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1 Introduction

We develop an active set algorithm for a general nonlinear polyhedral constrained optimization problem

min {f(x) : x ∈ Ω}, where Ω = {x ∈ R
n : Ax 6 b}. (1.1)

Here f is a real-valued, continuously differentiable function, A ∈ Rm×n, b ∈ Rm, and Ω is assumed

to be nonempty. In an earlier paper [27], we developed an active set algorithm for bound constrained

optimization. In this paper, we develop a new machinery for handling the more complex polyhedral

constraints of (1.1). Our polyhedral active set algorithm (PASA) has two phases: Phase one is the gradient

projection algorithm, while phase two is any algorithm for solving a linearly constrained optimization

problem over a face of the polyhedron Ω. The gradient projection algorithm of phase one is robust in

the sense that it converges to a stationary point under mild assumptions, but the convergence rate is

often linear at best. When optimizing over a face of the polyhedron in phase two, we could accelerate

the convergence through the use of a superlinearly convergent algorithm based on conjugate gradients, a

quasi-Newton update, or a Newton iteration. In this paper, we give rules for switching between phases

which ensure that asymptotically, only phase two is performed. Hence, the asymptotic convergence rate

of PASA coincides with the convergence rate of the scheme used to solve the linearly constrained problem

of phase two. A separate paper will focus on a specific numerical implementation of PASA.
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We briefly survey some of the rich history of active set methods. Some of the initial work focused on

the use of the conjugate gradient method with bound constraints as in [13, 15–17, 38, 39, 47]. Work on

gradient projection methods includes [1,7,25,35,37,42]. Convergence is accelerated by using Newton and

trust region methods [12]. Superlinear and quadratic convergence for nondegenerate problems can be

found in [2,6,11,18], while analogous convergence results are given in [19,21,34,36], even for degenerate

problems. The affine scaling interior point approach [3, 8–10, 14, 28, 30, 33, 43, 49] is related to the trust

region algorithm. Linear, superlinear, and quadratic convergence results have been established.

Recent developments on active set methods for quadratic programming problem can be found in [20,23].

A treatment of active set methods in a rather general setting is given in [32]. We also point out the recent

work [24] on a very efficient two-phase active set method for conic-constrained quadratic programming,

and the earlier work [22] on a two-phase active set method for quadratic programming. As in [27],

the first phase in both applications is the gradient projection method. The second phase is a Newton

method in [24], while it is a linear solver in [22]. Note that PASA applies to the general nonlinear

objective in (1.1). Active set strategies were applied to ℓ1 minimization in [44, 45] and in [29] they were

applied to the minimization of a nonsmooth dual problem that arises when projecting a point onto a

polyhedron. In [44, 45], a nonmonotone line search based on “Shrinkage” is used to estimate a support

at the solution, while a nonmonotone SpaRSA algorithm [26,46] is used in [29] to approximately identify

active constraints.

Unlike most active set methods in the literature, our algorithm is not guaranteed to identify the active

constraints in a finite number of iterations due to the structure of the line search in the gradient projection

phase. Instead, we show that only the fast phase two algorithm is performed asymptotically, even when

strict complementary slackness is violated. Moreover, our line search only requires one projection in each

iteration, while algorithms that identify active constraints often employ a piecewise projection scheme

that may require additional projections when the stepsize increases.

The paper is organized as follows. Section 2 gives a detailed statement of the polyhedral active set

algorithm, while Section 3 establishes its global convergence. Section 4 gives some properties for the solu-

tion and multipliers associated with a Euclidean projection onto Ω. Section 5 shows that asymptotically

PASA performs only phase two when converging to a nondegenerate stationary point, while Section 6

establishes the analogous result for degenerate problems when the active constraint gradients are linearly

independent and a strong second-order sufficient optimality condition holds. Finally, Section 7 concludes

the paper.

Notation. Throughout the paper, c denotes a generic nonnegative constant which has different values

in different inequalities. For any set S, |S| stands for the number of elements (cardinality) of S, while Sc

is the complement of S. The set S − x is defined by S − x = {y − x : y ∈ S}. The distance between a

set S ⊂ Rn and a point x ∈ Rn is given by

dist(x,S) = inf{‖x− y‖ : y ∈ S},

where ‖ · ‖ is the Euclidean norm. The subscript k is often used to denote the iteration number in

an algorithm, while xki stands for the i-th component of the iterate xk. The gradient ∇f(x) is a row

vector while g(x) = ∇f(x)T is the gradient arranged as a column vector; here T denotes transpose. The

gradient at the iterate xk is gk = g(xk). In several theorems, we assume that f is Lipschitz continuously

differentiable in a neighborhood of a stationary point x∗. The Lipschitz constant for ∇f is always

denoted κ. We let ∇2f(x) denote the Hessian of f at x. The ball with center x and radius r is denoted

Br(x). For any matrix M , N (M) is the null space. If S is a subset of the row indices of M , then MS
denotes the submatrix of M with row indices S. For any vector b, bS is the subvector of b with indices S.

PΩ(x) denotes the Euclidean projection of x onto Ω:

PΩ(x) = argmin{‖x− y‖ : y ∈ Ω}. (1.2)

For any x ∈ Ω, the active and free index sets are defined by A(x) = {i : (Ax− b)i = 0} and F(x) = {i :

(Ax− b)i < 0}, respectively.
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2 Structure of the algorithm

As explained in the introduction, PASA uses the gradient projection algorithm in phase one and a linearly

constrained optimization algorithm in phase two. Algorithm 1 is the gradient projection algorithm (GPA)

used for the analysis in this paper. A cartoon of the algorithm appears in Figure 1.

Algorithm 1: Prototype gradient projection algorithm (GPA).

Parameters: δ and η ∈ (0, 1), α ∈ (0,∞)

While stopping condition does not hold

1. dk = y(xk, α)− xk, y(x, α) = PΩ(x− αg(x))

2. sk = ηj where j > 0 is smallest integer such that

f(xk + skdk) 6 f(xk) + skδ∇f(xk)dk

3. xk+1 = xk + skdk and k ← k + 1

End while

This is a simple monotone algorithm based on an Armijo line search. Better numerical performance

is achieved with a more general nonmonotone line search such as that given in [27], and all the analysis

directly extends to this more general framework; however, to simplify the analysis and discussion in the

paper, we utilize Algorithm 1 for the GPA.

The requirements for the linearly constrained optimizer (LCO) of phase two, which operates on the

faces of Ω, are now developed. One of the requirements is that when the active sets repeat in an infinite

series of iterations. Then the iterates must approach stationary. To formulate this requirement in a

precise way, we define

gI(x) = PN (AI)(g(x)) = argmin{‖y − g(x)‖ : y ∈ R
n and AIy = 0}. (2.1)

Thus gI(x) is the projection of the gradient g(x) onto the null space N (AI). We also let gA(x) denote

gI(x) for I = A(x).

If A(x) is empty, then gA(x) = g(x), while if x is a vertex of Ω, then gA(x) = 0. This suggests that

e(x) = ‖gA(x)‖ represents a local measure of stationarity in the sense that it vanishes if and only if x is

a stationary point on its associated face

{y ∈ Ω : (Ay − b)i = 0 for all i ∈ A(x)}.
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Figure 1 An iteration of the gradient projection algorithm
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The requirements for the phase two LCO are the following:

F1. xk ∈ Ω and f(xk+1) 6 f(xk) for each k.

F2. A(xk) ⊂ A(xk+1) for each k.

F3. If A(xj+1) = A(xj) for j > k, then lim infj→∞ e(xj) = 0.

Condition F1 requires that the iterates in phase two are monotone, in contrast to phase one where the

iterates could be nonmonotone. By F2, the active set only grows during phase two, while F3 implies that

the local stationarity measure becomes small when the active set does not change. Conditions F1–F3 are

easily fulfilled by algorithms based on gradient or Newton type iterations which employ a monotone line

search and which add constraints to the active set whenever a new constraint becomes active.

Our decision for switching between phase one (GPA) and phase two (LCO) is based on a comparison

of two different measures of stationarity. One measure is the local stationarity measure e(·), introduced

already, which measures stationarity relative to a face of Ω. The second measure of stationarity is a

global metric in the sense that it vanishes at x if and only if x is a stationary point for the optimization

problem (1.1). For α > 0, let y(x, α) be the point obtained by taking a step from x along the negative

gradient and projecting onto Ω, i.e.,

y(x, α) = PΩ(x− αg(x)) = argmin

{
1

2
‖x− αg(x)− y‖2 : Ay 6 b

}

. (2.2)

The vector

dα(x) = y(x, α)− x (2.3)

points from x to the projection of x − αg(x) onto Ω. As seen in [27, Proposition 2.1], when α > 0,

dα(x) = 0 if and only if x is a stationary point for (1.1). We monitor convergence to a stationary point

using the function E defined by

E(x) = ‖d1(x)‖.

E(x) vanishes if and only if x is a stationary point of (1.1). If Ω = Rn, then E(x) = ‖g(x)‖, the norm

of the gradient, which is the usual way to assess convergence to a stationary point in unconstrained

optimization.

The rules for switching between phase one and phase two depend on the relative size of the stationarity

measures E and e. We choose a parameter θ ∈ (0, 1) and branch from phase one to phase two when

e(xk) > θE(xk). Similarly, we branch from phase two to phase one when e(xk) < θE(xk). To ensure that

only phase two is executed asymptotically at a degenerate stationary point, we may need to decrease θ

as the iterates converge. The decision to decrease θ is based on what we called the undecided index

set U which is defined as follows. Let x denote the current iterate, let E(x) be the global measure

of stationarity, and let λ(x) denote any Lagrange multiplier associated with the polyhedral constraint

in (2.2) and α = 1, i.e., if y = y(x, 1) is the solution of (2.2) for α = 1, then λ(x) is any vector that

satisfies the conditions

y − x+ g(x) +ATλ(x) = 0, λ(x) > 0, λi(x) = 0 if i ∈ F(y).

Given parameters β ∈ (1, 2) and γ ∈ (0, 1), the undecided index set is defined by

U(x) = {i : λi(x) > E(x)γ and (b−Ax)i > E(x)β}.

If x is close enough to a stationary point that E(x) is small, then the indices in U(x) correspond to those

constraints for which the associated multiplier λi(x) is relatively large in the sense that λi(x) > E(x)γ ,

and the i-th constraint is relatively inactive in the sense that (b − Ay)i > E(x)β . By the first-order

optimality conditions at a local minimizer, large multipliers are associated with active constraints. Hence,

when the multiplier is relatively large and the constraint is relatively inactive, we consider the constraint

undecided. When U(x) is empty, then we feel that the active constraints are nearly identified, so we

decrease θ in phase one so that phase two will compute a more accurate local stationary point before

branching back to phase one.
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Algorithm 2 is the polyhedral active set algorithm (PASA). The parameter ǫ is the convergence toler-

ance, the parameter θ controls the branching between phase one and phase two, while the parameter µ

controls the decay of θ when the undecided index set is empty.

Algorithm 2: Polyhedral active set algorithm (PASA).

Parameters: ǫ ∈ [0,∞), θ and µ ∈ (0, 1)

x1 = PΩ(x0), k = 1

Phase one: While E(xk) > ǫ execute GPA

If U(xk) = ∅ and e(xk) < θE(xk), then θ ← µθ.

If e(xk) > θE(xk), goto phase two.

End while

Phase two: While E(xk) > ǫ execute LCO

If e(xk) < θE(xk), goto phase one.

End while

3 Global convergence

Since Algorithm 1, GPA, is a special case of the nonmonotone gradient projection algorithm studied

in [27], our previously established global convergence result, stated below, holds.

Theorem 3.1. Let L be the level set defined by

L = {x ∈ Ω : f(x) 6 f(x0)}. (3.1)

Assume the following conditions hold:

A1. f is bounded from below on L and dmax = supk‖dk‖ <∞.

A2. If L̄ is the collection of x ∈ Ω whose distance to L is at most dmax, then ∇f is Lipschitz continuous

on L̄.

Then GPA with ǫ = 0 either terminates in a finite number of iterations at a stationary point, or we have

lim inf
k→∞

E(xk) = 0.

The global convergence of PASA essentially follows from the global convergence of GPA and the

requirement F3 for the linearly constrained optimizer.

Theorem 3.2. If the assumptions of Theorem 3.1 hold and the linearly constrained optimizer satisfies

F1–F3, then PASA with ǫ = 0 either terminates in a finite number of iterations at a stationary point, or

we have

lim inf
k→∞

E(xk) = 0. (3.2)

Proof. If only phase one is performed for k sufficiently large, then (3.2) follows from Theorem 3.1. If

only phase two is performed for k sufficiently large, then e(xk) > θE(xk) for k sufficiently large. Since θ

is only changed in phase one, we can treat θ as a fixed positive scalar for k sufficiently large. By F2, the

active sets approach a fixed limit for k sufficiently large. By F3 and the inequality e(xk) > θE(xk), (3.2)

holds. Finally, suppose that there are an infinite number of branches from phase two to phase one. If (3.2)

does not hold, then there exists τ > 0 such that E(xk) = ‖d1(xk)‖ > τ for all k. By [27, Property P6]

and the definition dk = dα(xk), we have

∇f(xk)dk = gT
k d

α(xk) 6 −‖d
α(xk)‖

2/α = −‖dk‖
2/α, (3.3)

which implies that
|gT

k dk|

‖dk‖2
>

1

α
. (3.4)

By [27, Properties P4 and P5] and the lower bound ‖d1(xk)‖ > τ , we have

‖dk‖ = ‖d
α(xk)‖ > min{α, 1}‖d1(xk)‖ > min{α, 1}τ. (3.5)
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For the Armijo line search in GPA, it follows from [48, Lemma 2.1] that

sk > min

{

1,

(
2η(1− δ)

κ

)
|gT

k dk|

‖dk‖2

}

for all iterations in GPA, where κ is the Lipschitz constant for ∇f . Combine this with (3.4) to obtain

sk > min

{

1,

(
2η(1− δ)

κα

)}

. (3.6)

By the line search condition in Step 2 of GPA, it follows from (3.3), (3.5) and (3.6) that there exists c > 0

such that

f(xk+1) 6 f(xk)− c (3.7)

for all iterations in GPA with k sufficiently large. Since the objective function decreases monotonically in

phase two, and since there are an infinite number of iterations in GPA, (3.7) contradicts Assumption A1

that f is bounded from below.

4 Properties of projections

The proof that only phase two of PASA is executed asymptotically relies on some properties for the

solution of the projection problem (2.2) that are established in this section. Since the projection onto a

convex set is a nonexpansive operator, we have

‖y(x1, α)− y(x2, α)‖ = ‖PΩ(x1 − αg(x1))− PΩ(x2 − αg(x2))‖

6 ‖(x1 − αg(x1))− (x2 − αg(x2))‖

6 (1 + ακ)‖x1 − x2‖, (4.1)

where κ is a Lipschitz constant for g. Since dα(x∗) = 0 for all α > 0 when x∗ is a stationary point, it

follows that y(x∗, α) = x∗ for all α > 0. In the special case where x2 = x∗, (4.1) yields

‖y(x, α)− x∗‖ = ‖y(x, α)− y(x∗, α)‖ 6 (1 + ακ)‖x− x∗‖. (4.2)

Similar to (4.1), but with y replaced by dα, we have

‖dα(x1)− dα(x2)‖ 6 (2 + ακ)‖x1 − x2‖. (4.3)

Next, let us develop some properties for the multipliers associated with the constraint in (2.2). The first-

order optimality conditions associated with (2.2) can be expressed as follows: At any solution y = y(x, α)

of (2.2), there exists a multiplier λ ∈ Rm such that

y − x+ αg(x) +ATλ = 0, λ > 0, λi = 0 if i ∈ F(y). (4.4)

Let Λ(x, α) denote the set of multipliers λ satisfying (4.4) at the solution y = y(x, α) of (2.2). If x∗ is a

stationary point for (1.1) and α > 0, then y(x∗, α) = x∗, and the first equation in (4.4) reduces to

g(x∗) +AT(λ/α) = 0,

which is the gradient of the Lagrangian for (1.1), but with the multiplier scaled by α. Since F(y(x∗, α)) =

F(x∗), λ/α is a multiplier for the constraint in (1.1). Thus if x∗ is a stationary point for (1.1) and Λ(x∗)

is the set of Lagrange multipliers associated with the constraint, we have

Λ(x∗, α) = αΛ(x∗). (4.5)

By (4.2) y(x, α) approaches x∗ as x approaches x∗. Consequently, the indices F(x∗) free at x∗ are free

at y(x, α) when x is sufficiently close to x∗. The multipliers associated with (2.2) have the following

stability property.
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Proposition 4.1. Suppose x∗ is a stationary point for (1.1) and for some r > 0, g is Lipschitz

continuous in Br(x∗) with Lipschitz constant κ. If α > 0 and x ∈ Br(x∗) is close enough to x∗ that

F(x∗) ⊂ F(y(x, α)), then

dist{λ,Λ(x∗, α)} 6 2c(1 + κα)‖x− x∗‖

for all λ ∈ Λ(x, α), where c is independent of x and depends only on A.

Proof. This is essentially a consequence of the upper Lipschitzian properties of polyhedral multifunc-

tions as established in [40, Proposition 1] or [41, Corollary 4.2]. Here is a short proof based on Hoffman’s

stability result [31] for a perturbed linear system of inequalities. Since F(x∗) ⊂ F(y(x, α)), it follows

that any λ ∈ Λ(x, α) is feasible in the system

p+ATλ = 0, λ > 0, λi = 0 if i ∈ F(x∗),

with p = p1 := y(x, α) − x + αg(x). Since x∗ is a stationary point for (1.1), the elements of Λ(x∗, α)

are feasible in the same system but with p = p2 := x∗ − x∗ + αg(x∗). Hence, by Hoffman’s result [31],

there exists a constant c, independent of p1 and p2 and depending only on A, such that

dist{λ,Λ(x∗, α)} 6 c‖p1 − p2‖.

We use (4.2) to obtain

‖p1 − p2‖ = ‖(y(x, α)− x∗) + (x∗ − x) + α(g(x)− g(x∗))‖ 6 2(1 + ακ)‖x− x∗‖,

which completes the proof.

In the following proposition, we study the projection of a step xk − αg(xk) onto the subset Ωk of Ω

that also satisfies the active constraints at xk. We show that the step can be replaced by xk − αgA(xk)

without effecting the projection.

Proposition 4.2. For all α > 0, we have

PΩk
(xk − αg(xk)) = PΩk

(xk − αgA(xk)), (4.6)

where

Ωk = {x ∈ Ω : (Ax− b)i = 0 for all i ∈ A(xk)}. (4.7)

Proof. Let p be defined by

p = PΩk
(xk − αg(xk))− xk = argmin{‖xk − αg(xk)− y‖ : y ∈ Ωk} − xk. (4.8)

With the change of variables z = y − xk, we can write

p = argmin{‖z + αg(xk)‖ : z ∈ Ωk − xk}. (4.9)

Since gA(xk) is the orthogonal projection of g(xk) onto the null space N (AI), where I = A(xk), the

difference gA(xk)− g(xk) is orthogonal to N (AI). Since Ωk − xk ⊂ N (AI), it follows from Pythagoras

that for any z ∈ Ωk − xk, we have

‖z + αg(xk)‖
2 = ‖z + αgA(xk)‖

2 + α2‖g(xk)− gA(xk)‖
2.

Since z does not appear in the last term, minimizing ‖z + αg(xk)‖2 over z ∈ Ωk − xk is equivalent to

minimizing ‖z + gA(xk)‖2 over z ∈ Ωk − xk. By (4.9), we obtain

p = argmin{‖z + αgA(xk)‖ : z ∈ Ωk − xk}. (4.10)

Changing variables from z back to y gives

p = argmin{‖xk − αgA(xk)− y‖ : y ∈ Ωk} − xk = PΩk
(xk − αgA(xk))− xk.

Comparing this with (4.8) gives (4.6).
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5 Nondegenerate problems

In this section, we focus on the case where the iterates of PASA converge to a nondegenerate stationary

point, i.e., a stationary point x∗ for which there exists a scalar π > 0 such that λi > π for all i ∈ A(x∗)

and λ ∈ Λ(x∗).

Theorem 5.1. If PASA with ǫ = 0 generates an infinite sequence of iterates that converge to a

nondegenerate stationary point x∗, then within a finite number of iterations, only phase two is executed.

Proof. By (4.2) and Proposition 4.1, y(x, 1) is close to x∗ and Λ(x, 1) is close to Λ(x∗) when x is close

to x∗. It follows that for r sufficiently small, we have

λi > 0 for all i ∈ A(x∗), λ ∈ Λ(x, 1), and x ∈ Br(x
∗). (5.1)

Since (Ax∗− b)i < 0 for all i ∈ F(x∗), it also follows from (4.2) that we can take r smaller, if necessary,

to ensure that for all i ∈ F(x∗) and x ∈ Br(x∗), we have

(Ay(x, 1)− b)i < 0 and (Ax− b)i < 0. (5.2)

By the last condition in (5.2), we have

A(x) ⊂ A(x∗) for all x ∈ Br(x
∗). (5.3)

By (5.1) and (5.2),

A(y(x, 1)) = A(x∗) for all x ∈ Br(x
∗), (5.4)

i.e., if x ∈ Br(x∗) and i ∈ A(x∗), then by (5.1) and complementary slackness, i lies in A(y(x, 1)),

which implies that A(x∗) ⊂ A(y(x, 1)). Conversely, if i ∈ F(x∗) = A(x∗)c, then by (5.2), i lies in

F(y(x, 1)) = A(y(x, 1))c. Hence, (5.4) holds.

Choose K large enough that xk ∈ Br(x∗) for all k > K. Since

A(xk) ⊂ A(x
∗) = A(y(xk, 1))

for all k > K by (5.3) and (5.4), it follows that

PΩ(xk − g(xk)) = y(xk, 1) ∈ Ωk ⊂ Ω, (5.5)

where Ωk is defined in (4.7). The inclusion (5.5) along with Proposition 4.2 yield

PΩ(xk − g(xk)) = PΩk
(xk − g(xk)) = PΩk

(xk − gA(xk)).

We subtract xk from both sides and refer to the definition (2.3) of dα to obtain

d1(xk) = PΩk
(xk − gA(xk))− xk

= argmin{‖xk − gA(xk)− y‖2 : y ∈ Ωk} − xk

= argmin{‖z + gA(xk)‖
2 : z ∈ Ωk − xk}. (5.6)

Recall that at a local minimizer x̄ of a smooth function F over the convex set Ωk, the variational inequality

∇F (x̄)(x− x̄) > 0 holds for all x ∈ Ωk. We identify F with the objective in (5.6), x̄ with d1(xk), and x

with the point 0 ∈ Ωk − xk to obtain the inequality d1(xk)
T(gA(xk) + d1(xk)) 6 0. Hence,

‖gA(xk)‖
2 = ‖gA(xk) + d1(xk)‖

2 − 2d1(xk)
T(gA(xk) + d1(xk)) + ‖d

1(xk)‖
2
> ‖d1(xk)‖

2.

By definition, the left-hand side of this inequality is e(xk)
2, while the right-hand side is E(xk)

2. Conse-

quently, E(xk) 6 e(xk) when k > K. Since θ ∈ (0, 1), it follows that phase one immediately branches to

phase two, while phase two cannot branch to phase one. This completes the proof.
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6 Degenerate problems

We now focus on a degenerate stationary point x∗ where there exist i ∈ A(x∗) and λ ∈ Λ(x∗) such that

λi = 0. We wish to establish a result analogous to Theorem 5.1. To compensate for the degeneracy,

it is assumed that the active constraint gradients at x∗ are linearly independent, i.e., the rows of A

corresponding to indices i ∈ A(x∗) are linearly independent, which implies that Λ(x∗, α) is a singleton.

Under this assumption, Proposition 4.1 yields the following Lipschitz property.

Corollary 6.1. Suppose x∗ is a stationary point for (1.1) and the active constraint gradients are

linearly independent at x∗. If for some r > 0, g is Lipschitz continuous in Br(x∗) with Lipschitz constant

κ and x ∈ Br(x∗) is close enough to x∗ that F(x∗) ⊂ F(y(x, α)) for some α > 0, then Λ(x, α) is a

singleton and

‖Λ(x, α)− Λ(x∗, α)‖ 6 2c(1 + κα)‖x− x∗‖,

where c is independent of x and depends only on A.

Proof. Since F(x∗) ⊂ F(y(x, α)), it follows that A(x∗) ⊃ A(y(x, α)). Hence, the active constraint

gradients are linearly independent at x∗ and at y(x, α). This implies that both Λ(x, α) and Λ(x∗, α) are

singletons, and Corollary 6.1 follows from Proposition 4.1.

To treat degenerate problems, the convergence theory involves one more requirement for the linearly

constrained optimizer:

F4. When branching from phase one to phase two, the first iteration in phase two is given by an Armijo

line search of the following form: Choose j > 0 as small as possible such that

f(xk+1) 6 f(xk) + δ∇f(xk)(xk+1 − xk), (6.1)

where xk+1 = PΩk
(xk − skg

A(xk)), sk = αηj , with Ωk defined in (4.7), δ ∈ (0, 1), η ∈ (0, 1), and

α ∈ (0,∞) (as in the Armijo line search of GPA).

As j grows, ηj tends to zero and xk+1 approaches xk. Thus i ∈ F(xk − αηjgA(xk)) if i ∈ F(xk)

and j is large enough. Since (AgA(xk))i = 0 if i ∈ A(xk), it follows that xk − αηjgA(xk) ∈ Ωk for j

sufficiently large, which implies that xk+1 = xk − αηjgA(xk); consequently, for j sufficiently large, the

Armijo line search inequality (6.1) reduces to the ordinary Armijo line search condition

f(xk+1) 6 f(xk)− skδ∇f(xk)g
A(xk),

which holds for sk sufficiently small. The basic difference between the Armijo line search in F4 and the

Armijo line search in GPA is that in F4, the constraints active at xk remain active at xk+1 and F2 holds.

With the additional startup procedure F4 for LCO, the global convergence result Theorem 3.2 remains

applicable since conditions F1 and F2 are satisfied by the initial iteration in phase two.

Let x∗ be a stationary point where the active constraint gradients are linearly independent. For any

given x ∈ Rn, we define

x̄ = argmin
y
{‖x− y‖ : (Ay − b)i = 0 for all i ∈ A+(x

∗) ∪ A(x)}, (6.2)

where A+(x
∗) = {i ∈ A(x∗) : Λi(x

∗) > 0}. If x is close enough to x∗ that A(x) ⊂ A(x∗), then

the feasible set in (6.2) is nonempty since x∗ satisfies the constraints; hence, the projection in (6.2) is

nonempty when x is sufficiently close to x∗.

Lemma 6.2. Suppose x∗ is a stationary point where the active constraint gradients are linearly in-

dependent and f is Lipschitz continuously differentiable in a neighborhood of x∗. If PASA with ǫ = 0

generates an infinite sequence of iterates xk converging to x∗, then there exists c ∈ R such that

‖xk − x̄k‖ 6 c‖xk − x∗‖2 (6.3)

for all k sufficiently large.
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Proof. Choose r in accordance with Corollary 6.1. Similar to what is done in the proof of Theorem 5.1,

choose r > 0 smaller if necessary to ensure that for all x ∈ Br(x∗), we have

Λi(x, α) > 0 for all i ∈ A+(x
∗), (6.4)

and

(Ay(x, α)− b)j < 0, (Ax− b)j < 0, for all j ∈ F(x∗). (6.5)

Choose K large enough that xk ∈ Br(x∗) for all k > K and suppose that xk is any PASA iterate with

k > K. If i ∈ A+(x
∗) ∩ A(xk), then by (6.4), i ∈ A(y(xk, α)) by complementary slackness. Hence,

i ∈ A(x) for all x on the line segment connecting xk and y(xk, α). In particular, i ∈ A(xk+1) if xk+1 is

generated by GPA in phase one, while i ∈ A(xk+1) by F2 if xk+1 is generated in phase two. It follows

that if constraint i ∈ A+(x
∗) becomes active at iterate xk, then i ∈ A(xl) for all l > k. Let I be the limit

of A+(x
∗) ∩ A(xk) as k tends to infinity. Choose K larger if necessary to ensure that I ⊂ A(xk) for all

k > K and suppose that xk is any iterate of PASA with k > K. If I = A+(x
∗), then since I ⊂ A(xk),

it follows that A+(x
∗) ∪ A(xk) = A(xk), which implies that x̄k = xk. Thus (6.3) holds trivially since

the left-hand side vanishes. Let us focus on the nontrivial case where I is strictly contained in A+(x
∗).

The analysis is partitioned into three cases.

Case 1. For k sufficiently large, xk is generated solely by LCO. By F3 it follows that for any ǫ > 0,

there exists k > K such that ‖gA(xk)‖ = e(xk) 6 ǫ. By the first-order optimality conditions for gA(xk),

there exists µk ∈ Rm, with µki = 0 for all i ∈ F(xk), such that

‖g(xk) +ATµk‖ 6 ǫ. (6.6)

The multiplier µk is unique by the independence of the active constraint gradients and the fact that

A(xk) ⊂ A(x∗) by the last condition in (6.5). Similarly, at x∗ we have g(x∗) + ATλ∗ = 0, where

λ∗ = Λ(x∗). Combine this with (6.6) to obtain

‖AT(µk − λ∗)‖ 6 ǫ + ‖g(xk)− g(x∗)‖ 6 ǫ+ κ‖xk − x∗‖. (6.7)

Since F(x∗) ⊂ F(xk) by the last condition in (6.5), it follows from complementary slackness that µki =

λ∗
i = 0 for all i ∈ F(x∗). Since the columns of AT corresponding to indices in A(x∗) are linearly

independent, there exists a constant c such that

‖µk − λ∗‖ 6 c‖AT(µk − λ∗)‖. (6.8)

Hence, for ǫ sufficiently small and k sufficiently large, it follows from (6.7) and (6.8) that µki > 0 for

all i ∈ A+(x
∗), which contradicts the assumption that I is strictly contained in A+(x

∗). Consequently,

Case 1 cannot occur.

Case 2. PASA makes an infinite number of branches from phase one to phase two and from phase two

to phase one. Let us consider the first iteration of phase two. By Proposition 4.2 and the definition of

xk+1 in F4, we have xk+1 = PΩk
(xk−skg(xk)). The first-order optimality condition for xk+1 is that there

exists µk ∈ Rm such that xk+1−xk + skg(xk) +ATµk = 0, where µki = 0 for all i ∈ F(xk+1) ⊃ F(x∗).

Subtracting from this the identity

skg(x
∗) +AT(skλ

∗) = 0

yields

AT(µk − skλ
∗) = xk − xk+1 + sk(g(x

∗)− g(xk)). (6.9)

By the Lipschitz continuity of g, the bound sk 6 α in F4, and the assumption that the xk converge

to x∗, the right-hand side of (6.9) tends to zero as k tends to infinity. Exploiting the independence of

the active constraint gradients and the identity µki = λ∗
i = 0 for all i ∈ F(x∗), we deduce from (6.8)

and (6.9) that ‖µk − skλ
∗‖ tends to 0 as k tends to infinity. It follows that for each i, µki − skλ

∗
i tends

to zero. If sk is uniformly bounded away from 0, then µki > 0 when i ∈ A+(x
∗). By complementary
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slackness, I = A+(x
∗), which would contradict the assumption that I is strictly contained in A+(x

∗).

Consequently, Case 2 could not occur.

We will now establish a positive lower bound for sk in F4 of phase two. If the Armijo stepsize terminates

at j = 0, then sk = α > 0, and we are done. Next, suppose the stepsize terminates at j > 1. Since j is

as small as possible, it follows from Proposition 4.2 and F4 that

f(xk + dk)− f(xk) > δgT
k dk, (6.10)

where dk = PΩk
(xk − βgk) − xk, β := sk/η 6 α. The inequality β 6 α holds since j > 1. Since

x∗ ∈ Ωk ⊂ Ω by the second condition in (6.5), we have

PΩk
(x∗ − βg(x∗)) = x∗.

Since the projection onto a convex set is a nonexpansive operator, we obtain

‖(xk + dk)− x∗‖ = ‖PΩk
(xk − βg(xk))− PΩk

(x∗ − βg(x∗))‖ 6 (1 + ακ)‖xk − x∗‖.

The right-hand side of this inequality tends to zero as k tends to infinity. Choose k large enough that

xk + dk is within the ball centered at x∗ where f is Lipschitz continuously differentiable.

Let us expand f in a Taylor series around xk to obtain

f(xk + dk)− f(xk) =

∫ 1

0

f ′(xk + tdk)dt = gT
k dk +

∫ 1

0

(∇f(xk + tdk)−∇f(xk))dkdt

6 gT
k dk + 0.5κ‖dk‖

2. (6.11)

This inequality combined with (6.10) yields

(1− δ)gT
k dk + 0.5κ‖dk‖

2 > 0. (6.12)

As in (3.3), but with Ω replaced by Ωk, we have

gT
k dk 6 −‖dk‖

2/β. (6.13)

Note that dk 6= 0 due to (6.10). Combine (6.12) and (6.13) and replace β by sk/η to obtain

sk > 2(1− δ)η/κ. (6.14)

Hence, if j > 1 in F4, then sk has the lower bound given in (6.14) for k sufficiently large, while sk = α if

j = 0. This completes the proof of Case 2.

Case 3. For k sufficiently large, xk is generated solely by GPA. The Taylor expansion (6.11) can be

written as

f(xk + dk) = f(xk) + δgT
k dk + (1− δ)gT

k dk + 0.5κ‖dk‖
2, (6.15)

where dk = PΩ(xk −αg(xk))−xk is as defined in GPA. If (6.3) is violated, then for any choice of c > 0,

there exists k > K such that

‖xk − x̄k‖ > c‖xk − x∗‖2. (6.16)

By taking c sufficiently large, we will show that

(1− δ)gT
k dk + 0.5κ‖dk‖

2
6 0. (6.17)

In this case, (6.15) implies that sk = 1 is accepted in GPA and

xk+1 = PΩ(xk − αg(xk)).

By Corollary 6.1, ‖Λ(xk, α)−Λ(x∗, α)‖ = ‖Λ(xk, α)−αλ∗‖ tends to 0 as k tends to infinity. This implies

that Λi(xk, α) > 0 when λ∗
i > 0, which contradicts the assumption that I is strictly contained in A+(x

∗).

Hence, (6.3) cannot be violated.
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To establish (6.17), first observe that

‖dk‖ = ‖y(xk, α)− xk‖ 6 ‖y(xk, α)− x∗‖+ ‖x∗ − xk‖ 6 (2 + ακ)‖xk − x∗‖ (6.18)

by (4.2). By the first-order optimality condition (4.4) for y(xk, α), it follows that

dk = −(αg(xk) +ATΛ(xk, α)).

The dot product of this equation with dk gives

(αgk +ATΛ(xk, α))
Tdk = −‖dk‖

2
6 0. (6.19)

Again, by the definition of dk and by complementary slackness, we have

Λ(xk, α)
TAdk = Λ(xk, α)

TA(y(xk, α)− xk) = Λ(xk, α)
T(b−Axk). (6.20)

By Corollary 6.1, it follows that for K sufficiently large and for any k > K,

Λi(xk, α) > 0.5Λi(x
∗, α) for all i ∈ A+(x

∗).

Hence, for any i ∈ A+(x
∗) and k > K, (6.20) gives

Λ(xk, α)
TAdk > 0.5Λi(x

∗, α)(b−Axk)i = 0.5αΛi(x
∗)(b−Axk)i (6.21)

since Λ(xk, α) > 0, Axk 6 b, and each term in the inner product Λ(xk, α)
T(b −Axk) is nonnegative.

Combine (6.19)–(6.21) to obtain

gT
k dk 6 −0.5Λi(x

∗)(b−Axk)i (6.22)

for any i ∈ A+(x
∗) and k > K. The distance ‖xk − x̄k‖ between xk and its projection x̄k in (6.2) is

bounded by a constant times the maximum violation of the constraint (b −Axk)i = 0 for i ∈ A+(x
∗)

∪ A(xk), i.e., there exists a constant c̄ such that

‖xk − x̄k‖ 6 c̄max{(b−Axk)i : i ∈ A+(x
∗) ∪ A(xk)}. (6.23)

Since (b − Axk)i = 0 for all i ∈ A(xk), it follows that the maximum constraint violation in (6.23) is

achieved for some i ∈ A+(x
∗) (otherwise, x̄k = xk and (6.16) is violated). Consequently, if the index

i ∈ A+(x
∗) in (6.22) is chosen to make (b−Axk)i as large as possible, then

gT
k dk 6 −d‖xk − x̄k‖,

where d = 0.5c̄min{Λi(x
∗) : i ∈ A+(x

∗)}. If (6.16) holds, then by (6.18), we have

gT
k dk 6 −cd‖xk − x∗‖2 6 −cd‖dk‖

2/(2 + ακ).

Hence, the expression (6.17) has the upper bound

(1− δ)gT
k dk + 0.5κ‖dk‖

2
6

(
cd(δ − 1)

2 + ακ
+ 0.5κ

)

‖dk‖
2.

Since δ < 1, this is nonpositive when c is sufficiently large. This completes the proof of (6.17).

Note that there is a fundamental difference between the prototype GPA used in this paper and the

versions of the gradient projection algorithm based on a piecewise projected gradient such as those in [4–6].

In GPA there is a single projection followed by a backtrack towards the starting point. Consequently,

we are unable to show that the active constraints are identified in a finite number of iterations, unlike

the piecewise projection schemes, where the active constraints can be identified in a finite number of

iterations, but at the expense additional projections when the stepsize increases. In Lemma 6.2, we show

that even though we do not identify the active constraints, the violation of the constraints (Ax− b)i = 0

for i ∈ A+(x
∗) by iterate xk is on the order of the error in xk squared.

When x∗ is fully determined by the active constraints for which the strict complementarity holds,

convergence is achieved in a finite number of iterations as we now show.
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Corollary 6.3. Suppose x∗ is a stationary point where the active constraint gradients are linearly

independent and f is Lipschitz continuously differentiable in a neighborhood of x∗. If the PASA iterates

xk converge to x∗ and |A+(x
∗)| = n, then xk = x∗ after a finite number of iterations.

Proof. Choose k large enough that A(xk) ⊂ A(x∗) and x̄k is nonempty. Since |A+(x
∗)| = n and the

active constraint gradients are linearly independent, we have x̄k = x∗. By Lemma 6.2, we must have

xk = x∗ whenever ‖xk − x∗‖ < 1/c.

To complete the analysis of PASA in the degenerate case and show that PASA ultimately performs

only iterations in phase two, we also need to assume that the strong second-order sufficient optimality

condition holds. Recall that a stationary point x∗ of (1.1) satisfies the strong second-order sufficient

optimality condition if there exists σ > 0 such that

dT∇2f(x∗)d > σ‖d‖2 whenever (Ad)i = 0 for all i ∈ A+(x
∗). (6.24)

First, we observe that under this assumption, the distance from xk to x∗ is bounded in terms of E(xk).

Lemma 6.4. If f is twice continuously differentiable in a neighborhood of a local minimizer x∗ for (1.1)

where the active constraint gradients are linearly independent and the strong second-order sufficient op-

timality condition holds, then for some ρ > 0 and for all x ∈ Bρ(x∗), we have

‖x− x∗‖ 6

[
√

1 +

(
2(1 + κ)(3 + κ)

σ

)2 ]

E(x), (6.25)

where κ is a Lipschitz constant for ∇f on Bρ(x∗).

Proof. By the continuity of the second derivative of f , it follows from (6.24) that for ρ > 0 sufficiently

small,

(x− x∗)T(g(x)− g(x∗)) = (x− x∗)T
∫ 1

0

∇2f(x∗ + t(x− x∗))dt(x− x∗) > 0.5σ‖x− x∗‖2 (6.26)

for all x ∈ Bρ(x
∗) ∩ S+, where

S+ = {x ∈ R
n : (Ax− b)i = 0 for all i ∈ A+(x

∗)}.

Given x ∈ Bρ(x∗), define x̂ = PS+(x). Since PΩ∩S+(x− g(x)) ∈ S+, it follows that

‖x̂− x‖ = ‖PS+(x)− x‖ 6 ‖PΩ∩S+(x− g(x))− x‖. (6.27)

Since Λi(x
∗) > 0 for all i ∈ A+(x

∗), it follows from Corollary 6.1 and complementary slackness that ρ

can be chosen smaller if necessary to ensure that

(Ay(x, 1)− b)i = 0 for all i ∈ A+(x
∗), (6.28)

which implies that y(x, 1) ∈ S+. Since y(x, 1) = PΩ(x − g(x)) and y(x, 1) ∈ S+, we also have PΩ(x

− g(x)) = PΩ∩S+(x− g(x)). With this substitution in (6.27), we obtain

‖x̂− x‖ 6 ‖PΩ(x− g(x))− x‖ = ‖y(x, 1)− x‖ = ‖d1(x)‖ = E(x). (6.29)

By the Lipschitz continuity of g, (6.29), and (4.3), it follows that

‖d1(x̂)‖ 6 ‖d1(x)‖ + ‖d1(x̂)− d1(x)‖ 6 ‖d1(x)‖+ (2 + κ)‖x− x̂‖ 6 (3 + κ)‖d1(x)‖ (6.30)

for all x ∈ Bρ(x∗). Since x̂ = PS+(x), the difference x̂− x is orthogonal to N (AI) when I = A+(x
∗).

Since x̂− x∗ ∈ N (AI), it follows from Pythagoras that

‖x− x̂‖2 + ‖x̂− x∗‖2 = ‖x− x∗‖2. (6.31)
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Consequently, x̂ ∈ Bρ(x∗) for all x ∈ Bρ(x∗), and

‖x− x∗‖ =
√

‖x− x̂‖2 + ‖x̂− x∗‖2. (6.32)

By [27, p. 8], (6.26), and (6.30), we have

‖x̂− x∗‖ 6

(
1 + κ

0.5σ

)

‖d1(x̂)‖ 6

(
(1 + κ)(3 + κ)

0.5σ

)

‖d1(x)‖. (6.33)

Insert (6.29) and (6.33) in (6.32) to complete the proof.

We now examine the asymptotic behavior of the undecided index set U .

Lemma 6.5. If f is twice continuously differentiable in a neighborhood of a local minimizer x∗ for (1.1),

where the active constraint gradients are linearly independent and the strong second-order sufficient op-

timality condition holds, and if PASA generates an infinite sequence of iterates converging to x∗, then

U(xk) is empty for k sufficiently large.

Proof. If E(xk) = 0 for some k, then PASA terminates and the lemma holds trivially. Hence, assume

that E(xk) 6= 0 for all k. To show U(xk) is empty for some k, we must show that

either (a) λi(xk)/E(xk)
γ < 1 or (b) (b−Ax)i/E(x)β < 1

for each i. If i ∈ A+(x
∗), then [b−Ax̄k]i = 0, and by Lemma 6.2,

[b−Axk]i = [(A(x̄k − xk)]i 6 ‖A‖‖x̄k − xk‖ 6 c‖A‖‖xk − x∗‖2.

By Lemma 6.4, there exists a constant d such that ‖x − x∗‖ 6 dE(x) for x near x∗. Hence, for all

i ∈ A+(x
∗) and k sufficiently large, we have

[b−Axk]i 6 cd2‖A‖E(xk)
2 = cd2‖A‖E(xk)

2−βE(xk)
β .

Since β ∈ (1, 2), E(xk)
2−β tends to zero as k tends to infinity, and (b) holds when k is large enough that

cd2‖A‖E(xk)
2−β < 1.

If i ∈ A+(x
∗)c, then λi(x

∗) = 0. By Corollary 6.1, there exist c ∈ R such that

λi(xk) = λi(xk)− λi(x
∗) 6 c‖xk − x∗‖ 6 cdE(xk) = cdE(xk)

1−γE(xk)
γ .

Since γ ∈ (0, 1), E(xk)
1−γ tends to zero as k tends to infinity, and (a) holds when k is large enough that

cdE(xk)
1−γ < 1. In summary, for k sufficiently large, (a) holds when i ∈ A+(x

∗)c and (b) holds when

i ∈ A+(x
∗). This implies that U(xk) is empty for k sufficiently large.

As shown in the proof of Lemma 6.5, (b) holds for i ∈ A+(x
∗) and k sufficiently large. This implies

that the constraint violation (b −Ax)i tends to zero faster than the error E(xk). The following result,

along with Lemma 6.5, essentially implies that PASA eventually performs only phase two.

Lemma 6.6. If f is twice continuously differentiable in a neighborhood of a local minimizer x∗ for (1.1),

where the active constraint gradients are linearly independent and the strong second-order sufficient op-

timality condition holds, and if PASA generates an infinite sequence of iterates converging to x∗, then

there exists θ∗ > 0 such that

e(xk) > θ∗E(xk) (6.34)

for k sufficiently large.

Proof. Let I := A+(x
∗) ∪ A(xk). The projection x̄k has the property that the difference xk − x̄k is

orthogonal to N (AI). Choose k large enough that A(xk) ⊂ A(x
∗). It follows that x̄k − x∗ ∈ N (AI).

Hence, by Pythagoras, we have

‖xk − x̄k‖
2 + ‖x̄k − x∗‖2 = ‖xk − x∗‖2.
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Consequently,

‖x̄k − x∗‖ 6 ‖xk − x∗‖, (6.35)

and x̄k approaches x∗ as k tends to infinity. Choose ρ > 0 small enough that f is twice continuously

differentiable in Bρ(x∗), and let κ be the Lipschitz constant for ∇f in Bρ(x∗). Choose k large enough

that xk ∈ Bρ(x∗). By (6.35) x̄k ∈ Bρ(x∗). Since d1(x∗) = 0, it follows from (4.3) that

‖d1(xk)‖ 6 ‖d
1(xk)− d1(x̄k)‖ + ‖d

1(x̄k)− d1(x∗)‖

6 (2 + κ)(‖xk − x̄k‖+ ‖x̄k − x∗‖). (6.36)

Lemma 6.2 gives

‖x̄k − xk‖ 6 c‖xk − x∗‖2 6 c‖xk − x∗‖(‖xk − x̄k‖+ ‖x̄k − x∗‖). (6.37)

Since xk converges to x∗, it follows from (6.37) that for any ǫ > 0,

‖x̄k − xk‖ 6 ǫ‖x̄k − x∗‖ (6.38)

when k is sufficiently large. Combine (6.36) and (6.38) to obtain

‖d1(xk)‖ 6 c‖x̄k − x∗‖ (6.39)

for some constant c and any k sufficiently large.

Choose ρ > 0 small enough that (6.26) holds for all x ∈ Bρ(x∗), and choose k large enough that

x̄k ∈ Bρ(x
∗). The bound (6.26) yields

0.5σ‖x̄k − x∗‖2 6 (x̄k − x∗)T(g(x̄k)− g(x∗)). (6.40)

By the first-order optimality conditions for a local minimizer x∗ of (1.1), there exists a multiplier λ∗ ∈ Rm

such that

g(x∗) +ATλ
∗ = 0, (6.41)

where (b−Ax∗)Tλ∗ = 0 and λ∗
> 0. Observe that λ∗

i [A(x̄k−x∗)]i = 0 for each i since [A(x̄k−x∗)]i = 0

when i ∈ A+(x
∗), while λ∗

i = 0 when i ∈ A+(x
∗)c. Hence, we have

[A(x̄k − x∗)]Tλ∗ = 0.

We utilize this identity to obtain

(x̄k − x∗)Tg(x∗) = (x̄k − x∗)T(g(x∗) +ATλ
∗) = 0 (6.42)

by the first equality in (6.41).

The first-order optimality conditions for the minimizer gI(x̄k) in (2.1) imply the existence of λI
such that

gI(x̄k)− g(x̄k) +AT
IλI = 0, (6.43)

where AI x̄k = bI . Since A(xk) ⊂ A(x∗), we have AI(x̄k − x∗) = 0, [AI(x̄k − x∗)]TλI = 0, and

(x̄k − x∗)Tg(x̄k) = (x̄k − x∗)T(g(x̄k)−AT
IλI) = (x̄k − x∗)TgI(x̄k) (6.44)

by (6.43). Combine (6.40), (6.42), and (6.44) to obtain

0.5σ‖x̄k − x∗‖ 6 ‖gI(x̄k)‖. (6.45)

If J denotes A(xk), then J ⊂ I = A(xk) ∪ A+(xk). Hence, N (AI) ⊂ N (AJ ). It follows that

‖gI(xk)‖ 6 ‖g
J (xk)‖ = e(xk). (6.46)
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Since the projection on a convex set is nonexpansive,

‖gI(x̄k)− gI(xk)‖ 6 ‖g(x̄k)− g(xk)‖ 6 κ‖x̄k − xk‖. (6.47)

Combine (6.38), (6.46), and (6.47) to get

‖gI(x̄k)‖ 6 ‖g
I(x̄k)− gI(xk)‖+ ‖g

I(xk)‖

6 e(xk) + κ‖x̄k − xk‖ 6 e(xk) + ǫκ‖x̄k − x∗‖.

Consequently, by (6.45) we have 0.4σ‖x̄k − x∗‖ 6 e(xk) for ǫ sufficiently small and k sufficiently large.

Finally, (6.39) completes the proof.

By the analysis of Section 5, (6.34) holds with θ∗ = 1 for a nondegenerate problem; neither the strong

second-order sufficient optimality condition nor independence of the active constraint gradients are needed

in this case.

We now show that within a finite number of iterations, PASA will perform only LCO.

Theorem 6.7. If PASA with ǫ = 0 generates an infinite sequence of iterates converging to a local

minimizer x∗ of (1.1), where the active constraint gradients are linearly independent and the strong

second-order sufficient optimality condition holds, and if f is twice continuously differentiable near x∗,

then within a finite number of iterations, only phase two is executed.

Proof. By Lemma 6.5, the undecided index set U(xk) is empty for k sufficiently large, and by Lemma 6.6,

there exists θ∗ > 0 such that e(xk) > θ∗E(xk). If k is large enough that U(xk) is empty, then in phase

one, θ will be reduced until θ 6 θ∗. Once this holds, phase one branches to phase two and phase two

cannot branch to phase one.

Similar to [27, Theorem 4.2], when f is a strongly convex quadratic and LCO is based on a projected

conjugate gradient method, Theorem 6.7 implies that when the active constraint gradients are linearly

independent, PASA converges to the optimal solution in a finite number of iterations.

7 Conclusions

A new active set algorithm PASA was developed for solving polyhedral constrained nonlinear optimiza-

tion problems. Phase one of the algorithm is the gradient projection algorithm, while phase two is any

algorithm for linearly constrained optimization (LCO) which monotonically improves the value of the

objective function, which never frees an active constraint, and which has the property that the projected

gradients tend to zero, at least along a subsequence of the iterates. Simple rules were given in Algorithm 2

for branching between the two phases. Global convergence to a stationary point was established, while

asymptotically, within a finite number of iterations, only phase two is performed. For nondegenerate

problems, this result follows almost immediately, while for degenerate problems, the analysis required

linear independence of the active constraint gradients, the strong second-order sufficient optimality condi-

tions, and a special startup procedure for LCO. The numerical implementation and performance of PASA

for general polyhedral constrained problems will be studied in a separate paper. Numerical performance

for bound constrained optimization problems is studied in [27].
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