
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 79, No, 3, DECEMBER 1993

Analysis and Implementation of a Dual
Algorithm for Constrained Optimization la

W. W. HAGER 3

Communicated by E. Polak

Abstract. This paper analyzes a constrained optimization algorithm
that combines an unconstrained minimization scheme like the conju-
gate gradient method, an augmented Lagrangian, and multiplier up-
dates to obtain global quadratic convergence. Some of the issues that
we focus on are the treatment of rigid constraints that must be satisfied
during the iterations and techniques for balancing the error associated
with constraint violation with the error associated with optimality. A
preconditioner is constructed with the property that the rigid con-
straints are satisfied while ill-conditioning due to penalty terms is
alleviated. Various numerical linear algebra techniques required for the
efficient implementation of the algorithm are presented, and conver-
gence behavior is illustrated in a series of numerical experiments.

Key Words. Constrained optimization, multiplier methods, precondi-
tioning, global convergence, quadratic convergence.

1, Introduction

We consider opt imizat ion problems o f the following form:

rain f (x) , s.t. h(x) = 0, x~f~, (1)

where x is a vector in R ' , f i s a real-valued function, h maps R n to R% and
f~ c R". The constraint set f~ contains the explicit constraints; these are the
constraint that must be satisfied accurately. The constraint h (x) = 0, on the

~This research was supported by the National Science Foundation Grant DMS-89-03226 and
by the U.S. Army Research Office Contract DAA03-89-M-0314.

-'We thank the referees for their many perceptive comments which led to substantial improve-
ments in the presentation of this paper.

3Professor, Department of Mathematics, University of Florida, Gainesville, Florida.

427
0022.3239/93/12oo.o427507.0o/o ,c 1993 Plenum Publishing Corporation

428 JOTA: VOL. 79, NO. 3, DECEMBER 1993

other hand, will be satisfied approximately in our numerical algorithms,
and as the iterations progress, the constraint violation will be reduced. In
our numerical experiments, we include all nonlinear constraints in h, while
the linear equalities and inequalities are incorporated in the constraint
x e9~. More precisely, in our computer code, we assume that fl is given by

f~ = {x: Ax = b, l < x < u}, (2)

where A is a matrix and b is a vector of compatible dimensions, l is a vector
of lower bounds, and u is a vector of upper bounds. Of course, any
optimization problem constrained by systems of equalities and inequalities
can be expressed in the form (1) with f~ given by (2).

Our goal is to find a feasible point that satisfies the Kuhn-Tucker
condition associated with (1). Let L denote the Lagrangian defined by

L(2, x) = f (x) + 2 rh(x),

where the superscript T denotes transpose. If f~ is given by a system of
equalities and inequalities,

f~= {x~R": g(x) = 0 and G(x) <0},

where g maps R n to R ~ and G maps R" to R ~, then a point x ~ f l with
h(x) = 0 satisfies the Kuhn-Tucker condition associated with (1) if there
exists a vector 2ER m such that

- VxL(2, x) ~Nx(f~),

where Vx stands for the gradient with respect to x and Nx(f~) is the normal
cone defined by

Nx(f~) = {# rVg(x) + vrVG(x): v > 0, ve = 0 if ge(x) < 0, p arbitrary}.

Given x ~ f l and) ~ R " , let E denote the error expression defined by

E(2, x) = K(2, x) + C(x),

where C(x) = [h(x)l measures the constraint violation in some norm l" I and
K measures the error in the Kuhn-Tucker condition,

K(2, x) = distance{- VxL(2, x), N,.(f])}

= minimum{IV,L(), x) + y[: y ~N,~(~) }.

For convenience, we use the Euclidean norm throughout this paper,
although any norm can be employed.

JOTA: VOL. 79, NO. 3, DECEMBER 1993 429

Observe that, if/£(2, y) = 0 for some y ef~ and 2 eR "~, then E(2, y) = 0
for the problem

minf(x), s.t. h(x) =z, x ~ , (3)

where z = h(y). Loosely speaking, y is an optimal solution of the wrong
problem, assuming that h(y) does not vanish. Hence, the constraint error
vanishes at any point in the feasible set, while the Kuhn-Tucker error
vanishes at any point that optimizes (3) for some z.

The algorithm developed in this paper is based on the augmented
Lagrangian techniques of Ref. 1. Recall that an augmented Lagrangian is
obtained from the ordinary Lagrangian by adding a penalty term. I fp __> 0
denotes the penalty parameter, then we utilize the quadratic-penalty aug-
mented Lagrangian defined by

Lp(2, x) =f (x) + 2 rh(x) +plh(x)t z.

Multiplier methods seem to originate from work by Arrow and Solow
(Ref. 2), Hestenes (Ref. 3), and Powell (Ref. 4). Additional results are
developed in the sequence of papers (Refs. 5-7) by Rockafellar. See
Ref. 8 by Bertsekas for a comprehensive study of multiplier methods.
Results for problems formtflated in a Hilbert space appear in Refs. 9 and
10. Some interesting applications of augmented Lagrangian techniques to
boundary-value problems are developed by Fortin, Glowinski, and their
collaborators in Ref. 11.

With the notation given above, the algorithm that we focus on has
the following general form: If xk denotes the current approximation to
a solution of (1) and 2k denotes the current estimate for a Lagrange
multiplier associated with the constraint h(x) = 0, then the next approxima-
tions xk +1 and 2k+1 are obtained by successively executing the following
two steps when the convergence is at least linear:

Step t. Constraint Step. Apply an iterative method to the equation
h(x) = 0, stopping the iteration when the constraint error is
less than the Kuhn-Tucker error.

Step 2. Kuhn-Tucker Step. Apply an iterative method to the equa-
tion K(2, x) = 0, stopping the iteration when the Kuhn-
Tucker error is sufficiently small relative to the constraint
error.

When the Constraint Step followed by the Kuhn-Tucker Step do not
decrease the total error at least linearly, execute the following Global Step,
then branch back to the Constraint Step.

430 JOTA: VOL, 79, NO. 3, DECEMBER 1993

Step 3. Global Step. Increase the penalty and apply a preconditioned
iterative technique to the problem

minimize{Lp(2~, x): x eft},

stopping when the Kuhn-Tucker error is smaller than the
constraint error.

In this paper, we analyze a Newton-Armijo iterative implementation
of the Constraint Step, and we devise a new iterative scheme for the
Kuhn-Tucker Step. Assuming an independence condition for the gradients
of the active constraints, we show that the 3-step algorithm possesses a
global convergence property. Of course, independence of constraint gradi-
ents implies that the number of equality constraints is at most n. If in
addition, a second-order sufficient optimality condition holds, then the
Constraint Step followed by the Kuhn-Tucker Step possesses a quadratic
convergence property. A new preconditioner is developed for the Global
Step that eliminates instabilities associated with the penalty term in the
augmented Lagrangian while enforcing the explicit constraints. The paper
concludes with a series of numerical experiments in which our algorithm is
compared to a reduced gradient, quasi-Newton algorithm, and to a sequen-
tial quadratic programming algorithm.

As discussed in Ref. 1, our approach to the constrained optimization
problem is related to an algorithm of Rosen and Kreuser (Ref. 12). In
the scheme of Rosen and Kreuser, each iteration involves the minimization
of the Lagrangian subject to linearized constraints. By the analysis of
Robinson in Ref. 13, this scheme is locally quadratically convergent. The
software package MINOS (Ref. 14) provides an implementation of this
scheme in which the Lagrangian is replaced by an augmented Lagrangian.
Note that the Rosen-Kreuser method as well as the usual SQP method
reduce both the constraint error and the Kuhn-Tucker error simulta-
neously, while in our approach, each error is treated in separate steps that
are loosely coupled together. This allows us to apply equation solving
techniques to the constraints and unconstrained optimization techniques to
the Kuhn-Tucker error.

The analysis of Coleman and Conn in Refs. 15 and 16 demonstrates a
connection between SQP methods and a related 2-step process. In each
iteration of the SQP method, a quadratic approximation to the Lagrangian
is minimized subject to linearized constraints. Coleman and Conn show
that solving this quadratic programming problem is nearly the same as
applying a single Newton step to the constraints, then solving the quadratic
program subject to a null space constraint. They show that this 2-step
process possesses a superlinear convergence property similar to that of SQP

JOTA: VOL. 79, NO. 3, DECEMBER 1993 431

methods. Again, Coleman and Conn's scheme, like the Rosen-Kreuser and
SQP schemes, treats both the constraint error and the Kuhn-Tucker error
simultaneously, while our approach addresses each error separately.

2. Constraint Error

We consider the following Newton-Armijo (see Ref. 17) process to
solve the equation h (x) = 0. Let o- and r be fixed positive constants less
than 1, and let Wo = xk be the starting guess. Then, the new iterate wi+ t is
obtained from the current iterate wi by the rule

wi+ I = wi + sidi, (4)

where

d~ = arg min{]d]: Vh(w~)d = - h (w i) , wi + d e n } , (5)

and s~ = ~rJ, where j is the smallest nonnegative integer with the property
that, for s = a J, we have

!h(wi + sd~)t <- (1 - zs) [h(wi)l. (6)

There is an extensive literature concerning the convergence properties
of Newton's method for systems of equations and inequalities. Some of the
relevant literature includes Refs. 18-22. One difference between the itera-
tion (4)-(5) and the iterations in these earlier papers is that, in the earlier
work, each of the constraints is linearized, while in (4) -(5) only part of the
constraints is linearized. The scheme (4)-(5) is most closely related to the
Armijo scheme of Ref. 21, modified to take into account the constraint set

and the fact that inequality constraints are embedded in fl.
In analyzing this algorithm, we assume for convenience that f~ is given

by

n = g(x) = 0} , (7)

where g maps R" to R(Since an inequality G(x) <_ 0 can be converted to
an equality by Valentine's device, inequalities can be embedded in the
equation g(x) = 0 (see Ref. 23); that is, introduce an extra variable z and
work with the equation G(x) + z 2 = O. Moreover, if the gradients of the
active constraints in the original problem are linearly independent, then the
gradients of the transformed equality constraints are linearly independent.
The conversion of inequalities to equalities is done to facilitate the analysis.
This conversion is not needed for the implementation of our algorithm.
The global convergence properties of the iteration (4)-(5) are developed in
Section 6, while the local convergence properties are described by

432 JOTA: VOL. 79, NO. 3, DECEMBER 1993

Theorem 2.1. Suppose that x = x * satisfies the equations h (x) = 0
and g(x) = O, g and h are twice continuously differentiable near x*, and the
gradients Vhj(x*) and Vgk(x*) are linearly independent. Then, there exists
a neighborhood A of x* and a constant c such that, for any Wo ~A c~ ~,
the iteration (4)-(5), where ~ is given by (7), converges to a point w with
the following properties: h(w) = g(w) = 0 and s = 1 satisfies (6) for each i.
Moreover, for every i, we have

Iwi-wl< clh(wo)l Iw,-wol< clh(wo)l, Ih(w,+,)l<~clh(wi)l =. (S)

Thus, the root convergence order (see Ref. 24) of the iteration (4)-(5) is at
least 2.

A proof of this result appears in Appendix A (Section 11).

3. Convergence Analysis with Rigid Constraints

In this section, we state a result that provides the basis for our
algorithm to iteratively solve the equation K(2, x) = 0. This result extends
the convergence analysis of Ref. 1 to handle the rigid constraint x e ~ .
An analysis of rigid constraints for the classical method of multipliers
appears in Ref. 8, pp. 141-144, by Bertsekas, while an analysis of a
sequential quadratic programming scheme with rigid constraints appears in
Ref. 25.

As in the analysis of Bertsekas, we take ~ of the form (7). Let us
assume that (1) has a local minimizer x*, that f , g, h are twice continuously
differentiable in a neighborhood of x*, and that the constraint gradients
Vgj(x*) and Vhk(x*) are linearly independent. In addition, if 2 = 2* and
kt = #* are the unique solutions to the equation

Vf(x*) + ~.~Vh(x*) + ~ V g (x *) = o,

we assume that the Hessian VZ[f (x)+ h(x)r2 * +g(x)r#*]x=.,, is positive
definite in the null space of Vh(x*) intersect the null space of Vg(x*). This
assumption, which will be referred to as the second-order sufficiency
condition throughout this paper, implies that x* is a strict local minimizer
of (1); see Ref. 26.

Theorem 3.1. If the second-order sufficiency condition holds, fl is
given by (7), and the constraint gradients are linearly independent at a
local minimizer x* of (1), then there exists a neighborhood A of (x*, 2*)
for which the problem

JOTA: VOL. 79, NO. 3, DECEMBER]993 433

minimize{Lp(2~, x): Vh(yk)(x --Yk) = O, g(x) = 0} (9)

has a local minimizer x =xk+~, whenever (Yk, 2k) lies in A. Moreover,
there exists a constant c such that

lxk + , - x*t-< cl2k - 2.12 + + ~ - x*t 2 + c Ih(yk) J,

Ibr every (Yk, 2k) in A with yk~q.

A proof of Theorem 3.1 appears in Appendix B (Section 12). Approx-
imations 2~+ 5 and Pk +5 to the Lagrange multipliers associated with the
constraints h(x) = 0 and g(x) = 0 that satisfy the same error bound as xk + t
are given by the least-squares solutions 2 and # to the linear system

Vf(x) + 2 rVh(x) + p rVg(x) = 0 (10)

corresponding to x = xk + 1.
We now combine Theorems 2.1 and 3.1 to show that quadratic

convergence is achieved when the Newton-Armijo iteration is used to
generate the Yk of Theorem 3.1.

Corollary 3.1. Under the hypotheses of Theorem 3.1, there exists a
neighborhood A of (x*, 2*) for which the problem

minimize{Lp(2k, x): Vh(yk)(x --Yk) = O, g(x) = 0}

has a local minimizer x =xk+~, whenever (xk, 2~) lies in A, xk~f2, and
Yk = wz for any I_> 1 where the iterates we are generated by (4)-(5),
starting from w0 = xk. Moreover, for some constant e, we have

I~ + 5 - z*l _< c l~ - ~ ' t 2 + c lx~ - x*?,

where c is independent of (xk, 2~) in A ~ q x R".

Proof. Since I > 1, the last inequality in (8) gives

Ih(y~)t = lh(w,)t = O(th(x~)l ~) = o (l x~ - x ' t 2) ,

and by the middle inequality in (8),

ly,. - xk l = O(!h(x~)I) = o (t ~ - ~*I).

By the triangle inequality,

ly~ - ~*I <- ly,. - x~ l + txk - x * l = O (I x k - x' i) .

These inequalities combined with Theorem 3.1 complete the proof.

434 JOTA: VOL. 79, NO. 3, DECEMBER 1993

4. Kuhn-Tucker Error

In Section 2, we presented an implementation of the Constraint
Step for which each successive iteration reduced the constraint violation.
Moreover, near a feasible point where the constraint gradients are linearly
independent, we have C(wi+l) = O(C(w~)2). In this section, we present an
iterative implementation of the Kuhn-Tucker Step which is similar to
the Newton process in that the Kuhn-Tucker error is locally squared,
K (w i + t , A i + l) = o (g (w i , Ai)2) . But unlike the Newton technique, the
Kuhn-Tucker error may not decrease monotonically. Nonetheless, a
globally convergent update can be formulated; see Section 6.

Let L~ be defined by

Lp(2, x) = f (x) + 2 rh(x) + p lh(x) - h(wi)I z,

and consider the following iteration:

wi+ 1 = arg min{Lp(A;, x): Vh(wi) (x - w~) = O, x eft}, (1 l)

where

Ai = arg min{K(A, w~): A e R m } .

To be consistent with the presentation in the previous sections, it is
assumed that f2 has the form (7), so that K can be expressed as

K(2, x) = m i n i m u m { l V x L (2 , x) + #Wg(x)[: #eR~}.

Theorem 4.1. Under the hypotheses of Theorem 3.1, there exists
neighborhoods A1 and A2 of x* and a constant c such that, for every
w0eA1 c~f~, the iteration

A t = arg min{K(A, w i): A e Rm}, (12a)

wi + 1 = arg min{L~ (A,, x): Vh(w~)(x - w,) = O, x ~ A2 c~ f~} (12b)

converges to a point (A, w), and the following properties hold:

(a) K(Ag+I, wi+~) < c K (A ~ , w~)2, for each i >0;
(b) K(A, w) =0;
(C) IWi -- W[<~ C2 -2i, for each i > O;
(d) Iw~ - w, I < ClWo - x*l 2, for each i >_ 1;
(e) Iw,-x*l <-clwo-x*12+clh(wo)l, for each i > 1.

Proof. In order to analyze the iteration (11), we need to consider a
perturbed optimization problem,

minimize f (x) , (13a)

subject to h(x) = z, g (x) = 0, (13b)

JOTA: VOL. 79, NO. 3, DECEMBER 1993 435

where z is a fixed vector in R" . To show that the Kuhn-Tucker error
is squared in each iteration, we employ the lemmas of Appendix C
(Section 13). By Lemma 13.1, there exists a local minimizer of (13) and
an associated multiplier that depend Lipschitz continuously on z near 0.
Defining

~(,~ . x) = K(,l. x) +]h(x) - z[,

Lemma 13.2 implies that, for z near 0, for 2 near 2", and for x near x*
with xEf], the distance between (2, x) and a solution-multiplier pair
associated with (13) is bounded from below and from above by constant
multiples of E~(2, x).

Given wg near x*, let w* denote the local minimizer of (13) near x*
associated with z = h(wl), and let A = A* be the corresponding multiplier
for which K(A*, w *) = 0 . By Lemma 13.1, w* is near x* when wi is
near x*. By Theorem 3.1 and the fact that x = w; satisfies the constraint
h(x) = h(w~), we have

Iwi+l - w* I = O([wi - wy[z) + O([A; - A~* 10. (14)

Since A~ is the least-squares solution to (10) when x = wi, it follows that

I A , - A* I = O(lw~- w,l).

Hence, (14) implies that

[A,+, - A*[+ [w~+, - w*[= O (] w ~ - w*[2). (15)

Note that

~(A~., wi) = K(Ai, wi), when z = h(wi).

Hence, by Lemma 13.2,

lwt - w*[= O(K(Ai, w~-)).

Also, by Lemma 13.2 with z = h(w~), we have

IA,+, - h * t +]wi+, - w* l >_ c, E~(A,+ ,, ws+ ,) > c ,K(a~+,, w,+ ,).

Combining these relations, we have

K (& + I , w,+ ,) = O (K (A , wi)2).

which establishes (a).
Next, let us show that the wi converge locally quadratically. Since

h(w*) = h(wi), (15) yields

th(w,+ 1) - h(w~)l = th(w~+ 1) - h (, <) l = O(tw~+ 1 - w~[)

= O(tw~- w*12). (16)

436 JOTA: VOL. 79, NO. 3, DECEMBER 1993

By Lemma 13.1 and (16),

[w,*+, - w,* I = O(Ih(w~ + ~) - h (w ~) l) = O (I w i - w~'12).

Since

(17)

Iw,. - w*l 2 < 21w , - w*_ ~I 2 + 21w* - w*_ ~I 2,

(15) and (17) imply that a,+ ~= O(a~), where

a,+ ~ = Iw;+, - w~*l + lw*+, - w~*l.

In particular, if ai+ ~ < ya ~, then

7ai+l < [yal] 2', ai+ 1 < al[Tal] 2'-1.

Combining Lemma 13.1, (15), and (17), it follows that a~ approaches zero
as Wo approaches x*. Hence, for Wo sufficiently close to x*, there exists a
constant c such that ai < ca~ 2 -2'. By the triangle inequality, we have

IWi÷l-W,l<-lw,+,-w*l+lw* +w*_,l+lw*_,-wil

< ai+l + al < 2cal 2-21, (18)

for each i > 1.
If w denotes the limit of the sequence w~, then relation (18) yields

(c). Since K(A*, w*) = 0, and since both w~ and w* are approaching the
same limit w, we conclude that the A~ approach a limit A and (b)
holds. Moreover, (18) implies that lw,-w,l=O(a,). By (15) and (17),
al = O(Iwo- w*t2). By Lemma 13.1,

Iwg - x* 1 = O(Ih(wo) - h(x*) l) = O(Iwo - x*l) , (19a)

IWo - Wo*l < IWo - x*t + Iw* - x*] = O(two - x ' l) . (19b)

Hence, al = O([wo- x*lZ), which establishes (d). By the triangle inequality,
(15), and (19), we have

Iw, - x * l _ Iw, - wal + Iw* - x*l = O (I w 0 - x*l 2) + O(Iwa - x*l).

This inequality combined with (19) and (d) yield (e). []

5. Total Error

Combining Theorem 2.1 and Theorem 4.1, we obtain quadratic con-
vergence of the total error.

JOTA: VOL 79, NO. 3, DECEMBER 1993 437

Corollary 5.1. Under the hypotheses of Theorem 3.1, there exist
neighborhoods A~ and A2 of x* and a constant c such that

txk + 1 - x*] < c]x~ - x*] 2,

for every k where the iterate xk+~ is generated from x~, starting from
any point xoeA~ c~f~, in the following way. Setting w0 = xk, we repeat the
iteration (4)-(5) any number of times, stopping with wz, I > 1; setting
wo = w~, we repeat the iteration (12) any nmnber of times, stopping with
ws~ J _> 1; then, we set x~ +1 = ws.

Proof.
with part (e) of Theorem 4.1 yields

lwJ - x*t _< c l w , - x*l 2 + clh(w,)t-< ctw - x*l 2 + O(lh(xk)i2).

By Theorem 2.1, we have Ih(w,)[_< clh(xk)12. Combining this

By the middle inequality in (8),

IWI - Xk l "~ Clh(Xk) I = O ([x k -- X*I) .

This inequality, the triangle inequality, and (20) complete the proof.

(20)

Recall that our objective is to reduce the total error (constraint
violation plus Kuhn-Tucker error) beneath some given error tolerance. If
the constraint error is much smaller than the Kuhn-Tucker error, then it
is inefficient to spend a lot of effort reducing the constraint error. Similarly,
if the Kuhn-Tucker error is much smaller than the constraint error, then
it is inefficient to spend a lot of effort solving the optimization problem
(11). In Section 2, we presented an iteration that locally reduced the
constraint error in successive iterations, and in Section 4 we presented an
iteration that locally reduced the Kuhn-Tucker error. These iterations,
which are quadratically convergent, can be performed any number of times
without interfering with the quadratic convergence property associated
with the 2-step process. Hence, we can continue the Armijo-Newton
iteration until the constraint error is beneath the Kuhn-Tucker error,
and we can continue iteration (11) until the Kuhn-Tucker error is beneath
the constraint error. In this way, a balanced reduction in the error is
achieved.

6. Global Convergence

We begin with a global convergence result for the iteration (4)-(5).

438 JOTA: VOL. 79, NO. 3, DECEMBER 1993

Lelmna 6,1. Suppose that there exists a solution to (5) for each i,
there exists a constant M such that [di[_< M for every i, and there exists
p > 0 such that Vh is Lipschitz continuous with modulus x in the ball with
center w; and radius p for each i. Then for each i where h(wi) does not
vanish, the iterate w;+l defined by (4) exists, and we have

Ih(w;+~)1 < (1 - ~:;z)[h(w~)[,

where

7; = minimum{l, ap/M, 2lh(w ;)[~r(1 - r)/xM2}.

Hence, either an element of the sequence h(wo), h(wl) vanishes after a
finite number of steps, or the entire sequence tends to zero.

Proof. Applying the fundamental theorem of calculus in any neigh-
borhood of a point w where the derivative of h satisfies the Lipschitz
condition, we have

h(w + sd) = h(w) + .If" Vh(w + td)d dt

= h(w) + sVh(w)d + (Vh(w + td) - Vh(w))d dt.

Assuming that

Idl<_M and Vh(w)d=-h(w)

[see (5)1, we conclude that

lh(w + sd) I <_ (1 -- s)lh(w)l + tcs2M2/2. (21)

Since Lemma 6.1 holds trivially when h(w;) vanishes, let us assume that
h(w;) ~ O. In this case, (21) implies that (6) holds for j sufficiently large.
From the definition of &, it follows that either s; = 1 or

Ih(w, + ,r-'s;di)l >_ (1 - za-%)[h(w,) I. (22)

If si Idi I/a > p, then

s; > pa/ld, I >_ p a / m .

Conversely, if s;Idit/a < p, then by (21) with w = w,-, d = d,., and s =&/a,
and by (22), we have

s; >_ ~(1 - ~)[h(w~)l/~M 2.

Combining these inequalities yields si > 7i. Inserting the lower bound s = 7i
in (6) completes the proof. []

JOTA: VOL. 79, NO. 3, DECEMBER 1993 439

If f~ is compact and wo lies in the convex hull of f~, then the direction
vectors d~ are uniformly bounded, and the assumption of Lemma 6.1 that
Ida] _< M for some M is satisfied. Note though that, except for special values
of h(w~), the linear system Vh(w~)d = - h (w i) only has a solution when the
rows of Vh(w,~) are linearly independent.

Unlike the Newton-Armijo iteration, the Kuhn-Tucker iteration (11)
may not be globally convergent. One way to achieve a globally convergent
iteration is to update the multiplier approximation Ai only when the
Kuhn-Tucker error decreases by some fixed factor a < I. More precisely,
if 2 = 2,- minimizes K(2, wi) over 2, then the globally convergent algorithm
takes the following form: Setting K0 = K(Ao, w0) and Ao = 20, we perform
the iteration

wi+ 1 = arg min{Lp(A,, x): Vh(wl) (x - wi) = O, x e ~ } , (23a)

A~+I =2i+1 and Ki+l = K(2i+ l, w,+ l), if K(2i+l, w~+l) _<a~, (23b)

A,-+ 1 = Ai and Ki+ 1 = Ki, otherwise. (23c)

In Theorem 4.1, we saw that

KO.~+ ,, w,+ ~) = O(K(L , wi) 2)

in a neighborhood of a local minimizer of (1). Consequently, the condition

K(2i+ I, w,-+ 1) -< G/f,

is always satisfied in a neighborhood of a local minimizer, and the
Kuhn-Tucker error decays quadratically in accordance with Theorem 4.1.
Globally, we have the following convergence result.

Lemma 6.2. Suppose that f~ is given by (7), f~ is compact, and f, g, h
are continuously differentiable in fL Then, a subsequence of the wi ap-
proaches a limit w*, and if the constraint gradients are linearly independent
at w*, then there exists 2" such that K(2*, w*) = 0.

Proof. If the condition K(2;+~, wi+ ~) < a K i is satisfied an infinite
number of times, then the Kuhn-Tucker error tends to zero for a subse-
quence of the iterations, and the corollary holds trivially. On the other
hand, if the condition K(2i+ j, wi+ ~) > aKi is satisfied for each i sufficiently
large, then A,.+ ~ = Ai for i sufficiently large. We let A denote the limit of the
A,., and we let w* denote any convergent subsequence of the w,. with the
property that the constraint gradients are linearly independent at w*.
Letting L* be defined by

440 JOTA: VOL. 79, NO. 3, DECEMBER 1993

L* (h, x) = f (x) + Arh(x) + p th(x) - h(w*)12,

we consider the optimization problem

minimize L*(A, x), (24a)

subject to Vh(w*)(x - w*) = 0, g(x) = 0. (24b)

If x = w* is a local minimizer for this problem, then by the Kuhn-Tucker
conditions, there exists).* such that K(2*, w *) = 0. Conversely, suppose
that x = w* is not a local minimizer for (24). We show that this leads to a
contradiction.

By the structure of Lp, we have

L~(A, w,) _> L~(A, w,+,) >_ L~ + '(A, wi÷,). (25)

Since w* is not a local minimizer for (24), there exists y near w* such that

L*(A, y) < L*(A, w*),

where

V h (w *) (y - w *) = 0 and g(y)=O.

Let E be defined by

= L*(A, w*) - L*(A, y).

As a subsequence of the wi approaches w*, it follows from the indepen-
dence of constraint gradients and the implicit function theorem that there
exists an associated sequence Yi approaching y with

L*(A, w*) - L*(A, y,) > 4/2, /h(w~)(y, - w,) = 0, g(Ye) = 0,

for i sufficiently large. Hence, for i sufficiently large,

L~(A, w,) - L~(A, w~÷,) > L~(A, w,) - L~(A, y,) _> e/4.

This inequality along with (25) violate the fact that L~ is bounded from
below uniformly. D

As discussed in Section 1, when the Constraint Step followed by the
Kuhn-Tucker Step do not decrease the total error, we minimize Lp(2k, x)
over x ~ ~. As discussed in Section 5, computing time is potentially lowered
when the error is reduced in a balanced fashion. If xk minimizes Lp(2k, x)
over x~f~, and the Kuhn-Tucker condition holds, then

K(2k + 2ph(xk), xk) = O.

Hence, when the optimization problem in the Global Step is solved exactly,
the Kuhn-Tucker error is reduced to zero, while the constraint error is

JOTA: VOL. 79, NO. 3, DECEMBER 1993 44t

typically positive. To achieve a balanced reduction in the error, we only
need to obtain an approximation xk to a minimizer of Lp(2k, x) for which

I,;(2k + 2ph(x~), x~) <_ C(xk).

We now establish a global convergence property for this approximation.

Theorem 6.1. Suppose that f~ is given by (7), [2 is compact, and f, g, h
are continuously differentiable in ~). If Pk is a sequence of scalars tending
to infinity, 2 k is a uniformly bounded sequence in R", and xe is a sequence
in f~ with the property that K(2 k + 2ph(xk), xk) <_ C(x~) for every k, then
every subsequence of the xk that approaches a limit x* where the constraint
gradients are linearly independent has the property that E(2, x*) vanishes
for some 2 e R m.

Proof. To simplify notation, let xk also denote a subsequence of the
iterates that approaches a limit x* where the constraint gradients are
linearly independent. By the construction of the xk, there exists a vector/#,
such that

[Vxf(x~) + vrVh(xk) + #~'Vg(xk)[_< C(xk),

where

v, = ;~k + 2p~h(xk).

Hence, we have

IvTVh(xk) + pTVg(x ,3 t < C(xk) + IVf(xk)t.

Since ~ is compact and the constraint gradients at x* are linearly indepen-
dent, vk and p~ are uniformly bounded for k sufficiently large. From the
definition of vk, it follows that

h(xk) = (v~ -- 2k)/2p~.

Since 2~ is uniformly bounded, we conclude that h(xk) tends to zero as the
penalty Pk tends to infinity. Let Pk minimize K(2, xk) over 2 ~R". Since the
constraint gradients are linearly independent at x*, this minimizer is unique
for k sufficiently large. The following inequalities complete the proof:

K(#k, xk) _< K(2k + 2ph(xk), xk) <_ C(xk) =]h(xk)]. []

7. Preconditioning with Rigid Constraints

In the case f] = R", we saw in Ref. 1 that the following preconditioner
eliminates the ill conditioning associated with the penalty parameter in the
Global Step:

442 JOTA: VOL. 79, NO. 3, DECEMBER 1993

H = [S + p Vh(xk) zVh(xk)] - ' , (26)

where S is any symmetric, positive-definite matrix. For illustration, with the
Fletcher-Reeves formulation of the conjugate gradient method, each pre-
conditioned iteration has the following structure:

x,+ 1 = x, + ~,4, 4+~ = - H g i + fli4, (27)

where gt = VxLp()~k, xi), o¢i is the stepsize (an efficient stepsize procedure is
developed in Ref. 27), and fli is given by

]~i T T = gi+ l Hgi+ l/gi Hgi.

We now develop an appropriate preconditioner for the minimization
of the augmented Lagrangian Lp(2k, x) subject to the constraint x sf~. This
preconditioner is obtained by converting the constrained problem to an
unconstrained problem for which we know an appropriate preconditioner.
Given xk sf~, let O denote an open neighborhood of xk, and suppose that
there exists a map J between a neighborhood of the origin and O n f~ with
the property that minimizing Lp()~k, J(y)) over y near the origin is in some
sense equivalent to minimizing Lp().k, x) over x ~ O n f L If J is differen-
tiable, then by (26) an appropriate preconditioner for the unconstrained
problem is

Hy = IS + p VJ(O)CrCVJ(O) 7] -1,

where S is any symmetric, positive-definite matrix and C = Vh(xk).
Since linear equalities and inequalities are so important in applica-

tions, let us construct a J in the special case where ~q is given by (2). First,
some terminology: Given x in f~, the constraint xi < u~ is called active if
x~ = uj. Similarly, the constraint x~ < u~ is called inactive if x~ < ui. The
same terminology applies to the lower bounds 1~ < x,-. Every constraint
associated with the linear system A x = b is considered active.

Given xk ~f~, let N denote a matrix whose columns are an orthonormal
basis for the space of vectors orthogonal to the gradients of the active
constraints associated with xk, and let us define J(y) = xk + Ny. For y in
a neighborhood of the origin, x = J(y) lies in fL At least locally, minimiz-
ing a function over x Efl, while requiring that the active constraints at x
are the same as the active constraints at xk, is equivalent to an uncon-
strained minimization over y near the origin. From the discussion above,
an appropriate preconditioner for the y-minimization problem is

Hy = [S 4- p N TC TCN] - ~. (28)

By the Sherman-Morr ison-Woodbury modification formula (see Ref. 28),
(28) can be expressed as

JOTA: VOL. 79, NO. 3, DECEMBER 1993 443

Hy = S -~ - S - ~ N r C T [p - ~ [+ C N S - ~ N r C T] - ~ C N S - l .

The preconditioner Hy acts on the gradient with respect to y to
produce a search direction in the space of vectors y. We now transform
from y to x to see how the preconditioner acts on the gradient with respect
to x. Since the appropriate preconditioner for the x-minimization problem
is H x = N H y N T, we h a v e

H x = N (S -~ _ S - ~ N r C T [p -11 + C N S - 1 N r C r] - ~ C N S - ~) N r.

Let P denote the matrix that projects a vector into the space orthogonal to
the gradients to the active constraints. Since P = NN r we see that when
S = / , the preconditioner reduces to

n x = P - P C q p -11 + C P C 7] - ICP , C = Vh(xk). (29)

In summary, the preconditioner (29) has two properties: It maps a vector
into the space orthogonal to the gradients of the active constraints, and when
it is incorporated in minimization schemes like the conjugate gradient method
(27), the ill-conditioning associated with the penalty parameter p is reduced.

8. Numerical Linear Algebra

In this section, we examine the linear algebra associated with the
implementation of our algorithm. Throughout this discussion, it is assumed
that ~ is given by (2) and the preconditioner (29) is utilized. We focus on
the normal equation approach, although there is an alternative approach
based on a Q R factorization. In the normal equation approach to the linear
algebra, the unifying element in the analysis is the symmetric matrix B B T
where B is the linear constraint matrix A augmented by the gradients of the
nonlinear constraints, and B is obtained from B by deleting columns
associated with the active inequality constraints. Each time that an inequal-
ity constraint changes between active and inactive, there is a rank-one
change in B B T. The problem of updating a factorization after a rank-one
change has been studied extensively; we refer the reader to Refs. 29-32 by
Bartels, Gill, Golub, Murray, and Saunders. Throughout this section, we
assume that the rows of B are linearly independent.

Observe that the set of indices (i, j) associated with nonzero elements
of B B r contains the set of indices associated with nonzero elements of BB r.
Hence, a storage structure that is suitable for the nonzero elements of B B r
can be used to store the nonzero elements of B B r, regardless of the choice
for the active constraints. Also note that, if B is sparse, then in many cases
so is B B T. Hence, sparse matrix technology (see Ref. 33 or 34) can be
employed in both the storage and the factorization of BIg r.

444 JOTA: VOL. 79, NO. 3, DECEMBER 1993

(a) Projections. When solving the quadratic program (5) using an
active set strategy, when solving the optimization problem in (23) using the
conjugate gradient method, and when utilizing the preconditioner (29), we
repeatedly project vectors into the space orthogonal to active constraint
gradients. Let B denote the matrix obtained by augmenting the matrix A by
Vh(y~),

B = V h (y k

Given a vector q, its projection p into the space perpendicular to the active
constraint gradients can be expressed as

p = q - B r p - Urv , (30)

where the rows of U are the gradients of the active inequality constraints,
and the vectors/~ and v are chosen to minimize the Euclidean norm of p.
If the ith inequality is active (that is, either x~ = 1~ or x; = u;), then vi can
be chosen so that Pt = 0 without affecting any other component of p.
Hence, the components of p corresponding to active inequalities are zero.
Let fi, 0, B denote the vectors and matrix obtained from p, q, B by deleting
components and columns corresponding to active inequality constraints.
The u that minimizes the norm of p in (30) is the same as the # that
minimizes the norm of p, defined by

ff = ~ _ /~T~. (3 !)

Since p is orthogonal to the rows of B,

= = 0 .

Consequently, # satisfies the classical normal equation

If the rows of /~ are linearly independent, then the normal equation has
a unique solution # that can be substituted into (31) to obtain ft. The
components of p not contained in fi are identically zero.

tb) Multiplier Estimates. In the implementation of the Kuhn-
Tucker Step, we estimate the Lagrange multipliers associated with a given
xk by computing the least-squares solution to an overdetermined linear
system (see Ref. 35). More precisely, we compute the least-squares solution
to a system of the form

q = Brat + Urv , q = - V f (x ~) r. (32)

JOTA: VOL. 79, NO. 3, DECEMBER 1993 445

Computing the least-squares solution to (32) is equivalent to minimizing
the norm of p in (30). Hence, the multiplier estimates p and v are a
byproduct of the projection discussed in (a).

(c) Implementation of (5). We solve the quadratic programming
problem (5) using an active set strategy; see Ref. 36 for an interesting
exposition of active set strategies. Active set strategies can be built around
the matrix B/~ r and its updates, and the observations in (a) and (b) are
applicable. Due to the special form of the cost function in (5), the
implementation of an active set strategy can be simplified, and convergence
is often very fast since the cost function is perfectly conditioned. Near an
optimum, the active constraints associated with the solution to (5) are
usually the same as the active constraints associated with the current iterate
xk. Hence, an active set strategy typically converges in one iteration near an
optimum. If a7 is the inactive vector obtained from d by deleting the
components associated with active constraints, then the inactive vector
associated with the solution to (5) is given by the classic formula

[0 1 , ~7 =/~r(/~T)- , j ; f = --h(xk)

which involves the familiar p r o d u c t / ~ r .

(d) Preeonditioner. Let us consider the precondifioner Hx in (29).
Each iteration of the preconditioned conjugate gradient method involves
multiplying the gradient vector by this matrix. In the process of multiplying
a vector by Hx, we must compute a matrix-vector product involving the
inverse of the matrix R = p - ~ I + CPC r that appears in the middle of (29).
The computation of the projection P was discussed already. In order to
multiply a vector by R-~ efficiently, we can store R in Cholesky factored
form. Given a vector z, the product y = R-~z is obtained by solving the
Cholesky factored system Ry = z for the unknown y.

When a constraint becomes either active or inactive, R changes and its
Cholesky factorization must be updated. Since the change in R is intimately
related to the change in the projection P, let us examine how the projection
changes when a constraint becomes either active or inactive.

Theorem 8.1. Given a matrix D, let P be the matrix that projects a
vector into the null space of D. Given a vector c that does not lie in the row
space of D, let Q be the matrix that projects a vector into the null space of
D intersect the orthogonal complement of c. Then, we have

Q = P - (1/c Tpc)(Pc)(Pc)T. (33)

446 JOTA: VOL. 79, NO. 3, DECEMBER 1993

Proof. Assuming that the rows of D are linearly independent (if not,
remove the redundant rows of D), P has the following classical representa-
tion:

P = I - DT(DD r) -1D. (34)

Similarly, if E is the matrix obtained by appending c T after the last row of
D,

E ~- ,
¢

then Q can be expressed as

O = I - E T (E E - ' E .

By Eq. (5a) in Ref. 28, we have

M - (D D r) - I D c / o ~] ,
(E E r) - 1 = - (D c) r (D D T) - 1 / u 1/~]

where ~ = c Tpc and

M = (DD r) -1 + ~¢ - I (DDr) -1DccTDr(DDr) -~ .

Hence, Q can be written as

Q = I - D T M D + ~ - I [D T (D D r) - I D c c T + c c T D r (D D ~) -~D - cc7].

(35)

By the definition of M, we have

D T M D = D T (D D T) - ' D + ~ - ' D T (D D r) - ' D c c r D r (D D T) - ' D .

(36)

Combining (34), (35), and (36), the proof is complete. []

Theorem 8.1 reveals how the projection matrix P changes when a new
constraint of the form c TX = d becomes active. On the other hand, when
the constraint c rx = d becomes inactive, it follows from Theorem 8.1 that
the new projection matrix Q satisfies the relation

O = p + (1/crOc)(Oc)(Oc) r. (37)

On the surface, this formula seems less useful than (33), since the new
projection Q appears on both sides of the equation. Note though that we
have already developed an algorithm to compute a projection and to
update the related Cholesky factorization. Consequently, we do not use
(33) and (37) to evaluate the new projection after a change in the active

JOTA: VOL. 79, NO. 3, DECEMBER 1993 447

constraints; instead, we use these relations to evaluate the rank-one change
in the projection. That is, the rank-one change in R is -(CPc)(CPc)r/crPc
when a new constraint becomes active, while it is (CQc)(CQc)r/c rQc when
a constraint becomes inactive. Knowing the rank-one change in R, we can
apply one of the algorithms of Bartels, Gill, Golub, Murray, and Saunders
to update the Cholesky factorization of R.

9. Subroutine M ~

We now state a specific implementation of the Constraint Step, the
Kuhn-Tucker Step, and the Global Step. This implementation is used in
the numerical experiments of Section 10. In presenting the algorithm, the
subscript k is used for the current big iteration of the algorithm, while the
subscript i is used for subiterations within the big loop. The index I or J
corresponds to the final subscript in the subiteration. The various constants
that appear in the algorithm are somewhat arbitrary; the constants given
below are the ones used in the numerical experiments of Section 10. The
function m(x) appearing below is the multiplier 2 that minimizes /((2, x)
over 2.

Step t.

Step 2.

Constraint Step. Set Et, = E(2k, x~). Starting with the initial
guess wo=xk, perform the iteration (4)-(5) taking
T = o- = 1/2. If either i > 40 or the feasible set in (5) is empty,
then branch to the Global Step, after making the update
x~, ~wz. Otherwise, continue the iteration until C(w~)<
K(rn(wl), Wl).

Kuhn-Tucker Step. Initialize wo = w~ and Ao =m(wz) and
perform the iteration (23) taking o-= 0.95. Branch to the
Global Step, after making the updates xk ~ wj and 2k ~ A j,
in any of the following situations:

(a) K(A s, wj) <4C(wj) and E(As, wj) > 0.95E k,
(b) K(Aj, wj) > 4C(wj) _> 2Ek,
(c) Xj=K~_,=K~_2.

Otherwise, continue the iteration (23) until

K(As, wj) <_ 4C(wj) and E(A,,wj)_<0.95Ek;

then, increment k, perform the updates xk ~ wj and 2k ~ A,,
and branch to the Constraint Step.

448 JOTA: VOL 79, NO. 3, DECEMBER 1993

Step 3. Global Step. Increase the penalty by the factor 5. Starting
with the initial guess x~, use an iterative method to minimize
Lp(2k, x) over x~f~, taking into account the precondifioner
(29). Continue the iteration until a point w is generated for
which

either K(2k + 2ph(w), w) < C(w) or E(m(w), w) <_ 0.6Ek.

Increment k, then perform the updates xk ~ w and 2 k ~ re(w),
and branch to the Constraint Step.

In our numerical experiments, the optimization problems in the Kuhn-
Tucker Step and the Global Step were solved using the conjugate gradient
scheme CG developed in Ref. 27. In our implementation of the conjugate
gradient scheme, the gradients were always projected into the space orthog-
onal to the active constraint gradients associated with linear constraints.
Rosen's criterion of Ref. 37 was used to decide when to free an active
constraint. Whenever an inactive inequality constraint became active, or a
constraint was deactivated, the projection matrix was updated and the
conjugate gradient iteration was reinitialized in the direction of the negative
projected gradient.

A proof that the line search strategy employed in our conjugate gradient
algorithm yields n-step local quadratic convergence appears in the thesis
by Hirst (Ref. 38). Subroutine CG can be obtained by email from the
netlib facility: mail netlib@ornLgov, send cg from napack. See Chapter 8 of
Ref. 39 for a description of the netlib facility developed by Grosse and
Dongarra. Note that the Fletcher-Reeves update formula used in CG
should be replaced by the Polak-Ribi+re update (see Ref. 40) in large-scale
problems to take advantage of the superior convergence properties of the
Polak-Ribi+re conjugate gradient algorithm in large-scale optimization.

In the Kuhn-Tucker Step, we performed n - rn - l conjugate gradient
iterations, where m is the number of components of h and t is the current
number of active constraints. In the Global Step, we performed n - l
preconditioned conjugate gradient iterations before testing whether the
current point w satisfied any of the termination criteria. Obviously, in a
large-scale optimization problem, n - m - l can be large, and a different
criterion is needed for deciding when to terminate the conjugate gradient
iteration. In this paper, we do not address the issue of an appropriate
termination criterion in the large-scale case.

Reference 41 gives a different way of implementing the Global Step.
Loosely speaking, in Ref. 41 the penalty is increased until the constraint
violation associated with an approximate minimizer of Lp(2k, x) over x ~f~
is smaller than some given tolerance. Then, the tolerance is decreased and

JOTA: VOL. 79, NO. 3, DECEMBER 1993 449

the process is repeated. In our approach, we try to achieve a balanced
reduction in the constraint and Kuhn-Tucker errors. We minimize
Lp(2k, x) over x ~f~ until a point is found with Kuhn-Tucker error smaller
than constraint error, then the penalty is increased. Under the indepen-
dence assumption of Theorem 6,1, this process leads to a reduction in the
total error. The idea of computing successively more accurate minimizers to
a penalized Lagrangian, then increasing the penalty after some criterion is
satisfied, is not new; for example, see Ref. 42 by Polak, where this idea is
analyzed in a general framework. What is new is our criterion for deciding
when to increase the penalty.

Observe that we branch to the Global Step whenever the quadratic
program (5) associated with the Constraint Step is infeasible. An alterna-
tive to this way of handling infeasibility is to compute the minimum norm
solution to (5) associated with the minimum norm residual; see Ref. 43 by
Burke and Han for results relating to this strategy.

In the Kuhn-Tucker Step, there are three different situations where
we branch to the Global Step. The motivation behind these conditions is
that, after the Constraint Step is complete, the constraint error is often
much smaller than the Kuhn-Tucker error. As the Kuhn-Tucker iteration
progresses, the constraint error increases and the Kuhn-Tucker error
decreases, typically. Whenever it appears likely that further reductions in
the Kuhn-Tucker error coupled with increases in the constraint error will
not lower the total error, we branch to the Global Step. In case (a), the
Kuhn-Tucker error is the same order of magnitude as the constraint error,
but the total error is not decreasing at least linearly (by the factor 0.95). In
case (b), we abort the subiteration even though the Kuhn-Tucker error is
still relatively large since the constraint violation has increased to at least
half the total error. In case (c), we abort the subiteration, since the
Kuhn-Tucker error is not decreasing very quickly--although the conver-
gence is locally quadratic, the convergence can be slow when the iterates
are far from a solution.

Under suitable assumptions, Corollary 5. t implies that the Constraint
Step followed by the Kuhn-Tucker Step are locally quadratically conver-
gent. On the other hand, if for any reason the algorithm branches to the
Global Step an infinite number of times, the global convergence result of
Theorem 6.1 is applicable.

10. Numerical Experiments

In this section, we investigate how the algorithm of Section 9 performs
using some standard test problems. The code that we used in these
numerical experiments is by no means the ultimate in efficiency; for

450 JOTA: VOL. 79, NO. 3, DECEMBER 1993

example, we employed a Fletcher-Reeves conjugate gradient update rather
than the Polak-Ribi6re update (see Section 9), the procedure used to
update a Cholesky factorization was somewhat inefficient although very
stable, and reductions in the penalty parameter were not incorporated in
our algorithm. Nonetheless, the numerical results that follow are very
encouraging. First, let us consider the test problems that appear in Ref. 44
by ColviUe. These problems also appear in Ref. 45 by Himmelblau and in
Ref. 46 by Hock and Schittkowski. We did not attempt Colville 5, since the
cost function in this problem is discontinuous; our computer code assumes
that the derivative of the cost is available.

The performance of the algorithm of Section 9 on the Colville test
problems appears in Table 1. We present the number of times the cost
function is evaluated (NF), the number of times the derivative of the
cost is evaluated (NDF), the number of times the constraint function h is
evaluated (NH), and the number of times the constraint Jacobian Vh is
evaluated (NDH). To be consistent with Ref. 46, we used the feasible
starting guess for Colville 2 and the infeasible starting guess for Colville 3.
The iterations were terminated when the total error E was less than or
equal to 10 -6. The CPU time is given in seconds for a Sun 3/50 computer
with Fortran 77 compiler. The optimizing feature of the F77 compiler was
not utilized. The relative error appearing in Table 1 is the norm of the
difference between the exact solution and the computed solution divided by
the norm of the exact solution. For exact solutions, we used those
published in Ref. 46. Observe that, in these test problems, the stopping
criterion E ~ 10 -6 generates between 7 and 10 significant digits in the
computed solution. In implementing a test problem, nonbound inequality
constraints were converted to bound constraints, like those in (2), by
introducing slack variables. Hence, when a problem involves nonbound
inequality constraints, the effective number of unknowns and equations
increases when the constraints are converted to standard form. The data in
Table 1 correspond to an initial penalty of 10 in each problem.

Table 1. Results for Colville test problems and subroutine MIN.

Problem NF NDF NH NDH CPU time Relative error

Colville 1 18 10 0.37 5 × 10 -8
ColviUe 2 311 144 318 144 5.28 1 X 10 - 7

Colville 3 9 7 11 7 0.11 2 × 10 -~°
Colville 4 58 23 0.12 3 × 10 -1°
Colville 6 54 29 56 29 0.46 8 × 10 -8
Colville 7 13 7 0.44 2 X 10 - 9

ColviUe 8 251 110 255 110 5.00 6 × 10 - 7

T a b l e 2.

JOTA: VOL. 79, NO. 3, DECEMBER 1993

Results for Colville test problems using software packages
MINOS and NPSOL.

451

MINOS NPSOL

Problem N F CPU time Relative error NF CPU time Relative error

Colville 1 10 2.44 <1 × 10 - s 8 1.81 <1 × 10 -8

Colville 2 189 7.62 7 × 10 - s 26 9.39 7 × 10 -8

Cotville 3 I1 1.62 6 x 10 -12 6 0.45 1 x 10 -~°

Colville 4 70 1.65 7 x I0 -~z 35 0.92 3 × t0 -9

Co~ville 6 67 2A9 5 x 10 -8 t3 1.41 5 x 10 -8

Colville 7 18 2.80 2 x 10 -7 14 2.61 3 x 10 -8

CoIville 8 177 7.30 6 × 10 -7 24 5.97 6 × 10 -7

For comparison, we solved these same test problems using the high-
quality software packages MINOS (Ref. 14), Version 5.3, and NPSOL (Ref.
47), November 1990 version. As mentioned in the introduction, MINOS
implements the Rosen-Kreuser algorithm using a reduced-gradient al-
gorithm (see Ref. 48) combined with a quasi-Nev~¢on method (see Ref. 49)
to solve the linearly constrained optimization problems that arise in each
iteration. The implementation is described in Refs. 50 and 51. The software
package NPSOL implements an SQP-quasi-Newton method. In running
these programs, we turned off all printing. In NPSOL, this was accomplished
by setting the print levels to 0, while in MINOS we inserted comments in
parts of the program dealing with printing. Since both of these programs
request function values and gradients simultaneously, Table 2 only reports
the number of function evaluations; the number of gradient evaluations is
identical and the constraints are evaluated whenever the cost function is
evaluated. We did not touch the stopping criterion in either program; the
observed relative errors in the computed solutions are given in Table 2.
Although the relative errors in Tables 1 and 2 vary slightly, small changes
in the stopping criteria in any of the programs will not significantly alter
the computational effort on the test problems. The algorithms implemented
by either MIN, MINOS, or NPSOL converge rapidly in a neighborhood of an
optimum, and the incremental effort needed to reduce the relative error
f rom 10 -4 to 10 -8, for example, is usually a fraction of the effort needed to
reduce the initial error to 10 -4.

In comparing the data of Tables 1 and 2, we see that subroutines
MIN and MINOS tend to require comparable numbers of function and
gradient evaluations, while NPSOL tends to require fewer function and
gradient evaluations. Of course, the reason for the smaller number of
evaluations with NPSOL is that the SQP-quasi-Newton approach essentially

452 JOTA: VOL. 79, NO. 3, DECEMBER 1993

Table 3. Normalized computing times.

Problem MIN MINOS NPSOL

Colville 1 0.15 t.00 0.74
Colville 2 0.56 0.81 1.00
Colville 3 0.07 1.00 0.28
Colville 4 0.07 1.00 0.56
Colville 6 0.2I 1.00 0.64
Colville 7 0.16 1.00 0.82
Colville 8 0.68 1.00 0.82

stores more gradient information. On the other hand, the iteration over-
head in the SQP approach can be relatively high, since each iteration
requires the solution of a quadratic program. Hence, the small number of
function and gradient evaluations must be compared to both the iteration
overhead and storage requirements to determine which approach is better
in any particular application. If the time to evaluate functions and gradi-
ents is large, and if the problem dimension is not too big, then the SQP
approach is superior. But when the problem size increases, or the relative
cost of evaluating functions and gradients decreases, then the conjugate
gradient approach employed in subroutine MIN is superior. To compare the
efficiency of the three packages on the set of test problems, we divided the
computing time by the maximum computing time for each test problem to
obtain the normalized times given in Table 3. Observe that subroutine MIN
is faster than the other routines for these test problems. On average, MINOS
is 1.03 times faster than the slowest routine, NPSOL is 1.41 times faster than
the slowest routine, and MIN is 3.67 times faster than the slowest routine.

In the next group of experiments, we investigate the relative impor-
tance of various components of subroutine MIN. TO study the sensitivity in
performance relative to the starting penalty, we resolved the test problems
involving nonlinear constraints using three different starting penalties.
In Table 4, we see that much of the ill-conditioning due to the penalty
has been eliminated by the preconditioner. Nonetheless, as a general rule,
small initial penalties yield better performance; the algorithm will increase
the penalty if necessary.

To evaluate the significance of the preconditioner (29), we applied the
algorithm of the Global Step both with and without a preconditioner. We
found that, in almost any nontrivial problem, the preconditioned iterations
were much faster than the original iterations. A picture best illustrates the
convergence properties. Let us consider the test problem Colville 2. Apply-
ing the algorithm of Section 9 to this test problem, the code soon detected
convergence slower than linear, and it branched to the Global Step. The

Table 4.

JOTA: VOL. 79, NO, 3, DECEMBER I993

Results for Colville test problems using various
starting penalties.

453

Problem Penalty NF NDF NH NDH

Colville 2 10 311 144 318 144
50 753 343 774 343

250 1242 544 1278 544

Colville 3 10 9 7 ! l 7
50 9 7 l 1 7

250 9 7 11 7

Colville 6 10 54 29 56 29
50 74 40 74 40

250 99 52 102 52

Colville 8 I0 251 110 255 I l0
50 313 131 315 131

250 666 300 674 300

optimization problem in the Global Step was solved using the penalty
p = 1250, and with the choice S = I in the preconditioner. We made two
different computer runs. In one run, the gradients were preconditioned
using (29). In the other run, there was no preconditioning. The number of
conjugate gradient iterations between restarts was equal to the number of
free variables (or equivalently, the dimension of the space orthogonal to
the active constraint gradients). After each restart, the preconditioner was
reevaluated. The convergence is depicted in Fig. 1. The horizontal axis in
Fig. 1 is the iteration number. The vertical axis is the logarithm of the value
of Lp minus the optimal value 32.348 . - . associated with the test problem.
The lower curve corresponds to preconditioned iterations while the upper
curve corresponds to no preconditioning. After 58 preconditioned itera-
tions, the error E was sufficiently small that the algorithm branched back
to the Constraint Step. The dotted line in Fig. 1 corresponds to the value
of the cost when the algorithm stopped executing the preconditioned
version of the Global Step. With preconditioning, convergence is fairly
linear initially; the convergence rate seems to increase near iteration 58.
In contrast, without preconditioning, the cost function first decreases
quickly as the penalty terms are minimized, but when the penalty terms are
comparable to f, the convergence speed is essentially negligible; thousands
of iterations will be needed to reach the dotted line. When Hock and
Schittkowski reported convergence results for various methods applied to
test problem 117 (Colville 2), both of the multiplier method codes failed to

454 JOTA: VOL. 79, NO. 3, DECEMBER 1993

Fig . 1.

4

¢q

I

16o zto 36o 46o 56o

Iteration Number
Convergence of the cost with preconditioning (lower curve) and without precondi-
tioning.

solve the problem; apparently, the convergence was so stow that the codes
stopped far from the true solution.

11. Appendix A: Proof of Theorem 2.1

Let F: R '~+/× Rn-~R m+t be defined by

F(y, x) ~Vh(x)M(x)y + h(x)]
= L g(x +M(x)y) _]'

where M is the matrix whose columns are the constraint gradients,

M(x) = [Vh(x) r I Vg(x) r].

Evaluating the Jacobian of F with respect to y at x = x* and y = 0 gives

VyF(0, x*) = M(x*) rM(x*).

Since the columns of M are linearly independent, M(x*)rM(x *) is non-
singular. By the implicit function theorem, there exist neighborhoods A1 of
0 and A 2 of x* such that the equation F(y, x) = 0 has a unique solution
y =y (x) in AI for every x~A2, and by Ref. 9 or 52, A 2 c a n be chosen so
that

[y(x) l < ¢r IF(O, x) - F(O, x*) l _< ¢r([h(x) l + lg(x)[),

JOTA: VOL, 79, NO. 3, DECEMBER 1993 455

for some constant a that is independent of x sA2. Observe that, if g(x) = 0,
then this bound for y(x) simplifies to

ly(x)l <-- lh(x)l. (38)

Let B be a ball with center x* and with radius so small that B c z~2,
and both h and g are twice continuously differentiable inside B. Defining
the parameters

p = maximum a IM(x)[,
x E B

let womB c~f~ be any point with the property that both

7Ih(wo)t < minimum{i/2, 1 - ~}, where ~f = 6p2/2, (39)

and the ball with center Wo and with radius R = 2plh(wo) 1 lies in B.
Suppose that wi+ 1 and w,- lie in B, where wi+ 1 satisfies (4) and (5) with

si = 1. When h(wi+ 1) is expanded in a Taylor series about wi, the first two
terms cancel since

V h (w ;) 4 = V h (w ,) (wi + , - w~) = - h (w ~) .

Using the intermediate value form for the remainder term, we have

h(wi+ t) = (I/2) ~ [dTVZhj(~j)d~lei, (40)
j = l

where ~j lies between w~+ i and w; for each j and ej is the unit vector with
every component equal to zero, except for the j t h component which is one.
Since wi~B, (38) yields

t y (w ,) l < - a l h (w ,) t .

Since d = M(w~)y(wi) satisfies the constraints of (5), the minimum norm
solution in (5) is bounded in terms of M(w~)y(w~),

14t <-[M(w~)y(w,)l <- Plh(w,)l • (41)

Hence, (40) gives

Ih(wi +1)l < 7 Ih(wi)]2 (42)

Consequently, if Wo, w~ w~+ 1 lie in B and (6) holds with s = 1 in each
iteration, then we have

V Ih(w,+ I)1-< Ivh(w;)[z - < " " -< [yh(wo)[2'+ '. (43)

456 JOTA: VOL. 79, NO. 3, DECEMBER 1993

We now show by induction that the entire sequence Wo, w l , . . , is
contained in B, that

Id, I --- R2-2i (44)

for every i > 0, and that (6) holds with s = 1 in each iteration. By
assumption, Wo lies in B. Suppose that w0, w l , . . . , w~ lie in B, that (44)
holds at iteration i - 1, and that

S O ~ - . S 1 ~ * " " ~ S i _ 1 ~ 1.

Combining (41), (43), and (39), we have

]d,-[_< plh(w,)] < (p/y)(ylh(wo)])z' <_ plh(wo)]2 -2'+ I = R 2 -2'.

Thus, (44) holds at iteration i. Note that wi + d,- lies in B, since

i i

] w , + d , - w o l < Z ldJ] ---R Z 2 - i < R " (45)
j = 0 j = o

In iteration i, (6) holds with s = 1, since

[h(we + d~)] <_ y th(w,)l ~ <_ (~ [h(wo)1) 2']h(w,)[<_ (1 - v)[h(wi)l.

This completes the induction. By (44), the w; form a Cauchy sequence that
converges to some limit w satisfying the first inequality in (8). The second
inequality appears in (45), while the third inequality appears in (42). []

12. Appendix B: Proof of Theorem 3.1

By the Kuhn-Tucker condition characterizing a local minimizer
x = xk+~ associated with (9), there exist vectors v and /~+1 such that

VxLe(), k, xg+ 1) + v r V h (y k) + #~+ lVg(xk + ,) = 0. (46)

Using the vector v appearing in (46), we construct a new approximation
2~+1 to 2* by the rule

~+1 = 2k + v + 2ph(xk+t) . (47)

Solving for v in (47) and substituting in (46) yields

Vf(xk + ,) + 2if+ ~ Vh(y~) + [2k + 2ph(xk + l)]Z[Vh(xk + 1) - Vh(yk)]

r (48) + #k+ 1Vg(x~ + 1) = O.

Since xk + ~ satisfies the constraints of (9), we have

Vh(yk)(Xk+ 1 - -Yk) = O, g(x~+ I) = O. (49)

JOTA: VOL. 79, NO. 3, DECEMBER 1993 457

Defining the function F: R~+'~+t x R'~+m~Rn+"+l by

F(x, 2, ¢t, y, q)

g(x)

(48)-(49) can be written as

F(xk + ~, 2k + ~, ~k + ~, Y~, 2D = O.

The Jacobian of F with respect to its first three arguments evaluated at the
star-variables is

[V~M,(2*,~*,x*) Vh(x*) T Vg(x.) ~]

Vx ' z~ 'F(x* '2* '#* ' x* '2*)=l [Vg(x*) Vh(x*) 0 0 00 J ,

(50)

where

Mp (2, #, x) = Lp (2, x) + # rg(x).

Since the constraint gradients are linearly independent and V~Mp (2 *,/~ *, x*)
is positive definite in the null space of Vh(x*) intersect the null space of
Vg(x*), we have the following well-known result (see Ref. 8, Lemma 1.27):
The Jacobian (50) is nonsingular for every p _> 0. By the implicit function
theorem, there exist neighborhoods A1 and A2 of (x*, 2*) such that the
equation F(x, 2, #, y, q) = 0 has a unique solution

(x, 2, ~) = (x(y , ~), 2(y, ~), ~(y, ~))

in A1 for every (y, q) in A2. Moreover, by Ref. 9, Corollary 6.2 or Ref. 52,
A2 can be chosen so that

Ix(y, ~) -x*l + t2(y, q) -2"t + l~(y, ~) -~t*
<_ elf(x*, 2 ", ,u*, y, rl) - F (x * , 2", #*, x*, 2")I, (51)

for some constant c which is independent of (y, t/) eA2. By Ref. 9, Lemma
6.5, and by the second-order sufficiency condition, x(yk, 24) is the unique
local minimizer of (9) near x* when (y~, 2~) is near (x*, 2*). From the
definition of F, we have

F(x*, 2 ' , I~*, y, 11) --F(x*, 2", #*, x*, 2*)

-[Vh(x*) - Vh(y) l T(~ _ ~ ,)]

= Vh(y)(x * - y) j , (52)
0

458 JOTA: VOL. 79, NO. 3, DECEMBER 1993

provided g(y) = 0. In Ref. 1, Theorem 3.1, we establish the bounds

2l[Vh(x*) - Vh(y)]r(tl - 2")1 < I1/- 2"12 + -x* l 2,

] V h (y) (x * - Y)I <- (6/2)]y - x*] 2 +]h(y) l,

where

6 =[i=~lmaX~ymxU2[V2hi(zi)[211/2.

Here, [y, x*] denotes the line segment between y and x*. Combining these
bounds with (51) and (52), the proof is complete. []

13. Appendix C: Some Sensitivity Results

In this appendix, we state two results that are needed for the analysis
of Kuhn-Tucker error in Section 4. Let us consider the optimization
problem

minimize f(x), (53a)

subject to h(x) = z, (53b)

where z is a fixed vector in R m. Suppose that (53) has a local minimizer x*
corresponding to z = z*, that f and h are twice continuously differentiable
in a neighborhood of x*, and that the constraint gradients Vhi(x*) are
linearly independent. Letting 2 = 2* denote the unique solution to the
equation

Vf(x) + 2rVh(x) = 0, (54)

corresponding to x = x * , we assume that the second-order sufficiency
condition holds. That is, the Hessian

V2[f(x) + h(x) r)t*]x = x*

is positive definite in the null space of Vh(x*). For a proof of the following
result, see Ref. 52.

Lemma 13.1 If the second-order sufficiency condition holds and the
constraint gradients are linearly independent at a local minimizer x* of
(53) associated with z = z*, then there exists a neighborhood A of z* such
that, for every z~A, (53) has a local minimizer x(z) and an associated
multiplier 2(z) such that x(z*)=x*, and 2 = 2@), x =x(z) satisfy (54).
Moreover, there exists a constant c, such that

JOTA: VOL. 79, NO. 3, DECEMBER t993 459

tx(z l) - x(z2) l + 1 2 (z ,) - : (z2)l <_ cfz - z2I,

for every zl and z2 in A,

The proof of the following result is analogous to that of Proposition
5.2 in Ref. 1.

Lemma 13.2 Suppose that the assumptions of Lemma 13.1 hold. Let
A denote the neighborhood of z* given in Lemma 13.1, and define

E.(2, x) = [Vf(x) + 2TVh(x)] + [h(x) - z[.

Then, there exists a neighborhood At of (x*, 2*), a neighborhood A2 of z*
with Az = A, and positive constants c~ and c 2 such that

c~E~(2, x) <_ Ix --x(z)[+ 12 - 2(z)f _< c~E~(,~, x),

for every z eA2 and (x, 2)~AI.

References

1. HAGER, W. W., Dual Techniques .for Constrained Optim&ation, Journal of
Optimization Theory and Applications, Vol. 55, pp. 37-71, 1987.

2. ARROW, K. J., and SOLOW, R. M., Gradient Methods for Constrained Maxima,
with Weakened Assumptions, Studies in Linear and Nonlinear Programming,
Edited by K. Arrow, L. Hurwicz, and H. Uzawa. Stanford University Press,
Stanford, California, 1958.

3. HESTENES, M. R., Multiplier and Gradient Methods, Journal of Optimization
Theory and Applications, Vol. 4, pp. 303-320, 1969.

4. POWELL, M. J. D., A Method for Nonlinear Constraints in Minimization
Problems, Optimization, Edited by R. Fletcher, Academic Press, New York,
New York, pp. 283-298, 1972.

5. ROCKAFELLAR, R. T., The Multiplier Method of Hestenes and Powell Applied
to Convex Programming, Journal of Optimization Theory and Applications,
Vol. 12, pp. 555-562, 1973.

6. ROCKAFELLAR, R. T., A Dual Approach to Solving Nonlinear Programming
Problems by Unconstrained Optimization, Mathematical Programming, Vol. 5,
pp. 354-373, 1973.

7. ROCKAFELLAR, R. T., Augmented Lagrange Multiplier Functions and Duality in
Nonconvex Programming, SIAM Journal on Control, Vol. 12, pp. 268-285,
1974.

8. BERTSEKAS, D. P., Constrained Optimization and Lagrange Multiplier Methods,
Academic Press, New York, New York, 1982.

9. HAGER, W. W., Approximations to the Multiplier Method, S][AM Journal on
Numerical Analysis, Vol. 22, pp. 16-46, 1985.

460 JOTA: VOL. 79, NO. 3, DECEMBER 1993

10. POLYAK, B. T., and TRET'YAKOV, N. V., The Method of Penalty Estimates for
Conditional Extremum Problems, Akademija Nauk SSSR, Zurnal Vy6islitel'noi
Matematiki i Matemati6eskoi Fiziki, Vol. 13, pp. 34-46, 1973.

11. FORTIN, R., and GLOWINSKI, R., Augmented Lagrangian Methods: Applications
to the Numerical Solution of Boundary-Value Problems, North-Holland, Am-
sterdam, Holland, 1983.

12. ROSEN, J. B., and KREUSER, J. L., A Gradient Projection Algorithm for
Nonlinear Constraints, Numerical Methods for Nonlinear Optimization, Edited
by F, A. Lootsma, Academic Press, London, England, pp. 297-300, 1972.

13. ROBINSON, S. M., A Quadratically-Convergent Algorithm for General Nonlinear
Programming Problems, Mathematical Programming, Vol. 3, pp. 145-156,
1972.

14. MURTAGH, B. A., and SAUNDERS, M. A., MINOS 5.0 User's Guide, Report
83-20R, Department of Operations Research, Stanford University, Stanford,
California, 1987.

15. COLEMAN, T. F., and CONN, A. R., Nonlinear Programming via an Exact
Penalty Function: Asymptotic Analysis, Mathematical Programming, Vol. 24,
pp. 123-136, 1982.

16. COLEMAN, T. F., and CONN, A. R., Nonlinear Programming via an Exact
Penalty Function: Global Analysis, Mathematical Programming, Vol. 24, pp.
137-161, t982.

17. ARMIJO, L., Minimization of Functions Having Lipschitz Continuous First-
Partial Derivatives, Pacific Journal of Mathematics, Vol. 16, pp. 1-3, 1966.

18. BURKE, J., and HAN, S, P., A Gauss-Newton Approach to Solving Generalized
Inequalities, Mathematics of Operations Research, Vol. 11, pp. 632-643, 1986.

19. DANIEL, J. W., Newton's Method for Nonlinear Inequalities, Numerische Math-
ematik, Vol. 21, pp. 381-387, 1973.

20. GARDIA-PALOMARES, U., and RESTUCCIA, A., Application of the Armijo
Stepsize Rule to the Solution of a Nonlinear System of Equalities and Inequali-
ties, Journal of Optimization Theory and Applications, Vol. 41, pp. 405-415,
1983.

21. PSHENICHNYI, B. N., Newton's Method for the Solution of Systems of Equalities
and Inequalities, Mathematical Notes of the Academy of Sciences of the USSR,
Vol. 8, pp. 827-830, 1970.

22. ROBINSON, S. M., Extension of Newton's Method to Nonlinear Functions with
Values in a Cone, Numerische Mathematik, Vol. 19, pp. 34t-347, 1972.

23. VALENTINE, F. A., The Problem of Lagrange with Differential Inequalities as
Added Side Conditions, Contributions to the Calculus of Variations, University
of Chicago Press, Chicago, Illinois, pp. 407-448, 1937.

24. ORTEGA, J. M., and RHEINBOLDT, W. C., Iterative Solution of Nonlinear
Equations in Several Variables, Academic Press, New York, New York, 1970.

25. BURKE, J. V., A Sequential Quadratic Programming Method for Potentially
Infeasible Mathematical Programs, Journal of Mathematical Analysis and Appli-
cations, Vol. t39, pp. 319-35t, 1989.

26. LUENBERGER, D. G., Introduction to Linear and Nonlinear Programming,
Addison-Wesley, Reading, Massachusetts, 1973.

JOTA: VOL. 79, NO. 3, DECEMBER 1993 461

27. HAGEn, W. W., A Derivative-Based Bracketing Scheme for Univariate Minimiza-
tion and the Conjugate Gradient Method, Computers and Mathematics with
Applications, Vol. 18, pp. 779-795, 1989.

28. HAGER, W. W., Updating the Inverse of a Matrix, SIAM Review, Vol. 3l,
pp. 221-239, 1989.

29. BARTELS, R. H., GOLUB, G. H., and SALINDERS, M, A., Numerical Techniques
in Mathematical Programming, Nonlinear Programming, Edited by R. B. Rosen,
O. L. Mangasarian, and K. Ritter, Academic Press, New York, New York,
pp. 123-176, 1970.

30. G~LL, P. E., GOLUB, G. H., MURRAY, W., and SAUNDERS, M. A., Methods
for Modifying Matrix Factorizations, Mathematics of Computation, Volo 28, pp.
505-535, 1974.

31. GILL, P. E., and MURRAY, W., Modification of Matrix Factorizations after
a Rank-One Change, The State of the Art in Numerical Analysis, Edited by
D. Jacobs, Academic Press, New York, New York, pp. 55-83, 1977.

32. G~LL, P. E., MURRAY, W., and SAUNDERS, M. A., Methods for Computing and
Modifying the LD V Factors of a Matrix, Mathematics of Computation, Vol. 29,
pp. 1051-1077, 1975.

33. DUFF, I. S., ERISMAN, A. M., and REID, J. K., Direct Methods for Sparse
Matrices, Oxford University Press, Oxford, England, 1986.

34. GEOROE, A., and LIU, J. W. H., Computer Solution of Large Sparse Positive-
Definite Systems, Prentice-Hall, Englewood Cliffs, New Jersey, t981.

35. TAPIA, R. A., Diagonatized Multiplier Methods and Quasi-Newton Methods for
Constrained Optimization, Journal of Optimization Theory and Applications,
Vol. 22, pp. 135-194, 1977.

36. DJANG, A., Algorithmic' Equivalence in Quadratic' Programming, PhD Disserta-
tion, Department of Operations Research, Stanford University, Stanford, Cali-
fornia, 1979.

37. Du, D. Z., and ZHANG, X. S., Global Convergence of Rosen's Gradient Projection
Method, Mathematical Programming, Vol. 44, pp. 357-366, 1989.

38. HIRST, H. P., N-Step Quadratic Convergence in the Conjugate Gradient Method,
PhD Dissertation, Pennsylvania State University, University Park, Pennsylvania,
I989.

39. HAGER, W. W., Applied Numerical Linear Algebra, Prentice-Hall, Englewood
Cliff's, New Jersey, 1988.

40. POLAK, E., and RIBrt~RE, G., Note sur la Convergence de Methodes de Directions
Conjugkes, Revue Franqaise d'Informatique et Recherche Op6rationnelle, Vol.
16, pp. 35-43, 1969.

41. CONN, A. R., GOULD, N. I. M., and TOINT, P. L., A Globally Convergent
Augmented Lagrangian Algorithm for Optimization with General Constraints and
Simple Bounds, SIAM Journal on Numerical Analysis, Vol. 28, pp. 545-572,
1991.

42. POLAK, E., On the Global Stabilization of Locally Convergent Algorithms,
Automatica, Vol. 12, pp. 337-342, 1976.

43. BURKE, J., and HAN, S. P., A Robust Sequential Quadratic Programming
Method, Mathematical Programming, VoL 43, pp. 277-303, 1989.

462 JOTA: VOL. 79, NO. 3, DECEMBER 1993

44. COLVILLE, A. R., A Comparative Study on Nonlinear Programming Codes,
Report No. 320-2949, IBM New York Scientific Center, 1968.

45. HIMMELBLAU, D. M., Applied Nonlinear Programming, McGraw-Hill, New
York, New York, 1972.

46. HOCK, W., and SCHITTKOWSKI, K., Test Examples for Nonlinear Programming
Codes, Springer-Verlag, Berlin, Germany, 1980.

47. GILL, P. E., MURRAY, W., SAUNDERS, M. A., and WRIGHT, M. H., User's
Guide for NPSOL (Version 4.0): A Fortran Package for Nonlinear Programming,
Report 86-2, Department of Operations Research, Stanford University, Stan-
ford, California, 1986.

48. WOLFE, P., Methods of Nonlinear Programming, Nonlinear Programming,
Edited by J. Abadie, Interscience, John Wiley, New York, New York, pp.
97 131, 1967.

49. DAVIDON, W. C., Variable Metric Method for Minimization, SIAM Journal on
Optimization, Vol. 1, pp. 1-17, 1991.

50. MURTAGH, B. A., and SAUNDERS, M. A., Large-Scale Linearly Constrained
Optimization, Mathematical Programming, Vol. 14, pp. 41-72, 1978.

51. MURTAGH, B. A., and SAUNDERS, M. A., A Projected Lagrangian Algorithm
and Its Implementation for Sparse Nonlinear Constraints, Mathematical Pro-
gramming Study, Vol. 16, pp. 84-117, 1982.

52. ROBINSON, S. M., Strongly Regular Generalized Equations, Mathematics of
Operations Research, Vol. 5, pp. 43-62, 1980.

