Numerical Analysis in Optimal Control

William W. Hager

Abstract. In this paper we explain and exemplify how one goes about ana-
lyzing the convergence of algorithms and discrete approximations in optimal
control.

1. Introduction

The techniques used to analyze the convergence of penalty methods, multiplier
methods, sequential quadratic programming methods, and discrete approximations
in optimal control are closely related. In each case, we wish to approximate a local
minimizer w* of an optimization problem, where the approximation is the solution
to a problem of the form:

Find w € X such that 7(w) € F(w). (1)

Here X is a Banach space, 7 : X — ), Y is a linear normed space, and F : X — 2Y.
Think of (1) as the first-order optimality system associated with the numerical
approximating problem.

Typically, the solution w* of the original optimization problem is not a so-
lution of (1), rather it is an approximate solution. Let & be chosen as small as
possible so that

T(w*)+ 68 e F(w). (2)

Given that w* is almost a solution of (1), we try to show that (1) has a solution
w close to w* which satisfies an estimate of the form ||w — w*|| < ¢||d]|, where ¢
is a constant independent of 4 for & sufficiently small, and || - || denotes the norm
in the appropriate space.

An existence result for (1), together with an estimate for the distance to w*,
is gotten from a generalization of the implicit function theorem. In this general-
ization, the usual surjectivity property for the derivative of 7 at w* is replaced
by a Lipschitz property for an associated linearized problem of the form:

Find w € X such that £L(w) + = € F(w). (3)
Here £ is a linear operator and = € ) stands for a “parameter.”
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In the typical first-order Taylor expansion, we would approximate 7 by
T(w*)+ T'(w*)(w —w*), in which case £ would be 7'(w*). If (3) has a unique

solution for o near w* = T (w*) — T'(w*)(w*) satisfying
l[w1 —wal| < Ay — 7y,

where w = w; is the solution of (3) corresponding to « = 7;, then under suitable
assumptions, (1) has a solution w, and the distance from w to w* is very nearly
bounded by A||8]|. The precise estimate, given shortly, involves an additional factor
1/(1 — Xe) where € is typically small. The bound A||8|| for the distance from w to
w* yields an error estimate for the numerical algorithm that (1) represents.

2. Abstract Estimate

The following result, given in a slightly more general form in [2, Thm. 3.1], is a
version of the implicit function theorem for inclusions alluded to in the previous
section. See [3, 4, 5, 10] for other related results.

Theorem 2.1. Let X be a Banach space and let Y be a linear normed space with
the norms in both spaces denoted ||-||. Let F : X v 2Y let L : X v Y be a bounded
linear operator, and let T : X — Y with T continuously Frechét differentiable in
B, (w*) for some w* € X and r > 0, where B,(w*) is the ball with center w* and
radius r. Suppose that the following conditions hold for some § € Y and scalars ¢,
A, and o > 0:

(P1) T(w*)+d € F(w*).

(P2) ||IVT(w) = L|| <€ for all w € B, (w?*).

(P3) The map (F — L)~ is single-valued and Lipschitz continuous in B, (w*),
7 = (T — L)(w"), with Lipschitz constant \.

Ifex< 1, er <o, ||0]| <o, and
l18]] < (1= Ae)r/A,

then there exists a unique w € B,(w*) such that T(w) € F(w). Moreover, we
have the estimate

. A
w =Wl < =113 (1)

Proof. Let us define ®(w) = (F — £)~1(7T(w) — £(w)). By a Taylor expansion
around w*, with integral remainder term, we have

T(w)—L(w)=T(w")—L(w") +/0 (VT (sw+ (1—s)w*)— L)ds (w —w").
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Hence, (P2) implies that |7 (w) — L(w) — || < er for all w € B, (w*). By (P3),
it follows that for all wi, wy € B, (w*),

[|®(w1) — D (w2l I(F = L)"HT = L)(w1) = (F = L)"H(T = L) (w)||
AT = L) (w1) = (T = L) (ws)]|

Ae||lwy — wa|.

IA A

Since Ae < 1, @ is a contraction on B,(w*). Since ||d|| < o, we conclude that
(T — L)(w*) + 8 € Bo(m*). By (P3), (F — £)~! is single-valued on B, (#*), and
by (P1) we have

w* = (F = L)"'[(T - £)(w*) + 4]
Tt follows from (P2) and (P3) that
l|®(w) — w7l I(F = L) (T = L)(w)] = (F = £)"'(T = L)(w") + 8]

< AT = £)(w) = (T = L)(w™) = 4]
< Alelfw = wr[+ 19]]) (5)
< Aler+[ol1)

for all w € B,(w*). The condition A||d]|/(1 —e€A) < rimplies that A(er+||8]]) < r,
and hence, ||®(w)—w*|| < r. Since ® maps B, (w*) into itself and @ is a contraction
on B, (w*), the contraction mapping principle yields the existence of a unique fixed
point w € B, (w*). Since ||®(w) — w*|| = ||w — w*|| for this fixed point, (5) gives
(4). O

Theorem 2.1 says roughly
Consistency + Stability = Convergence,

where consistency is assumption (P1) and the bounds on the norm of 4, stability is
assumption (P3) and the bound on the Lipschitz constant A for the linearization,
and convergence is (4).

3. Penalty Methods

We first illustrate the analysis using the penalty approximation to the following
control problem:

minimize C’(x,u):/o e(x(t),u(t))dt (6)

subject to  x(¢) = £(x(¢),u(t)), u() €U a.e. te€][0,1],
x(0)=a, xeWb>® uelL>,

where the state x(t) € R”, x stands for d%x, the control u(t) € R™, f : R"xR™
R ¢ :R"xR™— R,and U C R™ is closed and convex. Of course, LP denotes
the usual Lebesgue space of measurable functions with p-th power integrable,

and WP is the Sobolev space consisting of vector-valued functions whose j-th
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derivative lies in LP for all 0 < j < m. Assume that (6) has a local minimizer
(x*,u*) and that ¢ and f are twice continuously differentiable.

Enforcing the differential equation constraint with a quadratic penalty term
involving a “large” penalty parameter 7, we are led to the following approximating
problem:

minimize C(x,u)+ %(f(x, u) — x,f(x,u) — %) (7)
subject to u(t) €U a.e.t€]0,1],

x(0)=a, xeWb>® uelL>.

Instead of studying (7) directly, we examine the first-order optimality system as-
sociated with (7):

Y+ Vo H(x,u,9p) = 0, (1)=0, (8)
x—f(x,u)+/r = 0, x(0)=a, (9)
Vu(H(x(t),u(t),¥(t))(v—-—u(t)) > 0 forallvel. (10)

Here H is the Hamiltonian defined by H(x,u, ) = ¢(x,u) + 1/1Tf(x, u). The first
two equations combine to give the usual Euler equation describing a minimizer of
(7) over x, assuming u is fixed. The last inequality describes a minimizer over u,
assuming x is fixed. Letting w denote the triple (x,u, ), the system (8)—(10) of
equalities and inequalities corresponds to the abstract inclusion (1). Note that the
inequality (10) ie equivalent to the inclusion V, H(x,u,1) € A'(u) where

Nu)={xelL”:{(x,v—u)y>0forallve L* v(t) €U a.e t€[0,1]}.

If 4/* is the costate variable given by the Pontryagin minimum principle,
then w* = (x*,u* ") does not satisfy (9) due to the 1/7 term. That is, x*
and u* satisfy the state equation x = f(x,u), not (9). Hence, the term v*/r
would be put in the § of (2): § = (0, —",0)/r. With this choice for §, we have
T(w*)+ 68 € F(w*).

To apply Theorem 2.1, we need to analyze a linearization of (8)—(10). The
linearization is gotten by neglecting the penalty term (this term is small when the
penalty is large), and differentiating the other terms. More precisely, the linearized
problem is the following:

Pp+ATp+Qx+Su+a = 0, ¥(1)=0,
Lx,u)+8 = 0, x(0)=a,
B +S'x+Ru+~vy € N(u),

where # = (a, 3,4) is the parameter, L(x,u) = x — Ax — Bu is the linearized
system dynamics, and

A(l) = Vo E(x(1),u(t), B(l) = Vuf(x"(1), 0" (1)),
Q(t) = Var H(W' (1)), R(t) = VuuH (W' (1)), S(t) = VeuH (W (1)).
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To apply Theorem 2.1, we need to verify (P3), which amounts to proving
that the linearized problem has a solution depending Lipschitz continuously on
the parameter. A natural space for w = (x,u,%) is X' = Wol’oo x L% x Wll’oo,
where

Wy® ={xe W' :x(0) =a} and W)™ ={$eW"™ (1) =0}.

Hence, a natural space for the image of 7 is Y = L, and (P3) amounts to a reg-
ularity property for the linearized problem: For each 71 and 73 € L, there exist
associated solutions, (x1,u1,;) and (xz2,us, ) respectively, of the linearized
problem such that

llx1 — xa|lwree + |01 —uz||pee + ||t — Psllwree <A1 — 7af[re.

It turns out that this Lipschitz property holds when the matrices in the
linearized problem possess a coercivity property (that also arises in second-order
sufficient optimality conditions): There exists a constant a > 0 such that

B(x,u) = (Qx,x) + 2(Su, x) + (Ru,u) > afjul|?, forall (x,u) € M,
where
M={(x,u): xe WH? ue L? x = Ax + Bu,
x(0)=0,ut) eU—-U a.e. t €0,1]}.

Notice that the coercivity condition is formulated in L? spaces while the original
control problem is formulated in L°° spaces. In the literature, this difference in
spaces 1s called the 2-norm discrepancy. We need to formulate the original problem
in L™, to ensure continuity of the functions defining the problem, but the coercivity
condition should be formulated in L?, ensuring Lipschitz stability for the linearized
problem. For a proof of Lipschitz stability for the linearized control problem, see
[10]

Next, we verify the conditions of Theorem 2.1. First, choose € small enough
that eA < 1; then choose r small enough and 7 large enough that (P2) holds;
finally, choose 7 large enough that

181 = llep™ ([ /7 < (1 = eA)r/A.

Since o is 400, all the assumption of Theorem 2.1 hold. Hence, (8)—(10) has a
solution (x;,u,,,) and

A
l[%r = x"[lwroe + llar —0[[zoe + b, = 47 [lwroe < —=——3 147l

—1(l—€X)
As 7 tends to infinity, the solution of the penalized problem approaches the original
local minimizer.

In the final phase of the analysis, it should be shown that this solution of
(8)—(10) is a local minimizer of (7). This is done by expanding the cost function
in a Taylor series. The first-order terms either vanish by (8) or are nonnegative
by (10), and the second-order term is positive when the coercivity condition holds
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(see [10, Thm. 3] for the details). Penalty methods applied to terminal constraints
are studied in [11].

4. SQP Methods

If (xg,ug, 1) is an approximation to a solution of the control problem (6), then
the next SQP iterate (Xg41,Ur41,%5,1) is a solution, and the associated costate
variable, for the linear-quadratic problem

1
minimize (Vypr,x — xg) + (Vygr, u—ug) + §Bk (x —xk,u—uy) (11)

subject to  Li(x —xp,u—ug) =f; —xx, ult) €U a.e t€]0,1],
x(0)=a, xeWh™ uel>,

where the k subscript means that the associated expression is evaluated at x,
ug, and . A bit more smoothness is needed in this section; for example, ¢ and
f € C3. As with the penalty method, we apply Theorem 2.1 to the first-order
optimality conditions for (11). These conditions are the following:

P+ ALY+ Vopr + Qe(x — xx) + Sp(u—wg) = 0, $(1) =0,
Lip(x—xp,u—ug) = fp —xk, x(0)=a,
BL/;—{—Vugok+Sg(x—xk)+Rk(u—uk) € N(u).

The matrices here are the same as those of Section 3 except that they are evaluated
at wi = (xg,ug, ) instead of at w* = (x*,u*,¢").

The linearized problem is exactly the same as that used in the previous
section; hence, when the coercivity property is satisfied, (P3) of Theorem 2.1 holds
with o = +00. By taking wy close to w*, we can make ||[VT (w) — L[| in (P2) as
small as we like. To evaluate the & of (2), we insert w = w* = (x*,u*,4") in the
left side of the first-order optimality system; by inspection, we see that (P1) holds
for the following choice:

P+ Vo H (x5, w97 ) + Qe (X* — xi) + Sg(u” — )
6=— X" — 1 — Ap(x* —x5) — Bi(u* —uyg)
VuH (x5, 0, 9") + ST (x* — xi) + Rg(u* —ug) — Vo, H(x*, u*,47")
By Theorem 2.1, the first-order optimality system has a solution
Wiyl = (Xpq1, Upg1, Ypiq),

and the distance from wy 41 to w* is bounded by a constant times ||4]|. Expanding
the terms of & in a Taylor series around x*, u*, and 4", everything cancels but
the quadratic terms to give us the following estimate:

lIxa41 — X[ + [[Wegs — 0¥|[Loe + ||ty — P |[wre <cl|wp — wH|7 o,
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where ¢ is independent of wy = (xg,ug, 1) in a neighborhood of w*. In [7] we
analyze problems that also include inequality control constraints and endpoint
constraints on the state.

5. Discrete Approximations

For simplicity, we consider the discretization of the following unconstrained control
problem:

minimize C(x(1)) (12)
subject to  x(¢) = f(x(¢),u(t)) a.e. t€][0,1],
x(0)=a, xeWbh® uelL>,

where C': R" — R. We study control constrained problems in [5, 8], state con-
strained problems in [2], and mixed control/state constraints in [6]. Suppose the
differential equation in (12) is solved using a Runge-Kutta integration scheme. For
convenience, we consider a uniform mesh of width h = 1/N where N is a natural
number, and we let x; denote the approximation to x(t;) where t; = kh. An
s-stage Runge-Kutta scheme [1] with coefficients a;; and b;, 1 <1,j <'s, is given
by

X}, = Z bif (yi, uri), (13)
i=1
where

S
vi=xi+hy_aif(yj,ug), 1<i<s, (14)
j=1

and prime denotes, in this discrete context, the forward divided difference:
Xp+1 — Xg
—

In (13) and (14), y; and uy; are the intermediate state and control variables
on the interval [tg,tg+1]. The dependence of the intermediate state variables on k

is not explicit in our notation even though these variables have different values on
different intervals. With this notation, the discrete control problem is the following:

X, =

minimize C(xy) (15)
subject to  x}, = > i_, bif(yi, uki), X0 =a,
yi:xk—l—hzjzlaijf(yj,ukj), ISZ'SS, OSkSN—l

We apply Theorem 2.1 to the first-order optimality system (Kuhn-Tucker
conditions) associated with (15). Suppose that a multiplier A; is introduced for
the i-th intermediate equation (14) in addition to the multiplier 4, for the
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equation (13). Taking into account these additional multipliers, the Kuhn-Tucker
conditions are the following:

1/’k—1/’k+1 = Z’\i: Yy =VC(xn), (16)

i=1
hVoE (v ukg) (bjhgrs + D aiiAi) = A, (17)
i=1
Vauf (y7, k) (bithrrs + > aiAi) = 0, (18)
i=1

1<j<sand 0<k<N —1.

To apply Theorem 2.1, we should insert the continuous solution in these dis-
crete first-order conditions and estimate a residual. Note though that the discrete
first-order conditions seem to have no connection to the continuous first-order con-
dition, the Pontryagin minimum principle. However, we first showed in [12] and
more recently in [9], that when b; # 0 for each j, the first-order conditions make
more sense (and are more useful) when reformulated in terms of the variables X

defined by

~ aj; )
Xj:¢k+1+Z#Ai: 1<j<s. (19)
i=1 7
With this definition, (16) and (17) are equivalent to the following scheme:
PYrpr = Yp—h > biVaf(yi,ue) x;, ¥y = VC(xn), (20)
i=1
- _ by — bjay;

Xi = i—hY a4 Vaf(yjwg) x;,  aiy = —= (2

i=1 '

This is a Runge-Kutta scheme applied to the adjoint equation, but the coefficients
of this scheme are typically different from those of the original scheme.

This reformulation of the first-order optimality system is important not only
for the analysis of the discretization, but also for numerical computations since it
provides an efficient way to compute the gradient of the discrete cost function with
respect to the control. Let u € R*™Y denote the vector of intermediate control
values for the entire interval [0, 1], and let C'(u) denote the value C'(xn) of the
discrete cost function associated with these controls. From the results of [13], we
have

Vukj C(u) = hijuf(yj, ukj)TXj, (22)
where the intermediate values for the discrete state and costate variables are gotten
by first solving the discrete state equations (13) and (14), for k=0,1,..., N—1,

using the given values for the controls, and then using these computed values for
both the state and intermediate variables in (20) and (21) when computing the
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Order | Conditions (¢; = 2;21 a;;, dj = Zle biaij)

113 =1

Sdi=3

Sedi=1 She=l Tdfh=

Sobicd = %, S d3 /b = %, > bicia;jd; /by = 25—4, S eid? /by = 11—2,
Ydiaije; = 55, Ybiciaie; =3, Ydic} =55, Y diaijdi/b =g

Table 1. Order of a Runge-Kutta discretization for optimal control.

= W N

values of the discrete costate for k = N — 1, N —2, ..., 0. Thus the discrete state
equation is solved by marching forward from k& = 0, while the discrete costate
equation is solved by marching backward from £ = N — 1.

In applying Theorem 2.1 to the first-order order conditions, we need to esti-
mate the residual 8, and we need to analyze a linearized problem. Our linearization
corresponds to the choice

X, — Agxp — Brugb, 0<k<N -1

P + Al + Qrxp + Spugb, 0< k<N -1
bj(Rpug; + Spxi + Bithyy), 1<j<s 0<k<N -1
Py + Vxn

Here V = V2(C(x*(1)), and the various matrices are the same as those introduced
in Section 3 except that they are evaluated at x*(¢g), u*(¢x), and ¥ (¢5). In [8,
Lem. 6.1], we show that when the coercivity assumption holds, b; > 0 for each
j, and ijl b; = 1, then the linearized problem is invertible, with norm of the
inverse bounded by a constant independent of h for A sufficiently small.

To analyze the residual §, we need to determine the order of the Runge-Kutta
schemes (13), (14), (20), and (21), where u is chosen so that V,f(y;, ukj)TXj =0.
In Table 1 we give the order of these schemes. The conditions for any given order
are those listed in Table 1 for that specific order along with those for all lower

orders. We employ the following:

L(w) =

Summation Convention. If an index range does not appear on a summation sign,
then the summation 1s over each index, taking values from 1 to s.

Notice that the order conditions of Table 1 are not the usual order conditions
[1, p. 170] associated with a Runge-Kutta discretization of a differential equation.
The conditions of Table 1 were gotten in [9] by checking the tree-based order
conditions in [1]. However, it was pointed out by Peter Rentrop at the June 4-10,
2000, conference in Oberwolfach, Germany, that these conditions should also follow
from the general theory developed for partitioned Runge-Kutta methods (see [14,
TI1.15], [15]). In [14, Thm. 15.9] it is shown that a partitioned Runge-Kutta method
is of order p if and only if certain equations hold for all P-trees of order up to p.
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These order conditions for partitioned Runge-Kutta schemes when applied to (13),
(14), (20), and (21), should also lead to the conditions of Table 1.

Finally, applying Theorem 2.1 as in [9], it follows that if (x*,u*) is a local
minimizer for (12), the Runge-Kutta scheme is order order p (see Table 1), b; > 0
for each j, and the coercivity condition holds, then when f is sufficiently smooth,
the discrete problem (15) has a local minimizer (x” ub), and we have

ma [~ (1) [ — " (14)] + ok, ) — w0 (14)] < e,

0<k<N
where 1" is the solution of the discrete costate equations (20)-(21) and u(x, )
denotes a minimizer of the Hamiltonian H (x,u, ) over u (not one of the discrete
controls). The order of approximation of the discrete controls in (15) is typically
less than p. To obtain an approximation to an optimal control with the same order
as that of the Runge-Kutta scheme, the Hamiltonian should be minimized over
the control, using the computed discrete state and costate at each time level.

In [9] we show that the following scheme is 3-rd order accurate for differential
equations, but only second order accurate for optimal control:

0 00 2
A=|3 00|, b=] 3
0 % 0 3

The following scheme, with by = 0, is 2-nd order accurate for differential equations,
but divergent for optimal control:

(32 L]

Although it appears difficult to construct a 4-th order Runge-Kutta scheme (13
conditions in Table 1 must be satisfied), it is shown in [9, Prop. 6.1] that every
4-stage explicit 4-th order Runge-Kutta scheme for differential equations, with
b; > 0 for each j, is 4-th order accurate for optimal control. This surprising result
is due to the following identity, established by Butcher [1, p. 178], for 4-stage
explicit 4-th order Runge-Kutta schemes:

> biai; = bi(1—¢;),

j=1,2,3, 4.
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