
J Glob Optim (2016) 65:657–676
DOI 10.1007/s10898-016-0402-z

Projection algorithms for nonconvex minimization with
application to sparse principal component analysis

William W. Hager1 · Dzung T. Phan2 · Jiajie Zhu1,3

Received: 29 March 2015 / Accepted: 11 January 2016 / Published online: 1 February 2016
© Springer Science+Business Media New York 2016

Abstract We consider concave minimization problems over nonconvex sets. Optimization
problems with this structure arise in sparse principal component analysis. We analyze both
a gradient projection algorithm and an approximate Newton algorithm where the Hessian
approximation is a multiple of the identity. Convergence results are established. In numerical
experiments arising in sparse principal component analysis, it is seen that the performance
of the gradient projection algorithm is very similar to that of the truncated power method
and the generalized power method. In some cases, the approximate Newton algorithm with a
Barzilai–BorweinHessian approximation and a nonmonotone line search can be substantially
faster than the other algorithms, and can converge to a better solution.

Keywords Sparse principal component analysis · Gradient projection · Nonconvex
minimization · Approximate Newton · Barzilai–Borwein method

The authors gratefully acknowledge support by the National Science Foundation under Grants 1115568 and
1522629 and by the Office of Naval Research under Grants N00014-11-1-0068 and N00014-15-1-2048.

B William W. Hager
hager@ufl.edu
http://people.clas.ufl.edu/hager/

Dzung T. Phan
phandu@us.ibm.com

Jiajie Zhu
zhuuv@bc.edu
http://people.clas.ufl.edu/zplusj/

1 Department of Mathematics, University of Florida, PO Box 118105, Gainesville, FL 32611-8105,
USA

2 IBM T. J. Watson Research Center, Yorktown Heights, NY 20598, USA

3 Present Address: Computer Science Department, Boston College, Chestnut Hill, MA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-016-0402-z&domain=pdf

658 J Glob Optim (2016) 65:657–676

1 Introduction

Principal component analysis (PCA) is an extremely popular tool in engineering and statistical
analysis. It amounts to computing the singular vectors associated with the largest singular
values. In its simplest setting, the rank-one approximation, amounts to solving an optimization
problem of the form

max{xT�x : x ∈ R
n, ‖x‖ = 1}, (1.1)

where � = ATA is the covariance matrix associated with the data matrix A ∈ R
m×n and

‖ · ‖ is the Euclidean norm. As pointed out in [27], there is no loss of generality in assuming
that � is positive definite since

xT�x + σ = xT(� + σ I)x

whenever x is feasible in (1.1).
The lack of interpretability has been amajor concern in PCA. Sparse PCA partly addresses

this problem by constraining the number of nonzero components of themaximizing x in (1.1).
Given a positive integer κ , the sparse PCA problem associated with (1.1) is

max{xT�x : x ∈ R
n, ‖x‖ = 1, ‖x‖0 ≤ κ}, (1.2)

where ‖x‖0 denotes the number of nonzero components of x . Due to the sparsity constraint
in (1.2), the feasible set is no longer convex, which makes the optimization problem more
difficult. Other optimization problems where sparse solutions play an important role include
compressed sensing [9,13], basis pursuit [10,32], financial portfolio analysis [31], andmodel
selection [14].

In [8] PCA loadings smaller than a certain tolerance are simply set to zero to produce
sparse principal components. More recently, optimization-based approaches have been used
to introduce sparsity. For example, in [26] sparsity is achieved using an l1 relaxation. That
is, the problem (1.2) is replaced by

max{xT�x : x ∈ R
n, ‖x‖ = 1, ‖x‖21 ≤ κ}, (1.3)

where ‖x‖1 = |x1| + |x2| + . . . + |xn |. The solution of the relaxed problem (1.3) yields an
upper bound for the solution of (1.2). In [22] the Rayleigh quotient problem subject to an
l1-constraint is successivelymaximized using the authors’ SCoTLASS algorithm. In [36], the
authors formulate a regression problem and propose numerical algorithms to solve it. Their
approach can be applied to large-scale data, but it is computationally expensive. In [12] a new
semi-definite relaxation is formulated and a greedy algorithm is developed that computes a
full set of good solutions for the target number of non-zero coefficients.With total complexity
O(n3), the algorithm is computationally expensive. Other references to algorithms for sparse
optimization include [11,18,19,21,25,30].

Our work is largely motivated by [23,27,35]. In [23] both l1-penalized and l0-penalized
sparse PCA problems are considered and a generalized power method is developed. The
numerical experiments show that their approach outperforms earlier algorithms both in solu-
tion quality and in computational speed. Recently, [27,35] both consider the l0-constrained
sparse PCA problem and propose an efficient truncated power method. Their algorithms
are equivalent and originated from the classic Frank-Wolfe [15] conditional gradient algo-
rithm.

In this paper, we develop both a gradient projection algorithm and an approximate New-
ton algorithm. Convergence results are established and numerical experiments are given for

123

J Glob Optim (2016) 65:657–676 659

sparse PCA problems of the form (1.2). The algorithms have the same O(κn) iteration com-
plexity as the fastest current algorithms, such as those in [23,27,35]. The gradient projection
algorithmwith unit step size has nearly identical performance as that of the conditional gradi-
ent algorithm with unit step size (ConGradU) [27] and the truncated power method (Tpower)
[35]. On the other hand, the approximate Newton algorithm can often converge faster to a
better objective value than the other algorithms.

The paper is organized as follows. In Sect. 2 we analyze the gradient projection algorithm
when the constraint set is nonconvex. Section 3 introduces and analyzes the approximate
Newton scheme. Section 4 examines the performance of the algorithms in some numerical
experiments based on classic examples found in the sparse PCA literature.

Notation. If f : Rn → R is differentiable, then ∇ f (x) denotes the gradient of f , a row
vector, while g(x) denotes the gradient of f arranged as a column vector. The subscript k
denotes the iteration number. In particular, xk is the k-th x-iterate and gk = g(xk). The i-th
element of the k-th iterate is denoted xki . The Euclidean norm is denoted ‖ · ‖, while ‖ · ‖0
denotes cardinality (number of non-zero elements). If x ∈ R

n , then the support of x is the
set of indices of nonzeros components:

supp(x) = {i : xi �= 0}.
If � ⊂ R

n , then conv(�) is the convex hull of �. If S ⊂ {1, 2, . . . , n}, then xS is the vector
obtained by replacing xi for i ∈ Sc by 0. If A is a set, then Ac is its complement.

2 Gradient projection algorithm

Let us consider an optimization problem of the form

min{ f (x) : x ∈ �}, (2.1)

where � ⊂ R
n is a nonempty, closed set and f : � → R is differentiable on �. Often, the

gradient projection algorithm is presented in the context of an optimization problem where
the feasible set � is convex [3,4,17]. Since the feasible set for the sparse PCA problem (1.2)
is nonconvex, we will study the gradient projection algorithm for a potentially nonconvex
feasible set �.

The projection of x onto � is defined by

P�(x) = argmin
y∈�

‖x − y‖.

For the constraint set� that arises in sparse PCA, the projection can be expressed as follows:

Proposition 2.1 For the set

� = {x ∈ R
n : ‖x‖ = 1, ‖x‖0 ≤ κ}, (2.2)

where κ is a positive integer, we have

Tκ (x)/‖Tκ (x)‖ ∈ P�(x),

where Tκ (x) is the vector obtained from x by replacing n − κ elements of x with smallest
magnitude by 0.

Proof If y ∈ �, then ‖x − y‖2 = ‖x‖2 + 1 − 2〈x, y〉. Hence, we have
P�(x) = arg min{−〈x, y〉 : ‖y‖ = 1, ‖y‖0 ≤ κ}. (2.3)

123

660 J Glob Optim (2016) 65:657–676

In [27, Prop. 4.3], it is shown that theminimum is attained at y = Tκ (x)/‖Tκ (x)‖.We include
the proof since it is short and we need to refer to it later. Given any set S ⊂ {1, 2, . . . , n},
the solution of the problem

min{−〈x, y〉 : ‖y‖ = 1, supp(y) = S}
is y = xS/‖xS‖ by the Schwarz inequality, and the corresponding objective value is−‖xS‖,
where xS is the vector obtained by replacing xi for i ∈ Sc by 0. Clearly, the minimum is
attained when S is the set of indices of x associated with the κ absolute largest components.

��
In general, when � is closed, the projection exists, although it may not be unique when

� is nonconvex. If xk ∈ � is the current iterate, then in one of the standard implementations
of gradient projection algorithm, xk+1 is obtained by a line search along the line segment
connecting xk and P�(xk − skgk), where gk is the gradient at xk and sk > 0 is the step size.
When � is nonconvex, this line segment is not always contained in �. Hence, we will focus
on gradient projection algorithms of the form

xk+1 ∈ P�(xk − skgk). (2.4)

Since � is closed, xk+1 exists for each k. We first observe that xk+1 − xk always forms an
obtuse angle with the gradient, which guarantees descent when f is concave.

Lemma 2.2 If xk ∈ �, then

∇ f (xk)(y − xk) ≤ 0 for all y ∈ P�(xk − skgk). (2.5)

In particular, for y = xk+1 this gives

∇ f (xk)(xk+1 − xk) ≤ 0. (2.6)

If f is concave over conv(�), then f (xk+1) ≤ f (xk).

Proof If y ∈ P�(xk − skgk), then since P�(xk − skgk) is set of elements in � closest to
xk − skgk , we have

‖y − (xk − skgk)‖ ≤ ‖xk − (xk − skgk)‖ = sk‖gk‖. (2.7)

By the Schwarz inequality and (2.7), it follows that

gTk (y − (xk − skgk)) ≤ ‖gk‖‖y − (xk − skgk)‖ ≤ sk‖gk‖2.
We rearrange this inequality to obtain (2.5). If f is concave over conv(�), then

f (xk+1) ≤ f (xk) + ∇ f (xk)(xk+1 − xk). (2.8)

By (2.6), f (xk+1) ≤ f (xk). ��
The following result is well known.

Proposition 2.3 If f : Rn → R is concave and � ⊂ R
n, then

inf{ f (x)|x ∈ �} = inf{ f (x)|x ∈ conv(�)}, (2.9)

where the first infimum is attained only when the second infimum is attained. Moreover, if f
is differentiable at x∗ ∈ arg min{ f (x) : x ∈ �}, then

∇ f (x∗)(y − x∗) ≥ 0 for all y ∈ conv(�). (2.10)

123

J Glob Optim (2016) 65:657–676 661

A

Ω B

∇f

Fig. 1 Example that shows Proposition 2.3 may not hold for local minimizers

Proof The first result (2.9) is proved in [29, Thm. 32.2]. If x∗ minimizes f (x) over �, then
by (2.9),

x∗ ∈ arg min{ f (x) : x ∈ conv(�)}.
Since conv(�) is a convex set, the first-order optimality condition for x∗ is (2.10). ��

Remark 1 Note that at a local minimizer x∗ of f over a nonconvex set �, the inequality
∇ f (x∗)(y − x∗) ≥ 0 may not hold for all y ∈ �. For example, suppose that f (x) = aTx
where ∇ f = a has the direction shown in Fig. 1. The point A is a local minimizer of f over
�, but (2.10) does not hold. Hence, Proposition 2.3 is only valid for a global minimizer, as
stated.

Next, we consider the special choice y ∈ P�(x∗ − sg(x∗)) in Proposition 2.3.

Corollary 2.4 If f : Rn → R is concave and

x∗ ∈ arg min{ f (x) : x ∈ �},
then

∇ f (x∗)(y − x∗) = 0 (2.11)

whenever y ∈ P�(x∗ − sg(x∗)) for some s ≥ 0.

Proof By Proposition 2.3, we have

∇ f (x∗)(y − x∗) ≥ 0

for all y ∈ P�(x∗ − sg(x∗)). On the other hand, by Lemma 2.2 with xk = x∗, we have

∇ f (x∗)(y − x∗) ≤ 0

for all y ∈ P�(x∗ − sg(x∗)). Therefore, (2.11) holds. ��

The following property for the projection is needed in the main theorem:

Lemma 2.5 If � is a nonempty closed set, xk ∈ R
n is a sequence converging to x∗ and

yk ∈ P�(xk) is a sequence converging to y∗, then y∗ ∈ P�(x∗).

123

662 J Glob Optim (2016) 65:657–676

Proof Since yk ∈ � for each k and � is closed, y∗ ∈ �. Hence, we have

‖y∗ − x∗‖ ≥ min
y∈�

‖y − x∗‖.

If this inequality is an equality, then we are done; consequently, let us suppose that

‖y∗ − x∗‖ > min
y∈�

‖y − x∗‖ ≥ min
y∈�

{‖y − xk‖ − ‖xk − x∗‖} = ‖yk − xk‖ − ‖xk − x∗‖.

As k tends to ∞, the right side approaches ‖y∗ − x∗‖, which yields a contradiction. ��
We now give further justification for the convergence of the gradient projection algorithm

in the nonconvex setting.

Theorem 2.6 If f : Rn → R is concave, � is a compact nonempty set, and xk is generated
by the gradient projection algorithm (2.4), then we have f (xk+1) ≤ f (xk) for each k and

lim
k→∞ ∇ f (xk)(xk+1 − xk) = 0. (2.12)

If x∗ is the limit of any convergent subsequence of the xk and the step size sk approaches a
limit s∗, then

∇ f (x∗)(y − x∗) ≤ 0 for all y ∈ P�(x∗ − s∗g(x∗)). (2.13)

If f is continuously differentiable around x∗, then

∇ f (x∗)(y∗ − x∗) = 0 (2.14)

for some y∗ ∈ P�(x∗ − s∗g(x∗)).

Proof Sum the concavity inequality (2.8) for k = 0, 1, . . . , K − 1 to obtain

f (xK) − f (x0) ≤
K−1∑

k=0

∇ f (xk)(xk+1 − xk). (2.15)

Since f is continuous and � is compact, f ∗ = min{ f (x) : x ∈ �} is finite and
f ∗ − f (x0) ≤ f (xK) − f (x0). (2.16)

Together, (2.15) and (2.16) yield (2.12) since ∇ f (xk)(xk+1 − xk) ≤ 0 for each k by
Lemma 2.2.

The relation (2.13) is (2.5) with xk replaced by x∗. For convenience, let xk also denote
the subsequence of the iterates that converges to x∗, and let yk ∈ P�(xk − skgk) denote the
iterate produced by xk . Since yk lies in a compact set, there exists a subsequence converging
to a limit y∗. Again, for convenience, let xk and yk denote this convergent subsequence. By
(2.12) and the fact that f is continuously differentiable around x∗, we have

lim
k→∞ ∇ f (xk)(yk − xk) = ∇ f (x∗)(y∗ − x∗) = 0.

By Lemma 2.5, y∗ ∈ P�(x∗ − s∗g(x∗)). ��
Remark 2 The inequalities (2.6), (2.15), and (2.16) imply that

min
0≤k≤K

∇ f (xk)(xk − xk+1) ≤ f (x0) − f ∗

K + 1
.

123

J Glob Optim (2016) 65:657–676 663

When � is convex, much stronger convergence results can be established for the gradient
projection algorithm. In this case, the projection onto� is unique. By [17, Prop. 2.1], for any
x ∈ � and s > 0, x = P�(x − sg(x)) if and only if x is a stationary point for (2.1). That is,

∇ f (x)(y − x) ≥ 0 for all y ∈ �.

Moreover, when � is convex,

∇ f (x)(P�(x − sg(x)) − x) ≤ −‖P�(x − αg(x)) − x‖2/s (2.17)

for any x ∈ � and s > 0. Hence, (2.14) implies that the left side of (2.17) vanishes at x = x∗,
which means that x∗ = P�(x∗ − sg(x∗)). And conversely, if x∗ = P�(x∗ − sg(x∗)), then
(2.14) holds.

3 Approximate Newton algorithm

To account for second-order information, Bertsekas [4] analyzes the following version of the
gradient projection method:

xk+1 ∈ P�(xk − sk∇2 f (xk)
−1gk).

Strong convergence results can be established when � is convex and f is strongly convex.
On the other hand, if f is concave, local minimizers are extreme points of the feasible set,
so the analysis is quite different. Suppose that ∇2 f (xk) is approximated by a multiple αk of
the identity matrix as is done in the BB method [2]. This leads to the approximation

f (x) ≈ f (xk) + ∇ f (xk)(x − xk) + αk

2
‖x − xk‖2. (3.1)

Let us consider the algorithm in which the new iterate xk+1 is obtained by optimizing the
quadratic model:

xk+1 ∈ arg min
{
∇ f (xk)(x − xk) + αk

2
‖x − xk‖2 : x ∈ �

}
(3.2)

After completing the square, the iteration is equivalent to

xk+1 ∈ arg min
{
αk‖x − (xk − gk/αk)‖2 : x ∈ �

}
.

If αk > 0, then this reduces to xk+1 ∈ P�(xk − gk/αk); in other words, perform the gradient
projection algorithm with step size 1/αk . If αk < 0, then the iteration reduces to

xk+1 ∈ Q�(xk − gk/αk), (3.3)

where
Q�(x) = arg max{‖x − y‖ : y ∈ �}. (3.4)

If � is unbounded, then this iteration does not make sense since the maximum occurs at
infinity. But if � is compact, then the iteration is justified in the sense that the projection
(3.4) exists and the iteration is based on a quadratic model of the function, which could be
better than a linear model.

Suppose that x∗ ∈ Q�(x∗ − g(x∗))/α) for some α < 0. Due to the equivalence between
(3.2) and (3.3), it follows that

x∗ ∈ arg min
{
∇ f (x∗)(x − x∗) + α

2
‖x − x∗‖2 : x ∈ �

}
. (3.5)

123

664 J Glob Optim (2016) 65:657–676

That is, x∗ is a global optimizer of the quadratic objective in (3.5) over�. Since the objective
in the optimization problem (3.5) is concave, Proposition 2.3 yields

∇ f (x∗)(y − x∗) ≥ 0 for all y ∈ conv(�). (3.6)

Hence, fixed points of the iteration (3.3) satisfy the necessary condition (3.6) associated with
a global optimum of (2.1).

In the special case where� is the constraint set (2.2) appearing in sparse PCA and αk < 0,
the maximization in (3.4) can be evaluated as follows:

Proposition 3.1 For the set � in (2.2) associated with sparse PCA, we have

−Tκ (x)/‖Tκ (x)‖ ∈ Q�(x).

Proof As in the proof of Proposition 2.1, ‖x − y‖2 = ‖x‖2 + 1− 2〈x, y〉 when y lies in the
set � of (2.2). Hence, we have

Q�(x) = arg max{−〈x, y〉 : ‖y‖ = 1, ‖y‖0 ≤ κ}.
Given any set S ⊂ {1, 2, . . . , n}, the solution of the problem

max{−〈x, y〉 : ‖y‖ = 1, supp(y) = S}
is y = −xS/‖xS‖ by the Schwarz inequality, and the corresponding objective value is ‖xS‖.
Clearly, the maximum is attained when S corresponds to a set of indices of x associated with
the κ absolute largest components. ��

Let us now study the convergence of the iterates generated by the quadratic model (3.2).
The case where αk > 0 corresponds to the gradient projection algorithm which was studied
in Sect. 2. In this section, we focus on αk < 0 and the iteration xk+1 ∈ Q�(xk − gk/αk). For
the numerical experiments, we employ a BB-approximation [2] to the Hessian given by

αBBk = (∇ f (xk) − ∇ f (xk−1))(xk − xk−1)

‖xk − xk−1‖2 . (3.7)

It is well known that the BB-approximation performs much better when it is embedded in a
nonmonotone line search. This leads us to study a scheme based on the GLL stepsize rule of
[16]. Let f max

k denote the largest of the M most recent function values:

f max
k = max{ f (xk− j) : 0 ≤ j < min(k, M)}.

Our convention is that f max
k = ∞ when M = 0. The nonmonotone approximate Newton

algorithm that we analyze is as follows:

Nonmonotone Approximate Newton (for strongly concave f)
Given σ ∈ (0, 1), [αmin, αmax] ⊂ (−∞, 0), and starting guess x0.
Set k = 0.
Step 1. Choose βk ∈ [αmin, αmax]
Step 2. Set αk = σ jβk where j ≥ 0 is the smallest integer

such that

f (xk+1) ≤ f max
k + (αk/2)‖xk+1 − xk‖2 where

xk+1 ∈ Q�(xk − gk/αk)

Step 3. If a stopping criterion is satisfied, terminate.
Step 4. Set k = k + 1 and go to step 1.

123

J Glob Optim (2016) 65:657–676 665

Note that the approximate Newton algorithm is monotone when the memory M = 1. If
M = 0, then the stepsize acceptance condition in Step 2 is satisfied for j = 0 and αk = βk .
Hence, when M = 0, there is no line search. To ensure that βk lies in the safe-guard interval
[αmin, αmax] when using the BB-approximation to the Hessian, it is common to take

βk = mid {αmin, α
BB
k , αmax},

where mid denotes median or middle. In the numerical experiments, αmin is large in mag-
nitude and αmax is close to 0, in which case the safe guards have no practical significance;
nonetheless, they enter into the convergence theory.

In the approximate Newton algorithm, we make a starting guess βk for the initial αk and
then increase αk until the line search acceptance criterion of Step 2 is fulfilled. We first show
that for a strongly concave function, the line search criterion is satisfied for j sufficiently
large, and the stepsize is uniformly bounded away from zero.

Proposition 3.2 If f is differentiable on a compact set � ⊂ R
n and for some μ < 0, we

have
f (y) ≤ f (x) + ∇ f (x)(y − x) + μ

2
‖y − x‖2 for all x and y ∈ �, (3.8)

then Step 2 in the approximate Newton algorithm terminates with a finite j , and with αk

bounded away from 0, uniformly in k. In particular, we have αk ≤ ᾱ := max(σμ/2, αmax) <

0.

Proof Since � is compact, the set Q�(xk − gk/αk) is nonempty for each k. If y ∈ Q�(xk −
gk/αk), then since Q�(xk − skgk) is set of elements in � farthest from xk − gk/αk , we have

‖y − (xk − gk/αk)‖2 ≥ ‖xk − (xk − gk/αk)‖2 = ‖gk‖2/α2
k .

Rearrange this inequality to obtain

∇ f (xk)(y − xk) + αk

2
‖y − xk‖2 ≤ 0 for all y ∈ Q�(xk − gk/αk). (3.9)

Substitute y = xk+1 and x = xk in (3.8) and in (3.9), and add to obtain

f (xk+1) ≤ f (xk) +
(

μ − αk

2

)
‖xk+1 − xk‖2

≤ f max
k +

(
μ − αk

2

)
‖xk+1 − xk‖2. (3.10)

If 0 > αk ≥ μ/2, then μ − αk ≤ αk . Hence, by (3.10), Step 2 must terminate whenever
αk ≥ μ/2. Since σ ∈ (0, 1), it follows that Step 2 terminates for a finite j . If Step 2 terminates
when j > 0, then σ j−1β < μ/2, which implies that αk = σ jβ < σμ/2. If Step 2 terminates
when j = 0, then αk ≤ αmax < 0. In either case, αk ≤ ᾱ. ��

In analyzing the convergence of the approximate Newton algorithm, we also need to
consider the continuity of the Q� operator.

Lemma 3.3 If � is a nonempty compact set, xk ∈ R
n is a sequence converging to x∗ and

yk ∈ Q�(xk) is a sequence converging to y∗, then y∗ ∈ Q�(x∗).

Proof Since yk ∈ � for each k and � is closed, y∗ ∈ �. Hence, we have

‖y∗ − x∗‖ ≤ max
y∈�

‖y − x∗‖.

123

666 J Glob Optim (2016) 65:657–676

If this inequality is an equality, then we are done; consequently, let us suppose that

‖y∗ − x∗‖ < max
y∈�

‖y − x∗‖ ≤ max
y∈�

{‖y − xk‖ + ‖xk − x∗‖} = ‖yk − xk‖ + ‖xk − x∗‖.

As k tends to ∞, the right side approaches ‖y∗ − x∗‖, which yields a contradiction. ��
The following theorem establishes convergence of the approximate Newton algorithm

when f is strongly concave.

Theorem 3.4 If f is continuously differentiable on a compact set � ⊂ R
n and (3.8) holds

for some μ < 0, then the sequence of objective values f (xk) generated by the nonmonotone
approximate Newton algorithm for memory M > 0 converge to a limit f ∗ as k tends to
infinity. If x∗ is any accumulation point of the iterates xk , then x∗ ∈ Q�(x∗ − g(x∗)/α) for
some α < 0, which implies that (3.5) and (3.6) hold.

Proof By Proposition 3.2, the stepsize generated by the approximate Newton algorithm
satisfies αk ≤ ᾱ < 0. By the line search criterion and the fact that αk < 0, f (xk+1) ≤ f max

k ,
which implies that f max

k+1 ≤ f max
k for all k. Since the f max

k are monotone decreasing and
bounded from below, there exists a limit f ∗. Since f is continuously differentiable on the
compact set �, it follows that f is uniformly continuous on �. Since the stepsize αk is
uniformly bounded away from zero, the same argument used in the proof of [33, Lem. 4]
shows that f (xk) converges to f ∗ and ‖xk+1 − xk‖ tends to zero.

Select any L satisfying ᾱ < L < 0 and let yk be given by

yk ∈ arg min

{
∇ f (xk)(y − xk) + L

2
‖y − xk‖2 : y ∈ �

}
. (3.11)

It follows that

∇ f (xk)(xk+1 − xk) + L

2
‖xk+1 − xk‖2 ≥

∇ f (xk)(yk − xk) + L

2
‖yk − xk‖2. (3.12)

Since xk+1 satisfies (3.2), we have

∇ f (xk)(yk − xk) + αk

2
‖yk − xk‖2 ≥

∇ f (xk)(xk+1 − xk) + αk

2
‖xk+1 − xk‖2. (3.13)

Add (3.12) and (3.13) to obtain

∇ f (xk)(xk+1 − xk) + L

2
‖xk+1 − xk‖2 ≥

∇ f (xk)(xk+1 − xk) + αk

2
‖xk+1 − xk‖2 + L − αk

2
‖yk − xk‖2.

Since 0 > L > ᾱ ≥ αk ≥ αmin > −∞ and ‖xk+1 − xk‖ approaches zero, we conclude that
‖yk − xk‖ tends to zero. Hence, if x∗ is an accumulation point of the iterates xk , then x∗ is an
accumulation point of the yk . Due to the equivalence between (3.2) and (3.3), it follows from
(3.11) that yk ∈ Q�(xk − gk/L). Since g is continuous, x∗ − g(x∗)/L is an accumulation
point of xk − gk/L . By Lemma 3.3, we have x∗ ∈ Q�(x∗ − g(x∗)/L), which completes the
proof. ��

123

J Glob Optim (2016) 65:657–676 667

Due to the equivalence between the inclusion x∗ ∈ Q�(x∗ −g(x∗))/α) and the necessary
condition (3.6) for a global optimum, the change Ek = ‖xk+1 − xk‖ associated with the
iteration xk+1 ∈ Q�(xk − gk/αk) could be used to assess convergence of the approximate
Newton algorithm. That is, if xk+1 = xk , then x∗ = xk satisfies the necessary condition (3.6)
for a global optimizer of (2.1). As observed in Theorem 3.4, Ek = ‖xk+1 − xk‖ tends to
zero. We now analyze the convergence rate of Ek .

Theorem 3.5 If f is continuously differentiable on a compact set � ⊂ R
n, (3.8) holds for

some μ < 0, and the memory M > 0, then there exists a constant c, independent of k, such
that

min{E j : 0 ≤ j < kM} ≤ c√
k
.

Proof Let �(k) denote the index associated with the M most recent function values:

�(k) = arg max{ f (x j) : max{0, k − M} < j ≤ k}.

In the approximate Newton algorithm, an acceptable step must satisfy the condition

f (xk+1) ≤ f max
k + (αk/2)E

2
k . (3.14)

If k = �(j + M) − 1, then

f (xk+1) = f (x�(j+M)) = f max
j+M . (3.15)

Since j < �(j + M), it follows that j − 1 < �(j + M) − 1 = k, or j ≤ k. During the proof
of Theorem 3.4, we observed that the f max

k sequence is monotone decreasing.
Consequently, f max

k ≤ f max
j since j ≤ k. Use this inequality and (3.15) in (3.14) to obtain

f max
j+M ≤ f max

j + (αk/2)E
2
k , (3.16)

where k = �(j + M) − 1. Choose m > 0 and sum the inequality (3.16) for j =
0, M, 2M, . . . , (m − 1)M . We have

f ∗ ≤ f max
mM ≤ f (x0) +

m∑

i=1

(αki /2)E
2
ki , (3.17)

where (i − 1)M ≤ ki < iM and f ∗ is the limit of the f max
k . Observe that

1

m

m∑

i=1

E2
ki ≥ min

1≤i≤m
Eki ≥ min

0≤i<mM
E2
i .

Combine this relationship with (3.17) and the bound αki ≤ ᾱ of Proposition 3.2 to obtain

min
0≤i<mM

E2
i ≤

(
2(f (x0) − f ∗)

|ᾱ|
)

1

m
.

Taking the square root of each side, the proof is complete. ��

123

668 J Glob Optim (2016) 65:657–676

4 Numerical experiments

We will investigate the performance of the gradient project and approximate Newton algo-
rithm relative to previously developed algorithms in the literature. In our experiments we use
the gradient projection algorithm with unit stepsize (GPU):

xk+1 ∈ P�(xk − gk).

And in our experiments with the approximate Newton algorithm, we employ the BB approx-
imation (3.7) for the initial stepsize βk . The memory is M = 50 and σ = 0.25. This version
of the approximate Newton algorithm is denoted GPBB. For the set� associated with sparse
PCA, we have

Tκ (x)/‖Tκ (x)‖ ∈ P�(x) and − Tκ (x)/‖Tκ (x)‖ ∈ Q�(x)

by Propositions 2.1 and 3.1 respectively.
We compare the performance of our algorithms to those of both the truncated power

method (Tpower) [35] and the generalized power method (Gpower) [23]. The conditional
gradient algorithm with unit step-size (ConGradU) proposed in [27] is equivalent to the
truncated power method. Both truncated and generalized power method are targeted to the
sparse PCA problem (1.2). The truncated power method handles the sparsity constraint by
pushing the absolute smallest components of the iterates to 0. The iteration can be expressed

xk+1 = Tκ (−gk)

‖Tκ (−gk)‖ . (4.1)

For comparison, an iteration of the gradient projection algorithm with unit step size GPU is
given by

xk+1 = Tκ (xk − gk)

‖Tκ (xk − gk)‖ , (4.2)

while the approximate Newton algorithm is

xk+1 = sgn(αk)
Tκ (xk − gk/αBB

k)

‖Tκ (xk − gkαBB
k)‖ , (4.3)

where sgn(α) = 1, 0,−1 depending on whether α > 0, α = 0, or α < 0 respectively. Since
the computation of αBB

k requires the gradient at two points, we start GPBBwith one iteration
of GPU. For the sparse PCA problem (1.2), the time for one iteration of any of these methods
is basically the time to multiply a vector by the covariance matrix �. Note that the monotone
approximate Newton algorithm could be more costly since the evaluation of an acceptable j
may require several evaluations of the objective function.

In the generalized power method, the sparsity constraint is handled using a penalty terms.
If γ > 0 denotes the penalty, then Gpowerl1 corresponds to the optimization problem

max‖x‖=1

√
x��x − γ ‖x‖1,

while Gpowerl0 corresponds to

max‖x‖=1
x��x − γ ‖x‖0.

The parameter γ needs to be tuned to achieve the desired cardinality; as γ increases, the cardi-
nality of the Gpower approximation decreases. In contrast, the cardinality is an explicit input

123

J Glob Optim (2016) 65:657–676 669

Table 1 Results on Pit props
data set

Method Parameters Explained
variance

GPBB κ = 6 0.8939

GPBB κ = 7 0.9473

GPU κ = 6 0.8939

GPU κ = 7 0.9473

Tpower(ConGradU) κ = 6 0.8939

Tpower(ConGradU) κ = 7 0.9473

Gpowerl1 γ = 0.5(⇔κ = 6) 0.8939

Gpowerl1 γ = 0.4(⇔κ = 7) 0.9473

Gpowerl0 γ = 0.2(⇔κ = 6) 0.8939

Gpowerl0 γ = 0.15(⇔κ = 7) 0.9473

parameter for either the truncated power method or for our algorithms; in many applications,
cardinality is often specified.

All experiments were conducted using MATLAB on a GNU/Linux computer with 8GB
of RAM and an Intel Core i7-2600 processor. For the starting guess in our experiments, we
follow the practice of the Tpower algorithm [35] and set x = ei , the i-th column of the
identity matrix, where i is the index of the largest diagonal element of the covariance matrix
�. Our numerical experiments are based on the sparse PCA problem (1.2). We measure the
quality of the solution to (1.2) computed by any of the methods using the ratio xT�x/yT�y
where x is the sparse first principal component computed by any of the algorithms for (1.2)
and y is the first principal component (a solution of (1.1)). This ratio is often called the
proportion of the explained variance.

4.1 Pit props dataset

This dataset [20] contains 180 observations with 13 variables, and a covariance matrix � ∈
R13×13. This is a standard benchmark dataset for Sparse PCA algorithms.We consider κ = 6
or 7, and we adjust the value of γ to achieve the same sparsity in Gpower. The last column of
Table 1 gives the proportion of the explained variance. Observe that all the methods achieve
essentially the same proportion of the explained variance.

We also considered multiple sparse principal components for this data set and got the
same results as those obtained in Table 2 of [36] for the Tpower and PathSPCA algorithms.
Similarly, for the lymphoma data set [1] and the Ramaswamy data set [28], all methods
yielded the same proportion of explained variance, although the value of γ for Gpower
needed to be tuned to achieve the specified cardinality.

4.2 Randomly generated data

In the next set of experiments, we consider randomly generated data, where � = ATA
with each entry of A ∈ R

m×n generated by a normal distribution with mean 0 and standard
deviation 1. For randomly generated matrices, we can study the performance as either m or
κ change. Each result that we present is based on an average over 100 randomly generated
matrices. In Fig. 2 we plot the proportion of the explained variance versus cardinality for
m = 250 and n = 500. Observe that GPBB yields a significantly better objective value

123

670 J Glob Optim (2016) 65:657–676

0 100 200 300 400 500
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Random data, m=250, n=500.

Cardinality

P
ro

po
rt

io
n

of
 E

xp
la

in
ed

 V
ar

ia
nc

e

GPBB
Tpower
GPU

Fig. 2 Explained variance versus cardinality for random data set

as the cardinality decreases when compared to either GPU or ConGradU, while GPU and
ConGradU have essentially identical performance. Even though all the algorithms seem to
yield similar results in Fig. 2 as the cardinality approaches 500, the convergence of the
algorithms is quite different. To illustrate this, let us consider the case where the cardinality
is 500. In this case where κ = n, the sparse PCA problem (1.2) and the original PCA problem
(1.1) are identical, and the solution of (1.1) is a normalized eigenvector associated with the
largest eigenvalue λ1 of �. Since the optimal objective value is known, we can compute the
relative error

∣∣∣λexact1 − λ
approx
1

∣∣∣
∣∣∣λexact1

∣∣∣
,

where λ
approx
1 is the approximation to the optimal objective value generated by any of the

algorithms. In Fig. 3 we plot the base 10 logarithm of the relative error versus the iteration
number. Observe that GPBB is able to reduce the relative error to the machine precision near
10−16 in about 175 iterations, while ConGradU and GPU have relative error around 10−3

after 200 iterations. To achieve a relative error around 10−16, ConGradU and GPU require
about 4500 iterations, roughly 25 times more than GPBB.

Despite the very nonmonotone behavior of the GPBB iterates, the convergence is rela-
tively fast. The results for the explained variance in Fig. 2 were obtained by running either
ConGradU or GPU for 6000 iterations, while GPBB was run for 200 iterations. Hence, the
better objective values obtained by GPBB in Fig. 2 were due to the algorithm converging to
a better solution, rather than to premature termination of either GPU or ConGradU.

In Fig. 4 we plot the proportion of the explained variance versus the iteration number
when m = 250, n = 500, and the cardinality κ = 50 in the random data set. When we
plot the function value as in Fig. 4, it is more difficult to see the nonmonotone nature of the
convergence for GPBB. This nonmonotone nature is clearly visible in Fig. 3 where we plot

123

J Glob Optim (2016) 65:657–676 671

0 50 100 150 200
−16

−14

−12

−10

−8

−6

−4

−2

0
Random data, m=250, n=500, cardinality=500.

Iteration Number

LO
G

10
 (

E
rr

or
)

GPBB

Tpower

GPU

Fig. 3 A plot of the base 10 logarithm of the relative error versus iteration number for the random data set
with m = 250 and cardinality κ = 500

0 50 100 150 200
0.4

0.45

0.5

0.55

0.6

0.65
Random data, m=250, n=500, cardinality=50.

Iteration Number

P
ro

po
rt

io
n

of
 E

xp
la

in
ed

 V
ar

ia
nc

e

GPBB
Tpower
GPU

Fig. 4 Explained variance versus iteration number for cardinality 50 in the random data set

the error instead of the function value. In Fig. 5 we show how the explained variance depends
on m. As m increases, the explained variance associated with GPBB becomes much better
than that of either ConGradU or GPU.

In Fig. 6 we compare the relative error of GPBB for various choices of the memory M .
Observe that the monotone scheme where M = 1 is slowest, while M = 50 gives better
performance than that of either a small M or M = 0 where xk+1 ∈ Q�(xk − gk/αBB

k).

123

672 J Glob Optim (2016) 65:657–676

0 100 200 300 400 500
0.2

0.25

0.3

0.35

0.4

0.45

0.5
Random data, n=500, cardinality=20

m

P
ro

po
rt

io
n

of
 E

xp
la

in
ed

 V
ar

ia
nc

e

GPBB
Tpower
GPU

Fig. 5 Explained variance versus m for cardinality 20 in the random data set

0 50 100 150 200

Iteration Number

-15

-12

-9

-6

-3

0

LO
G

10
 (

E
rr

or
)

Random data, m=250, n=500, cardinality=500.

GPBB+memory=0 (no linesearch)
GPBB+memory=6
GPBB+memory=50
GPBB+memory=1 (monotone)

Fig. 6 A plot of the base 10 logarithm of the relative error versus iteration number for the random data set
with m = 250, cardinality κ = 500, and various choices for the memory in GPBB

Note that the running time of the monotone scheme was about 4 times larger than that of the
nonmonotone schemes since we may need to test several choices of αk before generating a
successful monotone iterate.

To compare with Gpower, we need to choose a value for γ . We first consider a simple
casem = 20, n = 20 and we use the “default” seed in MATLAB to generate this matrix. The

123

J Glob Optim (2016) 65:657–676 673

Table 2 Simple random dataset Method Cardinality Explained
variance

GPBB κ = 5 0.8193

Tpower(ConGradU) κ = 5 0.7913

Gpowerl1 γ = 0.18(⇔ κ = 5) 0.7914

Gpowerl0 γ = 0.045(⇔ κ = 5) 0.7914

Table 3 Random data set,
m = 250, n = 500

Method Cardinality Explained
variance

GPBB κ = 100 0.7396

GPBB κ = 120 0.7823

Tpower(ConGradU) κ = 100 0.7106

Tpower(ConGradU) κ = 120 0.7536

Gpowerl1 γ = 0.075 (average
κ = 99)

0.7288

Gpowerl1 γ = 0.0684 (average
κ = 120)

0.7679

Gpowerl0 γ = 0.0078 (average
κ = 100)

0.7129

Gpowerl0 γ = 0.0066 (average
κ = 120)

0.7557

algorithms are used to extract the first principal component with κ = 5, and with γ tuned to
achieve κ = 5. The results in Table 2 indicate that Gpower performed similar to Tpower, but
not as well as GPBB.

In the next experiment, we consider 100 randomly generated matrices with m = 250 and
n = 500, and with the parameter γ in Gpower chosen to achieve an average cardinality near
100 or 120. As seen in Table 3, Gpowerl0 achieves similar values for the proportion of the
explained variance as Tpower, while Gpowerl1 achieves slightly better results and GPBB
achieves the best results.

4.3 Hollywood-2009 dataset, densest k-subgraph (DkS)

Given an undirected graph G = (V, E) with vertices V = {1, 2, . . . , n} and edge set E , and
given an integer k ∈ [1, n], the densest k-subgraph (DkS) problem is to find a set of k vertices
whose average degree in the subgraph induced by this set is as large as possible. Algorithms
for findingDkS are useful tools for analyzing networks.Many techniques have been proposed
for solving this problem including [5,24,34]. Mathematically, DkS is equivalent to a binary
quadratic programming problem

max{πTAπ : π ∈ R
n, π ∈ {0, 1}n, ‖π‖0 = k}, (4.4)

where A is the adjacency matrix of the graph; ai j = 1 if (i, j) ∈ E , while ai j = 0 otherwise.
We relax the constraints π ∈ {0, 1}n and ‖π‖0 = k to ‖π‖ = √

k and ‖π‖0 ≤ k, and
consider the following relaxed version of (4.4)

123

674 J Glob Optim (2016) 65:657–676

Table 4 Hollywood data set

Method Cardinality Density πTAπ/k Ratio
πTAπ/k

λ

GPBB k = 500 379.40 0.1688

GPBB k = 600 401.22 0.1785

GPBB k = 700 593.24 0.2639

GPBB k = 800 649.67 0.2891

GPBB k = 900 700.38 0.3116

GPBB k = 1000 745.95 0.3319

Tpower(ConGradU) k = 500 190.11 0.0846

Tpower(ConGradU) k = 600 401.21 0.1785

Tpower(ConGradU) k = 700 436.53 0.1942

Tpower(ConGradU) k = 800 649.67 0.2891

Tpower(ConGradU) k = 900 700.44 0.3116

Tpower(ConGradU) k = 1000 745.95 0.3319

max{πTAπ : π ∈ R
n, ‖π‖ = √

k, ‖π‖0 ≤ k}. (4.5)

After a suitable scaling of π , this problem reduces to the sparse PCA problem (1.2).
Let us consider the Hollywood-2009 dataset [6,7], which is associated with a graph whose

vertices are actors in movies, and an edge joins two vertices whenever the associated actors
appear in a movie together. The dataset can be downloaded from the following web site:

http://law.di.unimi.it/datasets.php

The adjacency matrix A is 1139905 × 1139905. In order to apply Gpower to the relaxed
problem, we first factored A+cI into a product of the form RTR using a Cholesky factoriza-
tion, where c > 0 is taken large enough to make A + cI positive definite. Here, R plays the
role of the data matrix. However, one of the steps in the Gpower code updates the data matrix
by a rank one matrix, and the rank one matrix caused the updated data matrix to exceed the
200 GB memory on the largest computer readily available for the experiments. Hence, this
problem was only solved using Tpower and GPBB. Since the adjacency matrix requires less
than 2 GB memory, it easily fit on our 8 GB computer.

InTable 4,we compare the density valuesπTAπ/k obtained by the algorithms. In addition,
we also computed the largest eigenvalue λ of the adjacency matrix A, and give the ratio of the
density to λ. Observe that in 2 of the 6 cases, GPBB obtained a significantly better value for
the density when compared to Tpower, while in the other 4 cases, both algorithms converged
to the same maximum.

5 Conclusions

The gradient projection algorithm was studied in the case where the constraint set � may
be nonconvex, as it is in sparse principal component analysis. Each iteration of the gradient
projection algorithm satisfied the condition ∇ f (xk)(xk+1 − xk) ≤ 0. Moreover, if f is
concave over conv(�), then f (xk+1) ≤ f (xk) for each k. When a subsequence of the
iterates converge to x∗, we obtain in Theorem 2.6 the equality ∇ f (x∗)(y∗ − x∗) = 0 for

123

http://law.di.unimi.it/datasets.php

J Glob Optim (2016) 65:657–676 675

some y∗ ∈ P�(x∗ − s∗g(x∗)) where P� projects a point onto � and s∗ is the limiting step
size. When � is convex, y∗ is unique and the condition ∇ f (x∗)(y∗ − x∗) = 0 is equivalent
to the first-order necessary optimality condition at x∗ for a local minimizer.

The approximate Newton algorithm with a positive definite Hessian approximation αk

reduced to the projected gradient algorithm with step size 1/αk . On the other hand, when
αk < 0, as it is when the objective function is concave and the Hessian approximation
is computed by the Barzilai–Borwein formula (3.7), the iteration amounts to taking a step
along the positive gradient, and then moving as far away as possible while staying inside
the feasible set. In numerical experiments based on sparse principal component analysis,
the gradient projection algorithm with unit step size performed similar to both the truncated
power method and the generalized power method. On the other hand, in some cases, the
approximate Newton algorithmwith a Barzilai–Borwein step and a nonmonotone line search
could converge much faster to a better objective function value than the other methods.

References

1. Alizadeh, A.A., et al.: Distinct types of diffuse large b-cell lymphoma identified by gene expression
profiling. Nature 403, 503–511 (2000)

2. Barzilai, J., Borwein, J.M.: Two point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)
3. Beck, A., Teboulle, M.: Mirror descent and nonlinear projected subgradient methods for convex opti-

mization. Oper. Res. Lett. 31, 167–175 (2003)
4. Bertsekas, D.P.: Projected Newton methods for optimization problems with simple constraints. SIAM J.

Control Optim. 20, 221–246 (1982)
5. Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting high log-densities: an

o(n1/4) approximation for densest k-subgraph. In: Proceedings of the Forty-Second ACM Symposium
on Theory of Computing, ACM, pp. 201–210 (2010)

6. Boldi, P., Rosa, M., Santini, M., Vigna, S.: Layered label propagation: A multiresolution coordinate-free
ordering for compressing social networks. In: Proceedings of the 20th International Conference onWorld
Wide Web, ACM Press (2011)

7. Boldi, P., Vigna, S.: The WebGraph framework I: Compression techniques. In: Proceedings of the
Thirteenth International World Wide Web Conference (WWW 2004), Manhattan, USA, ACM Press,
pp. 595–601 (2004)

8. Cadima, J., Jolliffe, I.T.: Loading and correlations in the interpretation of principle compenents. J. Appl.
Stat. 22, 203–214 (1995)

9. Candes, E., Wakin, M.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25, 21–30
(2008)

10. Chen, S.S., Donoho, D.L., Saunders,M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput.
20, 33–61 (1998)

11. Clarkson, K.L.: Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm. ACM Trans.
Algorithms (TALG) 6, 63 (2010)

12. d’Aspremont, A., Bach, F., Ghaoui, L.E.: Optimal solutions for sparse principal component analysis. J.
Mach. Learn. Res. 9, 1269–1294 (2008)

13. Donoho, D.L.: Compressed sensing. IEEE Trans. Inform. Theory 52, 1289–1306 (2006)
14. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32, 407–499 (2004)
15. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Nav. Res. Logist. Q 3, 95–110 (1956)
16. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’smethod. SIAM

J. Numer. Anal. 23, 707–716 (1986)
17. Hager, W.W., Zhang, H.: A new active set algorithm for box constrained optimization. SIAM J. Optim.

17, 526–557 (2006)
18. Hazan, E., Kale, S.: Projection-free online learning, In: Langford, J., Pineau, J. (eds.) Proceedings of the

29th International Conference on Machine Learning, Omnipress, pp. 521–528 (2012)
19. Jaggi, M.: Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In: Dasgupta, S.,

McAllester, D. (eds.) Proceedings of the 30th International Conference on Machine Learning, vol. 28,
pp. 427–435 (2013)

20. Jeffers, J.: Two case studies in the application of principal components. Appl. Stat. 16, 225–236 (1967)

123

676 J Glob Optim (2016) 65:657–676

21. Jenatton, R., Obozinski, G., Bach, F.: Structured sparse principal component analysis. In: International
Conference on Artificial Intelligence and Statistics (AISTATS) (2010)

22. Jolliffe, I.T., Trendafilov, N.T., Uddin, M.: A modified principal component technique based on the
LASSO. J. Comput. Graph. Stat. 12, 531–547 (2003)

23. Journée, M., Nesterov, Y., Richtárik, P., Sepulchre, R.: Generalized power method for sparse principal
component analysis. J. Mach. Learn. Res. 11, 517–553 (2010)

24. Khuller, S., Saha, B.: On finding dense subgraphs, In: Albers, S., Marchetti-Spaccamela, A., Matias, Y.,
Nikoletseas, S., Thomas, W. (eds.) Automata, Languages and Programming, pp. 597–608. Springer, New
York (2009)

25. Lacoste-Julien, S., Jaggi, M., Schmidt, M., Pletscher, P.: Block-coordinate Frank-Wolfe optimization for
structural SVMs. In: Dasgupta, S., McAllester, D. (eds.) Proceedings of the 30th International Conference
on Machine Learning, vol. 28, pp. 53–61 (2013)

26. Luss, R., Teboulle, M.: Convex approximations to sparse PCA via Lagrangian duality. Oper. Res. Lett.
39, 57–61 (2011)

27. Luss,R., Teboulle,M.:Conditional gradient algorithms for rank-onematrix approximationswith a sparsity
constraint. SIAM Rev. 55, 65–98 (2013)

28. Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, C.-H., Angelo, M., Ladd, C., Reich, M.,
Latulippe, E., Mesirov, J.P., et al.: Multiclass cancer diagnosis using tumor gene expression signatures.
Proc. Natl. Acad. Sci. USA 98, 15149–15154 (2001)

29. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
30. Sriperumbudur, B.K., Torres, D.A., Lanckriet, G.R.: A majorization-minimization approach to the sparse

generalized eigenvalue problem. Mach. Learn. 85, 3–39 (2011)
31. Takeda, A., Niranjan,M., Gotoh, J.-Y., Kawahara, Y.: Simultaneous pursuit of out-of-sample performance

and sparsity in index tracking portfolios. Comput. Manag. Sci. 10, 21–49 (2013)
32. van den Berg, E., Friedlander, M.P.: Probing the pareto frontier for basis pursuit solutions. SIAM J. Sci.

Comput. 31, 890–912 (2009)
33. Wright, S.J., Nowak, R.D., Figueiredo, M.A.T.: Sparse reconstruction by separable approximation. IEEE

Trans. Signal Process. 57, 2479–2493 (2009)
34. Ye, Y., Zhang, J.: Approximation of dense-n/2-subgraph and the complement of min-bisection. J. Glob.

Optim. 25, 55–73 (2003)
35. Yuan, X.-T., Zhang, T.: Truncated power method for sparse eigenvalue problems. J. Mach. Learn. Res.

14, 899–925 (2013)
36. Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. J. Comput. Graph. Stat. 15,

265–286 (2006)

123

	Projection algorithms for nonconvex minimization with application to sparse principal component analysis
	Abstract
	1 Introduction
	2 Gradient projection algorithm
	3 Approximate Newton algorithm
	4 Numerical experiments
	4.1 Pit props dataset
	4.2 Randomly generated data
	4.3 Hollywood-2009 dataset, densest k-subgraph (DkS)

	5 Conclusions
	References

