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NOISY LINEAR ESTIMATION∗
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Abstract. A class of least squares problems that arises in linear Bayesian estimation is analyzed.
The data vector y is given by the model y = P(Hθ + η) + w, where H is a known matrix, while θ,
η, and w are uncorrelated random vectors. The goal is to obtain the best estimate for θ from the
measured data. Applications of this estimation problem arise in multisensor data fusion problems
and in wireless communication. The unknown matrix P is chosen to minimize the expected mean-
squared error E(‖θ − θ̂‖2) subject to a power constraint “trace (PP∗) ≤ P ,” where θ̂ is the best
affine estimate of θ. Earlier work characterized an optimal P in the case where the noise term η
vanished, while this paper analyzes the effect of η, assuming its covariance is a multiple of I. The
singular value decomposition of an optimal P is expressed in the form VΣΠU∗ where V and U are
unitary matrices related to the covariance of either θ or w, and singular vectors of H, Σ is diagonal,
and Π is a permutation matrix. The analysis is carried out in two special cases: (i) H = I and
(ii) covariance of θ is I. In case (i), Π does not depend on the power P . In case (ii), Π generally
depends on P . The optimal Π is determined in the limit as the power tends to zero or infinity; a
good approximation to an optimal Π is found for general P .
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1. Introduction. Suppose that y ∈ C
m is a random vector that obeys the model

y = P(Hθ + η) + w,(1.1)

where H ∈ C
n×l is a known matrix, while θ ∈ C

l, η ∈ C
n, and w ∈ C

m are
uncorrelated random vectors with the property that η and w have zero mean. The
matrix P ∈ C

m×n is a “filter” which is applied to the noisy measurement Hθ + η,
and which is chosen to achieve an optimal estimate of the signal θ. We consider affine
estimators of the form

θ̂ = Ay + a,

where A ∈ C
l×m is a constant matrix and a ∈ C

l is a constant vector. For any
random vector v, let Cv denote the covariance defined by

Cv = E
(
(v − E(v))(v − E(v))∗

)
,

where E is expectation and * is conjugate transpose. According to [4, Thm. 12.1], the

affine estimator that minimizes the expected mean-square error E(‖θ − θ̂‖2) is given
by

θ̂ = E(θ) + (C−1
θ + H∗P∗C−1

ηwPH)−1(PH)∗C−1
ηw(y − PHE(θ)),
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784 WILLIAM W. HAGER AND JIANGTAO LUO

where Cηw = PCηP
∗ +Cw. Moreover, the error θ− θ̂ has zero mean and covariance

C = E
(
(θ − θ̂)(θ − θ̂)∗

)
=

(
(PH)∗(Cw + PCηP

∗)−1PH + C−1
θ

)−1
.(1.2)

Since θ̂ depends on P, the estimation error E(‖θ − θ̂‖2) depends on P. The filter P
is chosen to minimize the estimation error, subject to the constraint tr (PP∗) ≤ P ,
where P is a positive scalar and “tr” denotes the trace of a matrix. The constraint
tr (PP∗) ≤ P represents a bound on the power associated with P.

Multisensor data fusion problems (see [6, 10, 15] and the references therein) fit
within the framework of the model (1.1). In these applications, θ is a random parame-
ter vector that is being measured by a collection of sensors. The sensor measurements
correspond to the observation matrix H. The term η in the model (1.1) could rep-
resent sensor noise. The output of the observer is sent to the “fusion center” which
leads to the final output y in (1.1). If the dimension of the column space of P is less
than the dimension of the row space, then there is a reduction in dimensionality of
the data. The term w might represent either noise or quantization error in the trans-
mission to the fusion center. The constraint tr (PP∗) ≤ P might also be viewed as a
constraint on the amplifier gain to prevent the amplified observations from exceeding
the dynamic range of the quantizer.

Another application which fits the model (1.1) concerns spreading sequence opti-
mization for code division multiple access (CDMA) communication systems [12, 13].
In CDMA systems, many users simultaneously share a communication channel. In
modeling the uplink (communication from the mobile units to the base station), y
is the signal received at the base station, the jth column of P is the “spreading se-
quence” assigned to the jth user, and θj is the symbol transmitted from the jth user.
H is a diagonal matrix corresponding to channel gains.

The problem of estimating the channel matrix for a multiple input, single output
(MISO) system can be expressed in the form (1.1) as observed in [2]. In this context,
there are multiple transmit antennas and a single receiver. The jth column of P is
the training signal to transmit from the jth antenna to obtain the best estimate for
the communication channel gains; the matrix H is the square root of the correlation
between the transmit antennas. The noise in the channel gains and in the transmitted
signal associated with atmospheric conditions is modeled by η and w.

The model (1.1) is related to the channel estimation problem for multiple input,
multiple output (MIMO) systems [5, 14]. That is, in [5] it is shown that when H and
Cw have a special Kronecker product form and when Cη = 0, then the covariance
of the best channel estimate is a multiple of C in (1.2). The model (1.1) is loosely
connected with joint linear transmitter-receiver design in MIMO communication [8, 9].
In MIMO communication, the precoder P precedes the channel matrix H. Hence, in
the special case H = I, the model (1.1) corresponds to a MIMO communication
channel with two noise terms.

Since E(‖θ − θ̂‖2) is the trace of C, minimizing the trace of the covariance C

is equivalent to minimizing E(‖θ − θ̂‖2). Hence, the P that minimizes the expected

mean-square error E(‖θ − θ̂‖2) is a solution of the problem

min
P

tr
(
(PH)∗(W + PNP∗)−1PH + T

)−1
(1.3)

subject to tr (PP∗) ≤ P, P ∈ C
m×n,

where W = Cw, N = Cη, and T = C−1
θ . Both Cw and Cθ are assumed positive

definite. This holds, for example, if the probability density function associated with
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θ and w is continuous. The wireless communication applications in [2] correspond
to N = 0 and T = I. The application in [5] corresponds to N = 0 and H = I. In
this paper, we again consider the cases (i) H = I or (ii) T = I; however, the noise
covariance N is no longer zero, but a multiple of I. By a rescaling of the variables
P, H, and the power P , there is no loss of generality in assuming that N = I. In
the multisensor data fusion problem studied in [6], it is pointed out that when the
sensor noise is uncorrelated with the signal θ and when the sensor noise is spatially
uncorrelated with zero mean, then by appropriate pre- and post-whitening if necessary,
there is no loss of generality in assuming that N = I and T = I. Hence, we focus on
the problem

min
P

tr
(
(PH)∗(W + PP∗)−1PH + T

)−1
(1.4)

subject to tr (PP∗) ≤ P, P ∈ C
m×n.

A unified analysis is developed for (1.4) which handles the special cases (i) or
(ii) and which exposes the similarities and differences in these two problems. In both
cases, the singular value decomposition of an optimal solution is expressed in the form
VΣΠU∗ where V and U are unitary matrices related to eigenvectors of W or T or
singular vectors of H, with a specific ordering for the columns described below. The
matrix Σ is diagonal, and Π is a permutation matrix. A fundamental difference in
these problems is that in case (i) (H = I), the permutation is independent of P , which
is the same result obtained in [5] for η = 0. For case (ii) (T = I), Π depends on
the choice of P and the singular values of H. When the noise term η vanishes and
P is large, the permutation arranges the singular values of H in increasing order, as
obtained in [2]; when noise η with covariance I is included in the model, the singular
values of H smaller than one are arranged in decreasing order, while the singular
values greater than one are arranged in increasing order (see Theorem 5.1). As a
result, depending on the size of the power P and the distribution of the singular
values of H, the noise term η can have a significant effect on the structure of the
optimal solution.

The paper is organized as follows: In section 2 we derive the singular value de-
composition VΣΠU∗ of a solution to (1.4). Section 3 gives the optimal solution,
assuming the permutation Π is known. In section 4, we evaluate Π in the special
case H = I. When H �= I, Π depends on P . Section 5 evaluates the permutation in
the limit as P tends to infinity, while section 6 analyzes the limit as P tends to zero.
Finally, section 7 explores the dependence of the permutation on P using randomly
generated test problems. For general P , we present a family of permutations which
often contains the optimal Π.

Notation. Throughout the paper, we use the following notation: UΛV∗ is the
singular value decomposition of H (see Figure 1.1) and λ is the diagonal of Λ. The di-
agonal of a rectangular matrix Λ are the entries Λii, i = 1, 2, . . . ,min{m,n}. VwΩV∗

w

and VtΘV∗
t are diagonalizations of the Hermitian matrices W and T, respectively,

while ω and θ are the diagonals of Ω and Θ. The diagonal elements are ordered as
follows:

λi ≥ λi+1, θi ≤ θi+1, and ωi ≤ ωi+1.(1.5)

M denotes the minimum of m and the rank of H. The trace of a matrix is denoted
“tr,” “*” denotes conjugate transpose, Sc denotes complement of the set S, and |S|
is the number of elements in S. A diagonal matrix D is said to be nondegenerate if
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Decomposition Dimension Description
H = UΛV∗ n× l Singular value decomposition of observer
W = VwΩV∗

w m×m Diagonalization of covariance of w
T = VtΘV∗

t l × l Diagonalization of inverse of covariance of θ
P = VwSV∗

t m× n Change of variables when H = I
P = VwSU∗ m× n Change of variables when Θ = I

Fig. 1.1. Summary of decompositions, l = n without loss of generality.

the following condition is satisfied:

dii �= djj > 0 for all i �= j.(1.6)

For any matrix A, Colk(A) denotes the submatrix formed by the first k columns, while
Prink(A) denotes the k by k leading principal submatrix. Pm is the set of bijections
of {1, 2, . . . ,m} onto itself (the set of all permutations of the integers between 1 and
m).

2. Solution structure. We begin by analyzing the structure of an optimal so-
lution to (1.4). Let us make the following change of variables:

P = VwSU∗ (if Θ = I) or P = VwSV∗
t (if H = I).(2.1)

With these substitutions, (1.4) reduces to the following problem in the cases H = I
or T = I:

min
S

tr ((SΛ)∗(Ω + SS∗)−1SΛ + Θ)−1(2.2)

subject to tr (SS∗) ≤ P, S ∈ C
m×n.

If H = I, then l = n. We now show that in general (2.2) can always be transformed
to an equivalent problem with l = n. Note though that the transformed problem may
have zero singular values in H even when the singular values of the original H are
strictly positive. If l > n, then define Λ = Coln(Λ), the submatrix formed by the
first n columns of Λ, and define

C = ((SΛ)∗(Ω + SS∗)−1SΛ + Θ1)
−1,

where Θ1 = Prinn(Θ), the leading n by n principal submatrix of Θ. Since the last
l − n columns of Λ are zero, the covariance matrix

C = ((SΛ)∗(Ω + SS∗)−1SΛ + Θ)−1

has the structure

C =

[
C 0
0 Θ2

]
,

where Θ2 is the trailing l − n by l − n submatrix of Θ. Hence,

tr (C) = tr (C) + tr (Θ−1
2 ),

and minimizing the trace of C is equivalent to minimizing the trace of C (since Θ2

does not depend on S).
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On the other hand, suppose that l < n. Let Λ0 be the matrix obtained by
appending n− l columns of zeros to the right side of Λ, let Θ be the matrix obtained
by appending n− l trailing ones on the diagonal of Θ, and define

C0 = ((SΛ0)
∗(Ω + SS∗)−1SΛ0 + Θ)−1.

The matrix C0 has the following structure:

C0 =

[
C 0
0 I

]
.

Hence, tr (C0) = tr (C) + n − l, and minimizing the trace of C is equivalent to
minimizing the trace of C0. In either case l > n or l < n, we are able to formulate
a problem with the associated Λ square and with the same solution as the original
problem. Consequently, it is assumed henceforth that l = n. We begin by formulating
the first-order optimality conditions for (2.2).

Lemma 2.1. If S is a solution of (2.2) and λ > 0, then there exists μ > 0 such
that

(I − S∗L−1S)ΛM−2ΛS∗L−1 = μS∗,(2.3)

where

L = Ω + SS∗ and M = ΛS∗L−1SΛ + Θ.(2.4)

Moreover, the matrices S∗L−1S and ΛM−2Λ commute.
Proof. If S = 0, then the results hold trivially. Suppose that S �= 0. The first-

order necessary optimality conditions are satisfied at any nonzero solution of (2.2)
since the gradient of the constraint does not vanish. Hence, if S is a solution of (2.2),
then there exists a μ ≥ 0 such that the Fréchet derivative of the Lagrangian vanishes
at S. The Lagrangian associated with the optimization problem (2.2) is

tr
(
(ΛS∗(Ω + SS∗)−1SΛ + Θ)−1 + μSS∗) ,(2.5)

where the multiplier μ ≥ 0 is a real scalar. As shown in the Appendix, when we
equate to zero the derivative of the Lagrangian, we obtain (2.3).

We now show that the multiplier μ is strictly positive. Suppose μ = 0. Since Ω
and Θ are positive definite (see section 1), the factors L and M in (2.3) are positive
definite. Since λ > 0, Λ is positive definite. If we can show that (I − S∗L−1S) is
invertible, then μ = 0 implies that S = 0, which is a contradiction. Thus μ > 0.

To show that (I − S∗L−1S) is invertible, we apply the matrix modification for-
mula [3]

(I + ZZ∗)−1 = I − Z(I + Z∗Z)−1Z∗(2.6)

with Z∗ = Ω−1/2S to obtain

I − S∗L−1S = I − S∗(Ω + SS∗)−1S

= I − S∗Ω−1/2(I + Ω−1/2SS∗Ω−1/2)−1Ω−1/2S

= I − Z(I + Z∗Z)−1Z∗ = (I + ZZ∗)−1

= (I + S∗Ω−1S)−1.
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Hence, the matrix I − S∗L−1S is positive definite and invertible. This completes the
proof that μ > 0.

We multiply (2.3) by S to obtain

μS∗S = (I − S∗L−1S)ΛM−2ΛS∗L−1S.(2.7)

Forming the conjugate transpose of (2.7) gives

μS∗S = S∗L−1SΛM−2Λ(I − S∗L−1S).(2.8)

Equating the right sides of (2.7) and (2.8) yields

(S∗L−1S)(ΛM−2Λ) = (ΛM−2Λ)(S∗L−1S).(2.9)

Hence, the matrices S∗L−1S and ΛM−2Λ commute.
We now present cases where (2.2) has a solution with at most one nonzero in each

row and column.
Lemma 2.2. Suppose S is a solution of (2.2) with the property that S∗L−1S is

block diagonal and Prink(S
∗L−1S) is diagonal for some k > 0. If Ω is nondegenerate

and Λ is positive definite, then Colk(S) = Π1ΣΠ2 where Π1 and Π2 are permutation
matrices and Σ is diagonal.

Proof. Since S is a solution of (2.2), (2.3) holds. We multiply (2.3) by L to obtain

(I − S∗L−1S)ΛM−2ΛS∗ = μS∗L = μS∗(Ω + SS∗).

Rearranging this, we have

S∗Ω = ES∗,(2.10)

where

E =
1

μ
(I − S∗L−1S)(ΛM−2Λ) − S∗S.

Since Λ, Ω, and Θ are diagonal and S∗L−1S is block diagonal, it follows that M =
ΛS∗L−1SΛ + Θ is block diagonal and Prink(M) is diagonal. By (2.7), S∗S is block
diagonal and Prink(S

∗S) is diagonal. Hence, E is block diagonal and Prink(E) is
diagonal. Let ei denote the ith diagonal element of E. For 1 ≤ i ≤ k and 1 ≤ j ≤ m,
we equate the (i, j) elements in (2.10) to obtain

(S∗)ijωj = ei(S
∗)ij or (S∗)ij(ωj − ei) = 0.

If (S∗)ij �= 0, then ωj = ei. By the nondegeneracy assumption, the ωj , 1 ≤ j ≤ m,
are all distinct. Consequently, there is at most one j for which (S∗)ij �= 0. In other
words, each of the first k columns of S has at most one nonzero. Since Prink(S

∗S) is
diagonal, no two of the leading k columns of S can have their single nonzero in the
same row. A suitable permutation of the rows and the first k columns of S yields a
diagonal matrix Σ.

We now apply Lemma 2.2 to the case Λ = I:
Lemma 2.3. If Λ = I, then there exists a solution of (2.2) of the form S =

Π1ΣΠ2 where Π1 and Π2 are permutation matrices and Σ is diagonal.
Proof. Since any Ω and Θ can be approximated arbitrarily closely by nondegener-

ate matrices, there is no loss of generality in assuming that Ω and Θ are nondegenerate
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(see [2]). There exists an optimal solution of (2.2) since the feasible set is compact
and the cost function is a continuous function of S.

By Lemma 2.1, the matrices S∗L−1S and ΛM−2Λ commute. Since Λ = I, it
follows that S∗L−1S and M−2 commute. Since commuting matrices share a common
set of eigenvectors [11, p. 249], and since the eigenvectors of M−2 and M are the
same, it follows that S∗L−1S and M commute:

(S∗L−1S)M = M(S∗L−1S).

This implies that

(S∗L−1S)(Θ + S∗L−1S) = (Θ + S∗L−1S)(S∗L−1S).

which reduces to

(S∗L−1S)Θ = Θ(S∗L−1S).

Since Θ satisfies the nondegeneracy condition, we conclude that S∗L−1S is diago-
nal. Taking k = n (the number of columns in S) in Lemma 2.2, S = Prink(S)
= Π1ΣΠ2.

The case Θ = I and Λ �= I is tougher to analyze. In an effort to simplify the
structure of a solution to (2.2), we will apply a permutation to our problem. Let Π
be a permutation matrix which we will apply to the columns of S. The permuted
matrix is Sp = SΠ. Let Λp = Π∗ΛΠ be the symmetric permutation of the rows and
columns of Λ. In essence, Λp is obtained from Λ by interchanging diagonal elements.
Similarly, Θp = Π∗ΘΠ denotes the symmetric permutation of Θ. We replace S,
Λ, and Θ by their representation in terms of the permuted quantities to obtain the
following equivalent form of (2.2) (after taking into account the fact that the trace is
invariant under a similarity transformation):

min
Sp

tr ((SpΛp)
∗(Ω + SpS

∗
p)

−1SpΛp + Θp)
−1(2.11)

subject to tr (SpS
∗
p) ≤ P, Sp ∈ C

m×n.

We begin with the following result:
Lemma 2.4. Let D be defined by

D = S∗L−1/2(I + W∗W)−2L−1/2S,(2.12)

where W = ΛS∗L−1/2 and L = Ω + SS∗. If dii = 0, then column i of S vanishes.
If Θ = I, S is a solution of (2.2), and Λ is nondegenerate, then D is diagonal.
Let Dp = Π∗DΠ be the symmetrically permuted D where Π is chosen so that the
diagonal elements of Λ2

pDp are in decreasing order. Then the matrix S∗
pL

−1Sp is
block diagonal and the size of the diagonal blocks is equal to the number of times the
associated diagonal elements of Λ2

pDp repeat.
Proof. By the definition of D, we have

dii = ‖(I + W∗W)−1L−1/2si‖2,

where si is the ith column of S. If dii = 0, then si = 0.
If Θ = I, then M in (2.4) has the form I+WW∗ with W = ΛS∗L−1/2. It follows

from the matrix modification formula (2.6) that

M−1W = (I − W(I + W∗W)−1W∗)W

= W − W(I + W∗W)−1W∗W

= W(I + W∗W)−1.
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Hence, we have

M−2W = W(I + W∗W)−2,

which implies that

ΛM−2ΛS∗L−1S = ΛM−2WL−1/2S

= ΛW(I + W∗W)−2L−1/2S

= Λ2S∗L−1/2(I + W∗W)−2L−1/2S = Λ2D,(2.13)

where D is defined in (2.12). By (2.13), Λ2D is the product of Hermitian matrices
ΛM−2Λ and S∗L−1S. The matrices ΛM−2Λ and S∗L−1S commute by Lemma 2.1.
Consequently, Λ2D is Hermitian. Since D and Λ are also Hermitian, we have

(Λ2D) = (Λ2D)∗ = DΛ2.

Since the diagonal elements of Λ are distinct, D is diagonal.
By Lemma 2.1, we can commute the factors S∗L−1S and ΛM−2Λ in (2.8). Uti-

lizing (2.13) in (2.8) gives

μS∗S = Λ2D(I − S∗L−1S).(2.14)

Inserting (2.13) in (2.7) gives

μS∗S = (I − S∗L−1S)Λ2D.(2.15)

We equate the right sides of (2.14) and (2.15) to deduce that

(I − S∗L−1S)Λ2D = Λ2D(I − S∗L−1S).

Hence, the matrix (I − S∗L−1S) and the diagonal matrix Λ2D commute, and they
share a common set of eigenvectors.

Suppose that Π is chosen so that the diagonal elements of Λ2
pDp are in decreasing

order. Hence, zero diagonal elements in Dp trail at the end of the diagonal, and the
corresponding (trailing) columns of Sp vanish, as shown at the start of the proof.
Suppose that λ2

i dii = λ2
jdjj for i and j ∈ [p, q]. The eigenvectors of Λ2

pDp correspond

to columns p through q of the identity matrix. Since Λ2
pDp and (I− S∗

pL
−1Sp) share

a common set of eigenvectors, the corresponding eigenvectors of (I − S∗
pL

−1Sp) are
linear combinations of columns p through q of the identity matrix. Hence, S∗

pL
−1Sp

is block diagonal and the size of the blocks is equal to the number of times a positive
diagonal element of Λ2

pDp repeats.
Let Λk and Ωk, k = 1, 2, . . . , be nondegenerate matrices which approach limits

Λ and Ω, respectively. Let Sk be a solution to (2.2) corresponding to (Λk,Ωk). Such
a solution exists for each k since the objective function in (2.2) is continuous when Ω
and Θ are positive definite and the feasible set is a compact set. By suitable pruning
of the sequence (Λk,Ωk) if necessary, there is no loss in generality in assuming that
the sequence Sk, k = 1, 2, . . . , converges to a limit S, which is a solution of (2.2) (by
the continuity of the objective function). We now show, under suitable hypothesis,
that the limit S is a permutation of a diagonal matrix.

Lemma 2.5. Suppose Θ = I and let S be a solution of (2.2), which is a limit of a
sequence of solutions Sk, k = 1, 2, . . . , associated with nondegenerate matrices Λk and
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Ωk. If the positive diagonal elements of Λ2D are distinct, then S can be expressed
Π1ΣΠ2 where Π1 and Π2 are permutation matrices and Σ is diagonal.

In randomly generated test problems, the “distinct diagonal” property of Lemma
2.5 was always satisfied.

Proof. Since the matrices Λk and Ωk are nondegenerate, the associated matrices
Dk (see (2.12)) are diagonal. Since the Dk converge to D, the limit D is diagonal.
Since the positive diagonal elements of Λ2D are distinct, the associated diagonal
elements of Λ2

kDk are distinct for k sufficiently large. Assume that the columns of S
and the rows of Λ are permuted so that the diagonal elements of the limit Λ2D are in
decreasing order. Let p be the number of positive diagonal elements of D. By Lemma
2.4, Prinp(S

∗
kL

−1
k Sk) is diagonal. By Lemma 2.2, Colp(Sk) = Π1kΣkΠ2k. Also, by

Lemma 2.4, columns l+1 through n of S vanish. Hence, the limit S can be expressed
as a product Π1ΣΠ2.

Due to the ordering (1.5), one of the permutations in Lemma 2.3 or Lemma 2.5
can be eliminated.

Theorem 2.6. If either Θ = I or Λ = I and (2.2) has a solution of the form
S = Π1ΣΠ2, where Σ is diagonal and the Πi are permutation matrices, then (2.2)
has a solution of the form S = ΣΠ where Σ is diagonal and Π is a permutation
matrix. Moreover, if the diagonal σ of an optimal Σ has p positive components, then
p is less than or equal to the rank of Λ and Π permutes only the first p column of Σ.
There also exists a solution of (2.2) of the form S = ΠΣ.

Proof. The substitution S = Π1ΣΠ2 in (2.2) yields the following equivalent
problem (assuming l = n):

min
σ,Π1,Π2

tr
(
(Π2ΛΠ∗

2)Σ
∗(Π∗

1ΩΠ1 + ΣΣ∗)−1Σ(Π2ΛΠ∗
2) + Π2ΘΠ∗

2

)−1
(2.16)

subject to

N∑
i=1

σ2
i ≤ P,

where N is the minimum of m and n. Here the minimization is over diagonal matrices
Σ with σ on the diagonal, and permutation matrices Π1 and Π2.

A symmetric permutation such as Π2ΛΠ∗
2 interchanges diagonal elements. Hence,

(2.16) is equivalent to

min
σ,π1,π2

N∑
i=1

ωπ1(i) + σ2
i

θπ2(i)ωπ1(i) + (θπ2(i) + λ2
π2(i)

)σ2
i

(2.17)

subject to

N∑
i=1

σ2
i ≤ P, π1 ∈ Pm, π2 ∈ Pn,

where Pm is the set of bijections of {1, 2, . . . ,m} onto itself.
Let σ denote an optimal solution of (2.17). If λπ2(i) = 0, then the associated term

in the objective function of (2.17) reduces to 1/θπ2(i), independent of σi. In this case
σi = 0 is optimal (see Theorem 3.1 and (3.2) in the next section). Hence, the number
of positive components of σ is less than or equal to the rank of Λ. Define the set

S = {i : σi > 0},

and let p = |S|. The function

ω + x

ωθ + (θ + λ2)x
, x > 0
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is monotone increasing in ω ≥ 0 and monotone decreasing in λ ≥ 0. Since the
objective function is being minimized in (2.17), it follows that ωπ1(i) is one of the p
smallest elements of ω. In the same fashion, if Θ = I and i ∈ S, then λπ2(i) is one of
the p largest elements of λ.

Finally, let us consider the case Λ = I. The cost function in (2.17) is the sum of
two expressions:∑

i∈S

ωπ1(i) + σ2
i

θπ2(i)ωπ1(i) + (θπ2(i) + λ2
π2(i)

)σ2
i

+
∑
j∈Sc

1

θπ2(j)
.(2.18)

We now show that if i ∈ S, but θπ2(i) is not one of the p smallest elements of θ,
then the cost function is decreased by exchanging π2(i) with π2(j) where j ∈ Sc and
θπ2(j) < θπ2(i). Let β1 = θπ2(i) and β2 = θπ2(j), and define

V1 =
ω + σ2

ωβ1 + σ2(β1 + 1)
+

1

β2
and V2 =

ω + σ2

ωβ2 + σ2(β2 + 1)
+

1

β1
.

Here V1 represents the i and j terms in (2.18) after substituting λπ2(i) = 1, while
V2 reflects the corresponding terms after the exchange of π2(i) with π2(j). Since
β1 > β2, it can be shown that V1 − V2 ≥ 0 (cross multiply and cancel terms). Hence,
by exchanging π2(j) with π2(i), the cost function is decreased. In summary, if either
Θ = I or Λ = I, then for i ∈ S, λπ2(i) is one of the p largest elements in λ while
θπ2(i) and ωπ1(i) are among the p smallest elements in θ and ω, respectively. Due to
the ordering (1.5),

{π1(i) : i ∈ S} ⊂ {1, 2, . . . , p} and {π2(i) : i ∈ S} ⊂ {1, 2, . . . , p}.

Let π3 ∈ PN be chosen so that

σπ3(1) ≥ σπ3(2) ≥ . . . ≥ σπ3(N).

Since S is the set of indices of positive components of σ, we have

S = {π3(i) : i = 1, 2, . . . , p}.

Define π̂1 = π1(π3), π̂2 = π2(π3), and σ̂i = σπ3(i). The optimal cost (2.18) can be
written

p∑
i=1

ωπ̂1(i) + σ̂2
i

θπ̂2(i)ωπ̂1(i) + (θπ̂2(i) + λ2
π̂2(i)

)σ̂2
i

+
∑
i>p

1

θπ̂2(i)
.

Hence, (2.2) has a solution of the form Ŝ = Π̂1Σ̂Π̂2 where Π̂1 permutes only the first

p rows and Π̂2 permutes only the first p columns of Σ̂. Let Π1 be a permutation
matrix which is the same as Π̂1 except that it has been expanded (by an identity

matrix) or chopped (Π1 = Prinn(Π̂1)) to match the number of columns of S. Define

Σ′ = Π̂1Σ̂Π
∗
1. Σ′ is diagonal since it is a symmetric permutation of a diagonal matrix.

Consequently, we have

Ŝ = Π̂1Σ̂Π̂2 = Π̂1Σ̂Π
∗
1Π1Π̂2 = Σ′Π,

where Π = Π1Π̂2. In a similar manner, we obtain S = ΠΣ for a different choice of
Π and Σ.
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Based on Theorem 2.6, one of the permutation in (2.17) can be deleted when
Λ = I or Θ = I. We delete the permutation π2 to obtain the following problem:

min
s,π

M∑
i=1

ωπ(i) + si

θiωπ(i) + (θi + λi)si
(2.19)

subject to

M∑
i=1

si ≤ P, s ≥ 0, π ∈ PM ,

where si = σ2
i and M is the minimum of m and the rank of Λ. If s and π are solutions

of (2.19), then S = ΠΣ where σ2
i = si is a solution of (2.2). We now combine Theorem

2.6 with the change of variables (2.1).
Corollary 2.7. If H = I, then (1.4) has a solution of the form P = VwΣΠV∗

t ,
where Π is a permutation matrix and Σ is diagonal. If Θ = I and (2.2) has a
nondegenerate solution as described in Lemma 2.5, then (1.4) has a solution of the
form P = VwΣΠU∗.

Remark. As in Theorem 2.6, the factor ΣΠ in Corollary 2.7 can be replaced by
ΠΣ.

3. The optimal Σ. Assuming the permutation π in (2.19) is given, let us now
consider the problem of optimizing over σ. To simplify the indexing, the permutation
is suppressed and we consider the problem:

min
σ

M∑
i=1

ωi + si
θiωi + (θi + λ2

i )si
subject to

M∑
i=1

si ≤ P, s ≥ 0.(3.1)

The solution of (3.1) can be expressed in terms of a Lagrange multiplier for the con-
straint (this solution technique is often called “water filling” [1] in the communication
literature).

Theorem 3.1. The optimal solution of (3.1) is given by

si =
1

θi + λ2
i

max

⎧⎨⎩
√

ωiλ2
i

μ
− θiωi, 0

⎫⎬⎭ ,(3.2)

where the parameter μ is chosen so that

M∑
i=1

si = P.(3.3)

Proof. Since the minimization in (3.1) takes place over a closed, bounded set,
there exists a solution. Since the function (ωi + x)/(θiωi + (1 + λ2

i )x) is a decreasing
function of x ≥ 0, the objective function decreases when si increases. Hence, there
exists a solution of (3.1) with the inequality constraint active. Due to the strict
convexity of the cost function and the convexity of the constraints, (3.1) has a unique
solution.

The first-order optimality conditions (KKT conditions) for an optimal solution of
(3.1) are the following: There exists a scalar μ ≥ 0 and a vector ν ∈ R

M such that

μ− νi −
ωiλ

2
i

(θiωi + (θi + λ2
i )si)

2
= 0, νi ≥ 0, si ≥ 0, and νisi = 0,(3.4)

1 ≤ i ≤ M . Any solution of (3.4) is the unique optimal solution of (3.1).
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A solution to (3.4) is obtained as follows: Define the function

si(μ) =
1

θi + λ2
i

⎛⎝√
ωiλ2

i

μ
− θiωi

⎞⎠+

.(3.5)

Here x+ = max{x, 0}. This particular value for si is obtained by setting νi = 0 in
(3.4), solving for si, and replacing the solution by 0 when it is negative. Observe that
si(μ) is a decreasing function of μ that approaches +∞ as μ approaches 0 and that
approaches 0 as μ tends to +∞. Hence, the equation

M∑
i=1

si(μ) = P(3.6)

has a unique positive solution. Observe that si(μ) = 0 if and only if μ ≥ λ2
i /(θ

2
i ωi).

Moreover, if μ ≥ λ2
i /(ωiθ

2
i ), then

μ− ωiλ
2
i

(θiωi + (θi + λ2
i )si(μ))2

= μ− λ2
i

ωiθ2
i

≥ 0.

It follows that the KKT conditions are satisfied by the positive solution of (3.6).

4. Optimal permutation for Λ = I. Starting with this section, we will deter-
mine optimal permutations π in (2.19). When Λ = I, the optimal permutation is the
identity (due to the ordering (1.5)):

Theorem 4.1. If Λ = I, then π(i) = i, for all i is optimal in (2.19).
Proof. Recall that the components of ω and θ are in increasing order. Let p be

the number of positive components of an optimal s in (2.19). By Theorem 2.6, an
optimal permutation π permutes only the first p components of ω; moreover, si > 0
for i ≤ p and si = 0 for i > p.

Suppose that there exists a permutation π which is optimal in (2.19) and with
the property that ωπ(i) > ωπ(j) for some i < j ≤ p. Since the components of θ are
in increasing order, θi ≤ θj . We will show that by interchanging components i and
j of π, the objective function value does not increase. Consequently, after a finite
number of pairwise exchanges, and without increasing the cost, it can be arranged so
that ωπ(i) is an increasing function of i. Since 1 ≤ π(i) ≤ p for i ≤ p and since the
components of ω are in increasing order, we conclude that π(i) = i for all i is optimal
in (2.19).

Let s denote a solution of (2.19) associated with the permutation π and suppose
that ωπ(i) > ωπ(j) for some i < j ≤ p. For notational convenience, let us take i = 1,
j = 2, π(1) = 2, and π(2) = 1. Define ω′

1 = ωπ(1) = ω2 and ω′
2 = ωπ(2) = ω1. Due to

the optimality of s and π, t1 = s1 > 0 and t2 = s2 > 0 is an optimal solution of the
following 2-variable problem:

min
t

2∑
i=1

ω′
i + ti

θiω′
i + (θi + 1)ti

(4.1)

subject to

2∑
i=1

ti ≤ P̄ := s1 + s2, t ≥ 0.
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We will show that the optimal objective function value for the following unpermuted
problem is less than or equal to the objective function value for (4.1):

min
t

2∑
i=1

ωi + ti
θiωi + (θi + 1)ti

(4.2)

subject to

2∑
i=1

ti ≤ P̄ , t ≥ 0.

By assumption, the solution of (4.1) is strictly positive. We now show that this
implies the solution of (4.2) is strictly positive. By Theorem 3.1, the condition s > 0
is equivalent to

1/
√
μ > θi

√
ω′
i.(4.3)

The multiplier μ is given by

1
√
μ

=

P̄ +

2∑
j=1

θjω
′
j

(θj + 1)

2∑
j=1

ω′
j
1/2

(θj + 1)

.(4.4)

Combining (4.3) and (4.4) gives

P̄ >
θ1

√
ω′

1ω
′
2

(1 + θ2)
− θ2ω

′
1

(1 + θ2)
=

θ1
√
ω1ω2

(1 + θ2)
− θ2ω2

(1 + θ2)
and(4.5)

P̄ >
θ2

√
ω′

1ω
′
2

(1 + θ1)
− θ1ω

′
2

(1 + θ1)
=

θ2
√
ω1ω2

(1 + θ1)
− θ1ω1

(1 + θ1)
.(4.6)

Above, the first inequality corresponds to the condition s1 > 0 while the second
corresponds to s2 > 0. Similarly, the optimal t in (4.2) is positive if and only if

P̄ >
θ1
√
ω1ω2

(1 + θ2)
− θ2ω1

(1 + θ2)
and(4.7)

P̄ >
θ2
√
ω1ω2

(1 + θ1)
− θ1ω2

(1 + θ1)
.(4.8)

Since ω1 ≤ ω2, (4.6) implies that (4.8) holds. Since θ1 ≤ θ2, we have

1

1 + θ1
≥ 1

1 + θ2
and

θ1

1 + θ1
≤ θ2

1 + θ2
.(4.9)

Combining this with (4.6) gives

P̄ >
θ2
√
ω1ω2

(1 + θ1)
− θ1ω1

(1 + θ1)
≥ θ2

√
ω1ω2

(1 + θ2)
− θ2ω1

(1 + θ2)

≥ θ1
√
ω1ω2

(1 + θ2)
− θ2ω1

(1 + θ2)
.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

796 WILLIAM W. HAGER AND JIANGTAO LUO

Hence, (4.7) is satisfied. Since both (4.7) and (4.8) are satisfied, it follows that the
solution to (4.2) is strictly positive.

Using the solution given by Theorem 3.1 and the multiplier (4.4), we obtain the
following expression for the optimal objective function value C ′ for (4.1) (the algebra
is omitted):

C ′ =
1

1 + θ1
+

1

1 + θ2
+

( √
ω′

1

(1 + θ1)
+

√
ω′

2

(1 + θ2)

)2

P̄ +
θ1ω

′
1

(1 + θ1)
+

θ2ω
′
2

(1 + θ2)

=
1

1 + θ1
+

1

1 + θ2
+

( √
ω2

(1 + θ1)
+

√
ω1

(1 + θ2)

)2

P̄ +
θ1ω2

(1 + θ1)
+

θ2ω1

(1 + θ2)

.(4.10)

Similarly, the optimal objective function value C for (4.2) is obtained by erasing the
primes in (4.10):

C =
1

1 + θ1
+

1

1 + θ2
+

( √
ω1

(1 + θ1)
+

√
ω2

(1 + θ2)

)2

P̄ +
θ1ω1

(1 + θ1)
+

θ2ω2

(1 + θ2)

.(4.11)

We will show that C ≤ C ′.
Recall the following majorization property [7, p. 141]: If a and b ∈ R

n, then

n∑
i=1

a[i]b[n−i+1] ≤
n∑

i=1

aibi ≤
n∑

i=1

a[i]b[i],

where a[i] denotes the ith largest component of a. We apply the inequality (4.9) and
ω1 ≤ ω2 and the majorization property to the numerators in (4.10) and (4.11) to
obtain ( √

ω1

1 + θ1
+

√
ω2

1 + θ2

)2

≤
( √

ω2

1 + θ1
+

√
ω1

1 + θ2

)2

=

( √
ω′

1

1 + θ1
+

√
ω′

2

1 + θ2

)2

.

Also, by (4.9) and the majorization property, the denominators in (4.10) and (4.11)
satisfy (

θ1ω1

1 + θ1
+

θ2ω2

1 + θ2

)
≥

(
θ1ω2

1 + θ1
+

θ2ω1

1 + θ2

)
.

Hence, C ≤ C ′. This completes the proof.

5. Optimal permutation for Θ = I and large power. When Θ = I, the
optimal permutation depends on P . In this section, we determine the optimal per-
mutation when P is large, while the next section analyzes the case of small P . As
shown in Theorem 2.6, the solution to (2.2) can written as either ΠΣ or ΣΠ. When
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Θ = I, the analysis is simpler when we take S = ΣΠ, in which case (2.2) reduces to
(see (2.17))

min
s,π

M∑
i=1

ωi + si
ωi + (1 + λ2

π(i))si
(5.1)

subject to

M∑
i=1

si ≤ P, s ≥ 0, π ∈ PM ,

where M is the minimum of m and the rank of Λ.
Theorem 5.1. For P sufficiently large, an optimal permutation π in (5.1) is

given by

λπ(1)

1 + λ2
π(1)

≥
λπ(2)

1 + λ2
π(2)

≥ · · · ≥
λπ(M)

1 + λ2
π(M)

.(5.2)

In the noise term η vanishes, the optimal permutation arranged the singular values
in increasing order for large P . Since the function λ/(1 + λ2) is monotone increasing
for λ ∈ [0, 1] and monotone decreasing for λ > 1, it follows that when η is included
in the model and when its covariance is I, the singular values smaller than one are
in decreasing order, while the singular values larger than one are in increasing order.
Hence, when Θ = I, the solution of the problem when η is included in the model is
fundamentally different from the solution when the noise η is neglected.

Proof. Referring to Theorem 3.1, as P tends to infinity, the optimal multiplier μ
tends to zero; consequently, as P tends to infinity, all the components of the optimal
s tend to infinity. We assume that P is large enough that for any permutation of the
components of λ, the s that satisfies (3.2) and (3.3) is strictly positive.

So far, we have assumed that the components of λ are in decreasing order (1.5).
In the proof of this theorem, it is more convenient to assume that the components of
λ are arranged in the order (5.2). In other words,

λ1

1 + λ2
1

≥ λ2

1 + λ2
2

≥ · · · ≥ λM

1 + λ2
M

.

Let π by an optimal permutation in (5.1) and define λ′
i = λπ(i). Suppose for

some i < j, we have λ′
i/(1 + λ′

i
2
) < λ′

j/(1 + λ′
j
2
). We will show that by interchanging

the values of π(i) and π(j), the objective function cannot increase. Hence, after a
finite series of pairwise exchanges, we obtain (5.2) without increasing the objective
function.

As in Theorem 4.1, we assume for notational convenience that i = 1, j = 2,
π(1) = 2, and π(2) = 1. To summarize, we have

ω1 ≤ ω2, λ′
1 = λ2, λ′

2 = λ1, and
λ1

1 + λ2
1

>
λ2

1 + λ2
2

.(5.3)

If s is a solution of (5.1), then t1 = s1 and t2 = s2 is a solution to

min
σ,π

2∑
i=1

ωi + ti

ωi + (1 + λ′
i
2)ti

(5.4)

subject to

2∑
i=1

ti ≤ P̄ := s1 + s2, t ≥ 0.
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The unpermuted problem is obtained by erasing the prime:

min
σ,π

2∑
i=1

ωi + ti

ωi + (1 + λi
2)ti

(5.5)

subject to

2∑
i=1

ti ≤ P̄ , t ≥ 0.

If ω1 = ω2, then the optimal cost C ′ for the permuted problem (5.4) equals the optimal
cost C for the unpermuted problem since the objective functions are identical. Hence,
by interchanging the values of π(1) and π(2), the objective function value does not
change.

Now, let us consider the case where ω1 < ω2. We define

N ′ =
λ′

1

√
ω1

1 + λ′
1
2 +

λ′
2

√
ω2

1 + λ′
2
2 and D′ =

ω1

1 + λ′
1
2 +

ω2

1 + λ′
2
2 =

ω1

1 + λ2
2 +

ω2

1 + λ1
2 .

Parameters N and D are obtained by erasing the primes in N ′ and D′. With this
notation the multiplier μ given by Theorem 3.1 for the problem (5.4) can be expressed

1
√
μ

=
P̄ + D′

N ′ .(5.6)

Moreover, the optimal objective function value C ′ for (5.4) is

C ′ =
1

1 + λ′
1
2 +

1

1 + λ′
2
2 +

N ′2

P̄ + D′ =
1

1 + λ1
2 +

1

1 + λ2
2 +

N ′2

P̄ + D′ .(5.7)

Similarly, the optimal objective function value C for the unpermuted problem is ob-
tained by erasing the primes:

C =
1

1 + λ1
2 +

1

1 + λ2
2 +

N2

P̄ + D
.

The inequality C < C ′ is equivalent to

N2(P̄ + D′) < N ′2(P̄ + D).

Rearranging this, we have

P̄ (N + N ′)(N −N ′) = P̄ (N2 −N ′2) < N ′2D −N2D′.

Since N + N ′ > 0, it follows that

N −N ′ ≤ N ′2D −N2D′

P̄ (N + N ′)
.(5.8)

By the definitions of N and N ′, we obtain

N −N ′ = (
√
ω1 −

√
ω2)

(
λ1

1 + λ2
1

− λ2

1 + λ2
2

)
< 0

since ω1 < ω2 and (5.3) holds. Since N − N ′ < 0, it follows that (5.8) holds for P
sufficiently large. Equivalently, for P sufficiently large, C < C ′. This completes the
proof.
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6. Optimal permutation for Θ = I and small power. We now evaluate the
optimal solution to (5.1) when P is small.

Theorem 6.1. Let L be the minimum of the multiplicities of γ1 and λ1 and let
ε be the positive separation parameter defined by

ε = min

{∣∣∣∣√ωk(λi
√
ωl − λj

√
ωk)

(1 + λ2
i )λj

∣∣∣∣ : i, j, k, l ∈ [1,M ], λi
√
ωl �= λj

√
ωk

}
.

If P < ε, then an optimal solution of (5.1) is

si = P/L, 1 ≤ i ≤ L, si = 0, i > L, π(i) = i for all i.(6.1)

Proof. Let π and s be optimal in (5.1) and define λ′
i = λπ(i). We now show that

if si > 0, sj > 0, and P < ε, then we have λ′
i
√
ωj = λ′

j

√
ωi. To simplify the notation,

we take i = 1 and j = 2, but in general, i and j are distinct integers between 1 and
M . Since s yields an optimal solution of (5.1), it follows that an optimal solution for
the following reduced problem is t1 = s1 and t2 = s2:

mint1,t2

ω1 + t1

ω1 + (1 + λ′
1
2)t1

+
ω2 + t2

ω2 + (1 + λ′
2
2)t2

subject to t1 + t2 = P̄ := s1 + s2, t ≥ 0.

(6.2)

By Theorem 3.1, the ti can be expressed:

ti =
1

1 + λ′
i
2

(
λ′
i

√
ωi

μ
− ωi

)
,(6.3)

where μ is obtained from the condition t1 + t2 = P̄ :

μ =

⎛⎜⎜⎜⎜⎝
2∑

i=1

λ′
i

√
ωi

1 + λ′
i
2

P̄ +

2∑
i=1

ωi

1 + λ′
i
2

⎞⎟⎟⎟⎟⎠
2

.

By (6.3), ti > 0 is equivalent to

λ′
i
2
> ωiμ = ωi

⎛⎜⎜⎜⎜⎝
2∑

i=1

λ′
i

√
ωi

1 + λ′
i
2

P̄ +

2∑
i=1

ωi

1 + λ′
i
2

⎞⎟⎟⎟⎟⎠
2

.

We rearrange this to obtain

λ′
i

(
P̄ +

ω1

1 + λ′
1
2 +

ω2

1 + λ′
2
2

)
>

√
ωi

(
λ′

1

√
ω1

1 + λ′
1
2 +

λ′
2

√
ω2

1 + λ′
2
2

)
,

which reduces to

P̄ λ′
i >

√
ωi

(
λ′

1

√
ω1

1 + λ′
1
2 +

λ′
2

√
ω2

1 + λ′
2
2

)
− λ′

i

(
ω1

1 + λ′
1
2 +

ω2

1 + λ′
2
2

)
.
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Setting i = 1 and i = 2, respectively, we get

P̄ >

√
ω2(λ

′
2

√
ω1 − λ′

1

√
ω2)

(1 + λ′
2
2)λ′

1

and

P̄ >

√
ω1(λ

′
1

√
ω2 − λ′

2

√
ω1)

(1 + λ′
1
2)λ′

2

.

Unless λ′
1

√
ω2 = λ′

2

√
ω1, the condition ε ≥ P ≥ P̄ is violated. Hence, λ′

1

√
ω2 =

λ′
2

√
ω1, and in general, λ′

i
√
ωj = λ′

j

√
ωi for each i and j with si > 0 and sj > 0.

By the ordering (1.5), we have ω1 ≤ ω2. If ω1 < ω2, then we will show that
by exchanging π(1) and π(2) in (5.1), the value of the objective function is strictly
decreased, which violates the optimality of π. In general, whenever si > 0 and sj > 0,
we have ωi = ωj . Since λ′

i
√
ωj = λ′

j

√
ωi for each i and j for which si > 0 and

sj > 0, it follows that λ′
i = λ′

j . By Theorem 2.6, if s has p positive components,
then π permutes only the p largest components of λ. Since the components of λ and
ω associated with the positive components of s are all equal, we conclude that the
positive components of s correspond to the minimum of the multiplicities of λ1 and
ω1, and π(i) = i for all i is optimal. Since the L largest components of λ and the L
smallest components of ω are all equal, it follows from Theorem 3.1 that the first L
components of s are all equal. Since the si sum to P , si = P/L for 1 ≤ i ≤ L and
si = 0 for i > L, which completes the proof.

Now, let us prove that when ω1 < ω2, the exchange of π(1) and π(2) yields a
strictly smaller value of the objective function, violating the optimality of π (hence,
ω1 = ω2). By (5.7) the optimal objective function value C ′ for (6.2) is

C ′ =

(
λ′

1

√
ω1

1 + λ′
1
2 +

λ′
2

√
ω2

1 + λ′
2
2

)2

P̄ +
ω1

1 + λ′
1
2 +

ω2

1 + λ′
2
2

+
1

1 + λ′
1
2 +

1

1 + λ′
2
2 .(6.4)

Since λ′
1

√
ω2 = λ′

2

√
ω1, (6.4) can be written

C ′ =

ω1λ
′
1
2

(
1

1 + λ′
1
2 +

λ′
2
2

λ′
1
2(1 + λ′

2
2)

)2

P̄ + ω1

(
1

1 + λ′
1
2 +

λ′
2
2

λ′
1
2(1 + λ′

2
2)

) +
1

1 + λ′
1
2 +

1

1 + λ′
2
2

=
ω1λ

′
1
2
x2

P̄ + ω1x
+

1

1 + λ′
1
2 +

1

1 + λ′
2
2

= λ′
1
2
x− P̄ λ′

1
2
x

P̄ + ω1x
+

1

1 + λ′
1
2 +

1

1 + λ′
2
2

= λ′
1
2
x− P̄ λ′

1
2

ω1
+

P̄ 2λ′
1
2

ω1(P̄ + ω1x)
+

1

1 + λ′
1
2 +

1

1 + λ′
2
2 ,

where

x =
1

1 + λ′
1
2 +

λ′
2
2

λ′
1
2(1 + λ′

2
2)
.
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Exploiting the identity

λ′
1
2
x +

1

1 + λ′
1
2 +

1

1 + λ′
2
2 = 2,

it follows that

C ′ = 2 − P̄ λ′
1
2

ω1
+

P̄ 2λ′
1
2

ω1(P̄ + ω1x)
.

Exchanging the values of π(1) and π(2) leads to the following permuted version
of (6.2):

mint1,t2

ω1 + t1

ω1 + (1 + λ′
2
2)t1

+
ω2 + t2

ω2 + (1 + λ′
1
2)t2

subject to t1 + t2 = P̄ , t1 ≥ 0, t2 ≥ 0.

(6.5)

The choice t1 = P̄ and t2 = 0 is feasible in (6.5). Hence, an upper bound C+ for the
optimal objective function value is

C+ = 1 +
ω1 + P̄

(ω1 + P̄ ) + P̄ λ′
2
2 = 2 − P̄ λ′

2
2

ω1 + P̄ (1 + λ′
2
2)

= 2 − P̄ λ′
2
2

ω1
+ O(P̄ 2).

Since ω1 < ω2, it follows from the condition ω1λ
′
2
2

= ω2λ
′
1
2

that λ′
1
2
< λ′

2
2
. Compar-

ing C ′ and C+, we conclude that for P sufficiently small, C+ < C ′, which contradicts
the optimality of C ′. This completes the proof.

7. Numerical experiments. Some small test problems were solved to see how
P should be chosen in order to observe Theorems 5.1 and 6.1, and to evaluate a
conjecture concerning the structure of the optimal permutation in general. In the
first experiment, we randomly generate ωi ∈ [0, 1] and λi ∈ [0, 2] in the special case
l = m = n = 10. The interval [0, 2] for λ was chosen so that λi would be generated
on each side of the maximum x = 1 for the function x/(1 + x2). These dimensions
are small enough that we can enumerate all permutations π ∈ P5 and select the best.
Table 7.1 shows how many times the solution given in Theorems 5.1 or 6.1 is correct
for 100 randomly generated problems and for various choices of P .

In another series of experiments, we evaluated the quality of the following M
permutations: For each k = 1, 2, . . . , M , let πk be the permutation defined by

πk(i) = i for i > k, πk(i) ∈ [1, k] for i ∈ [1, k],(7.1)

Table 7.1

Number of times the permutation given by Theorem 5.1 or 6.1 was exact out of 100 trials
(ωi ∈ [0, 1] and λi ∈ [0, 2], l = m = n = 10).

P Thm. 5.1 exact Thm. 6.1 exact
(out of 100) (out of 100)

104 100 0
103 97 0
102 68 0
101 15 0
100 1 0
10−1 0 0
10−2 0 44
10−3 0 98
10−4 0 100
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Table 7.2

Number of times that one of the permutations π1, π2, . . . , πM was optimal in (5.1) out of 100
trials (ωi ∈ [0, 1] and λi ∈ [0, 2], l = m = n = 10).

P Some πk exact Relative error
(out of 100) (no πk exact)

104 100 0
103 98 7.8e−08
102 74 2.6e−06
101 46 5.0e−05
100 92 3.0e−05
10−1 96 4.9e−05
10−2 100 0
10−3 100 0
10−4 100 0

and

λπk(1)

1 + λ2
πk(1)

≥
λπk(2)

1 + λ2
πk(2)

≥ . . . ≥
λπk(k)

1 + λ2
πk(k)

.(7.2)

We optimized (5.1) with the added constraint that π was one of the M permutation
πk, k = 1, 2, . . . ,M . In Table 7.2 we consider the same set of test problems used for
Table 7.1, and we evaluate the number of times that one of these M permutation
yields the exact minimizer. When none of these M permutations yields the exact
minimum, we evaluate the relative error in the cost (best approximate cost minus
exact cost divided by the exact cost). The average relative error for the best inexact
approximation in the set πk, 1 ≤ k ≤ M , is shown in the last column of Table 7.2.
Thus, one of the πk often yields the optimal solution of (5.1). When none of the πk

approximations is optimal, the best approximate cost is nearly optimal.
The motivation for considering the permutations πk is the following: By Theorem

2.6, there exists an integer p ≥ 1 (p is the number of positive components of σ in
an optimal solution) with the property that π(i) = i when π is optimal in (5.1) and
i > p. Hence, we try M different permutations of the form (7.1). When the power P
is sufficiently large, we know that the permutation (5.2) is optimal. Thus, we try the
same ordering, but applied to the k largest singular values as in (7.2).

8. Conclusions. We analyze the optimization problem (1.4) which arises in lin-
ear Bayesian estimation in the presence of noise, and which is relevant to multisensor
data fusion problems and wireless communication. Unlike our earlier work [2, 5], we
now take into account the noise term η in the model (1.1).

By letting the covariance of η tends to zero, the results given in the present paper
include the results given in [2, 5]. In particular, if we take N = αI in (1.3), then a
rescaling of P and H yields (1.4). In the rescaled problem, the singular values of H
are divided by

√
α. Hence, as α tends to zero, all the singular values in the rescaled

problem become larger than 1. Since the function x/(1 + x2) is monotone decreasing
for x > 1, we deduce that for P sufficiently large, the optimal permutation arranges
the singular values in increasing order, the same ordering derived in [2] when the noise
η was neglected.

For general P , computing the optimal permutation π in (5.1) may not be easy.
Nonetheless, we exhibit in section 7 a set of M permutations π1, π2, . . . , πM which
often contains the optimal permutation.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMIZATION OF GENERALIZED MEAN-SQUARE ERROR 803

In the case H = I, the analysis in this paper also yields the results in [5] by taking
N = αI and letting α tend to zero. It is interesting to note that the analysis in [5] for
the case η = 0 was much more difficult than the analysis of the case η �= 0 considered
in this paper. Hence, by including the noise term η in the model and by letting η
tend to 0, we could recover with less effort the solution given in [5].

9. Appendix. First-order optimality condition. We evaluate the derivative
of the Lagrangian (2.5) and set it to zero. Since tr (A + A∗) = 2(Real [tr (A)]) and
tr (AB) = tr (BA), it follows that the derivative of SS∗ in the direction δS is

tr (SδS∗ + δSS∗) = 2(Real [tr δSS∗]) = 2(Real [tr S∗δS]).(9.1)

For any invertible matrix M, we have

dM−1

dT
= −M−1

(
dM

dT

)
M−1.(9.2)

We equate to zero the derivative of the Lagrangian in the direction δS and utilize
(9.1) and (9.2) to obtain

Real
[
tr

(
(I − S∗L−1S)ΛM−2ΛS∗L−1 − μS∗) δS

]
= 0,

where L and M are defined in (2.4). Inserting

δS =
(
(I − S∗L−1S)ΛM−2ΛS∗L−1 − μS∗)∗

gives

(I − S∗L−1S)ΛM−2ΛS∗L−1 = μS∗.
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