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Summary. We describe a domain decomposition approach applied to the spe-
cific context of electronic structure calculations. The approach has been introduced
in [BCH06]. We survey here the computational context, and explain the peculiari-
ties of the approach as compared to problems of seemingly the same type in other
engineering sciences. Improvements of the original approach presented in [BCH06],
including algorithmic refinements and effective parallel implementation, are included
here. Test cases supporting the interest of the method are also reported.

It is our pleasure and an honor to dedicate this contribution to Olivier Pironneau,
on the occasion of his sixtieth birthday. With admiration, respect and friendship.

1 Introduction and Motivation

1.1 General Context

Numerical simulation is nowadays an ubiquituous tool in materials science,
chemistry and biology. Design of new materials, irradiation induced damage,
drug design, protein folding are instances of applications of numerical sim-
ulation. For convenience we now briefly present the context of the specific
computational problem under consideration in the present article. A more
detailed, mathematically-oriented, presentation is the purpose of the mono-
graph [CDK03] or of the review article [LeB05].

For many problems of major interest, empirical models where atoms are
represented as point particles interacting with a parameterized force-field are
adequate models. On the other hand, when electronic structure plays a role in
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the phenomenon under consideration, an explicit quantum modelling of the
electronic wavefunctions is required. For this purpose, two level of approxi-
mation are possible.

The first category is the category of ab initio models, which are gen-
eral purpose models that aim at solving sophisticated approximations of the
Schrödinger equation. Such models only require the knowledge of universal
constants and require a, ideally null but practically limited, number of ad-
justable parameters. The most commonly used models in this category are
Density Functional Theory (DFT) based models and Hartree–Fock type mod-
els, respectively. Although these two families of models have different theoreti-
cal grounding, they share the same mathematical nature. They are constrained

minimization problems, of the form

inf

{
E(ψ1, . . . , ψN ), ψi ∈ H1(IR3),

∫

IR3

ψiψj = δij , ∀1 ≤ i, j ≤ N

}
(1)

The functions ψi are called the molecular orbitals of the system. The energy
functional E, which of course depends on the model employed, is parametrized
by the charge and position of the nuclei of the system under consideration.
With such models, systems with up to 104 electrons can be simulated.

Minimization problems of the type (1) are not approached by minimization
algorithms, mainly because they are high-dimensional in nature. In contrast,
the numerical practice consists in solving their Euler–Lagrange equations,
which are nonlinear eigenvalue problems. The current practice is to iterate on
the nonlinearity using fixed-point type algorithms, called in this framework
Self Consistent Field iterations, with reference to the mean-field nature of
DFT and HF type models.

The second category of models is that of semi-empirical models, such as
Extended Hückel Theory based and tight-binding models, which contain ad-
ditional approximations of the above DFT or HF type models. They consist
in solving linear eigenvalue problems. State-of-the-art simulations using such
models address systems with up to 105–106 electrons.

Finite-difference schemes may be used to discretize the above problems.
They have proved successful in some very specific niches, most of them re-
lated to solid-state science. However, in an overwhelming number of contexts,
the discretization of the nonlinear or linear eigenvalue problems introduced
above is performed using a Galerkin formulation. The molecular orbitals ψi

are developed on a Galerkin basis {χi}1≤i≤Nb
, with size Nb > N , the num-

ber of electrons in the system. Basis functions may be plane waves. This is
often the case for solid state science applications and then Nb is very large
as compared to N , typically one hundred times as large or more. They may
also be localized functions, that is compactly supported functions or exponen-
tially decreasing functions. Such basis sets correspond to the so-called Linear

Combination of Atomic Orbitals (LCAO) approach. Then the dimension of
the basis set needed to reach the extremely demanding accuracy required for
electronic calculation problems is surprisingly small. Such basis sets, typically
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in the spirit of spectral methods, or modal synthesis, are indeed remarkably
efficient. The domain decomposition method described in the present article
is restricted to the LCAO approach. It indeed strongly exploits the locality of
the basis functions.

In both categories of models, linear or nonlinear, the elementary brick
of the solution procedure is the solution to a (generalized) linear eigenvalue
problem of the following form:





Hci = εiSci, ε1 ≤ . . . ≤ εN ≤ εN+1 ≤ . . . ≤ εNb
,

ctiScj = δij ,

D? =

N∑

i=1

cic
t
i.

(2)

The matrix H is a Nb ×Nb symmetric matrix, called the Fock matrix. When
the linear system above is one iteration of a nonlinear cycle, this matrix is
computed from the result of the previous iteration. The matrix S is a Nb×Nb

symmetric positive definite matrix, called the overlap matrix, which depends
only on the basis set used (it corresponds to the mass matrix in the language
of finite element methods).

One searches for the solution of (2), that is the matrix D? called the den-

sity matrix. This formally requires the knowledge of the first N (generalized)
eigenelements of the matrix H (in fact, we shall see below this statement is
not exactly true).

The system of equations (2) is generally viewed as a generalized eigen-
value problem, and most of the computational approaches consist in solving
the system via the computation of each individual vector ci (discretizing the
wavefunction ψi of (1)), using a direct diagonalization procedure.

1.2 Specificities of the Approaches for Large Systems

The procedure mentioned above may be conveniently implemented for sys-
tems of limited size. For large systems however, the solution procedure for the
linear problem suffers from two computational bottlenecks. The first one is
the need for assembling the Fock matrix. It a priori involves O(N3

b ) opera-
tions in DFT models and O(N4

b ) in HF models. Adequate approaches, which
lower the complexity of this step, have been proposed. Fast multipole meth-
ods (see [SCh00]) are one instance of such approaches. The second practical
bottleneck is the diagonalization step itself. This is the focus of the present
contribution. Because of the possibly prohibitive O(N3

b ) cost of direct diago-
nalization procedures, the so-called alternatives to diagonalization have been
introduced. The method introduced in the present contribution aims at com-
peting with such methods, and eventually outperforming them. With a view
to understanding the problem under consideration, let us briefly review some
peculiarities of electronic structure calculation problems.
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The situation critically depends on the type of basis set employed. With
plane wave basis sets, the number N of eigenelements to determine can be con-
sidered as small, compared to the size Nb of the matrix F (Nb ∼ 100N). Then,
iterative diagonalization methods, based on the inverse power paradigm, are
a natural choice. In contrast, in the case of localized basis sets we deal with
in this article, Nb varies from 2 to 10 times N . In any case it remains strictly
proportional to N . Hence, problem (2) can be rephrased as follows: identify
say one half of the eigenelements of a given matrix. This makes the problem
very specific as compared to other linear eigenvalue problems encountered in
other fields of the engineering sciences (see [AHL05, HLe05], for instance).
The sparsity of the matrices in the present context is another peculiarity of
the problem. Although the matrices H and S are sparse for large molecular
systems, they are not as sparse as the stiffness and mass matrices usually en-
countered when using finite difference or finite element methods. For example,
the bandwidth of H and S is of the order of 102 in the numerical examples
reported in Section 5.

1.3 Alternative Methods Towards Linear Scaling

In addition to the above mentioned peculiarities, a crucial specificity of prob-
lem (2) is that the eigenelements do not need to be explicitly identified. As
expressed by the last line of (2), only the knowledge of the density matrix
D? is required, both for the evaluation of the Fock operator associated to
the next iteration, in a nonlinear context, and for the evaluation of relevant
output quantities, in the linear context or at the last step of the iteration loop.

From a geometrical viewpoint, D? is the S-orthogonal projector (in the
sense that D?SD? = D? and Dt

? = D?) on the vector subspace generated by
the eigenvectors associated with the lowest N eigenvalues of the generalized
eigenvalue problem Hc = εSc.

Equations (2) define the orthogonal projector (in S dot product) onto the
subspace spanned by the eigenvectors associated to the N lowest eigenvalues.

The above elementary remark is the bottom line for the development of
the alternative to diagonalization methods, also often called linear scaling

methods because their claimed purpose is to reach a linear complexity of the
solution procedure (either in terms of N the number of electrons, or Nb the
dimension of the basis set). For practical reasons, which will not be further
developed here, such methods assume that:

(H1) The matrices H and S are sparse, in the sense that, for large systems,
the number of non-zero coefficients scales as N . This assumption is not
restrictive. In particular, it is automatically satisfied for DFT and HF
models as soon as the basis functions are localized;

(H2) The matrix D? built from the solution to (2) is also sparse. This condi-
tion seems to be fulfilled as soon as the relative gap

γ =
εN+1 − εN

εNb
− ε1

. (3)
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deduced from the solution of (2) is large enough. This observation can be
supported by qualitative physical arguments [Koh96], but has seemingly
no mathematical grounding to date (see, however, [Koh59]).

State-of-the-art surveys on such methods are [BMG02, Goe99]. One of the
most commonly used linear scaling method is the Density Matrix Minimisa-
tion (DMM) method [LNV93].

2 A New Domain Decomposition Approach

Our purpose is now to expose a method, based on the domain decomposition

paradigm, which we have recently introduced in [BCH06], and for which we
also consider a setting where the above two assumptions are valid. Although
still in its development, we have good hope that this approach will outperform
existing ones in a near future. Preliminary test cases support this hope.

The approach described below is not the first occurrence of a method based
on a “geographical” decomposition of the matrix H in the context of quantum
chemistry (see, e.g., [YLe95]). A significant methodological improvement is
however fulfilled with the present method. To the best of our knowledge,
existing methods in the context of electronic calculations that may be recast
as domain decomposition methods only consist of local solvers complemented
by a crude global step. Our method seems to be the first one really exhibiting
the local/global paradigm in the spirit of methods used in other fields of the
engineering sciences.

In the following, we expose and make use of the method on one-dimensional
systems, typically nanotubes or linear hydrocarbons. Generalizations to three-
dimensional systems do not really bring up new methodological issues. They
are however much more difficult in terms of implementation.

For simplicity, we now present our method assuming that S = INb
, i.e. that

the Galerkin basis {χi}1≤i≤Nb
is orthonormal. The extension of the method

to the case when S 6= INb
is straightforward. The space Mk,l denotes the

vector space of the k × l real matrices.
Let us first notice that a solution D? of (2) reads

D? = C?C
t
? (4)

where C? is a solution to the minimization problem

inf
{
Tr(HCCt), C ∈ MNb,N (IR), CtSC = IN

}
. (5)

Our approach consists in solving an approximation of problem (5). The
latter is obtained by minimizing the exact energy Tr(HCCt) on the set of the
matrices C that have the block structure displayed on Figure 1 and satisfy
the constraint CtC = IN .
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Fig. 1. Block structure of the matrices C.
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Fig. 2. Block structure of the matrices H and D.

A detailed justification of the choice of this structure is given in [BCH06].
Let us only mention here that the decomposition is suggested from the lo-
calization of electrons and the use of a localized basis set. Note that each
block overlaps only with its first neighbors. Again for simplicity, we expose
the method in the case where overlapping is exactly n/2, but it could be any
integer smaller than n/2.

The resulting minimization problem can be recast as

inf

{
p∑

i=1

Tr
(
HiCiC

t
i

)
, Ci ∈ Mn,mi(IR), mi ∈ IN, Ct

iCi = Imi
∀1 ≤ i ≤ p,

Ct
iTCi+1 = 0 ∀ 1 ≤ i ≤ p− 1,

p∑

i=1

mi = N

}
. (6)

In the above formula, T ∈ Mn,n(IR) is the matrix defined by

Tkl =

{
1 if k − l = n

2 ,

0 otherwise
(7)

and Hi ∈ Mn,n(IR) is a symmetric submatrix of H (see Figure 2). Indeed,
and
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C 1 
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0 

C p 

Tr
t

C i Σ  = 

 p

 i=1

C 1 C 1 

0 

0 

C p 

C i C i 
t

C i+1 

0 

0 

C p 

 = 

t

0 

0 

t
i C T

.

In this way, we replace the N(N+1)
2 global scalar constraints CtC = IN

involving vectors of size Nb, by the
∑p

i=1
mi(mi+1)

2 local scalar constraints

Ct
iCi = Imi

and the
∑p−1

i=1 mimi+1 local scalar constraints Ct
iTCi+1 = 0,

involving vectors of size n. We would like to emphasize that we can only
obtain in this way a basis of the vector space generated by the lowest N
eigenvectors of H. This is the very nature of the method, which consequently
cannot be applied for the search for the eigenvectors themselves.

Before we describe in details the procedure employed to solve the Euler–
Lagrange equations of (6) in a greater generality, let us consider, for pedagogic
purpose, the following oversimplified problem:

inf
{
〈H1Z1, Z1〉 + 〈H2Z2, Z2〉, Zi ∈ IRNb , 〈Zi, Zi〉 = 1, 〈Z1, Z2〉 = 0

}
. (8)

We have denoted by 〈·, ·〉 the standard Euclidean scalar product on IRNb .
Problem (8) is not strictly speaking a particular occurence of (6), but it

shows the same characteristics and technical difficulties: a separable functional
is minimized, there are constraints on variables of each term and there is a
cross constraint between the two terms.

The bottom line for our decomposition algorithm is to attack (8) as fol-
lows. Choose (Z0

1 , Z
0
2 ) satisfying the constraints and construct the sequence

(Zk
1 , Z

k
2 )k∈IN by the following iteration procedure. Assume (Zk

1 , Z
k
2 ) is known,

then

Local step Solve

{
Z̃k

1 = arginf
{
〈H1Z1, Z1〉, Z1 ∈ IRNb , 〈Z1, Z1〉 = 1, 〈Z1, Z

k
2 〉 = 0

}
,

Z̃k
2 = arginf

{
〈H2Z2, Z2〉, Z2 ∈ IRNb , 〈Z2, Z2〉 = 1, 〈Z̃k

1 , Z2〉 = 0
}
;
(9)

Global step Solve

α∗ = arginf
{
〈H1Z1, Z1〉 + 〈H2Z2, Z2〉, α ∈ IR

}
(10)

where
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Z1 =
Z̃k

1 + αZ̃k
2√

1 + α2
, Z2 =

−αZ̃k
1 + Z̃k

2√
1 + α2

, (11)

and set

Zk+1
1 =

Z̃k
1 + α∗Z̃k

2√
1 + (α∗)2

, Zk+1
2 =

−α∗Z̃k
1 + Z̃k

2√
1 + (α∗)2

. (12)

This algorithm operates at two levels: a fine level where two problems of
dimension Nb are solved (rather than one problem of dimension 2Nb); a coarse
level where a problem of dimension 2 is solved.

The local step monotonically reduces the objective function, however, it
may not converge to the global optimum. The technical problem is that the
Lagrange multipliers associated with the constraint 〈Z1, Z2〉 = 0 may converge
to different values in the two subproblems associated with the local step. The
global step again reduces the value of the objective function since Z̃k

1 and
Z̃k

2 are feasible in the global step. The combined algorithm (local step +
global step) therefore makes the objective function monotonically decrease.
The simple case H1 = H2 is interesting to consider. First, if the algorithm
is initialized with Z0

2 = 0 in the first line of (9), it is easily seen that the
local step is sufficient to converge to the global minimizer, in one single step.
Second, it has been proved in [Bar05] that for a more general initial guess and
under some assumption on the eigenvalues of the matrix H1, this algorithm
globally converges to an optimal solution of (8). Ongoing work [BCHL07] aims
at generalizing the above proof when the additional assumption on eigenvalues
is omitted. The analysis of the convergence in the case H1 6= H2 is a longer
term goal.

3 The Multilevel Domain Decomposition (MDD)
Algorithm

We define, for all p-tuple (Ci)1≤i≤p,

E
(
(Ci)1≤i≤p

)
=

p∑

i=1

Tr
(
HiCiC

t
i

)
, (13)

and set by convention
U0 = Up = 0. (14)

It has been shown in [BCH06] that updating the block sizes mi along the
iterations is crucial to make the domain decomposition algorithm converge
toward a good approximation of the solution to (5). It is however observed in
practice that after a few iterations, the block sizes have converged (they do
not vary in the course of the following iterations). This is why, for the sake of
clarity, we have chosen to present here a simplified version of the algorithm
where block sizes are held constant along the iterations. For a description of
the complete algorithm with variable block sizes, we refer to [BCH06].
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At iteration k, we have at hand a set of matrices (Ck
i )1≤i≤p such that

Ck
i ∈ Mn,mi(IR), [Ck

i ]tCk
i = Imi

, [Ck
i ]tTCk

i+1 = 0. We now explain how to

compute the new iterate (Ck+1
i )1≤i≤p.

Step 1: Local fine solver.

a) For each i, find

inf
{
Tr

(
HiCiC

t
i

)
, Ci ∈ Mn,mi(IR), Ct

iCi = Imi
,

[Ck
i−1]

tTCi = 0, Ct
iTC

k
i+1 = 0

}
. (15)

This is done via diagonalization of the matrix Hi in the subspace

V k
i =

{
x ∈ IRn,

[
Ck

i−1

]t
Tx = 0, xtTCk

i+1 = 0
}
,

i.e. diagonalize P k
i HiP

k
i where P k

i is the orthogonal projector on
V k

i .
This provides (at least) n − mi−1 − mi−1 real eigenvalues and
associated orthonormal vectors xk

i,j . The latter are T -orthogonal

to the column vectors of Ck
i−1 and Ck

i+1.

b) Collect the lowest mi vectors xk
i,j in the n×mi matrix C̃k

i .
Step 2: Global coarse solver. Solve

U∗ = arginf {f(U), U = (Ui)i, ∀1 ≤ i ≤ p− 1, Ui ∈ Mmi+1,mi(IR)} ,
(16)

where
f(U) = E

((
Ci(U)

(
Ci(U)tCi(U)

)− 1
2

)

i

)
, (17)

and

Ci(U) = C̃k
i + TC̃k

i+1Ui

(
[C̃k

i ]tTT tC̃k
i

)
− T tC̃k

i−1U
t
i−1

(
[C̃k

i ]tT tTC̃k
i

)
.

(18)
Next set, for all 1 ≤ i ≤ p,

Ck+1
i = Ci (U∗)

(
Ci (U∗)

t
Ci (U∗)

)−1/2

. (19)

Notice that in Step 1, the computations of each odd block is independant
from the other odd blocks, and obviously the same for even blocks. Thus, we
use here a red/black strategy.

In the global step, we perturb each variable by a linear combination of
the adjacent variables. The matrices U = (Ui)i in (16) play the same role as
the real parameter α in the toy example, equation (10). The perturbation is
designed so that the constraints are satisfied. However, our numerical exper-
iments show that this is not exactly the case, in the sense that, for some i,
[Ck+1

i ]t[Ck+1
i ] may presents coefficients as large as about 10−3. All linear scal-

ing algorithms have difficulties in ensuring this constraint. We should mention
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81 32 4 5 6 7 9 10

G1

G2

G3

Fig. 3. Collection of p = 10 blocks into r = 3 groups.

Repeat until convergence:

1a. Local step on blocks: 1, 3, ..., (2i + 1), ...
1b. Local step on blocks: 2, 4, ..., (2i), ...
2a. Global step on groups: {1, 2}, {3, 4}, ..., {2i − 1, 2i}, ...
2b. Global step on groups: {2, 3}, {4, 5}, ..., {2i, 2i + 1}, ...

Fig. 4. Schematic view of the algorithm in the case of 2-block groups (r = 2): tasks
appearing on the same line are independent from one another. Order between steps
1a and 1b is reversed from on iteration to the other. The same holds for steps 2a
and 2b.

here that in our case, the resulting deviation of CtC from identity is small,
CtC being in any case block tridiagonal.

In practice, we reduce the computational cost of the global step, by again
using a domain decomposition method. The blocks (Ci)1≤i≤p are collected
in r overlapping groups (Gl)1≤l≤r as shown in Figure 3. As each group only
overlaps with its first neighbors, problem (16) can be solved first for the groups
(G2l+1), next for the groups (G2l). We have observed that the number of
iterations of the outer loop (local step + global step) does not significantly
increases when the ’exact’ global step (16) is replaced by the approximate
global step consisting in optimizing first the odd groups, then the even groups.
The numerical results performed so far (see Section 5) tend to show that the
resulting algorithm scales linearly with the system size.

A schematic view of the algorithm is provided in Figure 4.
One important point (not taken into account in [BCH06]) is that the

Hessian of f enjoys a very specific structure. It is a sum of tensor products of
square matrices of size mi. For example, with two-block groups (r = 2), we
have:

HU =

4∑

i=1

A(i)UB(i) (20)

with A(i) ∈ Mm2,m2(IR) and B(i) ∈ Mm1,m1(IR). Consequently, it is possi-
ble to compute hessian-vector products, without assembling the hessian, in
O(m1 m2 max(m1,m2)) elementary operations, instead of O(m2

1 m2
2) with
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Proc 1 Proc 3

Proc 2

Fig. 5. Distribution of blocks over 3 processors. Arrows indicate the supplementary
blocks a processor need to access.

a naive implementation. An additional source of acceleration is the fact that
this formulation uses only matrix-matrix products. Efficient implementations
of matrix-matrix products, taking advantage of higher numbers of floating
point operations per memory access, are available in the BLAS 3 library (see,
for instance, [PeA04]). This makes Newton-like methods affordable: a good
estimation of the Newton direction can be easily computed using an iterative
method.

In the current version of our domain decomposition algorithm, the global
step is solved approximatively by a single iteration of the Newton algorithm
with initial guess Ui = 0, the Newton iteration being computed iteratively
by means of the SYMMLQ algorithm [PSa75]. In a next future, we plan to
test the efficiency of advanced first order methods such as the one described
in [HaZ05]. No definite conclusions about the comparative efficiencies of the
various numerical methods for performing the global step can be drawn yet.

4 Parallel Implementation

For parallel implementation, the single-program, multi-data (SPMD) model
is used, with message passing techniques using the MPI library, which allows
to maintain only one version of the code.

Each processor executes a single instance of the algorithm presented in
Section (3) applied to a contiguous subset of blocks. Compared to the sequen-
tial version, additional data structures are introduced: each processor needs to
access the matrices Ci and Hi corresponding to the last block of the processor
located on its left and to the first block of the processor located on its right,
as shown in Figure 5. These frontier blocks play the role of ghost nodes in
classical domain decomposition without overlapping. For this reason, we will
sometimes call them the ghost blocks.

The major part of the communications is performed between neighboring
processors at the end of each step of the algorithm (i.e. of each line in the
scheme displayed in Figure (4)), in order to update the ghost blocks. This
occurs only four times per iteration and, as we will see in the next section,
the sizes of the exchanged messages are moderate.
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Collective communications are needed to compute the current value of the
function f and to check that the maximum deviation from orthogonality re-
mains acceptable. They are also needed to sort the eigenvalues of the different
blocks in the local step, in the complete version of the algorithm, allowing
variable block sizes (see [BCH06]). The important point is that the amount
of data involved in the collective communications is small as well.

With this implementation we can use up to nbloc/2 processors. In order
to efficiently use a larger number of processors, sublevels of parallelism should
be introduced. For instance, each subproblem (15) (for a given i) can itself be
parallelized.

Apart from the very small part of collective communications, the commu-
nication volume associated with each single processor remains constant irre-
spective of the number of blocks per processor and of the number of processors.
We can thus expect a very good scalability, except for the situations when load
balancing is strongly heterogeneous.

The implementation of the MDD algorithm described above can be easily
extended to cover the case of 2D and 3D molecular systems.

5 Numerical Tests

This section is devoted to the presentation of the performances of the MDD
algorithm on matrices actually arising in real-world applications of electronic
structure calculations. The benchmark matrices are of the same type of those
used in the reference paper [BCH06].

In a first subsection, we briefly recall how these matrices are generated and
we provide some practical details on our implementation of the MDD algo-
rithm. The computational performances obtained on sequential and parallel
architectures, including comparisons with other methods (diagonalization and
DMM), are discussed in the second and third subsections, respectively.

5.1 General Presentation

Three families of matrices corresponding to the Hartree–Fock ground state of
some polymeric molecules are considered:

• Matrices of type P1 and P2 are related to COH-(CO)nm
-COH polymeric

chains, with interatomic Carbon-Carbon distances equal to 5 and 4 re-
spectively;

• Matrices of type P1 are obtained with polyethylen molecules (CH3-(CH2)nm
-

CH3) with physically relevant Carbon-Carbon distances.

The geometry of the very long molecules is guessed from the optimal distances
obtained by geometry optimization (with constraints for P1 and P2) on mod-
erate size molecules (about 60 Carbon atoms) and minimal basis sets. All these
off-line calculations are performed using the GAUSSIAN package ([FTS98]).
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Table 1. Localization parameters, block sizes and asymptotic gaps for the test cases.

P1 P2 P3

Bandwith of S 59 79 111
Bandwith of H 99 159 255

n 130 200 308
q 50 80 126

Asymptotic gap (u.a.) 1.04 × 10−3 3.57 × 10−3 2.81 × 10−2

It is then observed that the overlap matrix and Fock matrix obtained exhibit
a periodic structure in their bulk. Overlap and Fock matrices for large size
molecules can then be constructed using this periodicity property. For nm

sufficiently large, bulk periodicity is also observed in the density matrix. This
property is used to generate reference solutions for large molecules.

Table 1 gives a synthetic view of the different structure properties of the
three families of matrices under examination. The integer q stands for the
overlap between two adjacent blocks (note that one could have taken n = 2q
if the overlap matrix S was equal to identity, but that one has to take n > 2q
in our case since S 6= I).

Initial guess generation is of crucial importance for any linear scaling
method. The procedure in use here is in the spirit of the domain decom-
position method:

1. A first guess of the block sizes is obtained by locating Z electrons around
each nucleus of charge Z;

2. A set of blocks Ci is built from the lowest mi (generalized) eigenvectors
associated with the block matrices Hi and Si (the block matrices Hi are
introduced in Section 2; the block matrices Si are defined accordingly);

3. These blocks are eventually optimized with the local fine solver of the
MDD algorithm, including block size update (electron transfer).

Criteria for comparing the results

The quality of the results produced by the MDD and DMM methods is eval-
uated by computing two criteria. The first criterion is the relative energy

difference eE =
|E − E0|

|E0|
between the energy E of the current iterate D and

the energy E0 of the reference density matrix D?. The second criterion is the
semi-norm

e∞ = sup
(i,j) s.t. |Hij |≥ε

∣∣∣Dij − [D?]ij

∣∣∣ , (21)

with ε = 10−10. The introduction of the semi-norm (21) is consistent with
the cut-off on the entries of H (thus the value chosen for ε). Indeed, in most
cases, the matrix D is only used for the calculations of various observables (in
particular the electronic energy and the Hellman–Feynman forces), all of them
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of the form Tr(AD), where the matrix A shares the same pattern as H (see
[CDK03] for details). The final result of the calculation is therefore insensitive
to entries Dij with indices (i, j) such that |Hij | is below some cut-off value.

In all the calculations presented below, the global step is performed with
groups consisting of two blocks (r = 2), and the algorithm is therefore exactly
that displayed in Figure 4.

5.2 Sequential Computations

The numerical results presented in this section have been obtained with a
single 2.8 GHz Xeon processor.

Density matrices have been computed for a series of matrices H and S
of types P1, P2, and P3, using (i) the MDD algorithm, (ii) a diagonalization
procedure (the dsbgv.f routine from the LAPACK library), and (iii) the DMM
method [LNV93]. The latter method belongs to the class of linear scaling
algorithms. An important feature of the DMM method is that linear scaling
is achieved through cut-offs on the matrix entries. We have chosen here a
cut-off strategy based on a priori defined patterns, that may be suboptimal.
Our implementation of DMM converges to a fairly good approximation of the
exact density matrix and scales linearly, but the prefactor might possibly be
improved by more refined cut-off strategies.

A detailed presentation of the comparison between the three methods is
provided in [BCH06]. Our new approach for computing the Newton direction
in the global step (see Section 3) further improves the efficiency of MDD: with
the new implementation of MDD, and with respect to the former implemen-
tation reported on in [BCH06], CPU is divided by 2 for P1 type molecules, by
5 for P2, and by 10 for P3, and the memory required is now lower for MDD
than for DMM. These results are shown for P2 in Figures 6 and 7. They
clearly demonstrate that the MDD algorithm scales linearly with respect to
the parameter nm (in both CPU time and memory occupancy).

Let us also notice that for P2, the crossover point between diagonalisation
and MDD (as far as CPU time is concerned) is now shifted to less than 2,000
basis functions.

5.3 Parallel Computations

We conclude with some tests of our parallel implementation of the MDD
algorithm described in Section 4. These tests have been performed on a 8 node
Linux cluster in dedicated mode, consisting of 8 biprocessor DELL Precision
450 (Intel(R) Xeon(TM) CPU 2.40GHz), with Gigabit Ethernet connections.
They concern the polyethylen family P3, for which the size of each ghost block
is about 150 Ko.

We only test here the highest level of parallelism of the MDD algorithm,
consistently with the relatively low number of processors that have been used
in this first study. We plan to test multilevel parallelism in a near future.
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Fig. 6. Requested CPU time for computing the density matrix of a molecule of type
P2 as a function of the number of basis functions.
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Fig. 7. Requested memory for computing the density matrix of a molecule of type
P2 as a function of the number of basis functions.

In particular, the local step in each block, as well as the global step in each
group, will be parallelized.

Tables 2 and 3 report on the speedup (ratio between the wall clock time
with one processor and the wall clock time for several processors) and ef-
ficiency (ratio between the speedup and the number of processors) of our
parallel MDD algorithm.

The scalability, namely the variation of the wall clock time when the num-
ber of processors and the size of the matrix proportionally grow, is reported
in Table 4, for a molecule of type P3.
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Table 2. Wall clock time as a function of the number of processors for a molecule
of type P3, with nm = 3300. 8 MDD iterations are necessary to achieve convergence
up to 5 × 10−8 in energy and 3 × 10−3 in the density matrix (for the semi-norm
(21)).

Number of processors 1 2 4 8 16

Wall clock time (s) 4300 2400 1200 580 360

Speedup 1.8 3.6 7.4 12

Efficiency 0.9 0.9 0.9 0.75

Table 3. Wall clock time as a function of the number of processors for a molecule of
type P3, with nm = 13300. 7 MDD iterations are necessary to achieve convergence
up to 5 × 10−8 in energy and 3 × 10−3 in the density matrix (for the semi-norm
(21)).

Number of processors 1 4 8 16

Wall clock time (s) 18460 4820 2520 1275

Speedup 3.8 7.3 14.5

Efficiency 0.96 0.92 0.91

Table 4. Scalability of the MDD algorithm for a molecule of type P3. The conver-
gence thresholds are 2.5 × 10−7 in energy and 4 × 10−3 in density matrix (for the
semi-norm (21)).

Number of processors 1 4 8 16

Wall clock time with 200 atoms per processor (s) 167 206 222 253

Wall clock time with 800 atoms per processor (s) 1249 1237 1257 1250

Note that the calculations reported in this article have been performed
with minimal basis sets. It is the subject of ongoing works to test the efficiency
of the MDD algorithm for larger basis sets.

Let us finally mention that our parallel implementation of the MDD al-
gorithm allows to solve (2) for a polyethylen molecule with 106 530 atoms
(372 862 basis functions) on 16 processors, in 90 minutes.

6 Conclusion and Perspectives

In its current implementation, the MDD algorithm allows to solve efficiently
the linear subproblem for linear molecules (polymers or nanotubes). The fol-
lowing issues will be addressed in a near future:

• Still in the case of 1D systems, we will allow blocks to have more than two
neighbors. This should increase the flexibility and efficiency of the MDD
algorithm. For instance, this should render calculations with large basis
sets including diffuse atomic orbitals affordable.
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• We plan to implement the MDD algorithm in the framework of 2D and
3D molecular systems. Note that even with minimal overlap a given block
has typically 8 neighbors in 2D and 26 neighbors in 3D.

• The MDD algorithm will be extended to the cases of the nonlinear Hartree–
Fock and Kohn-Sham problems.

• The present version of the MDD algorithm is restricted to insulators (i.e. to
matrices H with a sufficiently large gap). The possibility of extending the
MDD methodology to cover the case of metallic systems is a challenging
issue that will be studied.
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