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Abstract. Local optimality conditions are given for a quadratic programming
formulation of the multiset graph partitioning problem. These conditions are
related to the structure of the graph and properties of the weights.
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1. Introduction

In multiset min-cut graph partitioning, the vertices of a graph are partitioned
into sets of given sizes while minimizing the weighted sum of edges connecting
vertices in di¤erent sets. Although we focus on min-cut in this paper, the max-
cut problem can be treated in a similar fashion. Let A0 be an n by n symmetric
weight matrix associated with an undirected graph with vertex set V:

V ¼ f1; 2; . . . ; ng:

By assumption the diagonal of A0 is zero. Let m be a vector of k positive in-
tegers that sum to n, where mi is the number of vertices in the i-th set of the
partition, 1a ia k. Let A ¼ A0 þD where D is any diagonal matrix whose
elements satisfy the condition

dii þ djj b 2aij
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for all 1a i; ja n. In [14] we show that graph partitioning is closely related to
the following continuous quadratic programming problem:

maximize trace X>AX

subject to X1 ¼ 1; X>1 ¼ m; Xb 0:
ð1Þ

Here X is an n by k matrix, 1 is a vector of the appropriate size whose ele-
ments are all one, and ‘‘>’’ denotes transpose.

Solutions of (1) and the optimal partition in the graph partitioning prob-
lem are related in the following way: If Sj is the set of vertices assigned to the
j-th set in an optimal partition, then the matrix X defined by

xij ¼
1 if i A Sj,

0 if i B Sj,

�

is a solution of (1). Conversely, there exists a solution of (1) whose matrix en-
tries are all 0 or 1 (a 0/1 solution), and an optimal partition of the vertices of
the graph is given by

Sj ¼ fi : xij ¼ 1g:

Given any solution of (1) whose entries are not all 0/1, there is a simple pro-
cedure (given in Algorithm 3 below) for moving to a 0/1 solution.

In this paper, we give necessary and su‰cient conditions characterizing
local minimizers of (1), based on the general theory for quadratic program-
ming [6, 9]. These conditions are related to the structure of the graph and the
edge weights. When X is a 0/1 matrix, we reformulate the first-order optimality
conditions in terms of a feasibility problem for a linear system of inequalities.

Graph partitioning problems arise in circuit board and micro-chip design
and in other layout problems (see [21]) and in sparse matrix pivoting strategies
[7, 13, 15]. In parallel computing, graph partitioning problems arise when tasks
are partitioned among processors in order to minimize the communication be-
tween processors and to balance the processor loads. An application of graph
partitioning to parallel molecular dynamics simulations is given in [26]. The
maximum clique problem is another graph problem that has been given a
quadratic programming formulation [12, 23]. Work related to other ap-
proaches to graph partitioning includes [1, 2, 3, 4, 8, 11, 16, 17, 18, 20, 19, 22,
24, 25, 27].

2. Local optimality conditions

Our local optimality conditions make use of the following terminology. First,
the support of a matrix Y is the set of indices associated with nonzero ele-
ments:

suppY ¼ fði; jÞ : yij 0 0g:

Second, a path matrix is an n by k matrix whose entries are all contained in the
set f0;þ1;�1g and whose nonzero entries are connected with two sequences
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of integers in the following way. If ðr1; r2; . . . ; rlÞ and ðc1; c2; . . . ; clÞ are se-
quences of integers with 1a ri a n and 1a ci a k for 1a ia l, where the
elements in each sequence are distinct, the associated path matrix Y is entirely
zero except for the ðri; ciÞ elements which are þ1, and the ðriþ1; ciÞ and ðr1; clÞ
elements which are �1, for each i. The set of all matrices Y constructed in this
way is denoted P. An example of such a matrix is depicted in Figure 1. All the
elements of the matrix are zero except for the þ1 and �1 entries associated
with the row/column pairs of corners on the solid path. We let ‘‘pathðr; cÞ’’
denote the path matrix in P associated with the vectors r and c.

The first-order optimality system (Karusch-Kuhn-Tucker conditions) asso-
ciated with a local minimizer of (1) is the following: There exist vectors l A Rn

and m A Rk, and an n by k matrix o such that

2AX þ l1> þ 1m> þ o ¼ 0; ob 0; o 	 X ¼ 0: ð2Þ

Throughout, ‘‘	’’ denotes the usual dot product for matrices and vectors (sum
of the products between respective components). Since the constraints of (1)
are linear equalities and inequalities, the first-order optimality system holds at
any local minimizer. The main result in our paper is the following:

Theorem 2.1. Suppose that X is feasible in (1) and aii þ ajj b 2aij for each i and
j. A necessary and su‰cient condition for X to be a local minimizer of (1) is
that the following conditions hold:

Fig. 1. A path matrix.
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(P1) There exist l, m, and o satisfying (2).

(P2) TraceY>AY ¼ 0 and traceY>AZa 0 for each Y;Z A PXðW0Þ where

W0 ¼ fði; jÞ : oij ¼ 0g; and

PXðW0Þ ¼ fY A P : suppYHW0; yij b 0 when xij ¼ 0 and ði; jÞ A W0g:

In proving this result, we need to consider perturbations Y around a local
minimizer X of (1) that satisfy the homogeneous constraints Y1 ¼ 0 ¼ Y>1.
We now show that any such matrix can be expressed as a positive linear com-
bination of path matrices whose supports are contained in that of Y. This re-
sult is based on the following construction of a single path matrix whose sup-
port is contained in that of Y:

Algorithm 1 (Given Y1F 0FY>1, Y0 0, find P A P, supp PH suppY)
0. Find ði; jÞ such that yij > 0, set l ¼ 1, r1 ¼ i, c1 ¼ j.
1. Holding j fixed, find a new i such that yij < 0.
2. If i ¼ rp for some 1a pa l, goto step 7.
3. Increment l and set rl ¼ i.
4. Holding i fixed, find a new j such that yij > 0.
5. If j ¼ cp for some 1a p < l, set rp ¼ i, decrement l, and goto step 7.
6. Otherwise set cl ¼ j and goto step 1.
7. Set r ¼ ðrp; rpþ1; . . . ; rlÞ, c ¼ ðcp; cpþ1; . . . ; clÞ, and P ¼ pathðr; cÞ.

end Algorithm 1

Since Y is nonzero in Algorithm 1, and its row and column sums vanish, the
positive element appearing in step 0 and step 3, and the negative element in
step 1 all exist. Since the rows r1; r2; . . . and the columns c1; c2; . . . are chosen
from finite sets, a row or a column eventually repeats; hence, Algorithm 1 will
eventually branch to step 7 from either step 2 or step 5. Observe in the con-
struction of Algorithm 1, pij ¼ 1 only if yij > 0, and pij ¼ �1 only if yij < 0.
The construction given in Algorithm 1 is illustrated in Figure 1. In this case,
the first positive element of Y is the ð1; 1Þ element and termination is achieved
when a row repeats.

Lemma 2.2. Given an n by k matrix Y satisfying Y1 ¼ 0 ¼ Y>1, Y0 0, there
exists an integer p > 0, scalars al > 0 and matrices Pl A P, for 1a la p, such
that

Y ¼
Xp

l¼1
alPl ; ð3Þ

where for each l, suppPl H suppY, and

ðPlÞij ¼ þ1 only if yij > 0; and ð4Þ

ðPlÞij ¼ �1 only if yij < 0: ð5Þ

Proof. The proof is by induction. We initialize Y0 ¼ Y, and suppose that for
l ¼ 0; 1; . . . ; q� 1 we have positive scalars al and path matrices Pl whose sup-
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port is contained in that of Y, and which satisfy (4)–(5). Let Yl be defined by
the recurrence

Ylþ1 ¼ Yl � alPl ; 0a l < q:

We assume that these matrices have the following properties: (a) the nonzero
elements of Ylþ1 and the corresponding elements of Yl have the same sign,
and (b) the support of Ylþ1 is strictly contained in the support of Yl whenever
0a l < q. Since Y>

q 1 ¼ 0 ¼ 1>Yq, Algorithm 1 yields a path matrix Pq with
support contain in that of Yq, and as observed after the statement of the
algorithm, ðPqÞij ¼ þ1 only if ðYqÞij > 0, and ðPqÞij ¼ �1 only if ðYqÞij < 0.

Consequently, the elements of Yq � aPq all have the same sign for a > 0 suf-
ficiently small. Let aq be the smallest a for which a nonzero element of Yq is
zero in Yq � aPq. By the choice of aq, (a) and (b) hold for l ¼ q. This com-
pletes the induction step. Since the support of the Yl is strictly decreasing, there
exists a p such that Ypþ1 ¼ 0, which yields (3) since

Ypþ1 ¼ Y�
Xp

l¼0
alPl : r

Proof of Theorem 2.1. If X is a local minimizer in (1), then (P1) holds since the
constraints in (1) are linear equalities and inequalities. Let b be the bilinear
form defined by

bðY;ZÞ ¼ traceY>AZ:

According to [6, Thm. 1],

bðY;YÞa 0 for all Y A FXðW0Þ; ð6Þ

where

FXðW0Þ ¼ fY : Y1 ¼ 0 ¼ Y>1; yij b 0 if xij ¼ 0; suppYHW0g:

The condition (6) is the copositivity condition studied in [5]. Since PXðW0ÞH
FXðW0Þ, we have

bðY;YÞa 0 for any Y A PXðW0Þ: ð7Þ

Since bðY;YÞ is unchanged after a permutation of rows and columns in Y and
A, we can assume, without loss of generality, that the nonzero elements of Y
are the following:

yjj ¼ 1 for 1a ja i; yj; jþ1 ¼ �1 for 1a j < i; yi1 ¼ �1;

For this Y, we have

bðY;YÞ ¼ ða11 þ aii � 2ai1Þ þ
Xi�1
j¼1

ðajj þ ajþ1; jþ1 � 2aj; jþ1Þ: ð8Þ
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Since aii þ ajj b 2aij for each i and j, (8) implies that bðY;YÞb 0. Combining
this with (7), we deduce that bðY;YÞ ¼ 0 for each Y A PXðW0Þ. If Y;Z A
PXðW0Þ, then Yþ Z A FXðW0Þ. Since bðY;YÞ ¼ 0 ¼ bðZ;ZÞ ¼ 0, the relation
bðYþ Z;Yþ ZÞa 0 from (6) implies that bðY;ZÞa 0. This completes the
proof of (P2).

Conversely, suppose that (P1) and (P2) hold. By [6, Thm. 3] X is a local
minimizer if (6) holds. Given any nonzero Y A FXðWÞ, the decomposition of Y
into path matrices provided by Lemma 2.2 along with (P2) give (6). Hence, X
is a local minimizer. r

Corollary 2.3. Suppose that X is a local minimizer in (1), and aii þ ajj b 2aij
for each i and j. Let l, m, and o satisfy (2), and define W0 ¼ fði; jÞ : oij ¼ 0g.
If Y A PXðW0Þ and for some column l of Y, we have yil 0 00 yjl , then aii þ ajj ¼
2aij .

Proof. Since X is a local minimizer, (P2) implies that bðY;YÞ ¼ 0 for any Y A
PXðW0Þ. By (8) and the assumption aii þ ajj b 2aij , it follows that each of the
terms in parentheses in (8) vanishes. The elements in each of these terms cor-
respond to a þ1 and �1 combination in some column of Y. After inverting
the permutation used in (8), we conclude that aii þ ajj ¼ 2aij if a column of Y
contains a þ1 and �1 combination in rows i and j. r

Corollary 2.4. If aii þ ajj b 2aij for each i and j and X is feasible in (1), then a
necessary and su‰cient condition for X to be a strict local minimizer is that
(P1) holds and the set PXðW0Þ in (P2) is empty.

Proof. If X is a strict local minimizer in (1), then (P1) and (P2) hold by The-
orem 2.1. Suppose that PXðW0Þ is nonempty, let Y A PXðW0Þ, and let L be the
Lagrangian defined by

LðXÞ ¼ f ðXÞ þ l 	 ðX1� 1Þ þ m 	 ðX>1�mÞ þ o 	 X;

where f ðXÞ ¼ bðX;XÞ is the cost function in (1). Expanding L in a Taylor
series around X and utilizing (2), we deduce that

f ðXþ aYÞ ¼ f ðXÞ � ao 	 Yþ a2 f ðYÞ

whenever Y1 ¼ 0 ¼ Y>1. Since f ðYÞ ¼ 0 and o 	 Y ¼ 0 for Y A PXðW0Þ, it
follows that f ðXþ aYÞ ¼ f ðXÞ for all choices of a. Since Xþ aY is feasible in
(1) for a > 0 su‰ciently small, X is not a strict local minimum. This is a con-
tradiction, so PXðW0Þ is empty.

Conversely, if (P1) holds and PXðW0Þ is empty, then X is a local minimizer
of (1) by Theorem 2.1. By [6, Thm. 2] X is a strict local minimizer ifFXðW0Þ is
empty. By Lemma 2.2 elements of FXðW0Þ are positive combinations of ele-
ments of PXðW0Þ. Since PXðW0Þ is empty, FXðW0Þ is empty and X is a strict
local minimizer. r

Given any X feasible in (1), define

WþðXÞ ¼ fði; jÞ : 0 < xij < 1g;
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the set of (free) indices associated with inactive constraints. A construction sim-
ilar to that of Algorithm 1 can be used to generate a path matrix supported on
WþðXÞ. In Algorithm 1, we use the fact that the row and column sums of Y
vanish to deduce that in each row (column) where Y has a positive entry, there
must be a negative entry. In the same way, if the row and column sums of X
are integers, then in each row (column) where X has a fractional entry, there
must be another fractional entry.

Algorithm 2 (X1F 1, X>1Fm, X not 0/1, find P A P, supp PHWþ(X))
0. Find ði; jÞ A WþðXÞ, set l ¼ 1, r1 ¼ i, c1 ¼ j.
1. Holding j fixed, find a new i such that ði; jÞ A WþðXÞ.
2. If i ¼ rp for some 1a pa l, goto step 7.
3. Increment l and set rl ¼ i.
4. Holding i fixed, find a new j such that ði; jÞ A WþðXÞ.
5. If j ¼ cp for some 1a p < l, set rp ¼ i, decrement l, and goto step 7.
6. Otherwise set cl ¼ j and goto step 1.
7. Set r ¼ ðrp; rpþ1; . . . ; rlÞ, c ¼ ðcp; cpþ1; . . . ; clÞ, and P ¼ pathðr; cÞ.

end Algorithm 2

Given any X feasible in (1), we now show how to obtain a 0/1 matrix Y
that is feasible in (1) with traceX>AXa traceY>AY. This construction in-
volves adding successive multiples of a path matrix to X. We now give one
step in this construction: If X is feasible in (1) with X not 0/1, Algorithm 2
yields P A P with suppPHWþðXÞ. Observe that

traceðXþ aPÞ>AðXþ aPÞ

¼ traceX>AXþ 2a traceP>AXþ a2 traceP>AP:

It follows from (8) that

traceP>APb 0 ð9Þ

whenever aii þ ajj b 2aij for each i and j. If traceP>AXb 0, then increase a
until the first positive component of Xþ aP becomes zero. If traceP>AXa 0,
then decrease a until the first positive component of Xþ aP becomes zero. Let
a1 denote the value of a where this component becomes zero. Due to our choice
for the sign of a1, we have

a1 traceP
>AXb 0:

Combining this with (9) gives

traceðXþ a1PÞ>AðXþ a1PÞb traceX>AX:

Also, by the choice of a1, the support of Xþ a1P is strictly contained in the
support of X. Continuing this process, with X replaced by Xþ a1P, we gen-
erate a sequence of feasible points for (1), with increasing value and with de-
creasing support. Eventually, we obtain a 0/1 matrix whose value in (1) is at
least as big as that of the starting matrix X. We summarize this construction in
the following algorithm:

Multiset graph partitioning 7



Algorithm 3 (Move from X to Y with ascent, Y feasible in (1), Y 0/1)
0. Initialize X0 ¼ X, k ¼ 0.
1. Choose P A P, suppPHWþðXkÞ, using Algorithm 2.

2. Set s ¼ 1 if traceP>AXk b 0, and s ¼ �1 otherwise.
3. Set a1 ¼ maxfa : Xk þ asPb 0g.
4. Set Xkþ1 ¼ Xk þ a1sP, and increment k.
5. If Xk is 0/1, set Y ¼ Xk and stop; otherwise goto step 1.

end Algorithm 3

We now give an equivalent formulation of the first-order conditions (2) for
0/1 matrices in terms of a feasibility problem for a system of inequalities.
Given a 0/1 matrix X that is feasible in ð1Þ, define the set

wj ¼ fi : xij ¼ 1g:

Since the column sums of X total n, we have

[k
j¼1

wj ¼ f1; 2; . . . ; ng and wi X wj ¼ q for i0 j:

Theorem 2.5. Given a 0=1 matrix X that is feasible in (1), let C be the k by k
matrix with elements

cij ¼ max
l A wj

2ðAðxi � xjÞÞl ;

where xi is the i-th column of X. There exists a solution l, m, and o of (2) if and
only if there exists a solution m A Rk to the following k by k system of linear
inequalities:

mj � mi b cij ; 1a ia k; 1a ja k: ð10Þ

A solution l and o of (2) corresponding to a solution m of (10) is

ll ¼ �2ðAxjÞl � mj for all l A wj; j ¼ 1; 2; . . . ; k; ð11Þ

and

o ¼ �ð2AXþ l1> þ 1m>Þ: ð12Þ

Proof. Suppose m satisfies (10) and l and o are given by (11) and (12). If oj

denotes the j-th column of o, then

oj ¼ �ð2Axj þ lþ 1mjÞ: ð13Þ

After substituting for l using (11), we obtain olj ¼ 0 for l A Xj. Hence, the
complementary slackness condition and the inequality ob 0 in (2) are sat-
isfied for each j and for each l A wj. For i0 j and l A wj, (13) gives

oli ¼ �ð2Axi þ lÞl � 1mi: ð14Þ
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Substituting (11) in (14) yields

oli ¼ mj � mi � 2ðAðxi � xjÞÞl
for all l A wj. If (10) holds, then oli b 0. Since xli ¼ 0, the last two conditions
in (2) are satisfied.

Conversely, suppose that (2) holds. Obviously, (12) holds trivially. By the
complementary slackness condition in (2), olj ¼ 0 for all l A wj since xlj ¼ 1.
Hence, the first equation in (2), restricted to column j and rows l A wj gives
(11). Now consider the i-th column in (2), restricted to rows l A wj. After sub-
stituting for ll using (11), we have

2ðAxi � AxjÞl þ mi � mj þ oli ¼ 0:

Since oli b 0, we conclude that mj � mi b 2ðAxi � AxjÞl for each l A wj; this
implies that mj � mi b cij . r

As a small illustration of Theorem 2.5, we consider the graph (see [10,
Table 3], [25]) described in Table 1.

Using the Chaco partitioning code [18], the vertices of the graph were
partitioned into 6 sets of size 3 and 1 set of size 2, while minimizing the num-
ber of cut edges (edges connecting vertices in di¤erent sets in the partition).
There were 38 cut edges for the Chaco partitioning shown in Table 2. Using
an LP code, we found that the system (10) was infeasible, so this partitioning
did not correspond to a local minimizer in (1). Using the gradient projection
algorithm and the starting guess corresponding to the Chaco partitioning, we
converged to the refinement shown in Table 2, for which the number of cut
edges was 36. Notice that the refinement interchanged vertices 9 and 16 in sets
2 and 3, and vertices 13 and 18 in sets 5 and 6.

Table 1. An example graph

Node Connect to Node Connect to

1 7 12 13 14 15 16 17 9 11 15 19
2 12 17 18 20 11 14 17 18 20
3 5 11 13 14 18 19 20 12 14
4 6 9 13 18 20
5 7 9 10 12 16 19 14 16 18 20
6 16 18 20 16 18
7 8 9 11 16 17 18
8 15 18 18 20

Table 2. A partitioning and its refinement

Set Chaco Refinement

1 1 12 14 1 12 14
2 7 11 16 7 9 11
3 5 9 10 5 10 16
4 4 6 20 4 6 20
5 2 13 17 2 17 18
6 8 15 18 8 13 15
7 3 19 3 19
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