the norm of z∗N can be made arbi-
trarily small for all sufficiently large N . Condition (A2) follows from the smoothness
assumption. A proof of condition (A3) is contained in the proof of Theorem 6 in [5].
Applying Theorems 3.1 and 4.1 and using the result from [5, Appendix 2], that the
discretized coercivity condition is a second-order sufficient condition for the discrete
problem, we obtain the following theorem.

Theorem 5.1. If smoothness and coercivity hold, then there exist positive con-
stants K, c, σ, ε̄, and N̄ with the property that for every N > N̄ there is a unique
solution (yh, uh, ψh) of the variational system (35)–(37) and (yh, uh) is a local mini-
mizer for the discrete problem (38). For every starting point (y0, u0, ψ0) with

max
0≤i≤N

(|(y0)i − y∗(ti)|+ |(u0)i − u∗(ti)|+ |(ψ0)i − ψ∗(ti)|
) ≤ σ,

there is a unique SQP sequence (yk, uk, ψk) and it is Q-quadratically convergent, with
a constant K, to the solution (yh, uh, ψh). In particular, for the sequence of controls
we have

max
0≤i≤N−1

|(uk+1)i − (uh)i| ≤ K

(
max

0≤i≤N−1
|(uk)i − (uh)i|

)2

.

Moreover, if the stopping test (42) is applied with an ε ∈ [0, ε̄], then the resulting
ε-optimal control ukε satisfies

max
0≤i≤N−1

|ukεi − u∗(ti)| ≤ c(ε+ h).

Note that the termination step kε corresponding to the assumed accuracy of the
stopping test can be estimated by Theorem 4.1. Combining the error in the discrete
control with the discrete state equation (35) and the discrete adjoint equation (36),
yield corresponding estimates for discrete state and adjoint variables.

Remark. Following the approach developed in [5] one can obtain an analogue of
Theorem 5.1 by assuming that the optimal control u∗ is merely bounded and Riemann
integrable in [0, 1] and employing the so-called averaged modulus of smoothness to
obtain error estimates.. The stronger Lipschitz continuity condition for the optimal
control is, however, needed in our analysis of the mesh independence.
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MESH INDEPENDENCE OF NEWTON’S METHOD 975

The SQP method applied to the continuous-time optimal control problem (30)
has the following form: If x0 = (y0, u0, ψ0) is a starting point, the iterate xk+1 =
(yk+1, uk+1, ψk+1) satisfies

ẏ(t) = ∇ψH
k(t) +∇2

ψxH
k(t)(x(t)− xk(t)), y(0) = y0,(43)

ψ̇(t) = −∇yH
k(t)−∇2

yxH
k(t)(x(t)− xk(t)),(44)

ψ(1) = ∇Gk(1) +∇2Gk(y(1)− yk(1)),(45)

0 ∈ ∇uH
k(t) +∇2

uxH
k(t)(x(t)− xk(t)) +NU (u(t))(46)

for a.e. t ∈ [0, 1], where the superscript k attached to the derivatives of H and G
denotes their values at xk. In particular, (43)–(46) is a variational inequality to
which we can apply the general theory from the previous sections. We attach the
index N = 0 to the continuous problem and for x = (y, u, ψ) we choose X0 =
C1

0 (R
n) × C(Rm) × C1(Rn), where C1

0 =
{
y ∈ C1 | y(0) = y0

}
, and Y 0 = C(Rn) ×

C(Rn)×R
n×C(Rm). Condition (A1) is clearly satisfied with x∗0 = x∗ := (y∗, u∗, ψ∗)

and z∗0 = 0. Condition (A2) follows from the smoothness assumption. Condition (A3)
follows from the coercivity assumption as proved in [9, Lemma 3] (see also [4, section
2.3.4], for an earlier version of this result in the convex case). Hence, we can apply
Theorem 3.1 obtaining that for any sufficiently small ball B around x∗ (in the norm
of X0), if the starting point x0 is chosen from B, then the SQP method produces a
unique sequence xk ∈ B which is Q-quadratically convergent to x∗ (in the norm of
X0). Moreover, from Theorem 4.1 we obtain an estimate for the number of steps
needed to achieve a given accuracy.

In order to derive a mesh-independence result from the general theory, we first
study the regularity of the SQP sequence for the continuous problem.

Lemma 5.1. There exist positive constants p and q such that for every x0 ∈
Bp(x

∗) with u0(·) Lipschitz continuous in [0, 1], for every k = 1, 2, . . . , and for every
t1, t2 ∈ [0, 1],

|uk(t1)− uk(t2)| ≤ q|t1 − t2|.

Proof. In [5, section 6], extending a previous result in [7], see also [6], Lemma 2, we
showed that the coercivity condition implies pointwise coercivity almost everywhere.
In the present circumstances, the latter condition is satisfied everywhere in [0, 1]; that
is, there exists a constant α > 0 such that for every v ∈ U − U and for all t ∈ [0, 1],

vTR(t)v ≥ αvTv.(47)

For a positive parameter p, consider the SQP sequence xk starting from x0 ∈ Bp(x
∗)

such that the initial control u0 is a Lipschitz continuous function in [0, 1]. Throughout
the proof we will choose p sufficiently small and check the dependence of the constants
of p. By (46) the iterate xk satisfies

(∇uH
k(t) +∇2

uuH(xk(t))(uk+1(t)− uk(t)) +∇2
uyH(xk(t))(yk+1(t)− yk(t))

+∇2
uψH(xk(t))(ψk+1(t)− ψk(t)))T(u− uk+1(t)) ≥ 0(48)

for every t ∈ [0, 1] and for every u ∈ U . Let t1, t2 ∈ [0, 1]. Note that xk are contained in
Bp(x

∗) for all k and therefore both y′k and ψ′k are bounded by a constant independent
of k; hence, yk and ψk are Lipschitz continuous functions in time with Lipschitz
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976 A. L. DONTCHEV, W. W. HAGER, AND V. M. VELIOV

constants independent of k. We have from (48)

(∇uH
k(t1) +∇2

uuH(xk(t1))(u
k+1(t1)− uk(t1)) +∇2

uyH(xk(t1))(y
k+1(t1)− yk(t1))

+∇2
uψH(xk(t1))(ψ

k+1(t1)− ψk(t1)))
T(uk+1(t2)− uk+1(t1)) ≥ 0

and the analogous inequality with t1 and t2 interchanged. Adding these two in-
equalities and adding and subtracting the expressions ∇2

uuH(xk(t1))u
k+1(t2) and

∇2
uuH(xk(t1))u

∗(t1)−∇2
uuH(xk(t2))u

∗(t2) we obtain

(θk(t1)− θk(t2)−∇2
uuH(xk(t1))u

∗(t1) +∇2
uuH(xk(t2))u

∗(t2)
+(∇2

uuH(xk(t1))−∇2
uuH(xk(t2)))u

k+1(t2)

+∇2
uyH(xk(t1))(y

k+1(t1)− yk(t1))

+∇2
uψH(xk(t1))(ψ

k+1(t1)− ψk(t1)))
T(uk+1(t2)− uk+1(t1))

≥ (∇2
uuH(xk(t1))(u

k+1(t1)− uk+1(t2)))
T(uk+1(t1)− uk+1(t2))

(49)

where the function θk is defined as

θk(t) = ∇uH
k(t) +∇2

uuH(xk(t))(uk(t)− u∗(t)).

By (47), for a sufficiently small p the right-hand side of the inequality (49) satisfies

(∇2
uuH(xk(t1))(u

k+1(t1)− uk+1(t2)))
T(uk+1(t1)− uk+1(t2))

≥ α

2
|uk+1(t1)− uk+1(t2)|2.(50)

Combining (49) and (50) we obtain

α

2
|uk+1(t1)− uk+1(t2)| ≤ |θk(t1)− θk(t2)|

+|(∇2
uuH(xk(t1))−∇2

uuH(xk(t2)))(u
k+1(t2)− u∗(t2))|

+|∇2
uuH(xk(t1))(u

∗(t1)− u∗(t2))|
+|(∇2

uyH(xk(t1))−∇2
uyH(xk(t2)))(y

k+1(t1)− yk(t1))|
+|∇2

uyH(xk(t2))((y
k+1(t1)− yk+1(t2))− (yk(t1)− yk(t2)))|

+|(∇2
uψH(xk(t1))−∇2

uψH(xk(t2)))(ψ
k+1(t1)− ψk(t1))|

+|∇2
uψH(xk(t2))((ψ

k+1(t1)− ψk+1(t2))− (ψk(t1)− ψk(t2)))|.(51)

Let uk be Lipschitz continuous in time with a constant Lk. Then the function θk

is almost everywhere differentiable and its derivative is given by

θ̇(t) = ∇2
uyH

k(t)ẏk(t) +∇2
uψH

k(t)ψ̇k(t)−∇3
uuuH

k(t)u̇k(t)(uk(t)− u∗(t))

− ∇3
uuyH

k(t)ẏk(t)(uk(t)− u∗(t))−∇3
uuψH

k(t)ψ̇k(t)(uk(t)− u∗(t))−∇2
uuH

k(t)u̇∗(t).

From this expression we obtain that there exists a constant c1, independent of k and
t and bounded from above when p → 0, such that

‖θ̇‖L∞ ≤ cp‖u̇k‖L∞ + c1 ≤ c1(pLk + 1).
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MESH INDEPENDENCE OF NEWTON’S METHOD 977

Estimating the expressions in the right-hand side of (51) we obtain that there exists a
constant c2, independent of k and t and bounded from above when p → 0, such that

|uk+1(t1)− uk+1(t2)| ≤ c2(pLk + 1)|t1 − t2|.

Hence, uk+1 is Lipschitz continuous and, for some constants c of the same kind as
c1, c2, its Lipschitz constant Lk+1 satisfies

Lk+1 ≤ c(pLk + 1).

Since p can be chosen arbitrarily small, the sequence Li, i = 1, 2, . . . , is bounded, i.e.,
by a constant q. The proof is complete.

To apply the general mesh-independence result presented in Theorem 4.2 we need
to estimate the residual rkN obtained when the SQP sequence of the continuous prob-
lem is substituted into the relations determining the SQP sequence of the discretized
problem. Specifically, the residual is the remainder term associated with the Euler
scheme applied to (43)–(46); that is,

rkN =




1
h

∫ ti+1

ti
(∇ψH

k(t) +∇2
ψxH

k(t)(xk+1(t)− xk(t))

− (∇ψH
k
i +∇2

ψxH
k
i (x

k+1
i − xki )))dt

1
h

∫ ti+1

ti
(−∇xH

k(t)−∇2
xxH

k(t)(xk+1(t)− xk(t))

− (−∇xH
k
i −∇2

xxH
k
i (x

k+1
i − xki )))dt

ψk+1(1− h)− ψk+1(1)

0



,

where the subscript i denotes the value at ti. From the regularity of the Newton
sequence established in Lemma 5.1, the uniform norm of the residual is bounded by
ch, where c is independent of k. Note that the map πN (x) defined in section 4,
acting on a function x ∈ X0, gives the sequence x(ti), i = 0, 1, . . . N. Condition (23)
is satisfied because the space X0 is a subset of the space of continuous functions.
Summarizing, we obtain the following result.

Theorem 5.2. Suppose that smoothness and coercivity conditions hold. Then
there exists a neighborhood W, in the norm of X0, of the solution x∗ = (y∗, u∗, ψ∗)
such that for all sufficiently small step-sizes h, the following mesh-independence prop-
erty holds:

sup
k

max
0≤i≤N−1

|uk(ti)− (ukh)i| = O(h),(52)

where uk(·) is the control in the SQP sequence (yk(·), uk(·), ψk(·)) for the continuous
problem starting from a point x0 = (y0, u0, ψ0) ∈ W with u0(·) Lipschitz continuous
in [0, 1], and ukh is the control in the SQP sequence (ykh, u

k
h, ψ

k
h) for the discretized

problem starting from the point πN (x0).
Applying Theorem 4.3 to the optimal control problem considered we obtain the

mesh-independence property (27) which relates the number of steps for the contin-
uous and the discretized problem needed to achieve certain accuracy. The latter
property can be also easily deduced from the estimate (52) in Theorem 5.2, in a way
analogous to the proof of Theorem 4.3. Therefore the estimate (52) is a stronger
mesh-independence property than (27).
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Fig. 1. SQP iterates for the control with N = 10.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

t

Fig. 2. SQP iterates for the control with N = 50.

6. Numerical examples. The convergence estimate of Theorem 5.2 is illus-
trated using the following example:

minimize

∫ 1

0

(
1
2 (y(t)

4 + u(t)2 + u(t)y(t)) + 1
4 sin(10t)u(t) + u(t)−1

)
dt

subject to ẏ(t) = −u(t)/(2y(t)), y(0) =
√

1+3e
2(e−1) , u(t) ≤ 1.
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Fig. 3. SQP iterates for the control with N=250.

Table 1
L∞ error in the control for various choices of the mesh.

Iteration N = 10 N = 50 N = 250
0 .500000 .500000 .500000
1 .278473 .290428 .291671
2 .090857 .091727 .097923
3 .008928 .008971 .010185
4 .000082 .000084 .000105

Table 2
Error in current iterate divided by error in prior iterate squared.

Iteration N = 10 N = 50 N = 250
1 1.113 1.161 1.166
2 1.171 1.087 1.151
3 1.081 1.066 1.062
4 1.027 1.039 1.013

This problem is a variation of Problem I in [8] that has been converted from a linear-
quadratic problem to a fully nonlinear problem by making the substitution x = −y2

and by adding additional terms to the cost function that degrade the speed of the SQP
iteration so that the convergence is readily visible (without these additional terms,
the SQP iteration converges to computing precision within 2 iterations). Figures 1–3
show the control iterates for successively finer meshes. The control corresponding to
k = 3 is barely visible beneath the k = 4 iterate. Observe that the SQP iterations
are relatively insensitive to the choice of the mesh. Specifically, N = 10 is already
sufficiently large to obtain mesh independence. In Table 1 we give the L∞ error in
the successive iterates. In Table 2 we observe that the ratio of the error in the current
iterate to the error in the prior iterate squared is slightly larger than 1.
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