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SUMMARY

A mesh refinement method is described for solving a continuous-time optimal control problem using
collocation at Legendre–Gauss–Radau points. The method allows for changes in both the number of mesh
intervals and the degree of the approximating polynomial within a mesh interval. First, a relative error
estimate is derived based on the difference between the Lagrange polynomial approximation of the state
and a Legendre–Gauss–Radau quadrature integration of the dynamics within a mesh interval. The derived
relative error estimate is then used to decide if the degree of the approximating polynomial within a mesh
should be increased or if the mesh interval should be divided into subintervals. The degree of the approx-
imating polynomial within a mesh interval is increased if the polynomial degree estimated by the method
remains below a maximum allowable degree. Otherwise, the mesh interval is divided into subintervals. The
process of refining the mesh is repeated until a specified relative error tolerance is met. Three examples
highlight various features of the method and show that the approach is more computationally efficient and
produces significantly smaller mesh sizes for a given accuracy tolerance when compared with fixed-order
methods. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the past two decades, direct collocation methods have become popular in the numerical
solution of nonlinear optimal control problems. In a direct collocation method, the state and control
are discretized at a set of appropriately chosen points in the time interval of interest. The continuous-
time optimal control problem is then transcribed to a finite-dimensional nonlinear programming
problem (NLP), and the NLP is solved using a well-known software [1, 2]. Originally, direct col-
location methods were developed as h methods (e.g., Euler or Runge–Kutta methods) where the
time interval is divided into a mesh and the state is approximated using the same fixed-degree
polynomial in each mesh interval. Convergence in an h method is then achieved by increasing the
number and placement of the mesh points [3–5]. More recently, a great deal of research has been
carried out in the class of direct Gaussian quadrature orthogonal collocation methods [6–20]. In
a Gaussian quadrature collocation method, the state is typically approximated using a Lagrange
polynomial where the support points of the Lagrange polynomial are chosen to be points associated
with a Gaussian quadrature. Originally, Gaussian quadrature collocation methods were implemented
as p methods using a single interval. Convergence of the p method was then achieved by increas-
ing the degree of the polynomial approximation. For problems whose solutions are smooth and
well-behaved, a Gaussian quadrature collocation method has a simple structure and converges at
an exponential rate [21–23]. The most well-developed Gaussian quadrature methods are those that
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employ either Legendre–Gauss points [9, 13] or Legendre–Gauss–Radau (LGR) points [14, 15, 17]
or Legendre–Gauss–Lobatto points [6].

While h methods have a long history and p methods have shown promise in certain types of
problems, both the h and p approaches have limitations. Specifically, achieving a desired accu-
racy tolerance may require an extremely fine mesh (in the case of an h method) or may require
the use of an unreasonably large-degree polynomial approximation (in the case of a p method).
In order to reduce significantly the size of the finite-dimensional approximation, and thus improve
computational efficiency of solving the NLP, hp collocation methods have been developed. In an
hp method, both the number of mesh intervals and the degree of the approximating polynomial
within each mesh interval is allowed to vary. Originally, hp methods were developed as finite
element methods for solving partial differential equations [24–28]. In the past few years, the prob-
lem of developing hp methods for solving optimal control problems has been of interest [29, 30].
This recent research has shown that convergence using hp methods can be achieved with a signifi-
cantly smaller finite-dimensional approximation than would be required when using either an h or a
p method.

Motivated by the desire to improve computational efficiency when solving the NLP while pro-
viding high accuracy in the discrete approximation of the optimal control problem, in this paper, we
describe a new ph Gaussian quadrature collocation method for solving continuous-time nonlinear
optimal control problems. Here, we have deliberately changed the order from hp to ph because our
scheme tries to achieve the prescribed error tolerance by increasing the degree of the polynomials in
the approximating space, and if this fails, by increasing the number of mesh intervals. The method is
divided into three parts. First, an approach is developed for estimating the relative error in the state
within each mesh interval. This relative error estimate is obtained by comparing the original state
variable to a higher-order approximation of the state. This relative error estimate is used to deter-
mine if the degree of the polynomial approximation should be increased or if mesh intervals should
be added. The polynomial degree is increased if it is estimated that the ensuing mesh requires a
polynomial degree that is less than a maximum allowable degree. Otherwise, the mesh is refined.
This process is repeated on a series of meshes until a specified accuracy tolerance is met. The deci-
sion to increase the polynomial degree or refine the mesh is based on the ratio of the maximum
relative error and the accuracy tolerance and is consistent with the known exponential convergence
of a Gaussian quadrature method for a problem whose solution is smooth.

Various mesh refinement methods employing direct collocation methods have been described in
recent years [5, 29–31]. Reference [31] describes a method that employs a differentiation matrix
to attempt to identify switches, kinks, corners, and other discontinuities in the solution, and uses
Gaussian quadrature rules to generate a mesh that is dense near the end points of the time interval
of interest. Reference [5] employs a density function and attempts to generate a fixed-order mesh
on which to solve the problem. References [32] and [33] (and the references therein) describe a
dual weighted residual method for mesh refinement and goal-oriented model reduction. The dual
weighted residual method uses estimates of a dual multiplier together with local estimates of the
residuals to adaptively refine a mesh and control the error in problems governed by partial differen-
tial equations. References [29] and [30] describe hp adaptive methods where the error estimate is
based on the difference between an approximation of the time derivative of the state and the right-
hand side of the dynamics midway between the collocation points. It is noted that the approach of
References [29] and [30] creates a great deal of noise in the error estimate, thereby making these
approaches computationally intractable when a high-accuracy solution is desired. Furthermore, the
error estimate of References [29] and [30] does not take advantage of the exponential convergence
rate of a Gaussian quadrature collocation method. Finally, in Reference [3], an error estimate is
developed by integrating the difference between an interpolation of the time derivative of the state
and the right-hand side of the dynamics. The error estimate developed in Reference [3] is predi-
cated on the use of a fixed-order method (e.g., trapezoid, Hermite–Simpson, and Runge–Kutta) and
computes a low-order approximation of the integral of the aforementioned difference. On the other
hand, in this paper, an estimate of the error on a given mesh is obtained by varying the degree of the
polynomial in the Gaussian quadrature approximation.
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The method of this paper is fundamentally different from any of the previously developed
methods due to the fact that it takes advantage of the exponential convergence properties of a
Gaussian quadrature. Specifically, in the discretization used in this paper, the state is approximated
using a piecewise polynomial, and the dynamics are collocated at the LGR quadrature points in each
interval. This leads to a finite-dimensional mathematical programming problem that is solved to
obtain estimates for the control and the state at the collocation points. A relative error estimate is then
derived that uses the difference between an interpolated value of the state and an LGR quadrature
approximation to the integral of the state dynamics. This relative error estimate remains computa-
tionally tractable when a high-accuracy solution is desired and reduces significantly the number of
collocation points required to meet a specified accuracy tolerance when compared with the methods
of Reference [29] or [30]. Furthermore, different from the error estimate developed in Reference [3],
the error estimate in this research utilizes the LGR quadrature points in both the interpolation of the
state and the integration of the state along the interpolated solution. Consequently, the approach of
this research enables the use of a Gaussian quadrature method to estimate the errors, thereby achiev-
ing convergence using fewer collocation points than may be necessary using an h method with the
error estimate of Reference [3]. It is noted, however, that in the case of an h LGR method (i.e., a
method whose order is the same in all mesh intervals), the error estimate in this paper is similar to
the estimate derived in Reference [3] with the exception that the approach of this paper still employs
a higher-order integration method than the approach of Reference [3].

While the mesh refinement method presented in this paper is based on only the state error and
seems to ignore the error in the costate as well as ignore the control minimum principle, in earlier
work (such as References [14–16]), a close connection has been established between the first-order
optimality conditions for the mathematical program and the continuous first-order optimality con-
ditions (i.e., the system dynamics, the costate equation, and the minimum principle). Specifically,
it is observed that at a solution of the mathematical programming problem, the minimum principle
holds at the collocation points. Thus, by solving the mathematical program, the minimum principle
is satisfied exactly. As has been shown in References [14–16], the discretization of the state equation
leads to an induced discretization for the costate equation that is expressed in terms of the mul-
tipliers of the mathematical programming problem. Hence, when the mathematical programming
problem is solved, in essence a two point boundary-value problem is solved in which the control
has been eliminated through the minimum principle. In this paper, we develop a mesh refinement
method that is based entirely on the estimation of the error in the state. While the error in the induced
costate approximation could be monitored using the same approach as is used to monitor the state
error, one finds that the errors connected with the system dynamics and the induced costate equation
are tightly coupled in that the induced costate error is large during intervals where the state error is
large. As a result, the benefit of monitoring the error in the state and the induced costate is marginal
when compared with monitoring the error in only the state. Thus, it is more efficient and simpler to
focus entirely on the error in the state equation. The effectiveness of our mesh refinement strategy
is studied on three examples that have different features in the optimal solution and, thus, exercise
different benefits of the new ph approach. It is found that the mesh refinement method developed in
this paper is an effective yet simple way to generate meshes and to reduce computation times when
compared with fixed-order h methods.

The significance of this research is threefold. First, we develop a systematic way to estimate the
error in the Radau discretization of an optimal control problem using the fact that Radau collocation
is a Gaussian quadrature integration method. Second, based on the derived estimate of the error, we
provide a simple yet effective phmesh refinement method that allows both the degree of the approx-
imating polynomial and the number of mesh intervals to vary. Third, we show on three nontrivial
examples that the phmesh refinement method developed in this paper is more computationally effi-
cient and produces smaller meshes for a given accuracy tolerance when compared with traditional
fixed-order h methods.

This paper is organized as follows. In Section 2, we provide a motivation for our new phmethod.
In Section 3, we state the continuous-time Bolza optimal control problem. In Section 4, we state the
integral form of the ph LGR integration method [14–16] that is used as the basis for the ph mesh
refinement method developed in this paper. In Section 5, we develop the error estimate and our
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new ph-adaptive mesh refinement method. In Section 6, we apply the method of Section 5 to three
examples that highlight different features of the method. In Section 7, we describe the key features
of our approach and compare our method to recently developed hp-adaptive methods. Finally, in
Section 8, we provide conclusions on our work.

2. MOTIVATION FOR NEW ph-ADAPTIVE COLLOCATION METHOD

In order to motivate the development of our new ph-adaptive Gaussian quadrature collocation
method, consider the following two first-order differential equations on the interval � 2 Œ�1;C1�:

dy1

d�
D f1.�/ D � cos.��/; y1.�1/ D y10; (1)

dy2

d�
D f2.�/ D

8<
:
0; �1 6 � < �1=2
� cos.��/; �1=2 6 � 6 C1=2;
0; C1=2 < � 6 C1

; y2.�1/ D y20: (2)

The solutions to the differential equations (1) and (2) are given, respectively, as

y1.�/ D y10 C sin.��/; (3)

y2.�/ D

8<
:
y20; �1 6 � < �1=2;
y20 C 1C sin.��/; �1=2 6 � 6 C1=2;
y20 C 2; C1=2 < � 6 C1:

(4)

Suppose now that it is desired to approximate the solutions to the differential equations (1) and
(2) using the following three different methods that employ the LGR [34] collocation method as
described in various forms in References [14–17, 19]: (i) a p method where the state is approximated
using an N th

k
degree polynomial on Œ�1;C1� and Nk is allowed to vary; (ii) an h method using

K equally spaced mesh intervals where K is allowed to vary and a fixed fourth-degree polynomial
is employed within each mesh interval; and (iii) a ph method where both the number of mesh
intervals, K, and the degree of the approximating polynomial, Nk , within each mesh interval are
allowed to vary. Using any of the aforementioned approximations (p, h, or ph), within any mesh
interval ŒTk�1; Tk�, the functions yi .�/; .i D 1; 2/ are approximated using the following Lagrange
polynomial approximations:

y
.k/
i .�/ � Y

.k/
i .�/ D

NC1X
jD1

Y
.k/
ij `

.k/
j .�/; `

.k/
j .�/ D

NC1Y
lD1

l¤j

� � �
.k/

l

�
.k/
j � �

.k/

l

; (5)

where the support points for `.k/j .�/; j D 1; : : : ; Nk C 1, are the Nk LGR points [34]

.�
.k/
1 ; : : : ; �

.k/
N / on ŒTk�1; Tk� such that � .k/1 D Tk�1 and � .k/NC1 D Tk is a noncollocated point that

defines the end of mesh interval k. Within any particular mesh interval ŒTk�1; Tk� � Œ�1;C1�, the
approximations of y.k/i .�/; i D 1; 2, are given at the support points � .k/jC1; j D 1; : : : ; N , as

y
.k/
i

�
�
.k/
jC1

�
� Y

.k/
i

�
�
.k/
jC1

�
D Y

.k/
i1 C

NX
lD1

I
.k/

jl
fi

�
�
.k/

l

�
; .i D 1; 2/; .j D 1; : : : ; N /; (6)

where Y .k/i1 is the approximation to yi .�
.k/
1 / at the start of the mesh interval and I .k/

jl
.j; l D

1; : : : ; Nk/ is the Nk � Nk LGR integration matrix (see Reference [14] for details) defined on the
mesh interval ŒTk�1; Tk�.

Suppose now that we define the maximum absolute error in the solution of the differential
equation as

Ei D max
j2Œ1;:::;Nk�

k2Œ1;:::;K�

ˇ̌̌
Y
.k/
ij � yi

�
�
.k/
j

�ˇ̌̌
; .i D 1; 2/:
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Figure 1(a) and (b) show the base-10 logarithm of E1 as a function of N for the p method and as
a function of K for the h method. First, it is seen that because y1.�/ is a smooth function, the p
method converges exponentially as a function ofN while the hmethod converges significantly more
slowly as a function of K. Figure 1(c) and (d) show E2. Unlike y1, the function y2 is continuous
but not smooth. As a result, the h method converges faster than the p method because no single
polynomial (regardless of degree) on Œ�1;C1� is able to approximate the solution to equation (2) as
accurately as a piecewise polynomial. However, while the h method converges more quickly than
does the p method when approximating the solution of equation (2), it is seen that the h method
does not converge as quickly as the p method does when approximating the solution to equation (1).
In fact, when approximating the solution of equation (1), it is seen that the h method achieves an

(a) (b)

(c) (d)

(e)

Figure 1. Base-10 logarithm of absolute errors in solutions of equations (1) and (2) at Lagrange polynomial
support points using p, h, and ph methods.
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error of � 10�7 for K D 24, whereas the p method converges exponentially and achieves an error
of� 10�15 for N D 20. As a result, an h method does not provide the fastest possible convergence
rate when approximating the solution to a differential equation whose solution is smooth.

Given the aforementioned p and h analysis, suppose now that the solution to equation (2) is
approximated using the aforementioned ph Radau method (i.e., both the number of mesh intervals
and the degree of the approximating polynomial within each mesh interval are allowed to vary).
Assume further that the ph method is constructed such that the time interval Œ�1;C1� is divided
into three mesh intervals Œ�1;�1=2�, Œ�1=2;C1=2�, and ŒC1=2;C1�, and Lagrange polynomial
approximations of the form of equation (5) of degree N1, N2, and N3, respectively, are used in each
mesh interval. Furthermore, supposeN1,N2, andN3 are allowed to vary. Because the solution y2.�/
is a constant in the first and third mesh intervals, it is possible to setN1 D N3 D 2 and vary onlyN2.
Figure 1(e) shows the error in y2.�/,E2ph D max jy2 � Y2j using the aforementioned three-interval
ph approach. Similar to the results obtained using the p method when approximating the solution
of equation (1), in this case, the error in the solution of equation (2) converges exponentially as a
function of N2. Thus, while an h method may outperform a p method on a problem whose solution
is not smooth, it is possible to improve the convergence rate by using a ph-adaptive method. The
foregoing analysis provides a motivation for the development of the ph method described in the
remainder of this paper.

3. BOLZA OPTIMAL CONTROL PROBLEM

Without loss of generality, consider the following general optimal control problem in Bolza form.
Determine the state, y.t/ 2 Rny , the control u.t/ 2 Rnu , the initial time, t0, and the terminal time,
tf , on the time interval t 2 Œt0; tf � that minimize the cost functional

J D �.y.t0/; t0; y.tf /; tf /C
Z tf

t0

g.y.t/; u.t/; t/ dt (7)

subject to the dynamic constraints

dy
dt
D a.y.t/; u.t/; t/; (8)

the inequality path constraints

cmin 6 c.y.t/; u.t/; t/ 6 cmax; (9)

and the boundary conditions

bmin 6 b.y.t0/; t0; y.tf /; tf / 6 bmax: (10)

The functions �, g, a, c, and b are defined by the following mappings:

� W Rny �R �Rny �R ! R;
g W Rny �Rnu �R ! R;
a W Rny �Rnu �R ! Rny ;
c W Rny �Rnu �R ! Rnc ;
b W Rny �R �Rny �R ! Rnb ;

where all vector functions of time are treated as row vectors. In this presentation, it will be useful
to modify the Bolza problem given in equations (7)–(10) as follows. Let � 2 Œ�1;C1� be a new
independent variable such that

t D
tf � t0

2
� C

tf C t0

2
: (11)

The Bolza optimal control problem of equations (7)–(10) is then defined in terms of the variable �
as follows. Determine the state, y.�/ 2 Rny , the control, u.�/ 2 Rnu , the initial time, t0, and the
terminal time, tf , on the time interval � 2 Œ�1;C1� that minimize the cost functional

J D �.y.�1/; t0; y.C1/; tf /C
tf � t0

2

Z C1
�1

g.y.�/; u.�/; � I t0; tf / d� (12)
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subject to the dynamic constraints

dy
d�
D
tf � t0

2
a.y.�/; u.�/; � I t0; tf /; (13)

the inequality path constraints

cmin 6 c.y.�/; u.�/; � I t0; tf / 6 cmax; (14)

and the boundary conditions

bmin 6 b
�
y.�1/; t0; y.C1/; tf

�
6 bmax: (15)

Suppose now that the time interval � 2 Œ�1;C1� is divided into a mesh consisting of K mesh
intervals Sk D ŒTk�1; Tk�; k D 1; : : : ; K, where .T0; : : : ; TK/ are the mesh points. The mesh

intervals Sk .k D 1; : : : ; K/ have the properties that
K[
kD1

Sk D Œ�1;C1� and
K\
kD1

Sk D ;, while the

mesh points have the property that �1 D T0 < T1 < T2 < � � � < TK D C1. Let y.k/.�/ and u.k/.�/
be the state and control in Sk . The Bolza optimal control problem of equations (12)–(15) can then
be rewritten as follows. Minimize the cost functional

J D �
�

y.1/.�1/; t0; y.K/.C1/; tf
�
C
tf � t0

2

KX
kD1

Z Tk

Tk�1

g
�

y.k/.�/;u.k/.�/; � I t0; tf
�
d�;

.k D 1; : : : ; K/;
(16)

subject to the dynamic constraints

dy.k/.�/
d�

D
tf � t0

2
a
�

y.k/.�/;u.k/.�/; � I t0; tf
�
; .k D 1; : : : ; K/; (17)

the path constraints

cmin 6 c
�

y.k/.�/;u.k/.�/; � I t0; tf
�
6 cmax; .k D 1; : : : ; K/; (18)

and the boundary conditions

bmin 6 b
�

y.1/.�1/; t0; y.K/.C1/; tf
�
6 bmax: (19)

Because the state must be continuous at each interior mesh point, it is required that the condition
y.T �

k
/ D y.TC

k
/; .k D 1; : : : ; K � 1/ be satisfied at the interior mesh points .T1; : : : ; TK�1/.

4. LEGENDRE–GAUSS–RADAU COLLOCATION METHOD

The ph form of the continuous-time Bolza optimal control problem in Section 3 is discretized using
collocation at LGR points [14–17, 19]. In the LGR collocation method, the state of the continuous-
time Bolza optimal control problem is approximated in Sk; k 2 Œ1; : : : ; K�, as

y.k/.�/ � Y.k/.�/ D
NkC1X
jD1

Y.k/j `
.k/
j .�/; `

.k/
j .�/ D

NkC1Y
lD1

l¤j

� � �
.k/

l

�
.k/
j � �

.k/

l

; (20)

where � 2 Œ�1;C1�; `
.k/
j .�/; j D 1; : : : ; Nk C 1, is a basis of Lagrange polynomials,�

�
.k/
1 ; : : : ; �

.k/
Nk

�
are the LGR [34] collocation points in Sk D ŒTk�1; Tk/, and � .k/NkC1

D Tk is a

noncollocated point. Differentiating Y.k/.�/ in equation (20) with respect to � , we obtain

dY.k/.�/
d�

D

NkC1X
jD1

Y.k/j
d`

.k/
j .�/

d�
: (21)
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The cost functional of equation (16) is then approximated using a multiple-interval LGR
quadrature as

J � �
�

Y.1/1 ; t0;Y
.K/
NKC1

; tf

�
C

KX
kD1

NkX
jD1

tf � t0

2
w
.k/
j g

�
Y.k/j ;U.k/j ; �

.k/
j I t0; tf

�
; (22)

where w.k/j .j D 1; : : : ; Nk/ are the LGR quadrature weights [34] in Sk D ŒTk�1; Tk�, k 2

Œ1; : : : ; K�, U.k/i ; i D 1; : : : ; Nk , are the approximations of the control at the Nk LGR points in
mesh interval k 2 Œ1; : : : ; K�; Y.1/1 is the approximation of y.T0/, and Y.K/NKC1

is the approximation
of y.TK/ (where we recall that T0 D �1 and TK D C1). Collocating the dynamics of equation (17)
at the Nk LGR points using equation (21), we have

NkC1X
jD1

D
.k/
ij Y.k/j �

tf � t0

2
a
�

Y.k/i ;U.k/i ; �
.k/
i I t0; tf

�
D 0; .i D 1; : : : ; Nk/;

where

D
.k/
ij D

d`
.k/
j .�

.k/
i /

d�
; .i D 1; : : : ; Nk; j D 1; : : : ; Nk C 1/;

are the elements of theNk � .NkC1/ LGR differentiation matrix [14] D.k/ associated with Sk; k 2
Œ1; : : : ; K�. While the dynamics can be collocated in differential form, in this paper, we choose
to collocate the dynamics using the equivalent implicit integral form (see References [14–16] for
details). The implicit integral form of the LGR collocation method is given as

Y.k/iC1 � Y.k/1 �
tf � t0

2

NkX
jD1

I
.k/
ij a

�
Y.k/i ;U.k/i ; �

.k/
i I t0; tf

�
D 0; .i D 1; : : : ; Nk/; (23)

where I .k/ij ; .i D 1; : : : ; Nk; j D 1; : : : ; Nk; k D 1; : : : ; K/ is theNk�Nk LGR integration matrix
in mesh interval k 2 Œ1; : : : ; K�; it is obtained by inverting a submatrix of the differentiation matrix
formed by columns 2 through Nk C 1:

I.k/ D
h
D.k/2 � � �D

.k/
NkC1

i�1
:

It is noted for completeness that I.k/D.k/1 D �1 (see References [14–16]), where 1 is a column vector
of length Nk of all ones [14–16]. Next, the path constraints of equation (18) in Sk; k 2 Œ1; : : : ; K�,
are enforced at the Nk LGR points as

cmin 6 c
�

Y.k/i ;U.k/i ; �
.k/
i I t0; tf

�
6 cmax; .i D 1; : : : ; Nk/: (24)

The boundary conditions of equation (19) are approximated as

bmin 6 b
�

Y.1/1 ; t0;Y
.K/
NKC1

; tf

�
6 bmax: (25)

It is noted that continuity in the state at the interior mesh points k 2 Œ1; : : : ; K � 1� is enforced via
the condition

Y.k/NkC1 D Y.kC1/1 ; .k D 1; : : : ; K � 1/; (26)

where the same variable is used for both Y.k/NkC1 and Y.kC1/1 . Hence, the constraint of equation (26)
is eliminated from the problem because it is taken into account explicitly. The NLP that arises from
the LGR collocation method is then to minimize the cost function of equation (22) subject to the
algebraic constraints of equations (23)–(25).
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5. ph-ADAPTIVE MESH REFINEMENT METHOD

We now develop a ph-adaptive mesh refinement method using the LGR collocation method
described in Section 4. We call our method a ph method because we first try to adjust the polyno-
mial degree to achieve convergence, and if this fails, we adjust the mesh spacing. The ph-adaptive
mesh refinement method developed in this paper is divided into two parts. In Section 5.1, the method
for estimating the error in the current solution is derived, and in Section 5.4, the p-then-h strategy
is developed for refining the mesh.

5.1. Error estimate in each mesh interval

In this section, an estimate of the relative error in the solution within a mesh interval is derived.
Because the state is the only quantity in the LGR collocation method for which a uniquely defined
function approximation is available, we develop an error estimate for the state. The error estimate
is obtained by comparing two approximations to the state, one with higher accuracy. The key idea
is that for a problem whose solution is smooth, an increase in the number of LGR points should
yield a state that more accurately satisfies the dynamics. Hence, the difference between the solution
associated with the original set of LGR points and the approximation associated with the increased
number of LGR points should yield an estimate for the error in the state.

Assume that the NLP of equations (22)–(25) corresponding to the discretized control problem
has been solved on a mesh Sk D ŒTk�1; Tk�; k D 1; : : : ; K, with Nk LGR points in mesh inter-
val Sk . Suppose that we want to estimate the error in the state at a set of Mk D Nk C 1 LGR
points

�
O�
.k/
1 ; : : : ; O�

.k/
Mk

�
, where O� .k/1 D �

.k/
1 D Tk�1, and that O� .k/MkC1

D Tk . Suppose further

that the values of the state approximation given in equation (20) at the points
�
O�
.k/
1 ; : : : ; O�

.k/
Mk

�
are

denoted
�

Y. O� .k/1 /; : : : ;Y. O� .k/Mk
/
�

. Next, let the control be approximated in Sk using the Lagrange
interpolating polynomial

U.k/.�/ D
NkX
jD1

U.k/j Ò
.k/
j .�/; Ò.k/

j .�/ D

NkY
lD1

l¤j

� � �
.k/

l

�
.k/
j � �

.k/

l

; (27)

and let the control approximation at O� .k/i be denoted U. O� .k/i /, 1 6 i 6 Mk . We use the value of the
right-hand side of the dynamics at .Y. O� .k/i /;U. O� .k/i /; O�

.k/
i / to construct an improved approximation

of the state. Let OY.k/ be a polynomial of degree at most Mk that is defined on the interval Sk . If the
derivative of Oy.k/ matches the dynamics at each of the Radau quadrature points O� .k/i ; 1 6 i 6 Mk ,
then we have

OY.k/
�
O�
.k/
j

�
DY.k/ .�k�1/C

tf � t0

2

MkX
lD1

OI
.k/

jl
a
�

Y.k/
�
O�
.k/

l

�
;U.k/

�
O�
.k/

l

�
; O�
.k/

l

�
; j D2; : : : ;Mk C 1;

(28)

where OI .k/
jl
; j; l D 1; : : : ;Mk , is the Mk �Mk LGR integration matrix corresponding to the LGR

points defined by
�
O�
.k/
1 ; : : : ; O�

.k/
Mk

�
. Using the values Y. O� .k/

l
/ and OY. O� .k/

l
/, l D 1; : : : ;Mk C 1, the

absolute and relative errors in the i th component of the state at . O� .k/1 ; : : : ; O�
.k/
MkC1

/ are then defined,
respectively, as

E
.k/
i

�
O�
.k/

l

�
D
ˇ̌̌
OY
.k/
i

�
O�
.k/

l

�
� Y

.k/
i

�
O�
.k/

l

�ˇ̌̌
;

e
.k/
i

�
O�
.k/

l

�
D

E
.k/
i

�
O�
.k/

l

�
1C max

j2Œ1;:::;MkC1�

ˇ̌̌
Y
.k/
i

�
O�
.k/
j

�ˇ̌̌ ;
�
l D 1; : : : ;Mk C 1;
i D 1; : : : ; ny ;

�
: (29)
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The maximum relative error in Sk is then defined as

e.k/max D max
i2Œ1;:::;ny�

l2Œ1;:::;MkC1�

e
.k/
i . O�

.k/

l
/: (30)

5.2. Rationale for error estimate

The error estimate derived in Section 5.1 is similar to the error estimate obtained using the modified
Euler Runge–Kutta scheme to numerically solve a differential equation Py.t/ D f .y.t//. The first-
order Euler method is given as

yjC1 D yj C hf .yj /; (31)

where h is the step size and yj is the approximation to y.t/ at t D tj D jh. In the second-order
modified Euler Runge–Kutta method, the first stage generates the following approximation Ny to
y.tjC1=2/:

Ny D yj C
1
2
hf .yj /:

The second stage then uses the dynamics evaluated at Ny to obtain an improved estimate OyjC1 of
y.tjC1/:

OyjC1 D yj C hf . Ny/: (32)

The original Euler scheme starts at yj and generates yjC1. The first-stage variable Ny is the
interpolant of the line (first-degree polynomial) connecting .tj ; yj / and .tjC1; yjC1/ evaluated at
the new point tjC1=2. The second stage given in equation (32) uses the dynamics at the interpolant
Ny to obtain an improved approximation to y.tjC1/. Because OyjC1 is a second-order approximation
to y.tjC1/ and yjC1 is a first-order approximation to yjC1, the absolute difference j OyjC1 � yjC1j
is an estimate of the error in yjC1 in a manner similar to the absolute error estimateE.k/i . O�

.k/

l
/ .l D

1; : : : ;Mk C 1/ derived in equation (29).
The effectiveness of the derived error estimate derived in Section 5.1 can be seen by revisiting

the motivating examples of Section 2. Figure 2(a) and (b) show the p and h error estimates, respec-
tively, E1p and E1h, in the solution to equation (1); (c) and (d) show the p and h error estimates,
respectively, E2p and E2h, in the solution to equation (2); and (e) shows the ph error estimates,
E2ph, in the solution to equation (2). It is seen that the error estimates are nearly identical to the
actual error. The relative error estimate given in equation (30) is used in the next section as the basis
for modifying an existing mesh.

5.3. Estimation of required polynomial degree within a mesh interval

Suppose again the LGR collocation NLP of equations (22)–(25) has been solved on a mesh Sk; k D
1; : : : ; K. Suppose further that it is desired to meet a relative error accuracy tolerance � in each mesh
interval Sk; k D 1; : : : ; K. If the tolerance � is not met in at least one mesh interval, then the next
step is to refine the current mesh, either by dividing the mesh interval or increasing the degree of the
approximating polynomial within the mesh interval.

Consider a mesh interval Sq; q 2 Œ1; : : : ; K�, where Nq LGR points were used to solve the NLP
of equations (22)–(25), and again, let � be the desired relative error accuracy tolerance. Suppose fur-
ther that the estimated maximum relative error, e.q/max, has been computed as described in Section 5.1
and that e.q/max > � (i.e., the accuracy tolerance � is not satisfied in the existing mesh interval). Finally,
let Nmin and Nmax be user-specified minimum and maximum bounds on the number of LGR points
within any mesh interval. According to the convergence theory summarized in [35, 36], the error in
a global collocation scheme behaves like O.N 2:5�k/, where N is the number of collocation points
within a mesh interval and k is the number of continuous derivatives in the solution [21, 22]. If the
solution is smooth, then we could take k D N . Hence, if N was replaced by N C P , then the error
bound decreases by at least the factor N�P .
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(a)

(c)

(e)

(b)

(d)

Figure 2. Base-10 logarithm of absolute error estimates in solutions of equations (1) and (2) at points�
O�2; : : : ; O�Mk

�
using p, h, and ph methods.

Based on these considerations, suppose that interval Sq employs Nq collocation points and
has relative error estimate e.q/max that is larger than the desired relative error tolerance �; to reach
the desired error tolerance, the error should be multiplied by the factor �=e.q/max. This reduction is
achieved by increasing Nq by Pq where Pq is chosen so that N�Pqq D �=e

.q/
max or, equivalently,

N
Pq
q D

e
.q/
max

�
:

This implies that

Pq D logNq

 
e
.q/
max

�

!
: (33)
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Because the expression on the right side of (33) may not be an integer, we round up to obtain

Pq D

&
logNq

 
e
.q/
max

�

!'
: (34)

Note that Pq > 0 because we only use (34) when e
.q/
max is greater than the prescribed error

tolerance �. The dependence of Pq on Nq is shown in Figure 3.

5.4. p-Then-h strategy for mesh refinement

Using equation (34), the predicted number of LGR points required in mesh interval Sq on the ensu-
ing mesh is QNq D Nq C Pq , assuming e.q/max has not reach the specified error tolerance �. The
only possibilities are that QNq 6 Nmax (that is, QN does not exceed the maximum allowable polyno-
mial degree) or that QNq > Nmax (i.e., QN exceeds the maximum allowable polynomial degree). If
QNq 6 Nmax, then Nq is increased to QNq on the ensuing mesh. If, on the other hand, QNq > Nmax,

then QNq exceeds the upper limit and the mesh interval Sq must be divided into subintervals.
Our strategy for mesh interval division uses the following approach. First, whenever a mesh inter-

val is divided, the sum of the number of collocation points in the newly created mesh intervals
should equal the predicted polynomial degree for the next mesh. Second, each newly created subin-
terval should contain the minimum allowable number of collocation points. In other words, if a
mesh interval Sq is divided into Bq subintervals, then each newly created subinterval will contain
Nmin collocation points and the sum of the collocation points in these newly created subintervals
should be BqNmin. Using this strategy, the number of subintervals, Bq , into which Sq is divided is
computed as

Bq D max

 &
QNq

Nmin

'
; 2

!
; (35)

where it is seen in equation (35) that 2 6 Bq 6 d QNq=Nmine. It is seen that this strategy for mesh
interval division ensures that the same total number of collocation points is the same regardless
of whether the polynomial degree in a mesh interval is increased or the mesh interval is refined.
Second, because the number of LGR points in a newly created mesh interval is started at Nmin, the
method uses the full range of allowable values of N . Because of the hierarchy, the ph method of
this paper can be thought of more precisely as a ‘p-then-h’ method where p refinement is exhausted
prior to performing any h refinement. In other words, the polynomial degree within a mesh interval
is increased until the upper limitNmax is exceeded. The h refinement (mesh interval division) is then
performed after which the p refinement is restarted.

(a) (b)

Figure 3. Function that relates the increase in the degree of the approximating polynomial to the ratio emax=�
and the current polynomial degree N .
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It is important to note that the ph method developed in this paper can be employed as a fixed-
order h method simply by setting Nmin D Nmax. The h version of the method of this paper is
similar to an adaptive step-size fixed-order integration method, such as an adaptive step-size Runge–
Kutta method, in the following respect: In both cases, the mesh is refined, often by step-halving or
step-doubling [37], when the specified error tolerance is not met.

A summary of our adaptive mesh refinement algorithm appears next. Here, M denotes the mesh
refinement iteration, and in each loop of the algorithm, the mesh number increases by 1. The algo-
rithm terminates in step 4 when the error tolerance is satisfied or when M reaches a prescribed
maximum Mmax.

6. EXAMPLES

In this section, the ph-adaptive LGR method described in Section 5 is applied to three examples
from the open literature. The first example is a variation of the hypersensitive optimal control prob-
lem originally described in Reference [38], where the effectiveness of the error estimate derived in
Section 5.1 is demonstrated and the improved efficiency of the ph method over various h meth-
ods is shown. The second example is a tumor anti-angiogenesis optimal control problem originally
described in Reference [39], where it is seen that the ph method of this paper accurately and effi-
ciently captures a discontinuity in a problem whose optimal control is discontinuous. The third
example is the reusable launch vehicle entry problem from Reference [3], where it is seen that using
the ph method of this paper leads to a significantly smaller mesh than would be obtained using
an h method. This third example also shows that allowing Nmin to be too small can reduce the
effectiveness of the ph method.

When using a ph-adaptive method, the terminology ph-.Nmin; Nmax/ refers to the ph-adaptive
method of this paper where the polynomial degree can vary between Nmin and Nmax, respectively,
while an h-N method refers to an h method with a polynomial of fixed degree N . For exam-
ple, a ph-.2; 8/ method is a ph-adaptive method where Nmin D 2 and Nmax D 8, while an h-2
method is an h method where N D 2. All results were obtained using the optimal control software
GPOPS � II [40] running with the NLP solver IPOPT [41] in second derivative mode with the
multifrontal massively parallel sparse direct solver MUMPS [42], default NLP solver tolerances,
and a mesh refinement accuracy tolerance � D 10�6. The initial mesh for a ph-.Nmin; Nmax/ or
h-Nmin method consisted of 10 uniformly spaced mesh intervals with Nmin LGR points in each
interval, while the initial guess was a straight line between the known initial conditions and known
terminal conditions for the problem under consideration with the guess on all other variables being
a constant. The required first and second derivatives required by IPOPT were computed using the
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built-in sparse first and second finite-differencing method in GPOPS � II that uses the method of
Reference [19]. Finally, all computations were performed on a 2.5 GHz Intel Core i7 MacBook Pro
running Mac OS-X Version 10.7.5 (Lion) 16 GB of 1333 MHz DDR3 RAM and MATLAB version
R2012b. The CPU times reported in this paper are 10-run averages of the execution time.

Example 1: hypersensitive problem

Consider the following variation of the hypersensitive optimal control problem [38]. Minimize the
cost functional

J D 1
2

Z tf

0

�
x2 C u2

�
dt (36)

subject to the dynamic constraint

Px D �x C u (37)

and the boundary conditions

x.0/ D 1:5 ; x.tf / D 1; (38)

where tf is fixed. It is known that for sufficiently large values of tf , the solution to the hypersensi-
tive problem exhibits a so-called take-off, cruise, and landing structure where all of the interesting
behaviors occur near the ‘take-off’ and ‘landing’ segments while the solution is essentially constant
in the ‘cruise’ segment. Furthermore, the cruise segment becomes an increasingly large percentage
of the total trajectory time as tf increases, while the take-off and landing segments have rapid expo-
nential decay and growth, respectively. The analytic optimal state and control for this problem are
given as

x�.t/ D c1 exp.t
p
2/C c2 exp.�t

p
2/;

u�.t/ D Px�.t/C x�.t/;
(39)

where �
c1
c2

�
D

1

exp.�tf
p
2/ � exp.tf

p
2/

�
1:5 exp.�tf

p
2/ � 1

1 � 1:5 exp.tf
p
2/

�
: (40)

Figure 4(a) and (b) show the exact state and control for the hypersensitive problem with tf D 10000
and highlight the take-off, cruise, and landing features of the optimal solution. Given the structure
of the optimal solution, it should be the case that a mesh refinement method places many more col-
location and mesh points near the ends of the time interval when tf is large. Figure 4(c) shows the
evolution of the mesh points Tk while Figure 4(d) shows the evolution collocation (LGR) points
�
.k/
j on each mesh refinement iteration using the ph-.3; 14) scheme. Two key related features are

seen in the mesh refinement. First, Figure 4(c) shows that mesh intervals are added on each refine-
ment iteration only in the regions near t D 0 and t D tf , while mesh intervals are not added in
the interior region t 2 Œ1000; 9000�. Second, Figure 4(d) shows that after the first mesh refinement
iteration, LGR points are also added only in the regions near t D 0 and t D tf and are not added
in the interior region t 2 Œ1000; 9000�. This behavior of the ph-adaptive method shows that error
reduction is achieved by added mesh and collocation points in regions of t 2 Œ0; tf � where points
are needed to capture the changes in the solution. Finally, for comparison with the ph-adaptive
method, Figure 4(e) and (f) show the solution obtained using an h-2 method. Unlike the ph-.3; 14/
method, where mesh points are added only where needed to meet the accuracy tolerance, the h-2
method places many more mesh points over much larger segments at the start and end of the overall
time interval. Specifically, it is seen that the mesh is quite dense over time intervals t 2 Œ0; 3000�
and t 2 Œ7000; 10000�, whereas for the ph-.3; 14/method, the mesh remains dense over the smaller
intervals Œ0; 1000� and Œ9000; 10000�. Admittedly, the ph-.3; 14/ does add LGR points in the regions
t 2 Œ1000; 3000� and t 2 Œ7000; 9000�, whereas the h-2 method adds more mesh intervals, but
the mesh obtained using the ph-.3; 14/ is much smaller (273 collocation points) than the mesh
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(a)

(c)

(e) (f)

(d)

(b)

Figure 4. Exact solution to Example 1 with tf D 10000 and mesh refinement history when using the
ph-.3; 14/ and h-2 methods with an accuracy tolerance � D 10�6.

obtained using the h-2 method (672 collocation points). Thus, the ph method exploits the solu-
tion smoothness on the intervals Œ1000; 3000� and Œ7000; 9000� to achieve more rapid convergence
by increasing the degree of the approximating polynomials instead of increasing the number of
mesh intervals.

Next, we analyze the quality of the error estimate of Section 5.1 by examining more closely the
numerical solution near t D 0 and t D tf . Figure 5(a) and (b) show the state and control in the
regions t 2 Œ0; 15� and t 2 Œ9985; 10000� on each mesh refinement iteration alongside the exact
solution using the ph-.3; 14/ method, while Table I shows the estimated and exact relative errors
in the state and the exact relative error in the control for each mesh refinement iteration. First, it is
seen in Table I that the state and control relative error on the final mesh is quite small at � 10�9

for the state and � 10�8 for the control. In addition, it is seen from Figure 5(a) and (b) show that
the state and control approximations improve with each mesh refinement iteration. Moreover, the
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(a) (b)

(c) (d)

Figure 5. Solution near end points of t 2 Œ0; tf � for Example 1 with tf D 10000 using the ph-.3; 14/ and
an accuracy tolerance � D 10�6.

Table I. Estimated relative state error, emax
x , exact relative state error, emax

x;exact,
and exact relative control error, emax

u;exact, for Example 1 with tf D 10000 using
a ph-.3; 14/ with an accuracy tolerance � D 10�6.

M emax
x emax

x;exact emax
u;exact

1 3:377 � 100 5:708 � 10�3 1:280 � 100

2 6:436 � 10�1 4:009 � 10�2 1:127 � 100

3 9:648 � 10�2 7:462 � 10�2 3:369 � 10�1

4 8:315 � 10�10 1:016 � 10�9 1:329 � 10�8

error estimate shown in Table I agrees qualitatively with the solutions on the corresponding mesh
as shown in Figure 5(a) and (b). It is also interesting to see that the state relative error estimate
is approximately the same on each mesh iteration as the exact relative error. The consistency in
the relative error approximation and the exact relative error demonstrates the accuracy of the error
estimate derived in Section 5.1. Thus, the error estimate derived in this paper reflects correctly the
locations where the solution error is large and ph-adaptive method constructs new meshes that
reduce the error without making the mesh overly dense.

Finally, we provide a comparison of the computational efficiency and mesh sizes obtained by
solving Example 1 using the various ph-adaptive and h methods described in Section 5. Table II
shows the CPU times and mesh sizes, where it is seen for this example that the ph-.3; 14/ [shown
in bold in Table II] and h-2 methods result in the smallest overall CPU times (with the ph-.3; 14/
being slightly more computationally efficient than the h-2 method). Interestingly, while the ph-
.3; 14/ and h-2 methods have nearly the same computational efficiency, the ph-.3; 14/ produces a
significantly smaller mesh (N D 293 LGR points, nearly the smallest among all of the methods)
while the h-2 mesh produced a much larger mesh (N D 672 LGR points, by far the largest among
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Table II. Mesh refinement results for Example 1 using various ph-adaptive and h methods.

Initial mesh Mesh refinement Total Constraint
Nmin Nmax CPU time (s) CPU time (s) CPU time (s) N K M Jacobian density (%)

2 2 0:34 3:10 3:44 672 336 5 0:629
2 8 0:33 6:93 7:26 633 222 5 0:908
2 10 0:33 6:77 7:10 624 210 5 0:971
2 12 0:33 6:12 6:45 583 170 6 1:271
2 14 0:33 5:17 5:50 520 140 5 1:672
2 16 0:33 6:33 6:66 519 126 4 1:839
3 3 0:33 3:28 3:61 417 139 6 1:229
3 8 0:32 3:89 4:22 369 96 6 1:748
3 10 0:32 3:43 3:75 347 79 5 2:165
3 12 0:33 3:79 4:12 343 64 5 2:606
3 14 0.33 3.05 3.38 293 40 4 3.847
3 16 0:33 3:49 3:81 290 41 5 3:825
4 4 0:34 3:86 4:20 384 96 7 1:580
4 8 0:33 3:65 3:98 324 66 6 2:269
4 10 0:33 3:37 3:70 311 56 6 2:637
4 12 0:33 3:69 4:02 291 43 5 3:454
4 14 0:33 4:31 4:64 306 39 7 3:599
4 16 0:33 4:95 5:29 320 44 7 3:413

all of the different methods). In fact, Table II shows for this example that, for any fixed value Nmin,
the ph-.Nmin; Nmax/ methods produced smaller mesh sizes than the corresponding h-Nmin method.
Thus, while an h method may perform well on this example because of the structure of the optimal
solution, the ph method produces the solution in the most computationally efficient manner while
simultaneously producing a significantly smaller mesh.

Example 2: tumor anti-angiogenesis optimal control problem

Consider the following tumor anti-angiogenesis optimal control problem taken from Reference [39].
The objective is to minimize

J D y1.tf / (41)

subject to the dynamic constraints

Py1.t/ D ��y1.t/ ln

�
y1.t/

y2.t/

	
;

Py2.t/ D q.t/
h
b � � � dy

2=3
1 .t/ �Gu.t/

i
;

(42)

with the initial conditions

y1.0/ D Œ.b � �/=d�
3=2 =2;

y2.0/ D Œ.b � �/=d�
3=2 =4;

(43)

the control constraint

0 6 u 6 umax; (44)

and the integral constraint Z tf

0

u.�/d� 6 A; (45)

whereG D 0:15, b D 5:85, d D 0:00873, � D 0:02, umax D 75, A D 15, and tf is free. A solution
to this optimal control problem is shown using the ph-.3; 10/ method in Figure 6(a) and (b).

Upon closer examination, it is seen that a key feature in the optimal solution is the fact that the
optimal control is discontinuous at t � 0:2. In order to improve the accuracy of the solution in the
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(a) (b)

(c) (d)

Figure 6. Solution and mesh refinement history for Example 2 using the ph-.3; 10/method with an accuracy
tolerance of 10�6.

Table III. Mesh refinement results for Example 2 using various ph-adaptive and h methods.

Initial mesh Mesh refinement Total Constraint
Nmin Nmax CPU time (s) CPU time (s) CPU time (s) N K M Jacobian density (%)

2 2 0:11 0:72 0:83 270 135 3 0:979
2 8 0:10 0:88 0:98 245 84 4 1:569
2 10 0:10 1:02 1:12 237 65 5 2:088
2 12 0:10 0:75 0:84 204 40 4 3:354
2 14 0:10 0:74 0:84 204 40 4 3:354
2 16 0:10 0:69 0:78 213 26 4 4:041
3 3 0:17 0:55 0:72 123 41 4 2:746
3 8 0:17 0:71 0:88 104 27 6 4:114
3 10 0.17 0.50 0.67 95 19 4 6.040
3 12 0:17 0:86 1:03 99 18 7 6:310
3 14 0:17 0:62 0:80 89 15 6 7:527
3 16 0:17 1:56 1:73 99 15 13 7:955
4 4 0:16 0:90 1:05 116 29 6 3:587
4 8 0:16 0:70 0:85 87 18 6 5:898
4 10 0:16 0:96 1:12 85 16 9 6:702
4 12 0:16 0:88 1:04 82 16 10 6:929
4 14 0:16 1:11 1:27 83 16 13 7:047
4 16 0:16 1:01 1:16 87 14 10 8:401

vicinity of this discontinuity, it is necessary that increased numbers of collocation and mesh points
are placed near t D 0:2. Figure 6(b) shows the control obtained on the final mesh by the ph-.3; 10/
method. Interestingly, it is seen that the ph-.3; 10/ method concentrates the collocation and mesh
points near t D 0:2. Examining the evolution of the mesh refinement, it is seen in Figure 6(c) and (d)
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that the mesh density increases on each successive mesh iteration, but remains unchanged in regions
distant from t � 0:2. The reason that the mesh is modified near t D 0:2 is because the accuracy of
the state is lowest in the region near the discontinuity in the control. In order to improve solution
accuracy, additional collocation and mesh points are required near t D 0:2. Thus, the ph method
performs properly when solving this problem as it leaves the mesh untouched in regions where few
collocation and mesh points are needed, and it increases the density of the mesh where additional
points are required.

Next, Table III summarizes the CPU times and mesh sizes that were obtained by solving
Example 2 using the various ph and hmethods described Section 5. While for this example the CPU
times are quite small, it is still seen that computational efficiency is gained by choosing a phmethod
over an h method. Specifically, it is seen that the ph-.3; 10/ method [shown in bold in Table III]
produces the lowest CPU time with an h-3 method being slightly less efficient than the ph-.3; 10/
method. More importantly, Table III shows the significant reduction in mesh size when using a ph
method. For example, using a ph-.3;Nmax/ or ph-.4;Nmax/, the maximum number of LGR points

(a) (b)

(d)(c)

(e) (f)

Figure 7. Solution to Example 3 using the ph-.2; 14/ method with an accuracy tolerance of 10�6.
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is N D 99, whereas the lowest number of LGR points using either an h-2 or h-3 or h-4 method
is N D 116. Moreover, while the ph-.3; 14/ and h-2 methods have nearly the same computational
efficiency, the ph-.3; 14/ produces a significantly smaller mesh (N D 293 LGR points, nearly the
smallest among all of the methods) while the h-2 mesh produced a much larger mesh (N D 672

LGR points, by far the largest among all of the different methods). Thus, while an h method may
perform well on this example because of the structure of the optimal solution, the ph method pro-
duces the solution in the most computationally efficient manner while simultaneously producing the
smallest mesh.

Example 3: reusable launch vehicle entry

Consider the following optimal control problem from Reference [3] of maximizing the cross range
during the atmospheric entry of a reusable launch vehicle. Minimize the cost functional

J D ��.tf / (46)

subject to the dynamic constraints

Pr D v sin 	 ; P
 D
v cos 	 sin 

r cos�
; P� D

v cos 	 cos 

r
;

Pv D �
D

m
� g sin 	 ; P	 D

L cos �

mv
�
�g
v
�
v

r

�
cos 	 ; P D

L sin �

mv cos 	
C
v cos 	 sin tan�

r
;

(47)
and the boundary conditions

r.0/ D r0 ; r.tf / D rf ; 
.0/ D 
0 ; 
.tf / D Free;
�.0/ D 
f ; �.tf / D Free ; v.0/ D v0 ; v.tf / D vf ;
	.0/ D 	0 ; 	.tf / D 	f ;  .0/ D  0 ;  .tf / D Free:

(48)

It is noted that the model and the numerical values .r0; rf ; 
0; 
f ; v0; vf ; 	0; 	f ;  0/ are taken from
Reference [3] with the exception that all quantities in Reference [3] are given in English units while
the values used in this example are in Système International (SI) units. A typical solution of this
problem is shown in Figure 7(a)–(f) using the ph-.2; 14/ method.

It is seen that the solution to this example is relatively smooth; although there seems to be a rapid
change in the angle of attack in Figure 7(e) near t D 2000, the total deflection is at most one degree.
As a result, one might hypothesize that it is possible to obtain an accurate solution with a relatively

Table IV. Mesh refinement results for Example 3 using various ph-adaptive and h methods.

Initial mesh Mesh refinement Total Constraint
Nmin Nmax CPU time (s) CPU time (s) CPU time (s) N K M Jacobian density (%)

2 2 0:76 1:56 2:33 486 243 3 0:314
2 8 0:76 1:55 2:30 442 86 3 0:871
2 10 0:76 2:22 2:98 404 60 4 1:061
2 12 0:75 1:33 2:08 227 30 3 2:207
2 14 0.75 0.83 1.58 170 18 2 3.560
2 16 0.75 0.83 1.58 170 18 2 3.560
3 3 1:31 1:53 2:84 261 87 4 0:795
3 8 1:31 1:09 2:41 195 38 3 1:740
3 10 1:31 1:16 2:47 114 13 4 4:762
3 12 1:31 0:78 2:10 98 10 3 5:965
3 14 1:32 0:78 2:10 98 10 3 5:965
3 16 1:32 0:78 2:10 98 10 3 5:965
4 4 3:19 0:90 4:09 188 47 3 1:396
4 8 3:20 0:80 4:00 127 24 3 2:766
4 10 3:19 0:68 3:87 97 12 3 5:134
4 12 3:20 0:43 3:64 89 10 2 6:025
4 14 3:21 0:44 3:65 89 10 2 6:025
4 16 3:19 0:43 3:63 89 10 2 6:025
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(b)(a)

Figure 8. Mesh refinement history for Example 3 using the ph-.2; 14/ method with an accuracy tolerance
of 10�6.

small number of collocation and mesh points when compared with an h method. This hypothesis
is confirmed in Table IV where several interesting trends are observed. First, it is seen that the ph-
.2; 14/ and ph-.2; 16/ methods [shown in bold in Table IV] are the most computationally efficient.
In particular, the ph-.2; 14/ and ph-.2; 16/ methods are 30%, 44%, and 61% faster, respectively,
than the h-2, h-3, and h-4 methods. Also, it is seen that the ph-.2; 14/ and ph-.2; 16/ methods
produce smaller meshes (with a total of 170 collocation points) when compared with the h-2, h-3,
or h-4 methods (where the total numbers of collocation points are 486, 261, and 188, respectively).
Next, Figure 8(a) and (b) show the evolution of the meshes for the ph-.2; 14/ method, where it is
seen that the number of mesh intervals increases from that of the initial mesh only at the very end
of the trajectory because of the rapid change of the flight path angle near t D tf . As a result, for the
vast majority of the solution, the largest decrease in error is obtained by using a larger polynomial
degree in each mesh interval and using fewer mesh intervals. In this case, the fact that the ph-.2; 14/
and ph-.2; 16/ methods outperform the other methods (in particular, outperform the h methods)
is consistent with the fact that the solution to this problem is smooth, having only relatively small
oscillations in the altitude and flight path angle. Thus, as stated, the accuracy tolerance can be
achieved by using relatively few mesh intervals with a high-degree polynomial approximation in
each interval.

7. DISCUSSION

Each of the examples illustrates different features of the ph-adaptive mesh refinement method
developed in Section 5. The first example shows how the computational efficiency of the
ph-adaptive mesh refinement scheme is similar to the computational efficiency of an h method
while generating a much smaller mesh for a given accuracy tolerance than is required when using
an h method. This first example also demonstrates the effectiveness of the error estimate derived
in Section 5.1. The second example shows how the ph-adaptive method can efficiently capture a
discontinuity in the solution by making the mesh more dense near the discontinuity while simultane-
ously not placing unnecessary mesh and collocation points in regions distant from the discontinuity.
Furthermore, similar to the results obtained in the first example, the second example shows the sig-
nificantly smaller mesh that is generated using the ph-adaptive method when compared with the
mesh generated using an h method. Next, the third example demonstrates how the ph-adaptive
method does not unnecessarily add mesh intervals when it is only necessary to increase the degree
of the polynomial approximation to achieve a desired accuracy tolerance.

Next, the method of this paper takes advantage of the fact that in regions where the solution
is smooth, it is possible to gain significant accuracy by increasing the degree of the polynomial
approximation. On the other hand, if the estimated polynomial degree exceeds a given threshold
(i.e., N exceeds the upper limit Nmax) without satisfying the accuracy tolerance, then a further
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increase in the polynomial degree will improve the error in the solution only marginally. As a result,
in such cases, it is more beneficial to refine the mesh. Next, while the parameters Nmin and Nmax

are somewhat arbitrary, it is seen from the three examples that choosing Nmin D 3 and Nmax D 14

or Nmax D 16 generally provides good performance when compared with an h method (e.g., see
Tables II–IV where it is seen that Nmin D 3 and Nmax D 14 or Nmax D 16 result in either the
fastest or nearly the fastest computation times). Finally, the method of this paper has the potential
advantage that the NLP may be smaller in size when compared with that of an h method, requiring
less memory than might be required to achieve the same accuracy using an h method.

It is also observed in each of the three examples that at least one of the ph methods was always
more efficient than any of the hmethods. Generally, a phmethod should be able to outperform an h
method because there is another parameter p than can be adjusted. When the solution is smooth, a
p method always performs better than an h method because the p method converges exponentially
fast. If the solution is piecewise smooth, then the ph method can exploit the smoothness by using a
larger p and fewer mesh intervals in the region where the solution is smooth.

It is also important to note that the ph mesh refinement presented in this paper is based on only
the estimate of the state error. While incorporating other error estimates (e.g., estimates of the errors
in the costate or control) is possible, in applications, it is often the case that the errors in the costate
and the control are comparable with the error in the state. Thus, it is simpler and more efficient
to develop a mesh refinement method based only on the error in the state. Moreover, other mesh
refinement methods, such as the h mesh refinement methods found in Reference [3], are based only
on an estimate of the state error.

Next, we compare the method developed in this paper with the recently developed hp-adaptive
method of References [29] and [30]. In the methods of References [29] and [30], the error is esti-
mated from the difference between the time derivative approximation of the state and the right-hand
side of the dynamics at points sampled between the Gaussian quadrature collocation points. It was
found that both of these previously developed approaches were tractable only if a moderate level of
accuracy was required. In the case when a high-accuracy solution is desired, the approaches of Ref-
erences [29] and [30] are unreliable. To see the issue with the approaches of References [29] and
[30], consider again Example 1 of this paper. It turns out that when Example 1 is solved using the
method of Reference [30] using an hp � .3;Nmax/ method and an accuracy tolerance � 6 10�6, the
lowest achievable error estimate is 1:2 � 10�6. Thus, none of the hp � .3;Nmax/ methods is able to
meet any desired tolerance less than 10�6 regardless of the number of mesh refinements performed.
In fact, the error estimate after the eighth mesh remained at 1:2 � 10�6 despite the fact that the
method of Reference [30] continued to attempt to improve the mesh. This result demonstrates the
limited effectiveness of the method of References [29] and [30] when a high-accuracy solution is
desired. Contrary to the approach of Reference [30], it is seen from Table I that the method of this
paper provides a much more accurate estimate of the actual error and the error estimate approaches
the true error as the mesh refinement proceeds.

In addition to the improved reliability of the approach developed in this paper over the
previously developed hp-adaptive approaches, the approach of this paper is significantly simpler
than the approaches of References [29] and [30]. In particular, the approach of Reference [29] makes
the decision to change the polynomial degree or to refine the mesh based on the ratio of the max-
imum to the mean error in a mesh interval, while the approach of Reference [30] makes a similar
decision based on the ratio of the maximum to the mean curvature in a mesh interval. In addition,
the method of Reference [30] requires that an ad hoc parameter be set that determines the number
of newly created mesh intervals in the case where a mesh interval needs to be divided into subinter-
vals. In either of these previously developed methods, the choice of these user-defined parameters is
ad hoc. More importantly, the performance of the method on a particular problem changes greatly
depending upon the choice of these parameters. On the other hand, in the method of this paper,
only the minimum and maximum allowable polynomial degrees need to be chosen. Because for a
wide range of problems the allowable polynomial degree will lie between fairly well-known limits,
setting the minimum and maximum allowable polynomial degrees is much more straightforward
than setting the parameters required by the methods of Reference [29] or [30].
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8. CONCLUSIONS

A ph-adaptive LGR collocation method for solving continuous-time optimal control problems has
been developed. An estimate of the error was obtained interpolating the current approximation on
a finer mesh and then integrating the dynamics evaluated at the interpolation points to generate a
more accurate approximation to the solution of the state equation. This process is analogous to the
two-stage modified Euler Runge–Kutta scheme where the first stage yields a first-order approxima-
tion to the solution of a differential equation, and the second stage interpolates this solution at a new
point and then integrates the dynamics at this new point to achieve a second-order approximation to
the solution. The difference between the first and second-order approximations is an estimate for the
error in the first-order scheme. Using this error estimate, a mesh refinement method was developed
that iteratively reduces the error estimate either by increasing the degree of the polynomial
approximation in a mesh interval or by increasing the number of mesh intervals. An estimate was
made of the polynomial degree required within a mesh interval to achieve a given accuracy tolerance.
If the required polynomial degree was estimated to be less than an allowable maximum polyno-
mial degree, then the degree of the polynomial approximation was increased on the ensuing mesh.
Otherwise, the mesh interval was divided into subintervals, and the minimum allowable polynomial
degree was used in each newly created subinterval on the ensuing mesh. This process was repeated
until a specified relative error accuracy tolerance was met. The method was applied successfully to
three examples that highlight various features of the method and show the merits of the approach
relative to a fixed-order method.
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