
PROJECTION ONTO A POLYHEDRON THAT EXPLOITS
SPARSITY ∗

WILLIAM W. HAGER† AND HONGCHAO ZHANG‡

Abstract. An algorithm is developed for projecting a point onto a polyhedron. The algorithm
solves a dual version of the projection problem and then uses the relationship between the primal and
dual to recover the projection. The techniques in the paper exploit sparsity. SpaRSA (Sparse Re-
construction by Separable Approximation) is used to approximately identify active constraints in the
polyhedron, and the Dual Active Set Algorithm (DASA) is used to compute a high precision solution.
A linear convergence result is established for SpaRSA that does not require the strong concavity of
the dual to the projection problem, and an earlier R-linear convergence rate is strengthened to a
Q-linear convergence property. An algorithmic framework is developed for combining SpaRSA with
an asymptotically preferred algorithm such as DASA. It is shown that only the preferred algorithm is
executed asymptotically. Numerical results are given using the polyhedra associated with the Netlib
LP test set. A comparison is made to the interior point method contained in the general purpose
open source software package IPOPT for nonlinear optimization, and to the commercial package
CPLEX, which contains an implementation of the barrier method that is targeted to problems with
the structure of the polyhedral projection problem.

Key words. polyhedral projection, SpaRSA, active set algorithm, dual active set algorithm,
DASA, multilevel optimization

AMS subject classifications. 90C06, 90C20, 90C25, 65Y20

1. Introduction. A dual approach is developed for computing the Euclidean
projection of a point y ∈ R

n onto a nonempty polyhedron Ω ⊂ R
n. Computing the

projection is equivalent to solving the optimization problem

min

{
1

2
‖y − x‖2 : x ∈ Ω

}
,(1.1)

where ‖ · ‖ is the Euclidean norm. Note that any quadratic programming problem
whose objective’s Hessian is diagonal with positive entries can be written in the form
(1.1). To simplify the exposition, it is assumed that the polyhedron has the form

Ω = {x ∈ R
n : l ≤ Ax ≤ u, x ≥ 0},(1.2)

where l and u ∈ R
n are given bounds with l ≤ u and A ∈ R

m×n is a given (nonvacu-
ous) matrix with nonzero columns. Of course, when A is vacuous, the projection (1.1)
is trivial, and when any column of A is zero, the corresponding optimal component
of x is easily determined. We emphasize that the particular form of the polyhe-
dron in (1.2) is for expositional convenience. In the code PPROJ that implements

∗ December 29, 2014. Revised June 13, 2016. The authors gratefully acknowledge support by the
National Science Foundation under grants 1016204, 1115568, 1522629, and 1522654, by the Office
of Naval Research under grants N00014-11-1-0068 and N00014-15-1-2048, by the Air Force under
contract FA8651-08-D-0108, and by the Defense Advanced Research Projects Agency under contract
HR0011-12-C-0011. The views, opinions, and/or findings contained in this article are those of the
authors and should not be interpreted as representing the official views or policies of the Department
of Defense or the U.S. Government. Distribution Statement “A” (Approved for Public Release,
Distribution Unlimited).

†hager@ufl.edu, http://people.clas.ufl.edu/hager/, PO Box 118105, Department of Mathematics,
University of Florida, Gainesville, FL 32611-8105. Phone (352) 294-2308. Fax (352) 392-8357.

‡hozhang@math.lsu.edu, http://www.math.lsu.edu/∼hozhang, Department of Mathematics,
Louisiana State University, Baton Rouge, LA 70803-4918. Phone (225) 578-1982. Fax (225) 578-4276.

1

2 W. W. HAGER AND H. ZHANG

the algorithms developed in this paper, the constraint x ≥ 0 in (1.2) is replaced by
lo ≤ x ≤ hi, where elements of lo could be −∞ and elements of hi could be +∞.

By introducing an additional variable b ∈ R
m, the projection problem (1.1)–(1.2)

is expressed as

min

{
1

2
‖y − x‖2 : Ax = b, l ≤ b ≤ u, x ≥ 0, x ∈ R

n, b ∈ R
m

}
.

Let λ ∈ R
m denote the Lagrange multiplier for the linear constraint Ax = b in the

Lagrangian

L(λ,x,b) =
1

2
‖y − x‖2 + λT(b − Ax).

If the bound constraints l ≤ b ≤ u and x ≥ 0 are treated explicitly, then the dual
problem associated with the projection problem (1.1) is

max{L(λ) : λ ∈ R
m},(1.3)

where L(λ) is the dual function defined by

L(λ) = min {L(λ,x,b) : l ≤ b ≤ u, x ≥ 0, x ∈ R
n, b ∈ R

m} .(1.4)

The bounds l and u are assumed finite to simplify the discussion. When components
of l or u become infinite, the effective domain of the dual function changes from R

n

to a convex subset of R
n. The analysis still goes through, but becomes more complex.

The code based on this paper allows infinite values for l or u.
The arguments that achieve the minimum in (1.4) are given by

xj(λ) = max{yj + aT

j λ, 0} and bi(λ) =

{li} if λi > 0,
[li, ui] if λi = 0,
{ui} if λi < 0,

(1.5)

1 ≤ j ≤ n and 1 ≤ i ≤ m, where aj is the j-th column of A. Note that x(λ) is
single-valued, while b(λ) is set-valued in general. Due to the strong convexity of the
objective function, there exists a unique solution x∗ of (1.1) and by [35, p. 265],

‖x(λ2) − x(λ1)‖ ≤ ‖AT‖‖λ2 − λ1‖.(1.6)

Moreover, by the polyhedral structure of the constraint in (1.1), the maximum in (1.3)
is equal to the minimum in (1.1), and x(λ) = x∗ whenever λ ∈ R

m is a maximizer
of L. In a dual approach to (1.1), we first compute a maximizer λ∗ of L, and then
recover x∗ = x(λ∗).

Dual strategies are used extensively in nonlinear optimization as can be seen in
classic text books such as [8, 31, 46, 50]. A dual approach can be much more efficient
than a primal approach. For example, the dual simplex method is usually faster than
primal simplex, dual approaches to the separable quadratic knapsack problems were
found to be very efficient in [14, 24], and the dual active set algorithm was found to be
very efficient both for quadratic network optimization [37] and for linear programming
[21, 22].

A fast algorithm for the polyhedral projection problem has many important appli-
cations. For example, if Newton’s method is used to find a feasible point for a system
of equations and inequalities, then the constraints are linearized and each iteration

PROJECTION ONTO A POLYHEDRON THAT EXPLOITS SPARSITY 3

amounts to solving a polyhedral projection problem. In the gradient projection al-
gorithm for a polyhedral constrained optimization problem, each iteration involves a
gradient step followed by a projection onto the polyhedron. An important application
in the signal processing literature is the basis pursuit denoising problem [10], which
amounts to solving an optimization problem of the form

min
1

2
‖ATλ − y‖2 + σ

m∑

i=1

|λi|,(1.7)

where σ > 0. For recent results in this area see [9]. The problem (1.7) is equivalent
to the dual of the following polyhedral projection problem:

min

{
1

2
‖y − x‖2 : Ax = b, −σ1 ≤ b ≤ σ1, x ∈ R

n, b ∈ R
m

}
,(1.8)

where 1 is the vector whose entries are all 1. More precisely, if the dual of the
polyhedral projection problem (1.8) is changed from a maximization problem to a
minimization problem by reversing the sign of the objective, and if a constant ‖y‖2/2
is added to the objective, then we obtain the optimization problem (1.7). Finally, we
note that in the GALAHAD optimization package [29], the quadratic programming
solver QPC uses a projection onto the constraint polyhedron as a starting point. The
projection is computed by a primal-dual interior point method based on the algorithm
in [58] with enhancements described in [15]. A fast algorithm for projecting a point
onto a polyhedron would be useful in any of these applications.

Since the Lagrangian L is separable in x and b, the dual function is the sum of
two terms, a smooth term f and a nonsmooth term ψ:

L(λ) = f(λ) + ψ(λ),(1.9)

f(λ) =

n∑

j=1

fj(λ), fj(λ) =
1

2

(
y2

j − xj(λ)2
)
,(1.10)

ψ(λ) =
m∑

i=1

ψi(λ), ψi(λ) = min{liλi, uiλi}.(1.11)

An easy way to derive (1.10), pointed out by a referee, is to first observe that

xj(λ)(yj + aT

j λ) = xj(λ)2.

this holds trivially when xj(λ) = 0 and by (1.5) when xj(λ) > 0. With this substitu-
tion in the Lagrangian, we obtain (1.9)–(1.10).

Based on the formula (1.5) for xj(λ), fj is a piecewise quadratic function:

fj(λ) =

{
1
2

[
y2

j − (yj + aT

j λ)2
]

when yj + aT

j λ ≥ 0,
1
2y2

j otherwise.

Similarly, ψi is a piecewise linear function:

ψi(λ) =

{
liλi when λi ≥ 0,

uiλi otherwise.

Hence, L is a piecewise quadratic since its domain can be partitioned into a finite
number of polyhedra, and on each polyhedron, L is quadratic. The different polyhedra

4 W. W. HAGER AND H. ZHANG

correspond to the intersection of half spaces of the form ±(yj + aT

j λ) ≤ 0 for each j
(associated with fj) and with half spaces of the form ±λi ≤ 0 for each i (associated
with ψi). Altogether, L could be formed from as many as 2m+n different quadratics
with each quadratic defined on a different polyhedron in R

m.
The function f is continuously differentiable, as expected by [12, Thm. 2.1] or

[17], with derivative given by

∇f(λ) = −Ax(λ).(1.12)

Since x(λ) is a Lipschitz continuous function of λ by (1.6), ∇f is also Lipschitz
continuous. Moreover, by (1.6), we have

‖∇f(λ2) −∇f(λ1)‖ ≤ ‖A‖‖AT‖‖λ2 − λ1‖ = ‖A‖2‖λ2 − λ1‖.(1.13)

The last equality is due to the fact that the matrix norm induced by the Euclidean
norm is the largest singular value, and the largest singular values of A and AT are the
same. In contrast, to the smoothness of f and ∇f , the derivative of ψi is piecewise
constant with a discontinuity at the origin.

SpaRSA (Sparse Reconstruction by Separable Approximation), proposed in [57]
by Wright, Nowak, and Figueiredo, applies to the maximization of a concave functional
like L that can be expressed as the sum of a smooth term and a nonsmooth term. In
[39] we establish an O(1/k) convergence rate for SpaRSA, and an R-linear convergence
rate when the objective is strongly concave at a unique optimal solution. Typically
the solution of the dual (1.3) of the projection problem is not unique. In this paper,
we remove the strong concavity assumption and establish a Q-linear convergence
property for the SpaRSA reference function values by applying a strong concavity
property relative to the solution set. The analysis employs the GLL [30] reference
value which is the minimum function value over the M most recent iterates for some
fixed integer M > 0. This strengthens a previous R-linear convergence result. We note
that R-linear convergence is obtained in [47] for a gradient projection method applied
to smooth convex minimization problems, while [54] obtains Q-linear convergence for a
class of monotone descent methods applied to a smooth convex minimization problem.
Although the results in [54] fit the SpaRSA framework, both the smoothness and the
convexity properties of the polyhedral dual function L violate the assumptions in [54].
Also, in [44] a Q-linear convergence result is established for an algorithm similar to
SpaRSA, but with a different line search.

Although SpaRSA has a Q-linear convergence property, we find that it is asymp-
totically slower than other approaches for solving (1.1). In the dual approach devel-
oped in this paper, we combine SpaRSA with another algorithm with asymptotically
faster convergence. Our Dual Active Set Strategy (DASS) provides the rules that
determine whether SpaRSA or the asymptotically preferred algorithm is executed.
We show that only the preferred algorithm is executed asymptotically. DASS has
the same general structure as the framework we develop in [40] for combining the
gradient projection algorithm with the asymptotically preferred conjugate gradient
algorithm when solving box constrained optimization problems. However, both the
details of DASS and the analysis are quite different from that of the earlier paper due
to the huge difference between box constraints and general polyhedral constraints,
and due to the special form of the objective function in the polyhedral projection
problem. A specific implementation is given in which the asymptotically preferred
algorithm is the Dual Active Set Algorithm (DASA) [21, 22, 32, 33, 34, 35, 36, 37],
either the factorization-based version [21, 22, 37] or the iterative version [36]. When

PROJECTION ONTO A POLYHEDRON THAT EXPLOITS SPARSITY 5

the linear algebra is implemented using the update-downdate techniques developed
in [18, 19, 20, 23] and embedded in CHOLMOD [11, 23], we obtain an extremely fast
algorithm for solving the polyhedral projection problem (1.1).

The paper is organized as follows: In Section 2 we review SpaRSA [57]. In
Section 3, a Q-linear convergence property is established for the SpaRSA reference
function values by exploiting a strong concavity property for piecewise quadratics
along the line segment connecting a point to its projection on the dual solution set.
In a sense, SpaRSA identifies the active constraints in a finite number of iterations.
Section 4 presents the Dual Active Set Strategy (DASS) which combines SpaRSA
with an asymptotically preferred algorithm (AP) to accelerate convergence. Rules
are given for switching between SpaRSA and AP. Sections 5 and 6 give the global and
local asymptotic convergence analysis, respectively. In a rather general setting, it is
shown in Section 6.3 that when the asymptotically preferred algorithm satisfies some
basic properties, only the preferred algorithm is executed asymptotically. In Section 7
we give an AP based on the Dual Active Set Algorithm (DASA). It is observed that
DASS with a DASA based AP converges to a solution of the polyhedral projection
problem in a finite number of iterations. Finally, Section 8 gives numerical results for
a test set composed of the polyhedra associated with the Netlib LP test problems.
Comparisons are given between DASA, DASS with a DASA based AP, the general
purpose open source software IPOPT [53] (Version 3.11) in the COIN-OR library,
and the commercial package CPLEX Version 12.6 which contains a barrier method
targeted to a positive definite quadratic program with a diagonal Hessian, such as the
polyhedral projection problem (1.1).

Notation. Let ∇f(λ) denote the gradient of f , a column vector, evaluated at
λ, and let ∇if(λ) be the i-th component of the gradient. Let ∂L(λ) denote the
subdifferential set at λ and let ∂iL(λ) be the i-th component of the subdifferential. If
∂iL(λ) contains a single element, then ∂iL(λ) is simply the element of this set. The
Euclidean norm of λ is denoted ‖λ‖. The sup-norm (maximum absolute component)
of λ is denoted ‖λ‖∞, while

‖∂L(λ)‖min := min{‖g‖∞ : g ∈ ∂L(λ)}.

We let g(λ), a row vector, denote the minimum ∞-norm subgradient in ∂L(λ). The
standard signum function is defined by

sgn(x) =

+1 if x > 0,
0 if x = 0,

−1 if x < 0.

If x ∈ R
n, then x+ is the positive part of x defined by x+

i = max{0, xi} for each i.
L∗ denotes the maximum value for L and Λ∗ denotes the set of solutions of (1.3). If
λk is an iterate for an algorithm, then λki denotes the i-th component of λk and λ∗

k

is the projection of λk onto Λ∗. Since Λ∗ is a closed convex set, the projection λ∗
k

exists and it is unique [45, p. 69]. The set S := {i ∈ [1,m] : li < ui} contains the
indices associated with strict inequalities; if i ∈ Sc, where the superscript c denotes
set complement, the i-th inequality is really an equality and li = ui. Let Z(λ) denote
the set of indices of zero components of λ associated with inequality constraints:

Z(λ) = {i ∈ S : λi = 0}.

If F ⊂ {1, 2, . . . n}, then AF is the submatrix of A corresponding to those column
indices in F , while xF is the subvector of x corresponding to indices in F .

6 W. W. HAGER AND H. ZHANG

Given ρ > 1, σ ∈ (0, 1), [αmin, αmax] ⊂ (0,∞), and starting guess λ1.

Set k = 1.
Step 1. Choose α0 ∈ [αmin, αmax]
Step 2. Set α = ρjα0 where j ≥ 0 is smallest integer such that

L(λk+1) ≥ LR
k + σα

2 ‖λk+1 − λk‖2 where

λk+1 = arg max{∇f(λk)Tλ − α
2 ‖λ − λk‖2 + ψ(λ) : λ ∈ R

n}.
Step 3. If a stopping criterion is satisfied, terminate.

Step 4. Set k = k + 1 and go to step 1.

Alg. 2.1. Sparse Reconstruction by Separable Approximation (SpaRSA)

2. SpaRSA. In this section, we review the SpaRSA algorithm and previous con-
vergence results. Algorithm 2.1 is SpaRSA [57] applied to (1.3), with L decomposed
as in (1.9)–(1.11). In [57], the reference value LR

k is the GLL [30] reference value Lmin
k

defined by

Lmin
k = min{L(λk−j) : 0 ≤ j < min(k,M)}.(2.1)

In [39] we introduce other ways to choose the reference value which often yield better
performance; however, for the analysis in this paper, we assume that LR

k = Lmin
k ,

the GLL reference value (2.1). For the numerical experiments of Section 8, the BB
formula [3] was used in Step 1 to generate α0. That is, we first evaluated

φ =
(∇f(λk) −∇f(λk−1))

T(λk − λk−1)

‖λk − λk−1‖2
,

and then set α0 = mid {αmin, φ, αmax}, where mid is the median. An algorithm closely
related to SpaRSA is the proximal gradient method [4, 5, 13]; the only difference with
SpaRSA is in the line search. SpaRSA is usually presented with a nonmonotone line
search while the proximal gradient method is usually given with a monotone line
search, and the termination conditions inside the line search are slightly different.
Nonetheless, the analysis that we give for SpaRSA should also apply to the proximal
gradient method.

Note that there is an explicit formula for the λk+1 update in Step 2 of SpaRSA
since ∇f(λ) = −Ax(λ). In particular, the components of λk+1 can be expressed

λ(k+1)i =

λl
ki if λl

ki ≥ 0,

0 if λl
ki ≤ 0 ≤ λu

ki,

λu
ki if λu

ki ≤ 0,

(2.2)

where

λl

k := λk + (l − Ax(λk))/α ≤ λu

k := λk + (u − Ax(λk))/α.(2.3)

From the analysis of [57], when the SpaRSA iterates are bounded, we have

lim
k→∞

L(λk) = L∗,(2.4)

PROJECTION ONTO A POLYHEDRON THAT EXPLOITS SPARSITY 7

where L∗ is the maximum in the dual problem (1.3). Moreover, if for some solution
λ∗ of the dual problem (1.3) there is a constant µ > 0 such that

L∗ − L(λ) ≥ µ‖λ − λ∗‖2(2.5)

for all λ ∈ R
m, then by Theorem 4.1 in [39], there are constants θ ∈ [0, 1) and c such

that

µ‖λk − λ∗‖2 ≤ L∗ − L(λk) ≤ cθk(L∗ − L(λ1)).

In other words, SpaRSA is R-linearly convergent.

3. Convergence properties for SpaRSA. The dual function L for the polyhe-
dral projection problem usually does not satisfy the strong concavity condition (2.5).
Instead the dual function possesses a strong concavity property relative to the pro-
jection onto the dual solution set. This property, established by Li in [43, Thm. 2.7]
for a general piecewise quadratic, is restated here in the context of the dual function.
As noted in the Introduction, the dual function is a concave piecewise quadratic, so
Li’s result is applicable.

Theorem 3.1. For any λ1 ∈ R
m, there exists a constant µ > 0 such that

‖λ − λ∗‖2 ≤ L∗ − L(λ)

µ
for all λ ∈ R

m with L(λ) ≥ L(λ1),(3.1)

where λ∗ is the projection of λ onto Λ∗.

Based on this theorem, we have the following corollary.
Corollary 3.2. For any λ1 ∈ R

m, there exists a constant µ > 0 such that for

all λ ∈ R
m with L(λ) ≥ L(λ1), we have

L∗ − L(λ) ≤ ‖∂L(λ)‖2
min

µ
(3.2)

and

‖λ − λ∗‖ ≤ ‖∂L(λ)‖min

µ
,(3.3)

where λ∗ is the projection of λ onto Λ∗.

Proof. First, by (3.1) and the concavity of L, we have

µ‖λ − λ∗‖2 ≤ L∗ − L(λ) ≤ ‖∂L(λ)‖min‖λ − λ∗‖.(3.4)

This inequality gives (3.3). The second inequality in (3.4) along with (3.3) yield (3.2).

We use Theorem 3.1 and Corollary 3.2 to establish a Q-linear convergence prop-
erty for the SpaRSA reference function values. First, we give a global convergence
result. From the analysis in [57], the SpaRSA iterates form a maximizing sequence
satisfying (2.4) when the iterates are bounded. Since the set of optimal dual solutions
could be unbounded, we drop the boundedness condition in the following theorem.

Theorem 3.3. If λk is generated by SpaRSA, then we have

lim
k→∞

‖∂L(λk)‖min = 0, lim
k→∞

‖λk − λ∗
k‖ = 0, and lim

k→∞
L(λk) = L∗.(3.5)

8 W. W. HAGER AND H. ZHANG

Proof. By the definition of λk+1 in SpaRSA, we know that

0 ∈ ∇f(λk) − α(λk+1 − λk) + ∂ψ(λk+1).

This is equivalent to

∇f(λk+1) −∇f(λk) + α(λk+1 − λk) ∈ ∇f(λk+1) + ∂ψ(λk+1) = ∂L(λk+1).

Hence, we have

‖∂L(λk+1)‖min ≤ ‖∇f(λk+1) −∇f(λk) + α(λk+1 − λk)‖.(3.6)

By (1.13), ∇f is Lipschitz continuous with Lipschitz constant ‖A‖2. It follows from
(3.6) that

‖∂L(λk+1)‖min ≤ (‖A‖2 + α)‖λk+1 − λk‖.(3.7)

By Proposition 2.1 of [39] and the Lipschitz continuity of ∇f , the stepsize α in SpaRSA
is bounded from above uniformly in k:

α ≤ β :=
ρ‖A‖2

1 − σ
(3.8)

Here ρ and σ are parameters appearing in the statement of SpaRSA. Replacing α by
its upper bound β in (3.7) yields

‖∂L(λk+1)‖min ≤ (‖A‖2 + β)‖λk+1 − λk‖.(3.9)

On the other hand, in [57, Eq. (35)] it is shown that

lim
k→∞

λℓ(k) − λℓ(k)−1 = 0, where ℓ(k) = arg min{L(λj) : max(0, k − M) < j ≤ k}.

Hence, by (3.9) and (3.2), we have

lim
k→∞

‖∂L(λℓ(k))‖min = 0 and lim
k→∞

L(λℓ(k)) = L∗.

The stepsize criterion in Step 2 of SpaRSA implies that

σαmin

2
‖λk+1 − λk‖2 ≤ L(λk+1) − L(λℓ(k)) ≤ L∗ − L(λℓ(k)).

Since L(λℓ(k)) approaches L∗, we deduce that

lim
k→∞

‖λk+1 − λk‖ = 0,

which combines with (3.9) to give the first result in (3.5). Since L(λk) ≥ L(λ1) for all
k ≥ 1 in SpaRSA, the remaining convergence results in (3.5) follow from Corollary 3.2
and the convergence of ‖∂L(λk+1)‖min to zero.

The strong concavity property in Theorem 3.1 could be used to establish the R-
linear convergence of SpaRSA applied to the dual function L as in [39, Thm. 4.1];
the only change is to replace the unique optimizer in [39, Thm. 4.1] by the projection
onto the set of optima. In the following theorem, we establish a Q-linear convergence

PROJECTION ONTO A POLYHEDRON THAT EXPLOITS SPARSITY 9

property for the reference function values LR
k in SpaRSA. When M = 1 in (2.1), this

implies Q-linear convergence of the sequence L(λk).

Theorem 3.4. If λk is a sequence generated by SpaRSA, then there exists θ ∈
[0, 1) such that

L∗ − LR
k ≤ θ(L∗ − LR

k−M)

for all k > M .

Proof. If SpaRSA converges in a finite number of iterations, then the theorem
holds with θ = 0. Hence, we assume that λk 6∈ Λ∗ for all k. Since L(λk) ≥ L(λ1) for
all k ≥ 1 in SpaRSA, Corollary 3.2 yields

L∗ − L(λk) ≤ 1

µ
‖∂L(λk)‖2

min.(3.10)

If κ := σαmin/2 is a lower bound for the parameter appearing in the SpaRSA stepsize
rule and if j ∈ [0,M − 1] is chosen so that LR

k = L(λk−j), then by the stopping
condition in Step 2 of SpaRSA, we have

LR
k = L(λk−j) ≥ LR

k−j−1 + κ‖sk−j−1‖2, sk−j−1 := λk−j − λk−j−1,

which implies that

L∗ − LR
k ≤ L∗ − LR

k−j−1 − κ‖sk−j−1‖2.(3.11)

By the SpaRSA stepsize rule, L(λk+1) > LR
k for each k. It follows that LR

k+1 ≥ LR
k

for each k; that is, the LR
k are monotone nondecreasing. Hence, by (3.11), we have

L∗ − LR
k ≤ L∗ − LR

k−M − κ‖sk−j−1‖2(3.12)

since k − M ≤ k − j − 1.
Let c > 0 be chosen small enough that

c

(
(‖A‖2 + β)2

µ

)
< 1.(3.13)

If ‖sk−j−1‖2 ≥ c(L∗ − LR
k−M), then by (3.12),

L∗ − LR
k ≤ (1 − cκ)(L∗ − LR

k−M).(3.14)

Conversely, if ‖sk−j−1‖2 < c(L∗ − LR
k−M), then by (3.9) and (3.10), we have

L∗ − LR
k = L∗ − L(λk−j) ≤

(
(‖A‖2 + β)2

µ

)
‖sk−j−1‖2

≤ c

(
(‖A‖2 + β)2

µ

)
[L∗ − LR

k−M].(3.15)

Let θ be the smaller of the factors in (3.14) and (3.15). Due to (3.13), θ < 1 and the
proof is complete.

Remark 3.1. In [44] a Q-linear convergence result is established under an error

bound condition for an algorithm similar to SpaRSA, but with a different line search.

10 W. W. HAGER AND H. ZHANG

By [51, Thm. 4], the dual function L satisfies the error bound condition of [44]. Further

development of error bound conditions are given in [47, 48, 49].

Note that the dual problem (1.3) can have multiple solutions. In contrast, the
solution of the primal problem (1.1) is a unique point x∗ due to the strong convexity
of the objective function. By the relationship between the primal and dual solutions,
we know that x∗ = x(λ) for all λ ∈ Λ∗. Let S be the set of strict inequalities defined
by

S = {i ∈ [1,m] : li < ui}.

We partition the indices of S into three sets

S0 = {i ∈ S : li < (Ax∗)i < ui},
S+ = {i ∈ S : (Ax∗)i = li},
S− = {i ∈ S : (Ax∗)i = ui}.

Since x∗ is feasible for (1.1), each index i ∈ S lies in one of these sets. By the
first-order optimality conditions for (1.1), each λ ∈ Λ∗ satisfies

λi = 0 for i ∈ S0, λi ≥ 0 for i ∈ S+, λi ≤ 0 for i ∈ S−.(3.16)

We now show that the SpaRSA iterates satisfy the first-order conditions (3.16) when
‖λk − λ∗

k‖ is sufficiently small.

Proposition 3.5. There exist η > 0 with the property that λ = λk+1 satisfies

(3.16) whenever ‖λk − λ∗
k‖ ≤ η where λk+1 is generated by SpaRSA and λ∗

k is the

projection of λk onto Λ∗.

Proof. If i ∈ S0, then

(l − Ax∗)i < 0 < (u − Ax∗)i.

Observe that

[l − Ax(λk)]i = [l − Ax∗]i + [A(x∗ − x(λk))]i(3.17)

= [l − Ax∗]i + [A(x(λ∗
k) − x(λk))]i

≤ [l − Ax∗]i + ‖A‖2‖λk − λ∗
k‖

≤ [l − Ax∗]i + η‖A‖2

when ‖λk − λ∗
k‖ ≤ η. The first inequality in (3.17) is due to the Lipschitz continuity

(1.6) of x. Moreover, for i ∈ S0, we have

λki ≤ |λki| = |λki − λ∗
ki| ≤ ‖λk − λ∗

k‖.

We combine these inequalities to obtain, for i ∈ S0 and ‖λk − λ∗
k‖ ≤ η, the relation

λl
ki ≤ [l − Ax∗]i /β + η

(
1 + ‖A‖2/β

)
,

where β is given in (3.8) and λl

k is defined in (2.3). In a similar fashion, we have

λu
ki ≥ [u − Ax∗]i /β − η

(
1 + ‖A‖2/β

)
.

Choose η > 0 small enough that the upper bound for λl
ki is negative and the lower

bound for λu
ki is positive. Hence, by (2.2) λ(k+1)i = 0 when ‖λk −λ∗

k‖ ≤ η and i ∈ S0.

PROJECTION ONTO A POLYHEDRON THAT EXPLOITS SPARSITY 11

Next, suppose that i ∈ S−, which implies that λ∗
ki ≤ 0 for all k. We need to show

that λ(k+1)i ≤ 0. Observe that

0 ≥ λ∗
ki = (λ∗

ki − λki) + λki ≥ −‖λ∗
k − λk‖ + λki,

which yields

λki ≤ ‖λ∗
k − λk‖.(3.18)

If i ∈ S−, then ui = (Ax∗)i = [Ax(λ∗
k)]i. This substitution in (3.17) yields

[l − Ax(λk)]i ≤ (li − ui) + η‖A‖2(3.19)

when ‖λk −λ∗
k‖ ≤ η. Hence, by (3.18) and (3.19), it follows that for i ∈ S−, we have

λl
ki = λki + [l − Ax(λk)]i /α ≤ η + (li − ui + η‖A‖2)/β.

Since i ∈ S, li − ui < 0; hence, we choose η small enough to ensure that λl
ki ≤ 0,

which implies that λ(k+1)i ≤ 0 by (2.2). The analysis of i ∈ S+ is similar.

4. A Dual Active Set Strategy (DASS). The linear convergence of SpaRSA
may be acceptable when computing a low accuracy solution of (1.1), but there are
more efficient techniques for computing high accuracy solutions with better local con-
vergence rates. In this section, we propose a dual strategy that combines SpaRSA with
an asymptotically preferred algorithm denoted as AP. We develop rules for switching
between SpaRSA and AP so that SpaRSA will be used far from the solution, while
only AP is executed asymptotically. The hope is that SpaRSA will approximately
identify proper signs for λ∗

i in accordance with Proposition 3.5, at which point the
dual problem becomes essentially an equality constrained problem where the AP has
better performance.

We now specify the properties of AP required for the convergence analysis. Let
B(λ) be the set of indices of components of x(λ) at the lower bound; that is,

B(λ) = {j ∈ [1, n] : xj(λ) = 0} = {j ∈ [1, n] : yj + aT

j λ ≤ 0}.
For any set B ⊂ {1, 2, . . . , n}, we define a relaxed version of the dual function by

L(λ,B) = min {L(λ,x,b) : l ≤ b ≤ u, xj ≥ 0 for all j ∈ B} .(4.1)

Note that in the relaxed dual function, xj for j ∈ Bc is unconstrained. Hence, we
have

L(λ,B1) ≤ L(λ,B2) ≤ L(λ) whenever B1 ⊂ B2,(4.2)

and

L(λ) = L(λ, {1, 2, . . . , n}) = L(λ,B(λ)).(4.3)

The identity (4.3) holds since xj(λ) > 0 for j ∈ B(λ)c, and hence, the constraint
xj ≥ 0 for j ∈ B(λ)c can be ignored when evaluating L(λ). When the AP starts at
iteration j, it is assumed to generate a sequence of sets Bj , Bj+1, We consider two
types of APs. For one type of algorithm, which includes any unconstrained optimizer,
Bk = B(λk) for each k. In another type of algorithm, such as the Dual Active Set
Algorithm (DASA), Bj = B(λj) in the initial iteration of the AP, while Bk ⊂ Bk−1

for all k > j. In this case, the set Bk is not generally equal to B(λk). If AP starts
execution at iteration j, then it is assumed that the successive iterates in AP starting
from λj possess the following properties:

12 W. W. HAGER AND H. ZHANG

(AP1) Bj := B(λj). Either Bk = B(λk) for all k > j or Bk ⊂ Bk−1 for all k > j.

(AP2) For all k ≥ j, Z(λk) ⊂ Z(λk+1) and λkiλk+1,i ≥ 0 when i ∈ S (recall that S
and Z(λ) are the set of indices of strict inequalities and the set of indices of
zero components of λ respectively).

(AP3) L(λk+1,Bk+1) ≥ L(λk,Bk) for all k ≥ j.

(AP4) If Z(λk) = Z(λl) for all k ≥ l, then limk→∞ ∂iL(λk,Bk) = 0 for all i such
that λki 6= 0 (equivalently, for all i ∈ Z(λk)c).

(AP5) When AP is restarted, set j = k+1 and generate λj by applying an iteration
of SpaRSA to λk.

By (AP2) the zero components of λk are also zero in λk+1. The condition
λkiλk+1,i ≥ 0 when i ∈ S implies that a component of λk associated with a strict
inequality cannot switch its sign in λk+1. If AP is restarted in (AP5), then since
one iteration of SpaRSA starting from λj−1 can only increase the objective value, it
follows from (4.3) that

L(λj−1) ≤ L(λj) = L(λj ,B(λj)) = L(λj ,Bj).(4.4)

The first inequality is strict unless λj−1 = λj are optimal in the dual problem.
In (AP3) it is assumed that the relaxed dual function values are monotone non-

decreasing. If Bk = B(λk), then L(λk,Bk) = L(λk) and the dual values themselves
are nondecreasing. In DASA, on the other hand, where Bk ⊂ Bk−1, there is only
monotonicity of the relaxed dual values as required by (AP3). Nonetheless, by (4.2)
and (4.4), we have

L(λj) = L(λj ,Bj) ≤ L(λk,Bk) ≤ L(λk) for k ≥ j.

Moreover, when the AP is restarted in (AP5), (4.4) yields L(λj−1) ≤ L(λj).
By (AP2) the set Z(λk) can only grow in size, so for l sufficiently large, the

condition in (AP4) that Z(λk) = Z(λl) for all k ≥ l is satisfied. Hence, by (AP4)
the derivative of the relaxed objective with respect to the nonzero components of the
dual multiplier must approach 0.

DASS is given in Algorithm 4.1. Step 1 of DASS corresponds to SpaRSA, while
Step 2 corresponds to AP. Recall that ∂iL(λk) denotes the i-th component of the
subdifferential at λk. In DASS this subdifferential is evaluated at an i where λki 6= 0,
in which case ∂iL(λk) is a singleton. The rule for restarting the AP in Step 2 amounts
to saying that the current iterate is sufficiently close to a maximizer of L(λ,Bk) subject
to λi = 0 for all i ∈ Z(λk). There are many alternatives to SpaRSA for the restart in
(AP5). For example, either a Wolfe line search [55, 56] or an exact line search along
a minimum norm subgradient could be used; an exact line search is feasible due to
the special structure of (1.1). Since this paper focuses on SpaRSA, our analysis uses
the SpaRSA gradient-based line search for the restart.

An entity that influences when we switch from SpaRSA to the AP is the unidenti-
fied index set U , which appears in Step 1b of DASS. Given fixed parameters ω ∈ (0, 1)
and τ > 0,

U(λ) = {i ∈ S : λi 6= 0 and sgn(λi)∂iL(λ) ≤ −τ(‖g(λ)‖∞)ω} .

In the numerical experiments, ω = 0.5 and τ = 0.1. If i ∈ U(λk), then the partial
derivative of L with respect to λi is relatively large and movement from λk along a

PROJECTION ONTO A POLYHEDRON THAT EXPLOITS SPARSITY 13

Given γ and ξ ∈ (0, 1), ǫ ≥ 0

Step 1 While ‖∂L(λk)‖min ≥ ǫ
Execute SpaRSA and in each iteration, check:

a) If |∂iL(λk)| ≥ γ‖∂L(λk)‖min for some

i ∈ Z(λk)c, then go to Step 2.

b) Otherwise, if U(λk) = ∅, then γ ← ξγ.
End

Step 2 While ‖∂L(λk)‖min ≥ ǫ
Execute AP and in each iteration, check:

If |∂iL(λk,Bk)| < γ‖∂L(λk)‖min for all i ∈ Z(λk)c, then

a) goto Step 1 if |∂iL(λk)| < γ‖∂L(λk)‖min ∀ i ∈ Z(λk)c,

b) otherwise restart AP using (AP5).

End

End

Alg. 4.1. Dual Active Set Strategy (DASS)

direction of ascent pushes the i-th component of the current iterate towards zero. In
this case, we hope that SpaRSA will either lock λi = 0 or push it to the opposite
side of the origin. But if U(λ) is empty in Step 1b, then we think that the sign of λi

matches that of λ∗
i so we encourage departure from SpaRSA by making the parameter

γ smaller; that is, we multiply γ by the parameter ξ ∈ (0, 1). In the experiments, γ
starts at 0.1 and ξ = 0.5. In Step 1a, we would like to leave SpaRSA when |∂iL(λk)|
for some λki 6= 0 is relatively large when compared to the minimum norm of the
subdifferential.

In Step 2, AP continues to execute until the partial derivatives ∂iL(λk,Bk) of the
relaxed dual with respect to the nonzero components of λk become small in magnitude
when compared to ‖∂L(λk)‖min. In this case, we branch to SpaRSA if the partial
derivatives ∂iL(λk) of the actual dual are sufficiently small. Otherwise, we restart
AP using an iteration of SpaRSA as in (AP5). This gives us the opportunity to unfix
the components of λk which have been kept fixed at zero due to (AP2), and to reset
Bj = B(λj) if we were using DASA. If we always choose Bk = B(λk) in (AP1) and if
the Step 2 condition

|∂iL(λk,Bk)| < γ‖∂L(λk)‖min for all i ∈ Z(λk)c

is satisfied, then the condition in Step 2a is also satisfied since

L(λk,Bk) = L(λk,B(λk)) = L(λk).

Hence, DASS returns to Step 1.

5. Global convergence of DASS. We first provide a global convergence result
for the DASS.

Proposition 5.1. If ǫ = 0 and λk is a sequence generated by DASS, then we

have

lim inf
k→∞

‖∂L(λk)‖min = 0, lim
k→∞

‖λk − λ∗
k‖ = 0, lim

k→∞
L(λk) = L∗,(5.1)

14 W. W. HAGER AND H. ZHANG

and limk→∞ x(λk) = x∗.

Proof. If only SpaRSA is performed for sufficiently large k, then (5.1) follows
from Theorem 3.3 (with lim inf strengthened to lim). If only AP without restarts is
performed for k sufficiently large, then by (AP2), Z(λk) ⊂ Z(λk+1) for k sufficiently
large, and the sets Z(λk) approach a limit as k tends to infinity. By (AP4)

lim
k→∞

∂iL(λk,Bk) = 0 for all i ∈ Z(λk)c.(5.2)

Since only AP without restarts is performed for k sufficiently large, it follows from
Step 2 of DASS that for k sufficiently large,

|∂iL(λk,Bk)| ≥ γ‖∂L(λk)‖min for some i ∈ Z(λk)c.

Utilizing (5.2), we deduce that ‖∂L(λk)‖min tends to zero. This gives the first equality
in (5.1) with lim inf strengthened to lim. The remaining results in (5.1) follow from
Corollary 3.2 and the fact that L(λk) ≥ L(λ1) in DASS.

Finally, let us consider the case where AP is restarted an infinite number of times.
This restart occurs either when the AP is restarted in Step 2b, or when DASS branches
from Step 1 to Step 2. If SpaRSA starts at iteration j, then for the GLL reference
value, LR

k ≥ L(λj) for all k ≥ j. Hence, if λk is the last SpaRSA iterate before a
branch to AP, we have

L(λk) ≥ L(λj) +
σα

2
‖λk − λk−1‖2,(5.3)

where the stepsize α has the bound β given in (3.8). As explained in the discussion
after (AP1)–(AP5), if the AP is restarted at iteration j, then L(λk) ≥ L(λj) for all
k ≥ j. Likewise, when SpaRSA is restarted at iteration j, L(λk) ≥ LR

k ≥ L(λj) for all
k ≥ j. Let kj , j = 1, 2, . . ., denote the terminating SpaRSA iterations, either within
SpaRSA or for the (AP5) restart. The inequalities

L(λk) ≥ L(λj), k ≥ j,(5.4)

where j is the starting iteration either within SpaRSA or within the AP, together
with the growth property (5.3) and the fact that L is bounded from above ensure
that ‖λkj

− λkj−1‖ tends to zero. Moreover, by (3.7),

lim
j→∞

‖∂L(λkj
)‖min = 0.

This establishes the first relation in (5.1). By (3.2) and the monotonicity property
(5.4), L(λk) approaches L∗. Theorem 3.1 implies that ‖λk − λ∗

k‖ tends to zero, and
by the Lipschitz continuity of x(·) in (1.6), x(λk) approaches x∗. This completes the
proof.

6. Asymptotic convergence. Next, we analyze the asymptotic convergence
properties of iterates produced by DASS. It will be shown that asymptotically only
AP is executed. Sections 6.1 and 6.2 provide some preliminary results needed in the
analysis.

6.1. Properties of polyhedral projections. Given matrices M1 ∈ R
m×n1

and M2 ∈ R
m×n2 , and a vector z ∈ R

m, define the set

Γ = {(v1,v2) : v1 ∈ R
n1 , v2 ∈ R

n2 , M1v1 + M2v2 ≤ z}.

PROJECTION ONTO A POLYHEDRON THAT EXPLOITS SPARSITY 15

Given (u1,u2) ∈ Γ, let Γ1 ⊂ Γ be defined by

Γ1 = {(v1,u2) : (v1,u2) ∈ Γ}.

In the set Γ1, the second component of the elements are u2. Let p and p1 denote the
Euclidean projections given by

p(v) = arg min{‖v − w‖ : w ∈ Γ} and p1(v) = arg min{‖v − w‖ : w ∈ Γ1}.

Lemma 6.1. There exists a constant c ≥ 0 independent of (u1,u2) ∈ Γ such that

for all v = (v1,u2) ∈ R
n1+n2 , we have

‖v − p(v)‖ ≤ ‖v − p1(v)‖ ≤ c‖v − p(v)‖.(6.1)

Proof. Since Γ1 ⊂ Γ, the lower bound ‖v − p(v)‖ ≤ ‖v − p1(v)‖ is immediate.
Given v = (v1,u2) ∈ R

n1+n2 , the second component of both v and p1(v) is u2.
Consequently, by Hoffman’s result [41], there exists a constant c1, depending on M1,
such that

‖v − p1(v)‖ ≤ c1‖(Mv − z)+‖,(6.2)

where M = [M1|M2] is the m by n1+n2 matrix obtained by appending M2 after M1,
and the + superscript denotes the positive part of the vector. Since v := p(v) ∈ Γ,
Mv − z ≤ 0. Hence, we have

‖(Mv − z)+‖ = ‖[M(v − v) + Mv − z]+‖(6.3)

≤ ‖[M(v − v)]+‖ ≤ ‖M(v − v)‖ ≤ ‖M‖‖v − v‖.

We combine (6.2) and (6.3) to obtain the second inequality in (6.1) with c = c1‖M‖.

If the columns of M1 and M2 are chosen from a fixed, finite set, then there is
a different c for each choice of M1; but since there are a finite number of different
choices for M1, a fixed constant c can be chosen which is valid for all the potential
choices of M1. We now give an application of Lemma 6.1 to dual sequences converging
to Λ∗. Recall that Z(λ) = {i ∈ S : λi = 0}.

Corollary 6.2. If λ̂k is the projection defined by

λ̂k = arg min {‖λk − λ‖ : λ ∈ Λ∗, λi = 0 if i ∈ Z(λk)},(6.4)

then for k sufficiently large, the feasible set in (6.4) is nonempty, λ̂k exists, and

‖λk − λ̂k‖ ≤ c‖λk − λ∗
k‖,(6.5)

where c is independent of k.

Proof. Suppose to the contrary that there exists a subsequence for which the
feasible set in (6.4) is empty. Since Z(λk) is contained in a finite set, there exists a
fixed nonempty set Z0 such that Z(λk) = Z0 for infinitely many k. Let Λ∗

0 be defined
by

Λ∗
0 = {λZ0

: λ ∈ Λ∗}.

16 W. W. HAGER AND H. ZHANG

Since Λ∗ is a polyhedron, so is Λ∗
0, and its distance δ to the origin must be positive

since the feasible set in (6.4) was empty for those k’s associated with Z0. Since
0 < δ ≤ ‖λk −λ∗

k‖ for these k’s and since ‖λk −λ∗
k‖ approaches 0 by Proposition 5.1,

we have a contradiction. Hence, for k sufficiently large, the feasible set in (6.4) is

nonempty and the projection λ̂k exists.
The set Λ∗ is a polyhedron which can be described by a finite number of linear

equalities and inequalities. Hence, we write this linear system in the form Mλ ≤ z
required by Lemma 6.1. In this context, M1 equals the columns of M associated with
indices in Z(λk)c, M2 equals the columns of M associated with indices in Z(λk), and
u2 = 0. With these choices, the bound (6.5) follows from (6.1) and the fact that the
columns of M1 are taken from a finite set.

6.2. Minimum norm subgradient. In analyzing convergence, we need a way
to estimate the error at any iterate. For a concave nonsmooth function such as L,
λ ∈ Λ∗ if and only if 0 ∈ ∂L(λ). Consequently, ‖∂L(λ)‖min, defined by

‖∂L(λ)‖min = min{‖g‖∞ : g ∈ ∂L(λ)},

is one measure of the error. Due to the structure of L, we have ∂L(λ) = b(λ)−Ax(λ),
where the set-valued map b(λ) and the single-valued map x(λ) are defined in (1.5).
The minimum ∞-norm subgradient can be expressed as

gi(λ) =

li − (Ax(λ))i if i ∈ I+(λ),
ui − (Ax(λ))i if i ∈ I−(λ),

0 otherwise.
(6.6)

where

I+(λ) = {i : λi > 0 or λi = 0 and li − (Ax(λ))i ≥ 0},
I−(λ) = {i : λi < 0 or λi = 0 and ui − (Ax(λ))i ≤ 0}.

Lemma 6.3. Suppose that λk satisfies the first-order conditions (3.16), which are

repeated here for convenience:

λi = 0 for i ∈ S0, λi ≥ 0 for i ∈ S+, λi ≤ 0 for i ∈ S−.(6.7)

If ‖λk − λ∗
k‖ is small enough to ensure that li < [Ax(λk)]i < ui for all i ∈ S0,

[Ax(λk)]i < ui for all i ∈ S+, and [Ax(λk)]i > li for all i ∈ S−, then for all i, we

have

|gi(λk)| ≤ |∇if(λk) −∇if(λ∗
k)| ≤ ‖A‖2‖λk − λ∗

k‖,(6.8)

while for all i ∈ Z(λk)c,

gi(λk) = ∇if(λk) −∇if(λ∗
k).(6.9)

Proof. Let us start with (6.9). If λki > 0 and ui > li, then i ∈ S+ since λk satisfies
the first-order conditions (6.7). Since i ∈ S+, we have li = [Ax∗]i = [Ax(λ∗

k)]i. Hence,
by (6.6) we conclude that

gi(λk) = li − [Ax(λk)]i = [Ax(λ∗
k) − Ax(λk)]i,(6.10)

PROJECTION ONTO A POLYHEDRON THAT EXPLOITS SPARSITY 17

which reduces to (6.9) by the formula (1.12) for the gradient. An analogous argument
can be used for the case where λki < 0 and ui > li. In the case where li = ui, gi(λk)
is given by (6.10), which again reduces to (6.9) by the formula (1.12) for the gradient.

The second inequality in (6.8) is due to the Lipschitz continuity (1.13) of the
gradient of f . Now consider the first inequality in (6.8). For i ∈ Z(λk)c, (6.9) implies
(6.8). If i ∈ S0, then (6.8) holds trivially since the assumption li < [Ax(λk)]i < ui

implies that gi(λk) = 0. Since λk satisfies the first-order conditions (6.7), we have
S0 ⊂ Z(λk). The only remaining indices to check in (6.8) are those i ∈ Z(λk) \ S0.
These indices correspond to i ∈ S+ or i ∈ S− with λki = 0. Suppose that i ∈ S+

and λki = 0. By the assumptions of the lemma, [Ax(λk)]i < ui for all i ∈ S+.
It follows from (6.6) that either gi(λk) = 0, in which case (6.8) holds trivially, or
gi(λk) = li − [Ax(λk)]i. But again for i ∈ S+, li = (Ax∗)i = [Ax(λ∗

k)]i and

gi(λk) = li − [Ax(λk)]i = [Ax(λ∗
k)]i − [Ax(λk)]i = ∇if(λk) −∇if(λ∗

k).

Hence, the first inequality in (6.8) is an equality. The case i ∈ S− with λki = 0 is
treated in a similar fashion.

The next result provides a lower bound for the elements of ∂L(λk) associated
with Z(λk)c.

Lemma 6.4. For k sufficiently large, we have

µ‖λk − λ∗
k‖ ≤ c‖ĝk‖,(6.11)

where c is the constant given in Corollary 6.2, µ is the constant given in Corollary 3.2,
and ĝk is the subvector of ∂L(λk) associated with indices in Z(λk)c.

Proof. By Theorem 3.1, there exists µ > 0 such that

µ‖λk − λ∗
k‖2 ≤ L∗ − L(λk)(6.12)

for k sufficiently large. Again, let λ̂k denote the projection defined in (6.4). Since

L∗ = L(λ̂k) and L is concave, (6.12) yields

µ‖λk − λ∗
k‖2 ≤ L(λ̂k) − L(λk) ≤ g(λk)(λ̂k − λk).

By the definition of the projection (6.4), λ̂ki = λki = 0 for all i ∈ Z(λk). Hence, we
have

µ‖λk − λ∗
k‖2 ≤

∑

i∈Z(λk)c

∂iL(λk)(λ̂ki − λki).(6.13)

By the Schwarz inequality,

µ‖λk − λ∗
k‖2 ≤ ‖ĝk‖‖λ̂k − λk‖ ≤ c‖ĝk‖‖λ∗

k − λk‖,

where c is the constant given in Corollary 6.2 and ĝk is the subvector of ∂L(λk)
associated with indices in Z(λk)c. If λk = λ∗

k, then (6.11) holds trivially. If λk 6= λ∗
k,

then we can divide by ‖λ∗
k − λk‖ to complete the proof.

We will now prove that asymptotically, DASS only executes AP. The analysis is
divided into two cases, the nondegenerate case, and the general case. By a nondegen-
erate problem, we mean that there exists a parameter π > 0 such that for all λ ∈ Λ∗

and i ∈ S+, we have λi ≥ π, while for all λ ∈ Λ∗ and i ∈ S−, λi ≤ −π.

18 W. W. HAGER AND H. ZHANG

6.3. Asymptotic behavior of DASS. We first show in the nondegenerate case
that DASS asymptotically executes only the preferred algorithm.

Theorem 6.5. Suppose the projection problem (1.1) is nondegenerate and λk

is generated by DASS with ǫ = 0. Then after a finite number of iterations, either

λk ∈ Λ∗, or DASS performs only AP. Moreover, if Bk = B(λk) in each iteration of

AP, then after a finite number of iterations, DASS performs only AP without restarts.

Proof. Suppose that DASS performs an infinite number of iterations, otherwise
there is nothing to prove. By Proposition 5.1, ‖λk − λ∗

k‖ approaches 0 and x(λk)
approaches x∗. Let K be chosen large enough that for all k ≥ K, we have li <
(Ax(λk))i < ui for every i ∈ S0, λki ≥ π/2 for every i ∈ S+, and λki ≤ −π/2 for
every all i ∈ S−. By (6.6), gi(λk) = 0 for all i ∈ S0 since li < (Ax(λk))i < ui. Since
λki ≥ π/2 and λkj ≤ −π/2 for every i ∈ S+, j ∈ S−, and k ≥ K, it follows that
Z(λk) ⊂ S0. Hence, we have

max{|∂iL(λk)| : i ∈ Z(λk)c} ≥ max{|∂iL(λk)| : i ∈ Sc
0}(6.14)

= ‖g(λk)‖∞ = ‖∂L(λk)‖min.

Since γ < 1, the condition in Step 1a is fulfilled and SpaRSA branches to Step 2.
Likewise, in AP, the condition of Step 2a is never satisfied due to (6.14) and the
fact that γ < 1. Hence, only AP will be executed. If Bk = B(λk) in AP, then
∂iL(λk,Bk) = ∂iL(λk) for i ∈ Z(λk)c, and we do not check the conditions in Step 2a
and Step 2b. In particular, AP does not perform a restart.

We now consider the general problem which is potentially degenerate. In this
case, the undecided index set plays a role.

Theorem 6.6. If λk is generated by DASS, then after a finite number of iter-

ations, either λk ∈ Λ∗ or the DASS performs only AP. Moreover, if Bk = B(λk) in

each iteration of AP, then after a finite number of iterations, DASS performs only

AP without restarts.

Proof. Let us focus on the nontrivial case where λk 6∈ Λ∗ for all k. We will now
utilize Lemma 6.3. By Proposition 5.1, ‖λk − λ∗

k‖ approaches 0. By the structure of
DASS, AP is always preceded by one or more iterations of SpaRSA, and by Proposi-
tion 3.5, when λk is generated by SpaRSA, the first-order conditions (6.7) are satisfied
for k sufficiently large. Moreover, by (AP2), the components of λk do not change sign
during execution of AP. Hence, λk satisfies the first-order conditions (6.7) throughout
Steps 1 and 2 of DASS for k sufficiently large. For any i, it follows from the bound
(6.8) of Lemma 6.3 that

|sgn(λki)gi(λk)|
(‖g(λk)‖∞)ω

≤ ‖g(λk)‖∞
(‖g(λk)‖∞)ω

= (‖g(λk)‖∞)1−ω ≤
(
‖A‖2‖λk − λ∗

k‖
)1−ω

.

Since ω ∈ (0, 1) and ‖λk −λ∗
k‖ approaches 0, the right side approaches 0 as k tends to

∞. Consequently, U(λk) is empty for k sufficiently large, and if SpaRSA is executed
without branching to Step 2, then γ is successively multiplied by the factor ξ ∈ (0, 1),
which drives γ towards 0.

By (6.8), we have

‖∂L(λk)‖min = ‖g(λk)‖∞ ≤ ‖A‖2‖λk − λ∗
k‖.(6.15)

PROJECTION ONTO A POLYHEDRON THAT EXPLOITS SPARSITY 19

Given starting guess λ0, initialize k = 0

While 0 6∈ ∂L(λk).

Step 1. I+
k = I+(λk) ∪ Sc, I−

k = I−(λk) ∪ Sc, Bk = B(λk),

I0
k = S \ (I+

k ∪ I−
k).

Step 2. µ ∈ arg max
{

Lk(λ) : λ ∈ R
m,λI0

k
= 0

}
, d = µ − λk.

Step 3. sk ∈ arg max
s≥0

L(Tk(λk + sd),Bk), λk+1 = Tk(λk + skd).

Step 4. k = k + 1, Bk = Bk−1 \ {j : xj(λk) > 0},
I0

k = I0
k−1 ∪ {i ∈ S : λki = 0 and λk−1,i 6= 0},

I+
k = I+

k−1 \ I0
k, I−

k = I−
k−1 \ I0

k.

Step 5. If Bk 6= Bk−1 or I+
k 6= I+

k−1 or I−
k 6= I−

k−1, goto Step 2.

End

Alg. 7.1. The Dual Active Set Algorithm (DASA) for (1.3).

And by Lemma 6.4,

µ

c
‖λk − λ∗

k‖ ≤ ‖ĝk‖ ≤ √
m‖ĝk‖∞,(6.16)

where ĝk is the subvector of ∂L(λk) associated with indices in Z(λk)c. Combining
(6.15) and (6.16) yields

‖ĝk‖∞
‖∂L(λk)‖min

≥ µ

c
√

m‖A‖2
.

Hence, the condition in Step 1a of DASS is fulfilled whenever γ ≤ µ/(c
√

m‖A‖2).
If γ is this small, then the condition in Step 2a is never satisfied, and only AP of
Step 2 is executed for k sufficiently large. If Bk = B(λk) in AP, then ∂iL(λk,Bk) =
∂iL(λk) for i ∈ Z(λk)c, and we do not check the conditions in Step 2a and Step 2b.
In particular, AP does not perform a restart.

7. Dual Active Set Algorithm. For the numerical experiments, the AP is
based on the Dual Active Set Algorithm (DASA) [21, 22, 32, 33, 34, 35, 36, 37].
Algorithm 7.1 is DASA in the context of the polyhedral projection problem (1.1).
Three sets appear in the statement of DASA. The sets I+

k and I−
k corresponds to

inequalities that are treated as at their lower and upper bounds respectively. Their
initialization is based on the sets I+(λ) and I−(λ) associated with the minimum
∞-norm subgradient (6.6). The set Bk corresponds to the components of the primal
variable that are treated as at their lower bound. Based on current bound choices,
we define the local dual function Lk by

Lk(λ) = inf{L(λ,x,b) : xj = 0 ∀ j ∈ Bk, bi = li ∀ i ∈ I+
k , bi = ui ∀ i ∈ I−

k }.

When evaluating Lk, the components of x in Bc
k and the components of b in (I+

k ∪I−
k)c

are unconstrained. Consequently, Lk(λ) = −∞ if λi 6= 0 for some i ∈ (I+
k ∪ I−

k)c.
The maximization of Lk in Step 2 is equivalent to solving the linear system

ARCA
T

RCµR = bR − ARCyC ,(7.1)

20 W. W. HAGER AND H. ZHANG

where b is the vector given in the definition of Lk, ARC is the submatrix of A
corresponding to rows i ∈ R = I+

k ∪ I−
k and columns j ∈ C = Bc

k, and µi = 0 when
i 6∈ R. Since the matrix ARCA

T

RC may be singular, we could utilize the minimum
norm solution to (7.1). In practice, we modify the dual function by adding a term
of the form 0.5ǫ‖λ‖2, where ǫ is on the order of the computing precision. With this
adjustment to L, the matrix in (7.1) becomes ARCA

T

RC+ǫI, which is positive definite.
This modification also ensures that the maximizer of Lk exists.

The truncation operator Tk in Algorithm 7.1 essentially holds a dual multiplier
fixed at zero when it reaches zero. More precisely, the components of the truncation
operator are defined by

Tk(λ)i =

max{λi, 0} if i ∈ I+
k ∩ S,

min{λi, 0} if i ∈ I−
k ∩ S,

λi otherwise.

In DASA, the sets Bk and I±
k can only shrink in each iteration; eventually these sets

do not change, at which point λk+1 solves the maximization problem of Step 2 and
DASA returns to Step 1 assuming 0 6∈ ∂L(λk). By the theory for DASA, we know
that it reaches a solution of the dual problem in a finite number of iterations.

Various techniques for efficiently solving (7.1) have been developed in our earlier
work [11, 18, 19, 20, 21, 23, 36]. One strategy is the direct factorization approach
[11, 18, 19, 20, 23]. When there are small changes in the sets R or C, then the current
factorization can be updated to reflect the changes in the sets. Another approach is
to approximately solve the linear system using an iterative method [36]. Our code
currently exploits an SSOR preconditioned conjugate gradient iterative solver. The
final approach we have developed is what we call a multilevel approach [21]. With
this approach we analyze the sparsity structure of the linear system and find blocks
that can be uncoupled from the rest of the problem and solved separately. These
blocks are arranged in a tree, and we work our way up the tree, eventually solving the
original linear system. An advantage of the multilevel approach is that the sets Bk

and I±
k are updated in a dynamic fashion as we work our way up the multilevel tree.

The code developed for solving the polyhedral projection problem exploits all of these
algorithms. Based on the analysis of the sparsity structure, either a single-level or a
multilevel approach is utilized. Based on the estimated flops to Cholesky factor the
matrix or to perform an update/downdate, we either factor the matrix from scratch
or perform a series of updates and downdates. Finally, based on an estimate for the
update/downdate time relative to the time of an iteration, we determine how many
SSOR preconditioned conjugate gradient iterations could be beneficial.

One of the requirements for an AP was that Z(λk) ⊂ Z(λk+1) for each k. Note
that DASA may violate this property since I+

k or I−
k in Step 1 of Algorithm 7.1 could

contain indices i for which λki = 0, and in the first iteration after Step 1, λki could
become nonzero. Algorithm 7.2 is an AP based on DASA in which the definition of
I±

0 is modified to exclude all i ∈ S where λki = 0. (AP1) holds since Bk is obtained
by removing elements from Bk−1 in Step 3. (AP2) holds since the components of λk

in S which reach zero are kept fixed at zero. In particular, the set I0
0 is initialized to

be the indices in S associated with vanishing components of λ0. At iteration k, Lk

is maximized in Step 1 subject to the constraint λI0

k
= 0. During the line search of

Step 2, the components of d and λk corresponding to I0
k are zero. Moreover, if i ∈ S

and λki > 0, then the i-th component of Tk(λk+skd) is zero whenever λki+skdki ≤ 0.
And in Step 3, these nonzero components that were fixed at zero during the Step 2

PROJECTION ONTO A POLYHEDRON THAT EXPLOITS SPARSITY 21

Given starting guess λ0, B0 = B(λ0), I0
0 = Z(λ0),

I+
0 = {i ∈ S : λ0i > 0} ∪ Sc, I−

0 = {i ∈ S : λ0i < 0} ∪ Sc

For k = 0, 1, 2, . . .

Step 1. µ ∈ arg max
{

Lk(λ) : λ ∈ R
m,λI0

k
= 0

}
, d = µ − λk.

Step 2. sk ∈ arg max
s≥0

L(Tk(λk + sd),Bk), λk+1 = Tk(λk + skd).

Step 3. Bk+1 = Bk \ {j : xj(λk+1) > 0}, I0
k+1 = Z(λk+1),

I+
k+1 = I+

k \ I0
k+1, I−

k+1 = I−
k \ I0

k+1.

End

Alg. 7.2. A DASA based AP.

line search are inserted in I0
k+1. (AP3) is the key ascent property of DASA; to fully

understand this property, one needs to study the convergence analysis in [21, 22, 37].
The rationale for (AP3) is roughly as follows. By the definition of Bk, it follows
that Lk(λk) = L(λk,Bk). If λk is not a maximizer of Lk, then Lk(µ) > Lk(λk) =
L(λk,Bk). In Step 2, we search along the line segment connecting λk and µ using
the merit function L(Tk(·),Bk). This takes us to a new point λk+1 satisfying

L(λk+1,Bk+1) = L(λk+1,Bk) > L(λk,Bk),

which ensures that (AP3) holds. (AP4) holds since within a finite number of iterations,
λk+1 = µ, a maximizer of Lk over the subspace where λI0

k
= 0. The proof of these

properties associated with (AP3) and (AP4) is mostly contained in [37, Thm. 1];
the difference between [37] and the current paper is that in the earlier work, the
constraint is an equation h(x) = 0, while here the corresponding constraint is a
system of inequalities l ≤ Ax ≤ u. The treatment of inequalities, which leads to the
index sets Ik here, can be found in [22, Sect. 5].

If the DASA based AP given in Algorithm 7.2 is used in DASS and if the test
“|∂iL(λk,Bk)| < γ‖∂L(λk)‖min for all i ∈ Z(λk)c” in Step 2 of DASS is replaced by
the test “∂iL(λk,Bk) = 0 for all i ∈ Z(λk)c,” then DASS converges in a finite number
of iterations. The reason is that the SpaRSA restart strictly improves the objective
value, based on the SpaRSA line search condition and (3.9), unless optimality has been
achieved. Immediately before the restart, DASA had reached a maximizer of Lk. By
the monotonicity of DASA and the strict improvement of the dual function during
the SpaRSA restart, the pair of sets Bk and Z(λk) associated with the maximizer of
Lk cannot repeat.

Algorithms 7.1 and 7.2 both employ a line search in the search direction d. In
certain contexts, this line search can be eliminated and we can set λk+1 = µ. For
example, in the dual approximations to optimal control problems studied in [38], it
was found that the version of DASA without a line search was locally, quadratically
convergent for a class of optimal control problems. On the other hand, in later work
[37] related to network optimization, we found that the step λk+1 = µ often resulted
in a nonconvergent algorithm. This led to the line search version of DASA, first
presented in [32]. More recently, the step λk+1 = µ is investigated more deeply
in the context of optimal control for partial differential equations, and both global
and superlinear convergence results are established when the matrix possess certain

22 W. W. HAGER AND H. ZHANG

properties; references include [6, 7, 52]. Very recently, in [16] a framework is developed
in which the step λk+1 = µ plays a key role, and in this broader framework, a finite
convergence result is established.

8. Numerical results. DASS with DASA for the AP was implemented in a
C code called PPROJ. We compared the performance of PPROJ to IPOPT (Ver-
sion 3.11) in the COIN-OR library and to CPLEX (Version 12.6). IPOPT is a open
source general purpose nonlinear optimization package, initially developed by Andreas
Wächter and Larry Biegler in [53], based on an interior point method CPLEX is a
commercial package, initially developed by Robert Bixby, which applies to linear and
quadratic programming problems, and which contains algorithms based on the primal
simplex method, the dual simplex method, and a barrier method targeted to positive
definite quadratic programs with a diagonal Hessian as in the polyhedral projection
problem (1.1). Note that IPOPT does not exploit the specific structure of the poly-
hedral projection problem while CPLEX does. The polyhedra used in the numerical
experiments were the constraints in the Netlib LP test set. Altogether, there were 109
polyhedra with m ranging from 2 up to 39,867 and n ranging from 3 up to 224,125.

The CPLEX presolver was applied to each test problem since presolving is often
crucial for the performance of barrier or interior point methods. See [1] for pre-
solve techniques. Roughly, the presolver attempts to simplify the constraints without
changing the feasible set. The vector y projected onto each polyhedron was a ran-
domly generated with components uniformly distributed on the interval [−1,+1].
These randomly generated points were always outside the polyhedra. The PPROJ
code, the test problems, the infeasible points, and the projections can be downloaded
from the authors’ web pages.

The starting point for IPOPT was x = 0, while the starting point for PPROJ was
λ = 0. CPLEX generates it own starting point. PPROJ solved all the test problems
to a relative error tolerance of 10−9, where the relative error is the following ratio of
the minimum ∞-norm subgradient to a normalization expression:

max
{∣∣∣li −

∑n

j=1 aijxj(λ)
∣∣∣ ,

∣∣∣uk − ∑n

j=1 akjxj(λ)
∣∣∣ : i ∈ I+(λ), k ∈ I−(λ)

}

max
{∑n

j=1 |aijxj(λ)| ,∑n

j=1 |akjxj(λ)| : i ∈ I+(λ), k ∈ I−(λ)
} .

The numerator is ‖∂L(λ)‖min, where the minimum norm subgradient is given in (6.6).
At optimality, the numerator vanishes. The denominator measures the size of the
numbers that enter into the computation of the numerator. IPOPT uses a different
yet related relative error estimator [53]. The tolerance 10−9, which is slightly smaller
than the default tolerance 10−8 in IPOPT, was determined as follows: All the test
problems were initially solved using PPROJ and a relative error tolerance 10−12. The
computed projections, which are unique due to the strong convexity of the objective
function, were saved. The problems were then resolved to a lower tolerance, which
was increased until the computed projections had at least 4 digit accuracy for all the
test problems.

Default parameter values were used for all the software except for the parameter
max iter in IPOPT which was increased from its default value of 3,000 to 50,000.
With the default value, 16 problems terminated in IPOPT with the error message
“Maximum Number of Iterations Exceeded.” After increasing max iter to 50,000, 7
more problems were solved.

CPLEX is a commercial closed source package which is completely self contained.
Both PPROJ and IPOPT require a linear system solver. For IPOPT the solver was

PROJECTION ONTO A POLYHEDRON THAT EXPLOITS SPARSITY 23

1 4 16 64
τ

0

0.2

0.4

0.6

0.8

1

P
Time Performance

PPROJ
DASA
CPLEX BARRIER
IPOPT
CPLEX DUAL SIMPLEX
CPLEX PRIMAL SIMPLEX

Fig. 8.1. Running time performance for the Netlib LP polyhedra.

MA57 [28] in the Harwell Subroutine Library, a code for solving sparse symmetric
indefinite linear systems like those that arise in the interior point method. PPROJ
utilizes CHOLMOD [11, 23], a package for solving symmetric positive definite lin-
ear systems like those arising in DASA. Both CHOLMOD and MA57 require the
BLAS [26, 27, 42] and LAPACK [2]. We employed the GOTO2 BLAS of Kazushige
Gotō. The computer on which the experiments were performed was a Dell Precision
T7610 Workstation with a Dual Intel Xeon Processor E5-2687W v2 (16 physical cores,
3.4GHz, 25.6MB cache, 192GB memory). The GOTO2 BLAS were restricted to 12
cores since better performance was achieved.

The operating system was Linux. It was found that the most reliable way to time
the software was to dedicate the machine to running the codes and then time the runs
using the gettimeofday routine in Linux (measuring the wall time). For IPOPT, the
time to evaluate the function, gradient, Jacobian, and Hessian is a negligible part of
the total running time, and the solution time is primarily the time for factoring and
solving the linear system that arises in each iteration.

A performance profile comparing the running times of the codes is given in Fig-
ure 8.1. The data that is plotted in Figure 8.1 is posted on the authors’ web pages.
The vertical axis of the Dolan-Moré performance profile [25] gives the fraction P of
problems for which any given method is within a factor τ of the best time. In the
CPU time performance profile plot, the top curve is the method that solved the most
problems in a time that was within a factor τ of the best time. The percentage of the
test problems for which a method is fastest is given on the left axis of the plot. The
right side of the plot gives the percentage of the test problems that were successfully
solved by each of the methods. In essence, the right side is a measure of an algorithm’s
robustness. Observe that PPROJ had the best performance for the test set on which
Figure 8.1 is based. Again, we emphasize that IPOPT is a general purpose nonlinear
optimization package that does not exploit the structure of the polyhedral projection

24 W. W. HAGER AND H. ZHANG

problem. Hence, Figure 8.1 indicates the potential benefit of software specifically
targeted to the polyhedral projection problem.

To assess the benefit from combining SpaRSA with DASA, we also solved each
test problem using only DASA. As seen in Figure 8.1, for about 75% of the problems,
the combined code was faster than the pure DASA code. Thus there was an overall
benefit from combining the two algorithms; nonetheless, in about 1 of 4 problems,
pure DASA was faster than PPROJ. This may be related to poor conditioning of
some problems, and the fact that the DASA search directions are much better than
the SpaRSA directions. As a result, SpaRSA might move to a point where DASA
takes more iterations than would have been used by DASA from the starting point.
The better performance of PPROJ relative to the pure DASA algorithm is achieved
with very few SpaRSA iterations. There are always less than 10 iterations, and in
most cases just a few iterations. In contrast, there were many changes in the active
constraints during these iterations. These few SpaRSA iterations that occurred at the
very start of each PPROJ run generated an approximation to the active constraints
for an optimal solution which generally reduced the linear algebra overhead in DASA.
Our parameter values were γ = 0.1 and ξ = 0.5.

9. Conclusions. The paper focused on the problem of projecting a point onto
a polyhedron. The projection problem has many important applications including
Newton methods, gradient projection methods, basis pursuit problems that arise in
sparse signal recovery, and the generation of starting points for a quadratic program
solver. A new Dual Active Set Strategy (DASS) was presented. DASS uses SpaRSA to
approximately identify active inequality constraints in the polyhedron, and an asymp-
totically preferred algorithm, denoted AP, to accelerate convergence. It was proved
that when SpaRSA is applied to the dual of the projection problem, the dual values
possess a Q-linear convergence property even though the dual problem may have mul-
tiple solutions and the objective function is not strongly concave. Asymptotically, it
was shown that DASS only executes AP, not SpaRSA. When AP is an unconstrained
optimization method that keeps dual multipliers fixed at zero whenever they reach
zero, it was shown in Theorems 6.5 and 6.6 that asymptotically, no restarts were
needed; that is, when the unconstrained optimization algorithm is used in DASS, the
positive components of the dual multipliers remain positive and the negative compo-
nents remain negative asymptotically. An implementation of the DASS called PPROJ
was developed in which AP was based on the Dual Active Set Algorithm (DASA).
The performance of PPROJ was evaluated using polyhedra associated with the con-
straints in the Netlib LP test set. It was found that PPROJ was robust, accurate,
and fast.

Acknowledgments. Constructive comments and suggestions from the reviewers
and associate editor are gratefully acknowledged. In particular, the results in [43] for
piecewise quadratics greatly simplified the Q-linear convergence analysis in Section 3.

REFERENCES

[1] E. D. Andersen and K. D. Andersen, Presolving in linear programming, Math. Programming,
71 (1995), pp. 221–245.

[2] E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. W. Demmel, J. J. Dongarra, J. Du

Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. C. Sorensen, LAPACK
Users’ Guide, SIAM, Philadelphia, PA, 3rd ed., 1999.

[3] J. Barzilai and J. M. Borwein, Two point step size gradient methods, IMA J. Numer. Anal.,
8 (1988), pp. 141–148.

PROJECTION ONTO A POLYHEDRON THAT EXPLOITS SPARSITY 25

[4] A. Beck and M. Teboulle, Fast gradient-based algorithms for constrained total variation im-
age denoising and deblurring problems, IEEE Trans. Image Process., 18 (2009), pp. 2419–
2434.

[5] , A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM
Journal on Imaging Sciences, 2 (2009), pp. 183–202.

[6] M. Bergounioux, K. Ito, and K. Kunisch, Primal-dual strategy for optimal control problems,
SIAM J. Control Optim., 37 (1999), pp. 1176–1999.

[7] M. Bergounioux and K. Kunisch, Primal-dual strategy for state-constrained optimal control
problem, Comput. Optim. Appl., 22 (2002), pp. 193–224.

[8] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, MA, 1999.
[9] R. H. Byrd, J. Nocedal, and S. Solntsev, An algorithm for quadratic ℓ1-regularized opti-

mization with a flexible active-set strategy, tech. rep., Northwestern University, March 27,
2014.

[10] S. S. Chen, D. L. Donoho, and M. A. Saunders, Atomic decomposition by basis pursuit,
SIAM J. Sci. Comput., 20 (1998), pp. 33–61.

[11] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, Algorithm 887: CHOLMOD,
supernodal sparse Cholesky factorization and update/downdate, ACM Trans. Math. Soft-
ware, 35 (2009).

[12] F. H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc., 205 (1975),
pp. 247–262.

[13] P. L. Combettes and J.-C. Pesquet, Proximal splitting methods in signal processing, in
Fixed-Point Algorithms for Inverse Problems in Science and Engineering, H. H. Bauschke,
R. S. Burachik, P. L. Combettes, V. Elser, D. R. Luke, and H. Wolkowicz, eds., vol. 49 of
Springer Optimization and Its Applications, New York, 2011, pp. 185–212.

[14] R. Cominetti, W. F. Mascarenhas, and P. J. S. Silva, A Newton’s method for the contin-
uous quadratic knapsack problem, Math. Prog. Comp., 6 (2014), pp. 151–169.

[15] A. R. Conn, N. I. M. Gould, D. Orban, and P. L. Toint, A primal-dual trust-region
algorithm for minimizing a non-convex function subject to general inequality and linear
equality constraints, Math. Program., 87 (1999), pp. 219–249.

[16] F. E. Curtis, Z. Han, and D. P. Robinson, A globally convergent primal-dual active-set
framework for large-scale convex quadratic optimization, Comput. Optim. Appl., DOI
10.1007/s10589-014-9681-9 (2014).

[17] J. M. Danskin, The theory of max-min and its applications to weapons allocation problems,
Springer-Verlag, New York, 1967.

[18] T. A. Davis and W. W. Hager, Modifying a sparse Cholesky factorization, SIAM J. Matrix
Anal. Appl., 20 (1999), pp. 606–627.

[19] , Multiple-rank modifications of a sparse Cholesky factorization, SIAM J. Matrix Anal.
Appl., 22 (2001), pp. 997–1013.

[20] , Row modifications of a sparse Cholesky factorization, SIAM J. Matrix Anal. Appl., 26
(2005), pp. 621–639.

[21] , Dual multilevel optimization, Math. Program., 112 (2008), pp. 403–425.
[22] , A sparse proximal implementation of the LP Dual Active Set Algorithm, Math. Pro-

gram., 112 (2008), pp. 275–301.
[23] , Dynamic supernodes in sparse Cholesky update/downdate and triangular solves, ACM

Trans. Math. Software, 35 (2009).
[24] T. A. Davis, W. W. Hager, and J. T. Hungerford, The separable convex quadratic knapsack

problem, ACM Trans. Math. Software, 42 (2016), pp. 1–25.
[25] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles,

Math. Program., 91 (2002), pp. 201–213.
[26] J. Dongarra, J. D. Croz, I. S. Duff, and S. Hammarling, Algorithm 679: A set of level 3

basic linear algebra subprograms, ACM Transactions on Mathematical Software, 16 (1990),
pp. 1–17, 18–28.

[27] J. J. Dongarra, J. D. Croz, S. Hammarling, and R. J. Hanson, Algorithm 656: An ex-
tended set of Fortran basic linear algebra subprograms, ACM Transactions on Mathematical
Software, 14 (1988), pp. 1–17, 18–32.

[28] I. S. Duff, MA57—a code for the solution of sparse symmetric definite and indefinite systems,
ACM Trans. Math. Software, 30 (2004), pp. 118–144.

[29] N. I. M. Gould, D. Orban, and P. L. Toint, GALAHAD, a library of thread-safe Fortran 90
packages for large-scale nonlinear optimization, ACM Trans. Math. Software, 29 (2004),
pp. 253–372.

[30] L. Grippo, F. Lampariello, and S. Lucidi, A nonmonotone line search technique for New-
ton’s method, SIAM J. Numer. Anal., 23 (1986), pp. 707–716.

26 W. W. HAGER AND H. ZHANG

[31] I. Griva, S. G. Nash, and A. Sofer, Linear and Nonlinear Optimization, SIAM, Philadelphia,
2009.

[32] W. W. Hager, The dual active set algorithm, in Advances in Optimization and Parallel Com-
puting, P. M. Pardalos, ed., North Holland, Amsterdam, 1992, pp. 137–142.

[33] , Analysis and implementation of a dual algorithm for constrained optimization, J. Op-
tim. Theory Appl., 79 (1993), pp. 427–462.

[34] , The LP dual active set algorithm, in High Performance Algorithms and Software in
Nonlinear Optimization, R. D. Leone, A. Murli, P. M. Pardalos, and G. Toraldo, eds.,
Dordrecht, 1998, Kluwer, pp. 243–254.

[35] , The dual active set algorithm and its application to linear programming, Comput.
Optim. Appl., 21 (2002), pp. 263–275.

[36] , The dual active set algorithm and the iterative solution of linear programs, in Novel
Approaches to Hard Discrete Optimization, P. M. Pardalos and H. Wolkowicz, eds., vol. 37,
Fields Institute Communications, 2003, pp. 95–107.

[37] W. W. Hager and D. W. Hearn, Application of the dual active set algorithm to quadratic
network optimization, Comput. Optim. Appl., 1 (1993), pp. 349–373.

[38] W. W. Hager and G. Ianculescu, Dual approximations in optimal control, SIAM J. Control
Optim., 22 (1984), pp. 423–465.

[39] W. W. Hager, D. T. Phan, and H. Zhang, Gradient-based methods for sparse recovery, SIAM
J. Imaging Sci., 4 (2011), pp. 146–165.

[40] W. W. Hager and H. Zhang, A new active set algorithm for box constrained optimization,
SIAM J. Optim., 17 (2006), pp. 526–557.

[41] A. J. Hoffman, On approximate solutions of systems of linear inequalities, J. Res. National
Bureau Standards, 49 (1952), pp. 263–265.

[42] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, Basic linear algebra subpro-
grams for Fortran usage, ACM Trans. Math. Software, 5 (1979), pp. 308–323.

[43] W. Li, Error bounds for piecewise convex quadratic programs and applications, SIAM J. Control
Optim., 33 (1995), pp. 1510–1529.

[44] Z. Lu and Y. Zhang, An augmented Lagrangian approach for sparse principal component
analysis, Math. Program., 135 (2012), pp. 149–193.

[45] D. G. Luenberger, Optimization by Vector Space Methods, John Wiley, New York, 1969.
[46] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming, Springer, Berlin, 2008.
[47] Z.-Q. Luo and P. Tseng, On the linear convergence of descent methods for convex essentially

smooth minimization, SIAM J. Control Optim., 30 (1992), pp. 408–425.
[48] , Error bounds and convergence analysis of feasible descent methods: a general approach,

Ann. Oper. Res., 46 (1993), pp. 157–178.
[49] , On the convergence rate of dual ascent methods for linearly constrained convex mini-

mization, Math. Oper. Res., 18 (1993), pp. 846–867.
[50] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York, 1999.
[51] P. Tseng and S. Yun, A coordinate gradient descent method for nonsmooth separable mini-

mization, Math. Program., 117 (2009), pp. 387–423.
[52] M. Ulbrich, S. Ulbrich, and M. Heinkenschloss, Semismooth newton methods for operator

equations in function spaces, SIAM J. Optim., 13 (2003), pp. 805–842.
[53] A. Wächter and L. T. Biegler, On the implementation of a primal-dual interior point filter

line search algorithm for large-scale nonlinear programming, Math. Program., 106 (2006),
pp. 25–57.

[54] P.-W. Wang and C.-H. Lin, Iteration complexity of feasible descent methods for convex opti-
mization, J. Mach. Learn. Res., 15 (2014), pp. 1523–1548.

[55] P. Wolfe, Convergence conditions for ascent methods, SIAM Rev., 11 (1969), pp. 226–235.
[56] , Convergence conditions for ascent methods II: some corrections, SIAM Rev., 13 (1971),

pp. 185–188.
[57] S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo, Sparse reconstruction by separable

approximation, IEEE Trans. Signal Process., 57 (2009), pp. 2479–2493.
[58] Y. Zhang, On the convergence of a class of infeasible interior-point methods for the horizontal

linear complementarity problem, SIAM J. Optim., 4 (1994), pp. 208–227.

PROJECTION ONTO A POLYHEDRON THAT EXPLOITS SPARSITY 27

Problem Row Col NNZs PPROJ DASA BARRIER IPOPT DUAL PRIMAL
afiro 11 14 36 3.5e-14 3.5e-14 7.7e-13 2.1e-08 2.1e-13 2.1e-13
sc50a 17 16 72 8.0e-13 8.0e-13 1.6e-12 1.5e-08 1.6e-12 1.6e-12
sc50b 15 15 56 1.4e-14 1.0e-12 2.0e-10 2.3e-12 1.0e-12 1.0e-12
kb2 37 28 258 2.7e-07 2.7e-07 7.9e-13 1.4e-08 1.1e-14 1.1e-14
sc105 32 31 212 5.9e-13 5.9e-13 3.2e-13 1.3e-08 0.0e-00 0.0e-00
adlittle 53 93 371 5.5e-10 5.5e-10 2.8e-10 9.7e-08 4.4e-15 4.4e-15
blend 51 55 393 1.6e-08 1.6e-08 9.7e-13 5.1e-08 5.4e-15 5.4e-15
scagr7 60 72 274 7.1e-11 7.1e-11 1.8e-06 2.3e-08 3.7e-16 3.7e-16
stocfor1 44 53 307 4.1e-08 4.1e-08 5.9e-12 2.3e-08 6.4e-11 6.4e-11
recipe 48 57 345 3.9e-08 3.9e-08 3.5e-08 7.4e-09 6.2e-15 6.2e-15
sc205 62 61 503 5.5e-13 5.5e-13 6.7e-12 2.9e-08 1.1e-12 1.1e-12
share2b 93 79 691 5.0e-07 5.0e-07 4.1e-11 4.8e-09 9.0e-13 9.0e-13
lotfi 117 188 502 3.7e-16 3.7e-16 2.8e-09 7.4e-08 2.7e-15 2.7e-15
sctap1 269 339 1444 1.2e-09 1.2e-09 7.3e-09 3.0e-08 7.5e-16 7.5e-16
share1b 93 189 1023 7.5e-07 7.5e-07 1.2e-07 3.9e-01 2.4e-12 2.4e-12
vtp base 40 57 173 1.7e-09 1.7e-09 1.3e-13 3.0e-08 6.6e-16 6.6e-16
bore3d 40 54 327 1.3e-14 1.7e-06 2.1e-10 1.2e-06 1.2e-13 1.2e-13
scorpion 57 60 304 7.7e-14 7.7e-14 3.0e-11 7.6e-10 4.6e-13 4.6e-13
brandy 104 170 1638 2.1e-09 2.1e-09 4.6e-09 1.3e-08 3.7e-13 3.7e-13
grow7 140 260 2571 1.2e-14 1.2e-14 1.1e-10 1.8e-08 4.4e-13 4.4e-13
israel 163 137 2252 3.6e-10 3.6e-10 2.2e-10 4.8e-06 4.4e-16 4.4e-16
capri 142 199 1237 4.3e-07 4.3e-07 2.1e-06 1.9e-07 1.4e-13 1.4e-13
scagr25 240 288 1120 1.2e-09 1.2e-09 6.7e-10 5.3e-08 5.4e-15 5.4e-15
bandm 173 197 1459 4.0e-10 4.0e-10 2.8e-10 1.0e-08 1.2e-15 1.2e-15
degen2 382 471 3849 7.6e-11 6.5e-11 1.4e-09 2.1e-07 1.5e-10 1.5e-10
scfxm1 233 361 2129 6.2e-10 6.2e-10 1.1e-06 1.5e-08 1.0e-14 1.0e-14
e226 146 237 2249 2.3e-06 2.3e-06 1.3e-10 4.0e-07 7.1e-13 7.1e-13
scsd1 77 740 2368 1.1e-14 1.1e-14 6.1e-07 2.8e-07 2.0e-13 2.0e-13
beaconfd 16 34 81 5.7e-14 5.7e-14 6.9e-12 2.8e-13 1.1e-13 1.1e-13
agg 164 101 861 1.3e-08 1.3e-08 2.5e-07 9.3e-01 1.6e-15 1.6e-15
shell 236 1157 2320 1.2e-13 1.2e-13 3.7e-07 3.5e-04 2.4e-13 2.4e-13
etamacro 290 427 1866 3.8e-08 3.8e-08 2.3e-10 3.3e-08 5.3e-15 5.3e-15
standata 164 218 644 1.1e-11 1.1e-11 2.4e-09 1.7e-09 2.6e-17 2.6e-17
standgub 164 218 644 2.6e-09 2.6e-09 9.2e-10 6.1e-09 1.7e-16 1.7e-16
gfrd pnc 277 740 1578 7.5e-13 7.5e-13 2.0e-07 1.3e-08 2.0e-12 2.0e-12
stair 241 269 3518 1.5e-10 1.5e-10 2.0e-10 3.2e-08 5.0e-14 5.0e-14
finnis 296 321 1319 3.5e-12 3.5e-12 7.8e-07 1.6e-08 6.7e-11 6.7e-11
standmps 266 818 2060 5.2e-10 5.2e-10 1.8e-09 8.3e-09 3.5e-17 3.5e-17
scrs8 174 790 2533 3.4e-09 3.4e-09 3.6e-08 7.9e-09 3.4e-15 3.4e-15
tuff 142 385 4044 8.1e-06 8.1e-06 4.2e-10 5.7e-07 1.1e-11 1.1e-11
agg2 280 240 2257 1.2e-12 1.2e-12 9.9e-07 1.7e-09 7.2e-12 7.2e-12
agg3 282 239 2288 1.9e-13 1.9e-13 6.7e-07 1.7e-09 1.2e-12 1.2e-12
grow15 300 580 5555 4.7e-14 4.8e-14 6.9e-10 5.2e-08 1.7e-12 1.7e-12
sctap2 977 1326 5717 1.7e-10 1.7e-10 2.3e-06 6.9e-09 6.2e-16 6.2e-16
scsd6 147 1334 4300 3.0e-13 3.0e-13 2.0e-09 2.3e-08 5.8e-12 5.8e-12
ship04s 188 1231 2797 2.2e-12 2.2e-12 8.9e-08 2.8e-09 5.4e-12 5.4e-12
modszk1 550 479 1960 6.0e-13 5.9e-13 4.1e-08 1.4e-08 2.4e-12 2.4e-12
scfxm2 467 723 4281 4.7e-08 4.7e-08 2.8e-09 1.0e-08 2.0e-13 2.0e-13
fffff800 292 568 4724 1.4e-11 1.4e-11 1.0e-07 9.8e-02 1.8e-10 1.8e-10
bnl1 446 980 4603 4.0e-07 4.0e-07 8.5e-08 6.4e-06 1.7e-09 1.7e-09
pilot4 348 770 4603 2.0e-06 2.0e-06 6.4e-10 4.4e-07 2.4e-10 1.1e-11
grow22 440 860 8166 7.1e-14 7.1e-14 2.2e-08 6.8e-08 2.6e-12 2.6e-12
ken 07 887 2027 4348 1.2e-13 1.2e-13 1.4e-08 5.3e-09 2.5e-13 2.5e-13
sctap3 1344 1767 7630 1.5e-10 1.5e-10 4.3e-06 5.6e-09 5.1e-16 5.1e-16
perold 503 1074 5346 5.6e-05 5.6e-05 3.1e-07 8.2e-01 1.3e-07 1.3e-07

Table 9.1

Test problem description and relative error in ‖ · ‖∞ for computed solution of primal problem.
Columns 2, 3, and 4 give the number of rows, columns, and nonzeros in A respectively.

28 W. W. HAGER AND H. ZHANG

Problem Row Col NNZs PPROJ DASA BARRIER IPOPT DUAL PRIMAL
ganges 409 546 3022 1.1e-13 1.1e-13 1.6e-06 1.8e-08 5.8e-13 5.8e-13
scfxm3 701 1085 6433 2.4e-08 2.4e-08 4.9e-07 1.1e-08 3.1e-14 3.1e-14
sierra 877 1723 6202 2.4e-09 2.4e-09 2.6e-07 5.2e-01 5.3e-15 5.3e-15
fit1p 627 24 8215 7.4e-13 7.4e-13 9.1e-11 9.8e-08 3.4e-16 3.4e-16
ship08s 234 1512 3494 9.7e-13 9.7e-13 8.5e-09 1.9e-09 2.6e-12 2.6e-12
scsd8 397 2738 8572 1.0e-11 1.0e-11 5.7e-07 6.7e-08 2.0e-10 2.0e-10
ship12s 267 1828 4102 1.9e-10 1.9e-10 1.0e-06 6.1e-09 3.7e-15 3.7e-15
25fv47 682 1415 9864 7.7e-10 7.8e-10 4.4e-08 7.0e-09 2.9e-13 2.9e-13
maros 524 786 5694 2.0e-10 2.0e-10 1.4e-07 1.0e-00 9.7e-09 9.7e-09
fit1d 24 1024 13386 7.7e-12 7.7e-12 1.1e-07 7.0e-09 3.3e-10 3.3e-10
stocfor2 1070 962 5868 7.8e-08 7.8e-08 1.4e-08 4.1e-08 9.0e-10 8.4e-10
pilot we 602 2346 8234 1.9e-05 1.9e-05 8.8e-09 5.4e-01 8.3e-12 8.3e-12
czprob 464 2433 4866 9.4e-08 9.4e-08 6.1e-07 1.2e-07 1.2e-10 1.2e-10
degen3 1406 1712 24413 1.1e-09 2.8e-09 5.5e-10 6.6e-07 1.6e-13 7.0e-13
pilotnov 748 1686 11390 2.4e-04 2.4e-04 6.7e-08 1.0e-00 6.7e-08 6.7e-08
pds 02 877 2902 7330 3.0e-13 2.2e-13 8.8e-09 4.3e-08 4.1e-13 4.1e-13
pilot ja 708 1369 10840 7.7e-07 7.7e-07 4.3e-07 1.0e-00 1.6e-10 1.6e-10
ship08l 470 3085 7086 2.1e-12 2.1e-12 5.1e-08 2.9e-09 5.7e-12 5.7e-12
bnl2 932 2068 10162 9.4e-09 9.4e-09 1.6e-06 2.3e-08 1.8e-14 2.1e-14
cre c 2257 3182 10967 6.0e-10 6.1e-10 6.2e-08 5.2e-08 1.6e-14 7.3e-14
d6cube 402 5467 34332 4.6e-10 6.8e-10 9.3e-09 2.8e-08 9.7e-10 9.7e-10
ship12l 609 4128 9203 2.0e-10 2.0e-10 1.2e-06 1.2e-07 4.6e-14 4.6e-14
cre a 2684 3841 13198 2.6e-11 2.8e-11 3.4e-07 1.1e-07 6.9e-10 6.9e-10
cycle 909 1777 12784 2.4e-07 2.4e-07 2.6e-10 8.1e-08 3.6e-13 3.9e-13
greenbea 1015 2936 22858 2.5e-09 2.5e-09 6.0e-07 1.3e-08 1.5e-13 1.0e-14
greenbeb 1015 2926 22757 8.8e-09 1.1e-08 2.4e-07 2.3e-08 9.3e-13 1.3e-12
truss 1000 8798 27828 1.1e-09 1.1e-09 1.5e-06 2.0e-09 2.7e-13 2.7e-13
d2q06c 1855 4053 29998 1.0e-07 1.0e-07 1.3e-07 1.1e-06 1.9e-12 1.9e-12
woodw 551 4006 14468 9.6e-14 9.5e-14 3.7e-11 6.0e-07 2.0e-12 2.0e-12
80bau3b 1789 6287 16422 1.0e-13 1.0e-13 8.0e-08 2.7e-08 3.2e-12 3.2e-12
ken 11 5511 11963 26517 1.3e-13 1.3e-13 1.1e-05 1.7e-09 2.5e-13 2.5e-13
pilot 1204 3066 40102 1.4e-07 1.4e-07 1.8e-06 1.2e-07 5.9e-12 5.9e-12
dfl001 3861 8421 30769 9.1e-12 8.4e-12 1.5e-07 2.3e-09 2.6e-11 2.6e-11
fit2p 2935 25 36196 0.0e-00 0.0e-00 3.3e-10 7.3e-09 1.5e-18 1.5e-18
pds 06 2972 17980 41754 2.7e-13 2.7e-13 3.8e-07 1.3e-07 5.4e-13 5.4e-13
osa 30 4279 96119 262872 4.0e-12 4.0e-12 8.8e-06 1.1e-06 3.1e-15 3.1e-15
pilot87 1811 4416 70189 5.0e-08 5.0e-08 1.4e-07 7.8e-08 1.0e-11 1.8e-11
ken 13 10962 24773 57193 1.2e-13 1.2e-13 7.9e-06 2.4e-09 2.5e-13 2.7e-13
stocfor3 8388 7446 45720 1.0e-07 1.4e-09 6.1e-07 5.0e-08 1.4e-09 1.4e-09
pds 10 4725 32332 75369 1.0e-12 1.0e-12 6.9e-06 2.8e-07 2.1e-12 2.1e-12
fit2d 25 10364 127769 3.1e-16 1.0e-15 2.4e-06 1.3e-08 4.6e-14 4.6e-14
maros r7 2152 2301 75890 1.4e-11 1.0e-13 6.2e-07 1.0e-08 2.0e-13 2.0e-13
osa 07 1047 23015 61990 4.1e-12 4.1e-12 1.4e-05 4.9e-08 5.7e-16 5.7e-16
osa 60 10209 224125 584253 3.8e-12 3.8e-12 7.1e-06 2.3e-07 5.5e-16 5.5e-16
cre d 3990 25094 82749 6.6e-10 6.6e-10 9.6e-08 2.3e-08 1.5e-12 1.5e-12
pds 20 10214 79257 182209 3.4e-12 3.4e-12 6.8e-06 1.3e-06 6.8e-12 1.6e-11
cre b 5176 31675 106887 1.0e-10 1.0e-10 1.4e-06 1.5e-08 8.0e-10 8.0e-10
osa 14 2266 50457 136870 4.0e-12 4.0e-12 9.6e-06 3.1e-07 5.4e-16 5.4e-16
ken 18 39867 89347 208502 2.3e-11 1.5e-13 1.5e-05 9.4e-09 2.4e-11 1.0e-11
boeing1 287 360 2706 5.8e-07 5.8e-07 1.1e-09 3.6e-08 3.9e-14 3.9e-14
boeing2 122 137 788 2.2e-09 2.2e-09 8.2e-07 7.2e-08 8.2e-16 8.2e-16
seba 2 3 6 3.4e-13 3.4e-13 2.2e-12 3.3e-08 6.9e-13 6.9e-13
nesm 598 1912 12136 1.8e-12 1.8e-12 2.4e-06 7.4e-06 7.1e-12 7.1e-12

Table 9.2

Test problem description and relative error in ‖ · ‖∞ for computed solution of primal problem.
Columns 2, 3, and 4 give the number of rows, columns, and nonzeros in A respectively.

PROJECTION ONTO A POLYHEDRON THAT EXPLOITS SPARSITY 29

Problem Row Col NNZs PPROJ DASA BARRIER IPOPT DUAL PRIMAL
afiro 11 14 36 0.000059 0.000072 0.018358 0.007245 0.002471 0.003469
sc50a 17 16 72 0.000070 0.000099 0.028716 0.005783 0.002435 0.003733
sc50b 15 15 56 0.000038 0.000062 0.013221 0.004749 0.003200 0.003632
kb2 37 28 258 0.000315 0.000311 0.009489 0.045205 0.003477 0.004693
sc105 32 31 212 0.000066 0.000104 0.009563 0.006533 0.002920 0.003996
adlittle 53 93 371 0.000722 0.002090 0.007913 0.023265 0.005790 0.007475
blend 51 55 393 0.000312 0.000396 0.015378 0.014164 0.005307 0.006359
scagr7 60 72 274 0.000223 0.000426 0.012769 0.577648 0.006264 0.006141
stocfor1 44 53 307 0.000157 0.000247 0.015770 0.088783 0.004467 0.005089
recipe 48 57 345 0.000277 0.000347 0.017323 0.049098 0.004136 0.004383
sc205 62 61 503 0.000127 0.000216 0.022149 0.009789 0.004385 0.004714
share2b 93 79 691 0.000815 0.000767 0.031140 0.065273 0.008858 0.009810
lotfi 117 188 502 0.000298 0.000389 0.023843 0.070926 0.005172 0.005962
sctap1 269 339 1444 0.003054 0.003876 0.045125 0.095607 0.015616 0.017733
share1b 93 189 1023 0.000705 0.000786 0.026029 60.415441 0.006816 0.006002
vtp base 40 57 173 0.000193 0.000261 0.018732 0.048338 0.002725 0.002437
bore3d 40 54 327 0.000289 0.000366 0.014183 0.260782 0.002891 0.002620
scorpion 57 60 304 0.000178 0.000291 0.013337 0.017868 0.002774 0.003093
brandy 104 170 1638 0.001314 0.001321 0.020353 0.129755 0.009754 0.008518
grow7 140 260 2571 0.000806 0.000889 0.024508 0.022934 0.013269 0.017628
israel 163 137 2252 0.000502 0.000668 0.054672 30.643745 0.005931 0.007042
capri 142 199 1237 0.002583 0.002665 0.051865 1.485266 0.009705 0.006611
scagr25 240 288 1120 0.001344 0.001820 0.030393 1.005537 0.012647 0.010002
bandm 173 197 1459 0.001344 0.001372 0.044922 0.182970 0.010192 0.008065
degen2 382 471 3849 0.007287 0.007125 0.123788 0.799242 0.041748 0.109066
scfxm1 233 361 2129 0.002790 0.002556 0.041105 0.608339 0.014707 0.010360
e226 146 237 2249 0.001459 0.001601 0.049690 0.345922 0.011247 0.007811
scsd1 77 740 2368 0.000664 0.000554 0.014961 0.015347 0.008751 0.017527
beaconfd 16 34 81 0.000040 0.000073 0.006155 0.004917 0.001924 0.001963
agg 164 101 861 0.000543 0.000547 0.021036 72.321590 0.003844 0.003450
shell 236 1157 2320 0.002201 0.002508 0.022325 5.482130 0.044661 0.014481
etamacro 290 427 1866 0.006802 0.005514 0.062595 0.864395 0.018414 0.014530
standata 164 218 644 0.000306 0.000316 0.016437 0.088698 0.003449 0.003420
standgub 164 218 644 0.000301 0.000309 0.013356 0.095495 0.003529 0.003655
gfrd pnc 277 740 1578 0.001602 0.001748 0.017869 0.640765 0.019465 0.011931
stair 241 269 3518 0.008292 0.010263 0.089423 0.480500 0.022658 0.020286
finnis 296 321 1319 0.001572 0.001984 0.070536 0.354598 0.011337 0.009213
standmps 266 818 2060 0.002000 0.002280 0.020216 0.151122 0.023547 0.006118
scrs8 174 790 2533 0.001253 0.001492 0.075693 0.203752 0.014730 0.026958
tuff 142 385 4044 0.004129 0.004108 0.057501 8.855201 0.020754 0.007475
agg2 280 240 2257 0.001076 0.001266 0.049958 2.364832 0.004788 0.005232
agg3 282 239 2288 0.001178 0.001417 0.041836 2.952585 0.004878 0.005350
grow15 300 580 5555 0.002421 0.003191 0.033280 0.041427 0.033724 0.062312
sctap2 977 1326 5717 0.005746 0.006989 0.168424 0.341934 0.056057 0.116453
scsd6 147 1334 4300 0.001456 0.001183 0.025736 0.022385 0.021278 0.053358
ship04s 188 1231 2797 0.001413 0.001196 0.023907 0.029606 0.028056 0.014750
modszk1 550 479 1960 0.002082 0.002292 0.080972 0.028865 0.013077 0.011161
scfxm2 467 723 4281 0.007896 0.007122 0.101233 1.306646 0.042750 0.022868
fffff800 292 568 4724 0.005081 0.005273 0.148511 110.120399 0.029905 0.016317
bnl1 446 980 4603 0.021731 0.021440 0.187630 1.638792 0.120468 0.061669
pilot4 348 770 4603 0.024821 0.018872 0.262117 32.416609 0.056943 0.047003
grow22 440 860 8166 0.004192 0.005527 0.056590 0.064634 0.067605 0.109279
ken 07 887 2027 4348 0.002838 0.004111 0.030668 0.056103 0.031175 0.028953
sctap3 1344 1767 7630 0.006871 0.008499 0.229935 0.420456 0.072789 0.178261
perold 503 1074 5346 0.327858 0.288455 0.360714 191.237094 0.751131 0.370615

Table 9.3

Test problem description and time (s) to solve problem. Columns 2, 3, and 4 give the number
of rows, columns, and nonzeros in A respectively.

30 W. W. HAGER AND H. ZHANG

Problem Row Col NNZs PPROJ DASA BARRIER IPOPT DUAL PRIMAL
ganges 409 546 3022 0.001233 0.001478 0.071588 0.103998 0.011157 0.010464
scfxm3 701 1085 6433 0.015095 0.016447 0.158356 16.741883 0.087371 0.039858
sierra 877 1723 6202 0.005262 0.006265 0.061375 217.086552 0.071927 0.028931
fit1p 627 24 8215 0.000541 0.000688 0.533412 1.663930 0.007364 0.007793
ship08s 234 1512 3494 0.002100 0.001653 0.033010 0.064506 0.028262 0.018814
scsd8 397 2738 8572 0.005460 0.004100 0.024920 0.047085 0.222169 0.221822
ship12s 267 1828 4102 0.002497 0.001813 0.034623 0.059212 0.044858 0.021296
25fv47 682 1415 9864 0.010797 0.013642 0.214625 2.067451 0.198082 0.334532
maros 524 786 5694 0.018112 0.017010 0.236366 181.624184 0.084293 0.092292
fit1d 24 1024 13386 0.001330 0.001642 0.024595 0.708658 0.026963 0.051860
stocfor2 1070 962 5868 0.007154 0.007305 0.180150 0.948612 0.061377 0.054776
pilot we 602 2346 8234 0.057712 0.064729 0.180330 188.491716 0.393277 0.084209
czprob 464 2433 4866 0.004137 0.005237 0.080452 0.298003 0.179183 0.081610
degen3 1406 1712 24413 0.115861 0.089432 0.390311 12.415612 0.540744 0.679183
pilotnov 748 1686 11390 0.230520 0.265040 0.312464 283.668942 0.449866 0.559733
pds 02 877 2902 7330 0.008068 0.009078 0.065300 0.132059 0.055054 0.029661
pilot ja 708 1369 10840 0.230222 0.256959 0.373919 280.883631 0.419366 0.606235
ship08l 470 3085 7086 0.004591 0.003850 0.080567 0.087700 0.084521 0.035684
bnl2 932 2068 10162 0.094840 0.109957 0.252890 2.337041 0.315538 0.270913
cre c 2257 3182 10967 0.033339 0.040674 0.192335 2.321437 0.514803 0.330147
d6cube 402 5467 34332 0.114478 0.118882 0.194262 1.272256 2.261246 427.354743
ship12l 609 4128 9203 0.006766 0.005190 0.082271 0.099417 0.160023 0.071189
cre a 2684 3841 13198 0.028815 0.039027 0.348355 1.671402 0.509353 0.514750
cycle 909 1777 12784 0.019221 0.020972 0.183449 1.272126 0.088638 0.098211
greenbea 1015 2936 22858 0.032284 0.032859 0.234178 9.581368 0.786876 0.936172
greenbeb 1015 2926 22757 0.028020 0.030373 0.247376 6.316517 0.853275 0.461015
truss 1000 8798 27828 0.056377 0.049475 0.195069 0.213936 4.832236 3.168175
d2q06c 1855 4053 29998 0.039495 0.039851 0.354756 550.857567 0.519909 0.567581
woodw 551 4006 14468 0.020425 0.023150 0.192572 1.857820 0.349911 0.085315
80bau3b 1789 6287 16422 0.014081 0.017769 0.334286 6.479995 0.340251 0.237088
ken 11 5511 11963 26517 0.024553 0.025526 0.193111 0.468646 0.426092 0.327340
pilot 1204 3066 40102 0.554580 0.570376 0.469581 31.788996 5.124742 9.417782
dfl001 3861 8421 30769 1.119368 0.475148 1.077163 40.692744 9.335441 35.692196
fit2p 2935 25 36196 0.002240 0.001763 0.848646 3.650934 0.020973 0.030757
pds 06 2972 17980 41754 0.048306 0.047827 0.252646 2.717339 1.371937 0.506285
osa 30 4279 96119 262872 0.053697 0.120526 0.558373 3.936527 1.005069 1.282712
pilot87 1811 4416 70189 1.219547 1.560698 1.306580 180.050603 8.903600 23.588953
ken 13 10962 24773 57193 0.071716 0.074019 0.216623 1.213987 1.380097 1.306536
stocfor3 8388 7446 45720 0.112502 0.101460 0.400713 9.745366 2.835405 1.837227
pds 10 4725 32332 75369 0.104388 0.093375 0.405674 9.738367 4.399075 1.428093
fit2d 25 10364 127769 0.015259 0.015699 0.166398 8.331060 0.808221 2.661146
maros r7 2152 2301 75890 0.053809 0.054181 0.434325 5.333693 0.028621 0.038896
osa 07 1047 23015 61990 0.008337 0.017946 0.139335 1.141837 0.131830 0.326339
osa 60 10209 224125 584253 0.140458 0.262959 1.054559 10.828671 3.907701 4.902628
cre d 3990 25094 82749 0.168131 0.405573 0.758532 7.021764 24.179952 10.893949
pds 20 10214 79257 182209 0.417313 0.314509 1.537628 48.103804 27.608118 8.194067
cre b 5176 31675 106887 0.163350 0.255926 0.910386 7.891465 34.884761 16.963324
osa 14 2266 50457 136870 0.022963 0.048173 0.279383 3.285729 0.378233 0.456324
ken 18 39867 89347 208502 0.489635 0.596065 0.873080 7.382695 16.146225 14.984307
boeing1 287 360 2706 0.001247 0.001550 0.027106 1.347581 0.012078 0.022004
boeing2 122 137 788 0.000566 0.000749 0.021251 0.292071 0.003837 0.007806
seba 2 3 6 0.000023 0.000061 0.015354 0.005253 0.001649 0.002243
nesm 598 1912 12136 0.010987 0.016751 0.160263 28.785824 0.104223 0.273804

Table 9.4

Test problem description and time (s) to solve problem. Columns 2, 3, and 4 give the number
of rows, columns, and nonzeros in A respectively.

