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Abstract. This paper analyzes a constrained optimization algorithm 
that combines an unconstrained minimization scheme like the conju- 
gate gradient method, an augmented Lagrangian, and multiplier up- 
dates to obtain global quadratic convergence. Some of  the issues that 
we focus on are the treatment of  rigid constraints that must be satisfied 
during the iterations and techniques for balancing the error associated 
with constraint violation with the error associated with optimality. A 
preconditioner is constructed with the property that the rigid con- 
straints are satisfied while ill-conditioning due to penalty terms is 
alleviated. Various numerical linear algebra techniques required for the 
efficient implementation of the algorithm are presented, and conver- 
gence behavior is illustrated in a series of numerical experiments. 
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1, Introduction 

We consider opt imizat ion problems o f  the following form: 

rain f (x ) ,  s.t. h(x) = 0, x~f~, (1) 

where x is a vector in R ' , f i s  a real-valued function,  h maps  R n to R% and 
f~ c R". The constraint  set f~ contains the explicit constraints;  these are the 
constraint  that  must  be satisfied accurately. The constraint  h ( x )  = 0, on the 
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other hand, will be satisfied approximately in our numerical algorithms, 
and as the iterations progress, the constraint violation will be reduced. In 
our numerical experiments, we include all nonlinear constraints in h, while 
the linear equalities and inequalities are incorporated in the constraint 
x e9~. More precisely, in our computer code, we assume that fl is given by 

f~ = {x: Ax = b, l < x < u}, (2) 

where A is a matrix and b is a vector of compatible dimensions, l is a vector 
of lower bounds, and u is a vector of upper bounds. Of course, any 
optimization problem constrained by systems of equalities and inequalities 
can be expressed in the form (1) with f~ given by (2). 

Our goal is to find a feasible point that satisfies the Kuhn-Tucker  
condition associated with (1). Let L denote the Lagrangian defined by 

L(2, x) = f ( x )  + 2 rh(x), 

where the superscript T denotes transpose. If  f~ is given by a system of 
equalities and inequalities, 

f~= {x~R": g(x) = 0  and G(x) <0}, 

where g maps R n to R ~ and G maps R" to R ~, then a point x ~ f l  with 
h(x) = 0 satisfies the Kuhn-Tucker  condition associated with (1) if there 
exists a vector 2ER m such that 

- VxL(2, x) ~Nx(f~), 

where Vx stands for the gradient with respect to x and Nx(f~) is the normal 
cone defined by 

Nx(f~) = {# rVg(x) + vrVG(x): v > 0, ve = 0 if ge(x) < 0, p arbitrary}. 

Given x ~ f l  and ) ~ R " ,  let E denote the error expression defined by 

E(2, x) = K(2, x) + C(x), 

where C(x) = [h(x)l measures the constraint violation in some norm l" I and 
K measures the error in the Kuhn-Tucker  condition, 

K(2, x) = distance{- VxL(2, x), N,.(f])} 

= minimum{IV,L(), x) + y[: y ~N,~(~) }. 

For convenience, we use the Euclidean norm throughout this paper, 
although any norm can be employed. 
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Observe that, if/£(2, y) = 0 for some y ef~ and 2 eR "~, then E(2, y) = 0 
for the problem 

minf(x), s.t. h(x) =z, x ~ ,  (3) 

where z = h(y). Loosely speaking, y is an optimal solution of the wrong 
problem, assuming that h(y) does not vanish. Hence, the constraint error 
vanishes at any point in the feasible set, while the Kuhn-Tucker error 
vanishes at any point that optimizes (3) for some z. 

The algorithm developed in this paper is based on the augmented 
Lagrangian techniques of Ref. 1. Recall that an augmented Lagrangian is 
obtained from the ordinary Lagrangian by adding a penalty term. I fp  __> 0 
denotes the penalty parameter, then we utilize the quadratic-penalty aug- 
mented Lagrangian defined by 

Lp(2, x) =f (x )  + 2 rh(x) +plh(x)t z. 

Multiplier methods seem to originate from work by Arrow and Solow 
(Ref. 2), Hestenes (Ref. 3), and Powell (Ref. 4). Additional results are 
developed in the sequence of papers (Refs. 5-7) by Rockafellar. See 
Ref. 8 by Bertsekas for a comprehensive study of multiplier methods. 
Results for problems formtflated in a Hilbert space appear in Refs. 9 and 
10. Some interesting applications of augmented Lagrangian techniques to 
boundary-value problems are developed by Fortin, Glowinski, and their 
collaborators in Ref. 11. 

With the notation given above, the algorithm that we focus on has 
the following general form: If xk denotes the current approximation to 
a solution of (1) and 2k denotes the current estimate for a Lagrange 
multiplier associated with the constraint h(x) = 0, then the next approxima- 
tions xk +1 and 2k+1 are obtained by successively executing the following 
two steps when the convergence is at least linear: 

Step t. Constraint Step. Apply an iterative method to the equation 
h(x) = 0, stopping the iteration when the constraint error is 
less than the Kuhn-Tucker error. 

Step 2. Kuhn-Tucker Step. Apply an iterative method to the equa- 
tion K(2, x ) =  0, stopping the iteration when the Kuhn-  
Tucker error is sufficiently small relative to the constraint 
error. 

When the Constraint Step followed by the Kuhn-Tucker Step do not 
decrease the total error at least linearly, execute the following Global Step, 
then branch back to the Constraint Step. 
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Step 3. Global Step. Increase the penalty and apply a preconditioned 
iterative technique to the problem 

minimize{Lp(2~, x): x eft}, 

stopping when the Kuhn-Tucker error is smaller than the 
constraint error. 

In this paper, we analyze a Newton-Armijo iterative implementation 
of the Constraint Step, and we devise a new iterative scheme for the 
Kuhn-Tucker Step. Assuming an independence condition for the gradients 
of the active constraints, we show that the 3-step algorithm possesses a 
global convergence property. Of course, independence of constraint gradi- 
ents implies that the number of equality constraints is at most n. If in 
addition, a second-order sufficient optimality condition holds, then the 
Constraint Step followed by the Kuhn-Tucker Step possesses a quadratic 
convergence property. A new preconditioner is developed for the Global 
Step that eliminates instabilities associated with the penalty term in the 
augmented Lagrangian while enforcing the explicit constraints. The paper 
concludes with a series of numerical experiments in which our algorithm is 
compared to a reduced gradient, quasi-Newton algorithm, and to a sequen- 
tial quadratic programming algorithm. 

As discussed in Ref. 1, our approach to the constrained optimization 
problem is related to an algorithm of Rosen and Kreuser (Ref. 12). In 
the scheme of Rosen and Kreuser, each iteration involves the minimization 
of the Lagrangian subject to linearized constraints. By the analysis of 
Robinson in Ref. 13, this scheme is locally quadratically convergent. The 
software package MINOS (Ref. 14) provides an implementation of this 
scheme in which the Lagrangian is replaced by an augmented Lagrangian. 
Note that the Rosen-Kreuser method as well as the usual SQP method 
reduce both the constraint error and the Kuhn-Tucker error simulta- 
neously, while in our approach, each error is treated in separate steps that 
are loosely coupled together. This allows us to apply equation solving 
techniques to the constraints and unconstrained optimization techniques to 
the Kuhn-Tucker error. 

The analysis of Coleman and Conn in Refs. 15 and 16 demonstrates a 
connection between SQP methods and a related 2-step process. In each 
iteration of the SQP method, a quadratic approximation to the Lagrangian 
is minimized subject to linearized constraints. Coleman and Conn show 
that solving this quadratic programming problem is nearly the same as 
applying a single Newton step to the constraints, then solving the quadratic 
program subject to a null space constraint. They show that this 2-step 
process possesses a superlinear convergence property similar to that of SQP 
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methods. Again, Coleman and Conn's scheme, like the Rosen-Kreuser  and 
SQP schemes, treats both the constraint error and the Kuhn-Tucker  error 
simultaneously, while our approach addresses each error separately. 

2. Constraint Error 

We consider the following Newton-Armijo (see Ref. 17) process to 
solve the equation h ( x ) =  0. Let o- and r be fixed positive constants less 
than 1, and let Wo = xk be the starting guess. Then, the new iterate wi+ t is 
obtained from the current iterate wi by the rule 

wi+ I = wi + sidi, (4) 

where 

d~ = arg min{]d]: Vh(w~)d = - h ( w i ) ,  wi + d e n } ,  (5) 

and s~ = ~rJ, where j is the smallest nonnegative integer with the property 
that, for s = a J, we have 

!h(wi + sd~)t <- ( 1 - zs) [h(wi)l. (6) 

There is an extensive literature concerning the convergence properties 
of Newton's method for systems of equations and inequalities. Some of the 
relevant literature includes Refs. 18-22. One difference between the itera- 
tion (4)-(5)  and the iterations in these earlier papers is that, in the earlier 
work, each of  the constraints is linearized, while in (4) -(5) only part of the 
constraints is linearized. The scheme (4)-(5)  is most closely related to the 
Armijo scheme of  Ref. 21, modified to take into account the constraint set 

and the fact that inequality constraints are embedded in fl. 
In analyzing this algorithm, we assume for convenience that f~ is given 

by 

n = g(x) = 0} ,  ( 7 )  

where g maps R" to R( Since an inequality G(x) <_ 0 can be converted to 
an equality by Valentine's device, inequalities can be embedded in the 
equation g(x) = 0 (see Ref. 23); that is, introduce an extra variable z and 
work with the equation G(x) + z 2 =  O. Moreover, if the gradients of the 
active constraints in the original problem are linearly independent, then the 
gradients of the transformed equality constraints are linearly independent. 
The conversion of inequalities to equalities is done to facilitate the analysis. 
This conversion is not needed for the implementation of  our algorithm. 
The global convergence properties of the iteration (4)-(5)  are developed in 
Section 6, while the local convergence properties are described by 
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Theorem 2.1. Suppose that x = x *  satisfies the equations h ( x ) = 0  
and g(x) = O, g and h are twice continuously differentiable near x*, and the 
gradients Vhj(x*) and Vgk(x*) are linearly independent. Then, there exists 
a neighborhood A of x* and a constant c such that, for any Wo ~A c~ ~, 
the iteration (4)-(5),  where ~ is given by (7), converges to a point w with 
the following properties: h(w) = g(w) = 0 and s = 1 satisfies (6) for each i. 
Moreover, for every i, we have 

Iwi-wl< clh(wo)l Iw,-wol< clh(wo)l, Ih(w,+,)l<~clh(wi)l =. (S) 

Thus, the root convergence order (see Ref. 24) of the iteration (4)-(5)  is at 
least 2. 

A proof of this result appears in Appendix A (Section 11). 

3. Convergence Analysis with Rigid Constraints 

In this section, we state a result that provides the basis for our 
algorithm to iteratively solve the equation K(2, x) = 0. This result extends 
the convergence analysis of Ref. 1 to handle the rigid constraint x e ~ .  
An analysis of rigid constraints for the classical method of multipliers 
appears in Ref. 8, pp. 141-144, by Bertsekas, while an analysis of a 
sequential quadratic programming scheme with rigid constraints appears in 
Ref. 25. 

As in the analysis of Bertsekas, we take ~ of the form (7). Let us 
assume that (1) has a local minimizer x*, that f ,  g, h are twice continuously 
differentiable in a neighborhood of x*, and that the constraint gradients 
Vgj(x*) and Vhk(x*) are linearly independent. In addition, if 2 = 2* and 
kt = #* are the unique solutions to the equation 

Vf(x*) + ~.~Vh(x*) + ~ V g ( x * )  = o, 

we assume that the Hessian VZ[f (x)+  h(x)r2 * +g(x)r#*]x=.,, is positive 
definite in the null space of Vh(x*) intersect the null space of Vg(x*). This 
assumption, which will be referred to as the second-order sufficiency 
condition throughout this paper, implies that x* is a strict local minimizer 
of (1); see Ref. 26. 

Theorem 3.1. If the second-order sufficiency condition holds, fl is 
given by (7), and the constraint gradients are linearly independent at a 
local minimizer x* of (1), then there exists a neighborhood A of (x*, 2*) 
for which the problem 
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minimize{Lp(2~, x): Vh(yk)(x --Yk) = O, g(x) = 0} (9) 

has a local minimizer x =xk+~, whenever (Yk, 2k) lies in A. Moreover, 
there exists a constant c such that 

lxk + , -  x*t-<  cl2k - 2.12 + + ~  - x*t 2 + c Ih(yk) J, 

Ibr every (Yk, 2k) in A with yk~q.  

A proof of Theorem 3.1 appears in Appendix B (Section 12). Approx- 
imations 2~+ 5 and Pk +5 to the Lagrange multipliers associated with the 
constraints h(x) = 0 and g(x) = 0 that satisfy the same error bound as xk + t 
are given by the least-squares solutions 2 and # to the linear system 

Vf(x) + 2 rVh(x) + p rVg(x) = 0 (10) 

corresponding to x = xk + 1. 
We now combine Theorems 2.1 and 3.1 to show that quadratic 

convergence is achieved when the Newton-Armijo iteration is used to 
generate the Yk of Theorem 3.1. 

Corollary 3.1. Under the hypotheses of  Theorem 3.1, there exists a 
neighborhood A of (x*, 2*) for which the problem 

minimize{Lp(2k, x): Vh(yk)(x --Yk) = O, g(x) = 0} 

has a local minimizer x =xk+~, whenever (xk, 2~) lies in A, xk~f2, and 
Yk = wz for any I_> 1 where the iterates we are generated by (4)-(5),  
starting from w0 = xk. Moreover, for some constant e, we have 

I~  + 5 -  z*l  _< c l~  - ~ ' t  2 + c lx~ - x*?, 

where c is independent of (xk, 2~) in A ~ q  x R".  

Proof. Since I > 1, the last inequality in (8) gives 

Ih(y~)t = lh(w,)t = O(th(x~)l  ~) = o ( l x~  - x ' t 2 ) ,  

and by the middle inequality in (8), 

ly,. - xk l  = O(!h(x~)I)  = o ( t ~  - ~*I). 

By the triangle inequality, 

ly~ - ~*I  <- ly,. - x~ l + txk - x * l  = O ( I x k  - x' i ) .  

These inequalities combined with Theorem 3.1 complete the proof. 
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4. Kuhn-Tucker Error 

In Section 2, we presented an implementation of the Constraint 
Step for which each successive iteration reduced the constraint violation. 
Moreover, near a feasible point where the constraint gradients are linearly 
independent, we have C(wi+l )  = O(C(w~)2).  In this section, we present an 
iterative implementation of the Kuhn-Tucker Step which is similar to 
the Newton process in that the Kuhn-Tucker error is locally squared, 
K ( w i + t , A i + l ) = o ( g ( w i ,  Ai)2) .  But unlike the Newton technique, the 
Kuhn-Tucker error may not decrease monotonically. Nonetheless, a 
globally convergent update can be formulated; see Section 6. 

Let L~ be defined by 

Lp(2, x) = f (x )  + 2 rh(x)  + p lh(x) - h(wi)I  z, 

and consider the following iteration: 

wi+ 1 = arg min{Lp(A;, x): Vh(wi ) ( x  - w~) = O, x eft}, (1 l) 

where 

Ai = arg min{K(A, w~): A e R m } .  

To be consistent with the presentation in the previous sections, it is 
assumed that f2 has the form (7), so that K can be expressed as 

K(2, x) = m i n i m u m { l V x L ( 2 ,  x)  + #Wg(x)[: #eR~}. 

Theorem 4.1. Under the hypotheses of Theorem 3.1, there exists 
neighborhoods A1 and A2 of x* and a constant c such that, for every 
w0eA1 c~f~, the iteration 

A t = arg min{K(A, w i ): A e Rm}, (12a) 

wi + 1 = arg min{L~ (A,, x): Vh(w~ )(x  - w, ) = O, x ~ A2 c~ f~} (12b) 

converges to a point (A, w), and the following properties hold: 

(a) K(Ag+I, wi+~) < c K ( A ~ ,  w~)2, for each i >0;  
(b) K(A, w) =0;  
(C) IWi -- W[ <~ C2 -2i, for each i > O; 
(d) Iw~ - w, I < ClWo - x*l 2, for each i >_ 1; 
(e) Iw,-x*l <-clwo-x*12+clh(wo)l, for each i >  1. 

Proof. In order to analyze the iteration (11), we need to consider a 
perturbed optimization problem, 

minimize f ( x ) ,  (13a) 

subject to h(x)  = z, g (x )  = 0, (13b) 
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where z is a fixed vector in R" .  To show that the Kuhn-Tucker  error 
is squared in each iteration, we employ the lemmas of Appendix C 
(Section 13). By Lemma 13.1, there exists a local minimizer of (13) and 
an associated multiplier that depend Lipschitz continuously on z near 0. 
Defining 

~( ,~ .  x)  = K(,l. x) + ]h(x) - z[, 

Lemma 13.2 implies that, for z near 0, for 2 near 2", and for x near x* 
with xEf],  the distance between (2, x) and a solution-multiplier pair 
associated with (13) is bounded from below and from above by constant 
multiples of E~(2, x). 

Given wg near x*, let w* denote the local minimizer of (13) near x* 
associated with z = h(wl), and let A = A* be the corresponding multiplier 
for which K(A*, w * ) = 0 .  By Lemma 13.1, w* is near x* when wi is 
near x*. By Theorem 3.1 and the fact that x = w; satisfies the constraint 
h(x) = h(w~), we have 

Iwi+l - w* I = O([wi - wy[ z) + O([A; - A~* 10. (14) 

Since A~ is the least-squares solution to (10) when x = wi, it follows that 

I A , -  A* I = O(lw~- w,l). 

Hence, (14) implies that 

[A,+,  - A*[  + [w~+, - w*[ = O ( ] w ~  - w*[2). (15)  

Note that 

~(A~., wi) = K(Ai, wi), when z = h(wi). 

Hence, by Lemma 13.2, 

lwt - w*[ = O(K(Ai, w~-)). 

Also, by Lemma 13.2 with z = h(w~), we have 

IA,+, - h *  t + ]wi+, - w* l >_ c, E~(A,+ ,, ws+ ,) > c ,K(a~+,,  w,+ ,). 

Combining these relations, we have 

K ( & + I ,  w,+ ,) = O ( K ( A ,  wi)2). 

which establishes (a). 
Next, let us show that the wi converge locally quadratically. Since 

h(w* ) = h(wi), (15) yields 

th(w,+ 1) - h(w~)l = th(w~+ 1) - h ( , < ) l  = O(tw~+ 1 - w~[) 

= O( tw~-  w*12). (16) 
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By Lemma 13.1 and (16), 

[w,*+, - w,* I = O(Ih(w~ + ~) - h ( w ~ ) l )  = O ( I w i -  w~'12). 

Since 

(17) 

Iw,. - w*l 2 < 21w , - w*_ ~I 2 + 21w* - w*_ ~I 2, 

(15) and (17) imply that a,+ ~= O(a~), where 

a,+ ~ =  Iw;+, - w~*l + lw*+, - w~*l. 

In particular, if ai+ ~ < ya ~, then 

7ai+l < [yal] 2', ai+ 1 < al[Tal] 2'-1. 

Combining Lemma 13.1, (15), and (17), it follows that a~ approaches zero 
as Wo approaches x*. Hence, for Wo sufficiently close to x*, there exists a 
constant c such that ai < ca~ 2 -2'. By the triangle inequality, we have 

IWi÷l-W,l<-lw,+,-w*l+lw* +w*_,l+lw*_,-wil  

< ai+l + al < 2cal 2-21, (18) 

for each i > 1. 
If  w denotes the limit of  the sequence w~, then relation (18) yields 

(c). Since K(A*, w*) = 0, and since both w~ and w* are approaching the 
same limit w, we conclude that the A~ approach a limit A and (b) 
holds. Moreover, (18) implies that lw,-w,l=O(a,). By (15) and (17), 
al = O( Iwo-  w*t2). By Lemma 13.1, 

Iwg - x*  1 = O(Ih(wo) - h(x* ) l  ) = O(Iwo - x*l) ,  (19a) 

IWo - Wo*l < IWo - x*t + Iw* - x*] = O(two - x ' l ) .  (19b) 

Hence, al = O( [wo-  x*lZ), which establishes (d). By the triangle inequality, 
(15), and (19), we have 

Iw, - x * l _  Iw, - wal + Iw* - x*l  = O ( I w 0 -  x*l  2) + O(Iwa - x*l).  

This inequality combined with (19) and (d) yield (e). [] 

5. Total Error 

Combining Theorem 2.1 and Theorem 4.1, we obtain quadratic con- 
vergence of  the total error. 
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Corollary 5.1. Under the hypotheses of Theorem 3.1, there exist 
neighborhoods A~ and A2 of x* and a constant c such that 

txk + 1 -  x*] < c]x~ - x*] 2, 

for every k where the iterate xk+~ is generated from x~, starting from 
any point xoeA~ c~f~, in the following way. Setting w0 = xk, we repeat the 
iteration (4)-(5)  any number of times, stopping with wz, I >  1; setting 
wo = w~, we repeat the iteration (12) any nmnber of times, stopping with 
ws~ J _> 1; then, we set x~ +1 = ws. 

Proof. 
with part (e) of Theorem 4.1 yields 

lwJ - x*t _< c l w , -  x*l 2 + clh(w,)t-< ctw - x*l 2 + O(lh(xk)i2). 

By Theorem 2.1, we have Ih(w,)[ _< clh(xk)12. Combining this 

By the middle inequality in (8), 

IWI - Xk l "~ Clh(Xk)  I = O ( [ x  k --  X*I )  . 

This inequality, the triangle inequality, and (20) complete the proof. 

(20) 

Recall that our objective is to reduce the total error (constraint 
violation plus Kuhn-Tucker  error) beneath some given error tolerance. If  
the constraint error is much smaller than the Kuhn-Tucker  error, then it 
is inefficient to spend a lot of effort reducing the constraint error. Similarly, 
if the Kuhn-Tucker  error is much smaller than the constraint error, then 
it is inefficient to spend a lot of effort solving the optimization problem 
(11). In Section 2, we presented an iteration that locally reduced the 
constraint error in successive iterations, and in Section 4 we presented an 
iteration that locally reduced the Kuhn-Tucker  error. These iterations, 
which are quadratically convergent, can be performed any number of times 
without interfering with the quadratic convergence property associated 
with the 2-step process. Hence, we can continue the Armijo-Newton 
iteration until the constraint error is beneath the Kuhn-Tucker  error, 
and we can continue iteration (11) until the Kuhn-Tucker  error is beneath 
the constraint error. In this way, a balanced reduction in the error is 
achieved. 

6. Global Convergence 

We begin with a global convergence result for the iteration (4)-(5). 
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Lelmna 6,1. Suppose that there exists a solution to (5) for each i, 
there exists a constant M such that [di[ _< M for every i, and there exists 
p > 0 such that Vh is Lipschitz continuous with modulus x in the ball with 
center w; and radius p for each i. Then for each i where h(wi) does not 
vanish, the iterate w;+l defined by (4) exists, and we have 

Ih(w;+~ )1 < (1 - ~:;z)[h(w~)[, 

where 

7; = minimum{l,  ap/M, 2lh(w ;)[~r( 1 - r)/xM2}. 

Hence, either an element of the sequence h(wo), h(wl) . . . .  vanishes after a 
finite number of  steps, or the entire sequence tends to zero. 

Proof. Applying the fundamental theorem of  calculus in any neigh- 
borhood of  a point w where the derivative of  h satisfies the Lipschitz 
condition, we have 

h(w + sd) = h(w) + .If" Vh(w + td)d dt 

= h(w) + sVh(w)d + (Vh(w + td) - Vh(w))d dt. 

Assuming that 

Idl<_M and Vh(w)d=-h(w)  

[see (5)1, we conclude that 

lh(w + sd) I <_ (1 -- s)lh(w)l + tcs2M2/2. (21) 

Since Lemma 6.1 holds trivially when h(w;) vanishes, let us assume that 
h(w;) ~ O. In this case, (21) implies that (6) holds for j sufficiently large. 
From the definition of  &, it follows that either s; = 1 or 

Ih(w, + ,r-'s;di)l >_ (1 - za-%)[h(w,) I. (22) 

If  si Idi I/a > p, then 

s; > pa/ld, I >_ p a / m .  

Conversely, if s;Idit/a < p, then by (21) with w = w,-, d = d,., and s =&/a, 
and by (22), we have 

s; >_ ~( 1 - ~)[h(w~)l/~M 2. 

Combining these inequalities yields si > 7i. Inserting the lower bound s = 7i 
in (6) completes the proof. [] 
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If f~ is compact and wo lies in the convex hull of f~, then the direction 
vectors d~ are uniformly bounded, and the assumption of Lemma 6.1 that 
Ida] _< M for some M is satisfied. Note though that, except for special values 
of h(w~), the linear system Vh(w~)d = - h ( w i )  only has a solution when the 
rows of Vh(w,~) are linearly independent. 

Unlike the Newton-Armijo iteration, the Kuhn-Tucker iteration (11) 
may not be globally convergent. One way to achieve a globally convergent 
iteration is to update the multiplier approximation Ai only when the 
Kuhn-Tucker error decreases by some fixed factor a < I. More precisely, 
if 2 = 2,- minimizes K(2, wi) over 2, then the globally convergent algorithm 
takes the following form: Setting K0 = K(Ao, w0) and Ao = 20, we perform 
the iteration 

wi+ 1 = arg min{Lp(A,, x): Vh(wl) (x  - wi) = O, x e ~ } ,  (23a) 

A~+I =2i+1 and Ki+l = K(2i+ l, w,+ l), if K(2i+l, w~+l) _<a~, (23b) 

A,-+ 1 = Ai and Ki+ 1 = Ki, otherwise. (23c) 

In Theorem 4.1, we saw that 

KO.~+ ,, w,+ ~) = O(K(L ,  wi) 2) 

in a neighborhood of a local minimizer of (1). Consequently, the condition 

K(2i+ I, w,-+ 1) -< G/f, 

is always satisfied in a neighborhood of a local minimizer, and the 
Kuhn-Tucker error decays quadratically in accordance with Theorem 4.1. 
Globally, we have the following convergence result. 

Lemma 6.2. Suppose that f~ is given by (7), f~ is compact, and f, g, h 
are continuously differentiable in fL Then, a subsequence of the wi ap- 
proaches a limit w*, and if the constraint gradients are linearly independent 
at w*, then there exists 2" such that K(2*, w*) = 0. 

Proof. If the condition K(2;+~, wi+ ~ ) <  a K  i is satisfied an infinite 
number of times, then the Kuhn-Tucker error tends to zero for a subse- 
quence of the iterations, and the corollary holds trivially. On the other 
hand, if the condition K(2i+ j, wi+ ~) > aKi is satisfied for each i sufficiently 
large, then A,.+ ~ = Ai for i sufficiently large. We let A denote the limit of the 
A,., and we let w* denote any convergent subsequence of the w,. with the 
property that the constraint gradients are linearly independent at w*. 
Letting L* be defined by 



440 JOTA: VOL. 79, NO. 3, DECEMBER 1993 

L* (h,  x) = f (x)  + Arh(x) + p th(x) - h(w*)12, 

we consider the optimization problem 

minimize L*(A, x), (24a) 

subject to Vh(w*)(x - w*) = 0, g(x) = 0. (24b) 

If  x = w* is a local minimizer for this problem, then by the Kuhn-Tucker  
conditions, there exists ).* such that K(2*, w * ) =  0. Conversely, suppose 
that x = w* is not a local minimizer for (24). We show that this leads to a 
contradiction. 

By the structure of Lp, we have 

L~(A, w,) _> L~(A, w,+, ) >_ L~ + '(A, wi÷,). (25) 

Since w* is not a local minimizer for (24), there exists y near w* such that 

L*(A, y) < L*(A, w*), 

where 

V h ( w * ) ( y - w * ) = 0  and g(y)=O. 

Let E be defined by 

= L*(A, w*) - L*(A, y). 

As a subsequence of the wi approaches w*, it follows from the indepen- 
dence of constraint gradients and the implicit function theorem that there 
exists an associated sequence Yi approaching y with 

L*(A, w*) - L*(A, y,) > 4/2, /h(w~)(y, - w,) = 0, g(Ye) = 0, 

for i sufficiently large. Hence, for i sufficiently large, 

L~(A, w,) - L~(A, w~÷,) > L~(A, w,) - L~(A, y,) _> e/4. 

This inequality along with (25) violate the fact that L~ is bounded from 
below uniformly. D 

As discussed in Section 1, when the Constraint Step followed by the 
Kuhn-Tucker  Step do not decrease the total error, we minimize Lp(2k, x) 
over x ~ ~. As discussed in Section 5, computing time is potentially lowered 
when the error is reduced in a balanced fashion. If  xk minimizes Lp(2k, x) 
over x~f~, and the Kuhn-Tucker  condition holds, then 

K(2k + 2ph(xk), xk) = O. 

Hence, when the optimization problem in the Global Step is solved exactly, 
the Kuhn-Tucker  error is reduced to zero, while the constraint error is 
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typically positive. To achieve a balanced reduction in the error, we only 
need to obtain an approximation xk to a minimizer of Lp(2k, x) for which 

I,;(2k + 2ph(x~), x~) <_ C(xk). 

We now establish a global convergence property for this approximation. 

Theorem 6.1. Suppose that f~ is given by (7), [2 is compact, and f, g, h 
are continuously differentiable in ~). If Pk is a sequence of scalars tending 
to infinity, 2 k is a uniformly bounded sequence in R",  and xe is a sequence 
in f~ with the property that K(2 k + 2ph(xk), xk) <_ C(x~) for every k, then 
every subsequence of the xk that approaches a limit x* where the constraint 
gradients are linearly independent has the property that E(2, x*) vanishes 
for some 2 e R  m. 

Proof. To simplify notation, let xk also denote a subsequence of the 
iterates that approaches a limit x* where the constraint gradients are 
linearly independent. By the construction of the xk, there exists a vector/#, 
such that 

[Vxf(x~) + vrVh(xk) + #~'Vg(xk)[ _< C(xk), 

where 

v, = ;~k + 2p~h(xk). 

Hence, we have 

IvTVh(xk) + pTVg(x ,3 t  < C(xk) + IVf(xk)t. 

Since ~ is compact and the constraint gradients at x* are linearly indepen- 
dent, vk and p~ are uniformly bounded for k sufficiently large. From the 
definition of vk, it follows that 

h(xk) = (v~ -- 2k)/2p~. 

Since 2~ is uniformly bounded, we conclude that h(xk) tends to zero as the 
penalty Pk tends to infinity. Let Pk minimize K(2, xk) over 2 ~R". Since the 
constraint gradients are linearly independent at x*, this minimizer is unique 
for k sufficiently large. The following inequalities complete the proof: 

K(#k, xk) _< K(2k + 2ph(xk), xk) <_ C(xk) = ]h(xk)]. [] 

7. Preconditioning with Rigid Constraints 

In the case f] = R", we saw in Ref. 1 that the following preconditioner 
eliminates the ill conditioning associated with the penalty parameter in the 
Global Step: 
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H = [S + p Vh(xk) zVh(xk)] - ' ,  (26) 

where S is any symmetric, positive-definite matrix. For illustration, with the 
Fletcher-Reeves formulation of the conjugate gradient method, each pre- 
conditioned iteration has the following structure: 

x,+ 1 = x, + ~,4, 4+~ = - H g i  + fli4, (27) 

where gt = VxLp()~k, xi), o¢i is the stepsize (an efficient stepsize procedure is 
developed in Ref. 27), and fli is given by 

]~i T T = gi+ l Hgi+ l/gi Hgi. 

We now develop an appropriate preconditioner for the minimization 
of  the augmented Lagrangian Lp(2k, x) subject to the constraint x sf~. This 
preconditioner is obtained by converting the constrained problem to an 
unconstrained problem for which we know an appropriate preconditioner. 
Given xk sf~, let O denote an open neighborhood of xk, and suppose that 
there exists a map J between a neighborhood of the origin and O n f~ with 
the property that minimizing Lp()~k, J(y))  over y near the origin is in some 
sense equivalent to minimizing Lp().k, x) over x ~ O n f L  If J is differen- 
tiable, then by (26) an appropriate preconditioner for the unconstrained 
problem is 

Hy = IS + p VJ( O)CrCVJ( O) 7] -1, 

where S is any symmetric, positive-definite matrix and C = Vh(xk). 
Since linear equalities and inequalities are so important in applica- 

tions, let us construct a J in the special case where ~q is given by (2). First, 
some terminology: Given x in f~, the constraint xi < u~ is called active if 
x~ = uj. Similarly, the constraint x~ < u~ is called inactive if x~ < ui. The 
same terminology applies to the lower bounds 1~ < x,-. Every constraint 
associated with the linear system A x  = b is considered active. 

Given xk ~f~, let N denote a matrix whose columns are an orthonormal 
basis for the space of vectors orthogonal to the gradients of the active 
constraints associated with xk, and let us define J(y)  = xk + Ny. For y in 
a neighborhood of the origin, x = J(y)  lies in fL At least locally, minimiz- 
ing a function over x Efl, while requiring that the active constraints at x 
are the same as the active constraints at xk, is equivalent to an uncon- 
strained minimization over y near the origin. From the discussion above, 
an appropriate preconditioner for the y-minimization problem is 

Hy = [S 4- p N  TC TCN] - ~. (28) 

By the Sherman-Morr ison-Woodbury  modification formula (see Ref. 28), 
(28) can be expressed as 
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Hy = S -~ - S - ~ N r C T [ p - ~ [  + C N S - ~ N r C  T] - ~ C N S  - l .  

The preconditioner Hy acts on the gradient with respect to y to 
produce a search direction in the space of vectors y. We now transform 
from y to x to see how the preconditioner acts on the gradient with respect 
to x. Since the appropriate preconditioner for the x-minimization problem 
is H x = N H y N  T, we h a v e  

H x = N ( S  -~ _ S - ~ N r C T [ p  -11 + C N S - 1 N r C  r] - ~ C N S - ~ ) N  r. 

Let P denote the matrix that projects a vector into the space orthogonal to 
the gradients to the active constraints. Since P = NN r we see that when 
S = / ,  the preconditioner reduces to 

n x  = P - P C q p  -11 + C P C  7] - ICP ,  C = Vh(xk). (29) 

In summary, the preconditioner (29) has two properties: It maps a vector 
into the space orthogonal to the gradients of the active constraints, and when 
it is incorporated in minimization schemes like the conjugate gradient method 
(27), the ill-conditioning associated with the penalty parameter p is reduced. 

8. Numerical Linear Algebra 

In this section, we examine the linear algebra associated with the 
implementation of our algorithm. Throughout this discussion, it is assumed 
that ~ is given by (2) and the preconditioner (29) is utilized. We focus on 
the normal equation approach, although there is an alternative approach 
based on a Q R  factorization. In the normal equation approach to the linear 
algebra, the unifying element in the analysis is the symmetric matrix B B  T 
where B is the linear constraint matrix A augmented by the gradients of the 
nonlinear constraints, and B is obtained from B by deleting columns 
associated with the active inequality constraints. Each time that an inequal- 
ity constraint changes between active and inactive, there is a rank-one 
change in B B  T. The problem of updating a factorization after a rank-one 
change has been studied extensively; we refer the reader to Refs. 29-32 by 
Bartels, Gill, Golub, Murray, and Saunders. Throughout this section, we 
assume that the rows of B are linearly independent. 

Observe that the set of indices (i, j )  associated with nonzero elements 
of B B  r contains the set of indices associated with nonzero elements of BB r. 
Hence, a storage structure that is suitable for the nonzero elements of B B  r 
can be used to store the nonzero elements of B B  r, regardless of the choice 
for the active constraints. Also note that, if B is sparse, then in many cases 
so is B B  T. Hence, sparse matrix technology (see Ref. 33 or 34) can be 
employed in both the storage and the factorization of BIg r. 



444 JOTA: VOL. 79, NO. 3, DECEMBER 1993 

(a) Projections. When solving the quadratic program (5) using an 
active set strategy, when solving the optimization problem in (23) using the 
conjugate gradient method, and when utilizing the preconditioner (29), we 
repeatedly project vectors into the space orthogonal to active constraint 
gradients. Let B denote the matrix obtained by augmenting the matrix A by 
Vh(y~), 

B =  V h ( y k  

Given a vector q, its projection p into the space perpendicular to the active 
constraint gradients can be expressed as 

p = q - B r p  - Urv ,  (30) 

where the rows of U are the gradients of the active inequality constraints, 
and the vectors/~ and v are chosen to minimize the Euclidean norm of p. 
If the ith inequality is active (that is, either x~ = 1~ or x; = u;), then vi can 
be chosen so that Pt = 0 without affecting any other component of p. 
Hence, the components of p corresponding to active inequalities are zero. 
Let fi, 0, B denote the vectors and matrix obtained from p, q, B by deleting 
components and columns corresponding to active inequality constraints. 
The u that minimizes the norm of p in (30) is the same as the # that 
minimizes the norm of p, defined by 

ff = ~ _ /~T~. ( 3 ! )  

Since p is orthogonal to the rows of B, 

= = 0 .  

Consequently, # satisfies the classical normal equation 

If the rows of /~  are linearly independent, then the normal equation has 
a unique solution # that can be substituted into (31) to obtain ft. The 
components of p not contained in fi are identically zero. 

tb) Multiplier Estimates. In the implementation of the Kuhn-  
Tucker Step, we estimate the Lagrange multipliers associated with a given 
xk by computing the least-squares solution to an overdetermined linear 
system (see Ref. 35). More precisely, we compute the least-squares solution 
to a system of the form 

q = Brat + Urv ,  q = - V f ( x ~ )  r. (32) 
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Computing the least-squares solution to (32) is equivalent to minimizing 
the norm of p in (30). Hence, the multiplier estimates p and v are a 
byproduct of the projection discussed in (a). 

(c) Implementation of (5). We solve the quadratic programming 
problem (5) using an active set strategy; see Ref. 36 for an interesting 
exposition of active set strategies. Active set strategies can be built around 
the matrix B/~ r and its updates, and the observations in (a) and (b) are 
applicable. Due to the special form of the cost function in (5), the 
implementation of an active set strategy can be simplified, and convergence 
is often very fast since the cost function is perfectly conditioned. Near an 
optimum, the active constraints associated with the solution to (5) are 
usually the same as the active constraints associated with the current iterate 
xk. Hence, an active set strategy typically converges in one iteration near an 
optimum. If a7 is the inactive vector obtained from d by deleting the 
components associated with active constraints, then the inactive vector 
associated with the solution to (5) is given by the classic formula 

[ 0 1 , ~7 =/~r( /~T)- , j ;  f =  --h(xk) 

which involves the familiar p r o d u c t / ~ r .  

(d) Preeonditioner. Let us consider the precondifioner Hx in (29). 
Each iteration of the preconditioned conjugate gradient method involves 
multiplying the gradient vector by this matrix. In the process of multiplying 
a vector by Hx, we must compute a matrix-vector product involving the 
inverse of the matrix R = p - ~ I  + CPC r that appears in the middle of (29). 
The computation of the projection P was discussed already. In order to 
multiply a vector by R-~ efficiently, we can store R in Cholesky factored 
form. Given a vector z, the product y = R-~z is obtained by solving the 
Cholesky factored system Ry = z for the unknown y. 

When a constraint becomes either active or inactive, R changes and its 
Cholesky factorization must be updated. Since the change in R is intimately 
related to the change in the projection P, let us examine how the projection 
changes when a constraint becomes either active or inactive. 

Theorem 8.1. Given a matrix D, let P be the matrix that projects a 
vector into the null space of D. Given a vector c that does not lie in the row 
space of D, let Q be the matrix that projects a vector into the null space of 
D intersect the orthogonal complement of c. Then, we have 

Q = P - (1/c Tpc)(Pc)(Pc)T. (33) 
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Proof. Assuming that the rows of D are linearly independent (if not, 
remove the redundant rows of D), P has the following classical representa- 
tion: 

P = I - DT(DD r) -1D. (34) 

Similarly, if E is the matrix obtained by appending c T after the last row of 
D, 

E ~- , 
¢ 

then Q can be expressed as 

O = I - E T ( E E  - ' E .  

By Eq. (5a) in Ref. 28, we have 

M - ( D D r ) - I D c / o ~ ] ,  
( E E r ) - 1  = - ( D c ) r ( D D T ) - 1 / u  1/~ ] 

where ~ = c Tpc and 

M = (DD r) -1 + ~¢ - I (DDr) -1DccTDr(DDr) -~ .  

Hence, Q can be written as 

Q = I - D T M D  + ~ - I [ D T ( D D r ) - I D c c T +  c c T D r ( D D  ~) -~D - cc7]. 

(35) 

By the definition of M, we have 

D T M D  = D T ( D D T ) - ' D  + ~ - ' D T ( D D r ) - ' D c c r D r ( D D  T) - ' D .  

(36) 

Combining (34), (35), and (36), the proof is complete. [] 

Theorem 8.1 reveals how the projection matrix P changes when a new 
constraint of the form c TX = d becomes active. On the other hand, when 
the constraint c rx  = d becomes inactive, it follows from Theorem 8.1 that 
the new projection matrix Q satisfies the relation 

O = p + (1/crOc)(Oc)(Oc)  r. (37) 

On the surface, this formula seems less useful than (33), since the new 
projection Q appears on both sides of the equation. Note though that we 
have already developed an algorithm to compute a projection and to 
update the related Cholesky factorization. Consequently, we do not use 
(33) and (37) to evaluate the new projection after a change in the active 
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constraints; instead, we use these relations to evaluate the rank-one change 
in the projection. That is, the rank-one change in R is -(CPc)(CPc)r/crPc 
when a new constraint becomes active, while it is (CQc)(CQc)r/c rQc when 
a constraint becomes inactive. Knowing the rank-one change in R, we can 
apply one of the algorithms of Bartels, Gill, Golub, Murray, and Saunders 
to update the Cholesky factorization of R. 

9. Subroutine M ~  

We now state a specific implementation of the Constraint Step, the 
Kuhn-Tucker Step, and the Global Step. This implementation is used in 
the numerical experiments of Section 10. In presenting the algorithm, the 
subscript k is used for the current big iteration of the algorithm, while the 
subscript i is used for subiterations within the big loop. The index I or J 
corresponds to the final subscript in the subiteration. The various constants 
that appear in the algorithm are somewhat arbitrary; the constants given 
below are the ones used in the numerical experiments of Section 10. The 
function m(x) appearing below is the multiplier 2 that minimizes /((2, x) 
over 2. 

Step t. 

Step 2. 

Constraint Step. Set Et, = E(2k, x~). Starting with the initial 
guess wo=xk, perform the iteration (4)-(5) taking 
T = o- = 1/2. If either i > 40 or the feasible set in (5) is empty, 
then branch to the Global Step, after making the update 
x~, ~wz. Otherwise, continue the iteration until C(w~)< 
K(rn(wl ), Wl). 

Kuhn-Tucker Step. Initialize wo = w~ and Ao =m(wz) and 
perform the iteration (23) taking o-= 0.95. Branch to the 
Global Step, after making the updates xk ~ wj and 2k ~ A j, 
in any of the following situations: 

(a) K(A s, wj) <4C(wj)  and E(As, wj) > 0.95E k, 
(b) K(Aj, wj) > 4C(wj) _> 2Ek, 
(c) Xj=K~_,=K~_2. 

Otherwise, continue the iteration (23) until 

K(As, wj) <_ 4C(wj) and E(A,,wj)_<0.95Ek; 

then, increment k, perform the updates xk ~ wj and 2k ~ A,, 
and branch to the Constraint Step. 
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Step 3. Global Step. Increase the penalty by the factor 5. Starting 
with the initial guess x~, use an iterative method to minimize 
Lp(2k, x) over x~f~, taking into account the precondifioner 
(29). Continue the iteration until a point w is generated for 
which 

either K(2k + 2ph(w), w) < C(w) or E(m(w), w) <_ 0.6Ek. 

Increment k, then perform the updates xk ~ w and 2 k ~ re(w), 
and branch to the Constraint Step. 

In our numerical experiments, the optimization problems in the Kuhn-  
Tucker Step and the Global Step were solved using the conjugate gradient 
scheme CG developed in Ref. 27. In our implementation of the conjugate 
gradient scheme, the gradients were always projected into the space orthog- 
onal to the active constraint gradients associated with linear constraints. 
Rosen's criterion of Ref. 37 was used to decide when to free an active 
constraint. Whenever an inactive inequality constraint became active, or a 
constraint was deactivated, the projection matrix was updated and the 
conjugate gradient iteration was reinitialized in the direction of the negative 
projected gradient. 

A proof that the line search strategy employed in our conjugate gradient 
algorithm yields n-step local quadratic convergence appears in the thesis 
by Hirst (Ref. 38). Subroutine CG can be obtained by email from the 
netlib facility: mail netlib@ornLgov, send cg from napack. See Chapter 8 of 
Ref. 39 for a description of the netlib facility developed by Grosse and 
Dongarra. Note that the Fletcher-Reeves update formula used in CG 
should be replaced by the Polak-Ribi+re update (see Ref. 40) in large-scale 
problems to take advantage of the superior convergence properties of the 
Polak-Ribi+re conjugate gradient algorithm in large-scale optimization. 

In the Kuhn-Tucker Step, we performed n - rn - l conjugate gradient 
iterations, where m is the number of components of h and t is the current 
number of active constraints. In the Global Step, we performed n -  l 
preconditioned conjugate gradient iterations before testing whether the 
current point w satisfied any of the termination criteria. Obviously, in a 
large-scale optimization problem, n - m  - l  can be large, and a different 
criterion is needed for deciding when to terminate the conjugate gradient 
iteration. In this paper, we do not address the issue of an appropriate 
termination criterion in the large-scale case. 

Reference 41 gives a different way of implementing the Global Step. 
Loosely speaking, in Ref. 41 the penalty is increased until the constraint 
violation associated with an approximate minimizer of Lp(2k, x) over x ~f~ 
is smaller than some given tolerance. Then, the tolerance is decreased and 
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the process is repeated. In our approach, we try to achieve a balanced 
reduction in the constraint and Kuhn-Tucker errors. We minimize 
Lp(2k, x) over x ~f~ until a point is found with Kuhn-Tucker error smaller 
than constraint error, then the penalty is increased. Under the indepen- 
dence assumption of Theorem 6,1, this process leads to a reduction in the 
total error. The idea of computing successively more accurate minimizers to 
a penalized Lagrangian, then increasing the penalty after some criterion is 
satisfied, is not new; for example, see Ref. 42 by Polak, where this idea is 
analyzed in a general framework. What is new is our criterion for deciding 
when to increase the penalty. 

Observe that we branch to the Global Step whenever the quadratic 
program (5) associated with the Constraint Step is infeasible. An alterna- 
tive to this way of handling infeasibility is to compute the minimum norm 
solution to (5) associated with the minimum norm residual; see Ref. 43 by 
Burke and Han for results relating to this strategy. 

In the Kuhn-Tucker Step, there are three different situations where 
we branch to the Global Step. The motivation behind these conditions is 
that, after the Constraint Step is complete, the constraint error is often 
much smaller than the Kuhn-Tucker error. As the Kuhn-Tucker iteration 
progresses, the constraint error increases and the Kuhn-Tucker error 
decreases, typically. Whenever it appears likely that further reductions in 
the Kuhn-Tucker error coupled with increases in the constraint error will 
not lower the total error, we branch to the Global Step. In case (a), the 
Kuhn-Tucker error is the same order of magnitude as the constraint error, 
but the total error is not decreasing at least linearly (by the factor 0.95). In 
case (b), we abort the subiteration even though the Kuhn-Tucker error is 
still relatively large since the constraint violation has increased to at least 
half the total error. In case (c), we abort the subiteration, since the 
Kuhn-Tucker error is not decreasing very quickly--although the conver- 
gence is locally quadratic, the convergence can be slow when the iterates 
are far from a solution. 

Under suitable assumptions, Corollary 5. t implies that the Constraint 
Step followed by the Kuhn-Tucker Step are locally quadratically conver- 
gent. On the other hand, if for any reason the algorithm branches to the 
Global Step an infinite number of times, the global convergence result of 
Theorem 6.1 is applicable. 

10. Numerical Experiments 

In this section, we investigate how the algorithm of Section 9 performs 
using some standard test problems. The code that we used in these 
numerical experiments is by no means the ultimate in efficiency; for 
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example, we employed a Fletcher-Reeves conjugate gradient update rather 
than the Polak-Ribi6re update (see Section 9), the procedure used to 
update a Cholesky factorization was somewhat inefficient although very 
stable, and reductions in the penalty parameter were not incorporated in 
our algorithm. Nonetheless, the numerical results that follow are very 
encouraging. First, let us consider the test problems that appear in Ref. 44 
by ColviUe. These problems also appear in Ref. 45 by Himmelblau and in 
Ref. 46 by Hock and Schittkowski. We did not attempt Colville 5, since the 
cost function in this problem is discontinuous; our computer code assumes 
that the derivative of the cost is available. 

The performance of the algorithm of Section 9 on the Colville test 
problems appears in Table 1. We present the number of times the cost 
function is evaluated (NF), the number of times the derivative of the 
cost is evaluated (NDF), the number of times the constraint function h is 
evaluated (NH), and the number of times the constraint Jacobian Vh is 
evaluated (NDH). To be consistent with Ref. 46, we used the feasible 
starting guess for Colville 2 and the infeasible starting guess for Colville 3. 
The iterations were terminated when the total error E was less than or 
equal to 10 -6. The CPU time is given in seconds for a Sun 3/50 computer 
with Fortran 77 compiler. The optimizing feature of the F77 compiler was 
not utilized. The relative error appearing in Table 1 is the norm of the 
difference between the exact solution and the computed solution divided by 
the norm of the exact solution. For exact solutions, we used those 
published in Ref. 46. Observe that, in these test problems, the stopping 
criterion E ~ 10 -6 generates between 7 and 10 significant digits in the 
computed solution. In implementing a test problem, nonbound inequality 
constraints were converted to bound constraints, like those in (2), by 
introducing slack variables. Hence, when a problem involves nonbound 
inequality constraints, the effective number of unknowns and equations 
increases when the constraints are converted to standard form. The data in 
Table 1 correspond to an initial penalty of 10 in each problem. 

Table 1. Results for Colville test problems and subroutine MIN. 

Problem NF NDF NH NDH CPU time Relative error 

Colville 1 18 10 0.37 5 × 10 -8 
ColviUe 2 311 144 318 144 5.28 1 X 10 - 7  

Colville 3 9 7 11 7 0.11 2 × 10 -~° 
Colville 4 58 23 0.12 3 × 10 -1° 
Colville 6 54 29 56 29 0.46 8 × 10 -8 
Colville 7 13 7 0.44 2 X 10 - 9  

ColviUe 8 251 110 255 110 5.00 6 × 10 - 7  
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Results for Colville test problems using software packages 
MINOS and NPSOL. 

451 

MINOS NPSOL 

Problem N F  CPU time Relative error NF  CPU time Relative error 

Colville 1 10 2.44 <1 × 10 - s  8 1.81 <1 × 10 -8 

Colville 2 189 7.62 7 × 10 - s  26 9.39 7 × 10 -8 

Cotville 3 I1 1.62 6 x 10 -12 6 0.45 1 x 10 -~° 

Colville 4 70 1.65 7 x I0 -~z 35 0.92 3 × t0 -9 

Co~ville 6 67 2A9 5 x 10 -8 t3 1.41 5 x 10 -8 

Colville 7 18 2.80 2 x 10 -7 14 2.61 3 x 10 -8 

CoIville 8 177 7.30 6 × 10 -7 24 5.97 6 × 10 -7 

For comparison, we solved these same test problems using the high- 
quality software packages MINOS (Ref. 14), Version 5.3, and NPSOL (Ref. 
47), November 1990 version. As mentioned in the introduction, MINOS 
implements the Rosen-Kreuser algorithm using a reduced-gradient al- 
gorithm (see Ref. 48) combined with a quasi-Nev~¢on method (see Ref. 49) 
to solve the linearly constrained optimization problems that arise in each 
iteration. The implementation is described in Refs. 50 and 51. The software 
package NPSOL implements an SQP-quasi-Newton method. In running 
these programs, we turned off all printing. In NPSOL, this was accomplished 
by setting the print levels to 0, while in MINOS we inserted comments in 
parts of the program dealing with printing. Since both of these programs 
request function values and gradients simultaneously, Table 2 only reports 
the number of function evaluations; the number of gradient evaluations is 
identical and the constraints are evaluated whenever the cost function is 
evaluated. We did not touch the stopping criterion in either program; the 
observed relative errors in the computed solutions are given in Table 2. 
Although the relative errors in Tables 1 and 2 vary slightly, small changes 
in the stopping criteria in any of the programs will not significantly alter 
the computational effort on the test problems. The algorithms implemented 
by either MIN, MINOS, or NPSOL converge rapidly in a neighborhood of an 
optimum, and the incremental effort needed to reduce the relative error 
f rom 10 -4 to 10 -8, for example, is usually a fraction of the effort needed to 
reduce the initial error to 10 -4. 

In comparing the data of Tables 1 and 2, we see that subroutines 
MIN and MINOS tend to require comparable numbers of function and 
gradient evaluations, while NPSOL tends to require fewer function and 
gradient evaluations. Of course, the reason for the smaller number of 
evaluations with NPSOL is that the SQP-quasi-Newton approach essentially 
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Table 3. Normalized computing times. 

Problem MIN MINOS NPSOL 

Colville 1 0.15 t.00 0.74 
Colville 2 0.56 0.81 1.00 
Colville 3 0.07 1.00 0.28 
Colville 4 0.07 1.00 0.56 
Colville 6 0.2I 1.00 0.64 
Colville 7 0.16 1.00 0.82 
Colville 8 0.68 1.00 0.82 

stores more gradient information. On the other hand, the iteration over- 
head in the SQP approach can be relatively high, since each iteration 
requires the solution of a quadratic program. Hence, the small number of 
function and gradient evaluations must be compared to both the iteration 
overhead and storage requirements to determine which approach is better 
in any particular application. If the time to evaluate functions and gradi- 
ents is large, and if the problem dimension is not too big, then the SQP 
approach is superior. But when the problem size increases, or the relative 
cost of evaluating functions and gradients decreases, then the conjugate 
gradient approach employed in subroutine MIN is superior. To compare the 
efficiency of the three packages on the set of test problems, we divided the 
computing time by the maximum computing time for each test problem to 
obtain the normalized times given in Table 3. Observe that subroutine MIN 
is faster than the other routines for these test problems. On average, MINOS 
is 1.03 times faster than the slowest routine, NPSOL is 1.41 times faster than 
the slowest routine, and MIN is 3.67 times faster than the slowest routine. 

In the next group of experiments, we investigate the relative impor- 
tance of various components of subroutine MIN. TO study the sensitivity in 
performance relative to the starting penalty, we resolved the test problems 
involving nonlinear constraints using three different starting penalties. 
In Table 4, we see that much of the ill-conditioning due to the penalty 
has been eliminated by the preconditioner. Nonetheless, as a general rule, 
small initial penalties yield better performance; the algorithm will increase 
the penalty if necessary. 

To evaluate the significance of the preconditioner (29), we applied the 
algorithm of the Global Step both with and without a preconditioner. We 
found that, in almost any nontrivial problem, the preconditioned iterations 
were much faster than the original iterations. A picture best illustrates the 
convergence properties. Let us consider the test problem Colville 2. Apply- 
ing the algorithm of Section 9 to this test problem, the code soon detected 
convergence slower than linear, and it branched to the Global Step. The 
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Results for Colville test problems using various 
starting penalties. 

453 

Problem Penalty NF NDF NH NDH 

Colville 2 10 311 144 318 144 
50 753 343 774 343 

250 1242 544 1278 544 

Colville 3 10 9 7 ! l 7 
50 9 7 l 1 7 

250 9 7 11 7 

Colville 6 10 54 29 56 29 
50 74 40 74 40 

250 99 52 102 52 

Colville 8 I0 251 110 255 I l0 
50 313 131 315 131 

250 666 300 674 300 

optimization problem in the Global Step was solved using the penalty 
p = 1250, and with the choice S = I in the preconditioner. We made two 
different computer runs. In one run, the gradients were preconditioned 
using (29). In the other run, there was no preconditioning. The number of 
conjugate gradient iterations between restarts was equal to the number of 
free variables (or equivalently, the dimension of the space orthogonal to 
the active constraint gradients). After each restart, the preconditioner was 
reevaluated. The convergence is depicted in Fig. 1. The horizontal axis in 
Fig. 1 is the iteration number. The vertical axis is the logarithm of the value 
of Lp minus the optimal value 32.348 . - .  associated with the test problem. 
The lower curve corresponds to preconditioned iterations while the upper 
curve corresponds to no preconditioning. After 58 preconditioned itera- 
tions, the error E was sufficiently small that the algorithm branched back 
to the Constraint Step. The dotted line in Fig. 1 corresponds to the value 
of the cost when the algorithm stopped executing the preconditioned 
version of the Global Step. With preconditioning, convergence is fairly 
linear initially; the convergence rate seems to increase near iteration 58. 
In contrast, without preconditioning, the cost function first decreases 
quickly as the penalty terms are minimized, but when the penalty terms are 
comparable to f, the convergence speed is essentially negligible; thousands 
of iterations will be needed to reach the dotted line. When Hock and 
Schittkowski reported convergence results for various methods applied to 
test problem 117 (Colville 2), both of the multiplier method codes failed to 
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Fig .  1. 

4 

¢q 

I 
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Iteration Number 
Convergence of the cost with preconditioning (lower curve) and without precondi- 
tioning. 

solve the problem; apparently, the convergence was so stow that the codes 
stopped far from the true solution. 

11. Appendix A: Proof of Theorem 2.1 

Let F: R '~+/× Rn-~R m+t be defined by 

F(y, x) ~Vh(x)M(x)y + h(x)] 
= L g(x +M(x)y) _]' 

where M is the matrix whose columns are the constraint gradients, 

M(x) = [Vh(x) r I Vg(x) r]. 

Evaluating the Jacobian of  F with respect to y at x = x* and y = 0 gives 

VyF(0, x*) = M(x*) rM(x*). 

Since the columns of  M are linearly independent, M(x*)rM(x *) is non- 
singular. By the implicit function theorem, there exist neighborhoods A1 of 
0 and A 2 of  x* such that the equation F(y, x) = 0 has a unique solution 
y =y (x )  in AI for every x~A2, and by Ref. 9 or 52, A 2 c a n  be chosen so 
that 

[y(x) l < ¢r IF(O, x) - F(O, x*) l _< ¢r([h(x) l + lg(x)[), 
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for some constant a that is independent of x sA2. Observe that, if g(x) = 0, 
then this bound for y(x) simplifies to 

ly(x)l <--  lh(x)l. (38) 

Let B be a ball with center x* and with radius so small that B c z~2, 
and both h and g are twice continuously differentiable inside B. Defining 
the parameters 

p = maximum a IM(x)[, 
x E B  

let womB c~f~ be any point with the property that both 

7Ih(wo)t < minimum{i/2, 1 - ~}, where ~f = 6p2/2, (39) 

and the ball with center Wo and with radius R = 2plh(wo) 1 lies in B. 
Suppose that wi+ 1 and w,- lie in B, where wi+ 1 satisfies (4) and (5) with 

si = 1. When h(wi+ 1) is expanded in a Taylor series about wi, the first two 
terms cancel since 

V h ( w ; ) 4  = V h ( w ,  ) (wi  + , - w~ ) = - h ( w ~ ) .  

Using the intermediate value form for the remainder term, we have 

h(wi+ t) = (I/2) ~ [dTVZhj(~j)d~lei, (40) 
j = l  

where ~j lies between w~+ i and w; for each j and ej is the unit vector with 
every component equal to zero, except for the j t h  component which is one. 
Since wi~B, (38) yields 

t y ( w , ) l < - a l h ( w , ) t .  

Since d = M(w~)y(wi) satisfies the constraints of (5), the minimum norm 
solution in (5) is bounded in terms of M(w~)y(w~), 

14t <-[M(w~)y(w,)l <- Plh(w,)l • (41) 

Hence, (40) gives 

Ih(wi +1 )l < 7 Ih(wi )]2 (42) 

Consequently, if Wo, w~ . . . . .  w~+ 1 lie in B and (6) holds with s = 1 in each 
iteration, then we have 

V Ih(w,+ I)1-< Ivh(w;)[ z - < " "  -< [yh(wo)[ 2'+ '. (43) 
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We now show by induction that the entire sequence Wo, w l , . . ,  is 
contained in B, that 

Id, I --- R2-2i (44) 

for every i > 0, and that (6) holds with s = 1 in each iteration. By 
assumption, Wo lies in B. Suppose that w0, w l , . . . ,  w~ lie in B, that (44) 
holds at iteration i -  1, and that 

S O ~ - . S  1 ~ *  " " ~ S i _  1 ~ 1. 

Combining (41), (43), and (39), we have 

]d,-[ _< plh(w,)] < (p/y)(ylh(wo)])z' <_ plh(wo)]2 -2'+ I = R 2  -2'. 

Thus, (44) holds at iteration i. Note that wi + d,- lies in B, since 

i i 

] w , + d , - w o l  < Z ldJ] ---R Z 2 - i < R "  (45) 
j = 0  j = o  

In iteration i, (6) holds with s = 1, since 

[h(we + d~)] <_ y th(w,)l ~ <_ (~ [h(wo)1) 2']h(w,)[ <_ (1 - v)[h(wi)l. 

This completes the induction. By (44), the w; form a Cauchy sequence that 
converges to some limit w satisfying the first inequality in (8). The second 
inequality appears in (45), while the third inequality appears in (42). [] 

12. Appendix B: Proof of Theorem 3.1 

By the Kuhn-Tucker  condition characterizing a local minimizer 
x = xk+~ associated with (9), there exist vectors v and /~+1 such that 

VxLe(), k, xg+ 1) + v r V h ( y k )  + #~+ lVg(xk + ,) = 0. (46) 

Using the vector v appearing in (46), we construct a new approximation 
2~+1 to 2* by the rule 

~+1  = 2k + v + 2ph(xk+t) .  (47) 

Solving for v in (47) and substituting in (46) yields 

Vf(xk  + ,) + 2if+ ~ Vh(y~)  + [2k + 2ph(xk + l)]Z[Vh(xk + 1) - Vh(yk)] 

r (48) + #k+ 1Vg(x~ + 1) = O. 

Since xk + ~ satisfies the constraints of (9), we have 

Vh(yk)(Xk+ 1 - -Yk)  = O, g(x~+ I) = O. (49) 
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Defining the function F: R~+'~+t x R'~+m~Rn+"+l by 

F(x, 2, ¢t, y, q) 

g(x) 

(48)-(49) can be written as 

F(xk + ~, 2k + ~, ~k + ~, Y~, 2D = O. 

The Jacobian of F with respect to its first three arguments evaluated at the 
star-variables is 

[V~M,(2*,~*,x*) Vh(x*) T Vg(x.) ~] 

Vx ' z~ 'F(x* '2* '#* ' x* '2*)=l  [ Vg(x*) Vh(x*) 0 0 00 J ,  

(50) 

where 

Mp (2, #, x) = Lp (2, x) + # rg(x). 

Since the constraint gradients are linearly independent and V~Mp (2 *,/~ *, x*) 
is positive definite in the null space of Vh(x*) intersect the null space of 
Vg(x*), we have the following well-known result (see Ref. 8, Lemma 1.27): 
The Jacobian (50) is nonsingular for every p _> 0. By the implicit function 
theorem, there exist neighborhoods A1 and A2 of (x*, 2*) such that the 
equation F(x, 2, #, y, q) = 0 has a unique solution 

(x, 2, ~) = (x(y ,  ~), 2(y,  ~), ~(y,  ~)) 

in A1 for every (y, q) in A2. Moreover, by Ref. 9, Corollary 6.2 or Ref. 52, 
A2 can be chosen so that 

Ix(y, ~) -x*l + t2(y, q) -2"t  + l~(y, ~) -~t* 
<_ elf(x*, 2 ", ,u*, y, rl) - F ( x * ,  2", #*, x*, 2")I, (51) 

for some constant c which is independent of (y, t/) eA2. By Ref. 9, Lemma 
6.5, and by the second-order sufficiency condition, x(yk, 24) is the unique 
local minimizer of (9) near x* when (y~, 2~) is near (x*, 2*). From the 
definition of F, we have 

F(x*, 2 ' ,  I~*, y, 11) --F(x*, 2", #*, x*, 2*) 

-[Vh(x*) - Vh(y) l  T(~ _ ~ , ) ]  

= Vh(y)(x * - y) j , (52) 
0 
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provided g(y) = 0. In Ref. 1, Theorem 3.1, we establish the bounds 

2l[Vh(x*) - Vh(y)]r( tl - 2")1 < I1/- 2"12 + -x* l  2, 

] V h ( y ) ( x *  - Y)I <- (6/2)]y - x*] 2 + ]h(y) l, 

where 

6 =[i=~lmaX~ymxU2[V2hi(zi)[211/2. 

Here, [y, x*] denotes the line segment between y and x*. Combining these 
bounds with (51) and (52), the proof is complete. [] 

13. Appendix C: Some Sensitivity Results 

In this appendix, we state two results that are needed for the analysis 
of Kuhn-Tucker  error in Section 4. Let us consider the optimization 
problem 

minimize f(x), (53a) 

subject to h(x) = z, (53b) 

where z is a fixed vector in R m. Suppose that (53) has a local minimizer x* 
corresponding to z = z*, that f and h are twice continuously differentiable 
in a neighborhood of x*, and that the constraint gradients Vhi(x*) are 
linearly independent. Letting 2 = 2* denote the unique solution to the 
equation 

Vf(x) + 2rVh(x) = 0, (54) 

corresponding to x = x * ,  we assume that the second-order sufficiency 
condition holds. That is, the Hessian 

V2[ f(x)  + h(x) r)t*]x = x* 

is positive definite in the null space of Vh(x*). For a proof of the following 
result, see Ref. 52. 

Lemma 13.1 If  the second-order sufficiency condition holds and the 
constraint gradients are linearly independent at a local minimizer x* of 
(53) associated with z = z*, then there exists a neighborhood A of z* such 
that, for every z~A, (53) has a local minimizer x(z) and an associated 
multiplier 2(z) such that x(z*)=x*,  and 2 = 2@), x =x(z)  satisfy (54). 
Moreover, there exists a constant c, such that 
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tx(z l )  - x(z2) l  + 1 2 ( z , )  - : (z2)l <_ cfz  - z2I, 

for every zl and z2 in A, 

The proof of the following result is analogous to that of  Proposition 
5.2 in Ref. 1. 

Lemma 13.2 Suppose that the assumptions of Lemma 13.1 hold. Let 
A denote the neighborhood of z* given in Lemma 13.1, and define 

E.(2, x) = [Vf(x) + 2TVh(x)] + [h(x) - z[. 

Then, there exists a neighborhood At of  (x*, 2*), a neighborhood A2 of  z* 
with Az = A, and positive constants c~ and c 2 such that 

c~E~(2, x) <_ Ix --x(z)[ + 12 - 2(z)f _< c~E~(,~, x), 

for every z eA2 and (x, 2)~AI. 
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