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Abstract. Finite dimensional local convergence results for self-adaptive proximal point methods
and nonlinear functions with multiple minimizers are generalized and extended to a Hilbert space
setting. The principle assumption is a local error bound condition which relates the growth in the
function to the distance to the set of minimizers. A local convergence result is established for almost
exact iterates. Less restrictive acceptance criteria for the proximal iterates are also analyzed. These
criteria are expressed in terms of a subdifferential of the proximal function and either a subdifferential
of the original function or an iteration difference. If the proximal regularization parameter μ(x) is
sufficiently small and bounded away from zero and f is sufficiently smooth, then there is local linear
convergence to the set of minimizers. For a locally convex function, a convergence result similar to
that for almost exact iterates is established. For a locally convex solution set and smooth functions,
it is shown that if the proximal regularization parameter has the form μ(x) = β‖f ′[x]‖η , where
η ∈ (0, 2), then the convergence is at least superlinear if η ∈ (0, 1) and at least quadratic if η ∈ [1, 2).
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1. Introduction. In this paper, we consider an optimization problem:

(1.1) min{f(x) : x ∈ H},

where H is a real Hilbert space with inner product 〈·, ·〉 and f : H �→ R. It is assumed
that the set of minimizers for (1.1), denoted X, is nonempty and closed. We establish
new convergence rate results for proximal point methods for solving (1.1).

Literature connected with the analysis and development of proximal point meth-
ods includes [1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 15, 16, 18, 19, 20, 21, 24, 25, 26, 27]. In the
proximal point method, iterates xk, k ≥ 1, are generated by the following rule:

(1.2) xk+1 ∈ arg min {Fk(x) : x ∈ H},

where

Fk(x) = f(x) +
1

2
μk‖x − xk‖2.

Here x0 ∈ H is an initial guess for a minimizer, the parameters μk, k ≥ 0, are
positive scalars, and ‖ · ‖ = 〈·, ·〉1/2 is the usual Hilbert space norm. When f is twice
continuously differentiable, the eigenvalues of the second derivative operator F ′′

k are
bounded from below by μk at a local minimizer; consequently, the regularization term
μk‖x − xk‖2 improves the conditioning of (1.1).
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1684 WILLIAM W. HAGER AND HONGCHAO ZHANG

In [21] Rockafellar shows that if f is convex, then the proximal point method
converges linearly when μk is bounded away from zero and superlinearly when μk tends
to zero. For these convergence results, X is a singleton. Luque [14] studied the case
when X may contain more than one element. By assuming some growth properties for
the (multivalued) inverse of the derivative, results analogous to those of Rockafellar
were obtained. Kaplan and Tichatschke [11] consider the case where f is convex, μk is
constant, and X may contain more than one element. A linear convergence result for
the iterates is established under a growth condition for the function which is similar
to the growth condition used in our paper (see Assumption 14.4 and Theorem 14.5
in [11]).

In another research direction, Combettes and Pennanen [2], Iusem, Pennanen, and
Svaiter [10], and Pennanen [19] replace the monotonicity assumptions appearing in
earlier work by a weaker hypomonotonicity condition for the inverse of the derivative,
that is, the inverse of the derivative is monotone when a multiple of the identity is
added. Additional assumptions, however, enter into the analysis which imply the
solution set X is a singleton.

In [7] we present a new class of self-adaptive proximal point methods for finite
dimensional optimization problems. Our analysis employs the following local error
bound condition at x̂ ∈ X: There exist positive constants α and ρ such that

(1.3) f(x) − f∗ ≥ αD(x,X)2 whenever ‖x − x̂‖ ≤ ρ,

where f∗ is the minimum value in (1.1) and

D(x,X) = inf
y∈X

‖x − y‖.

In other words, D(x,X) measures the distance to the solution set X. If (1.3) is
satisfied, then we say that f provides a local error bound at x̂ ∈ X. For an exact
proximal iterate xk+1 satisfying (1.2), we show in [7] that for any starting guess x0

in a neighborhood of the solution set, the iterates converge to a solution x∗ of (1.1)
and the following estimate holds:

(1.4) D(xk+1,X) ≤ CμkD(xk,X),

where C = 2/(2α− μk).
In a Hilbert space setting, the exact proximal iterate (1.2) may not exist. In

this paper, we establish a similar convergence result using the following acceptance
criterion: xk+1 is acceptable when

(C0) Fk(xk+1) ≤ inf
x∈X

{
Fk(x) +

μ2
k

2
‖x − xk‖2

}

= inf
x∈X

{
f(x) +

(
μk + μ2

k

2

)
‖x − xk‖2

}
.

In section 3 we show that there always exists an iterate satisfying (C0), and a con-
vergence result of the form (1.4) holds.

Although (C0) leads to an elegant convergence theory, which can be applied to
any function whose set of minimizers is nonempty and closed, the acceptance criterion
is not easily implemented since it is expressed in terms of the solution set (which we
are trying to compute). Consequently, we now introduce implementable acceptance
criteria which are expressed in terms of the (basic) subdifferential of f (see [17, p. 82]
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and [22]) denoted ∂f(x). If f is Fréchet differentiable, then ∂f(x) = f ′[x]. If f is
convex, then ∂f(x) is the usual subdifferential of convex analysis. The acceptance
criteria for (1.2) are

(C1) Fk(xk+1) ≤ f(xk) and ‖∂Fk(xk+1)‖inf ≤ μk‖∂f(xk)‖inf , and
(C2) Fk(xk+1) ≤ f(xk) and ‖∂Fk(xk+1)‖inf ≤ θμk‖xk+1 − xk‖.

Here θ is a positive constant smaller than 1/
√

2, and ‖ · ‖inf denotes the distance to
the origin; that is, for any set S ⊂ H,

‖S‖inf = inf
s∈S

‖s‖.

If S = ∅, then we set ‖S‖inf = ∞.
In [14] and [21], the authors considered the acceptance condition

‖∂Fk(xk+1)‖ ≤ εkμk‖xk+1 − xk‖,

where
∑

k εk < ∞. Our criterion (C2) corresponds to the case
∑

k εk = ∞. In
[14] and [21], the authors consider convex functionals, while here we obtain local
convergence rates for general nonlinear functionals. Note that our acceptance criteria
employ a subdifferential rather than the derivative used in our earlier work.

Slightly different versions of the proximal point method for maximal monotone
operators are developed by Solodov and Svaiter in the series of papers [24, 25, 26].
They develop both a hybrid proximal point algorithm where an approximate proximal
step is followed by a projection and a hybrid extragradient version in which the
original operator is replaced by an ε enlargement. In order to compare their analysis
to the results in our paper, we focus on the special case where the operator is the
subdifferential of a convex function f . In each iteration of the Solodov/Svaiter scheme,
they first compute an approximate proximal iterate yk satisfying a relaxed version
of (C2); they then update the iterate along the negative gradient:

(1.5) xk+1 = xk − skgk,

where gk ∈ ∂f(yk), sk is the scalar stepsize, and θ < 1. In [24], sk = 1/μk (the
reciprocal of the proximal regularization parameter), while in [25], sk is chosen so
that xk+1 is the projection of xk onto the half-space

{x ∈ H : 〈gk,x − yk〉 ≥ 0}.

Since the Solodov/Svaiter update (1.5) amounts to an extragradient step, their
convergence theory for fixed θ (see [26, Thm. 8]) yields linear convergence, even when
μk tends to 0, unless the accuracy criterion (C2) for the approximate proximal iterate
yk is strengthened. Ways to improve the accuracy of yk so as to obtain superlinear
convergence with the Solodov/Svaiter hybrid schemes are the following: (a) Replace
θ by θk in (C2) and let θk tend to 0 (see [26, Rem. 9]). (b) In the case H = R

n,
compute yk by a Newton iteration applied to the proximal problem (1.2), with μk on
the order of ‖∇f(xk)‖1/2 (see [26, sect. 5.2]).

In this paper, we obtain superlinear convergence with (C2) by letting μk ap-
proach 0, and we analyze how the convergence speed depends on the decay rate of
μk. We consider both a convex cost function analogous to the maximal monotone
operator in [24, 25, 26] and the more general case where the solution set X is locally
convex and f is sufficiently smooth. We allow multiple solutions satisfying the local
error bound condition (1.3), while in [24, 25, 26] the solution set is unique since the
inverse operator is required to be Lipschitz continuous at zero [26, eq. (28)].
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We will show that for either (C1) or (C2), for μk sufficiently small, and for either
f locally convex or X locally convex and f sufficiently smooth, an estimate of the form
(1.4) holds. For μk sufficiently small and bounded away from zero, and for smooth
functions, there is at least local linear convergence to the set of minimizers. For X
locally convex and f sufficiently smooth, and for μk = β‖f ′[xk]‖η, where η ∈ (0, 2),
the convergence is superlinear when η ∈ (0, 1) and at least quadratic when η ∈ [1, 2).

Our paper is organized as follows: In section 2 we establish the equivalence,
when f is twice continuously differentiable, of our local error bound condition and
a gradient-based local error bound condition used in [5, 13, 14, 28, 29, 30]. Note,
though, that our local error bound condition can be applied even when f has no
derivative. In section 3 we analyze proximal iterates which satisfy (C0). Section 4
studies the criteria (C1) and (C2).

1.1. Notation. Throughout this paper, we use the following notation. If A :
H �→ H is a bounded linear operator, then ‖A‖ is the operator norm induced by
the Hilbert space norm ‖ · ‖. The empty set is denoted ∅. The complement of a set
S ⊂ H is denoted Sc. If x and y ∈ H, then [x,y] is the line segment connecting x
and y. Bρ(x) is the ball with center x and radius ρ. f ′[x] and f ′′[x] are the first-
and second-order Fréchet derivatives of f at x when they exist. The derivatives are
operators defined on either H or H×H. We also view f ′[x] as an element of H and
write f ′[x](y) = 〈f ′[x],y〉. Similarly, we view f ′′[x] as a bounded linear map from H
to itself and write

f ′′[x](y, z) = 〈f ′′[x]y, z〉.

2. Local error bound based on derivative. In this paper, we utilize the local
error bound condition (1.3) based on function value. Earlier work [5, 13, 14, 28, 29, 30]
has exploited a local error bound condition based on the derivative. Namely, f ′

provides a local error bound at x̂ ∈ X if there exist positive constants α and ρ such
that

(2.1) ‖f ′[x]‖ ≥ αD(x,X) whenever ‖x − x̂‖ ≤ ρ.

We now show that when f is smooth enough, these two conditions are equivalent.
Lemma 2.1. If f is twice continuously Fréchet differentiable in a neighborhood

of x̂ ∈ X, then f provides a local error bound at x̂ in the sense of (1.3) if and only
if f ′ provides a local error bound at x̂ in the sense of (2.1).

Proof. Suppose f provides a local error bound at x̂ ∈ X with positive scalars α
and ρ satisfying (1.3). Choose ρ smaller, if necessary, so that f is twice continuously
Fréchet differentiable in Bρ(x̂) and

(2.2) ‖f ′′[x] − f ′′[y]‖ ≤ α/3 for all x,y ∈ Bρ(x̂).

Define r = ρ/2. Given x ∈ Br(x̂), let x̄ be any element of X∩Br(x). Since x ∈ Br(x̂),
we have x̂ ∈ X ∩ Br(x), which shows that X ∩ Br(x) is nonempty. The triangle
inequality implies that

(2.3) ‖x̄ − x̂‖ ≤ ‖x̄ − x‖ + ‖x − x̂‖ ≤ 2r = ρ.

Since both x and x̄ ∈ Bρ(x̂), f is twice continuously Fréchet differentiable in Bρ(x̂),
and f ′[x̄] = 0, we have

(2.4) f(x) − f∗ = f(x) − f(x̄) =
1

2
〈x − x̄, f ′′[x̄](x − x̄)〉 + R2(x, x̄),
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where R2 is the remainder term. The bound (2.2) gives

|R2(x, x̄)| ≤ α

3
‖x − x̄‖2

whenever x and x̄ ∈ Bρ(x̂). In this case, (2.4) and the local error bound condition
(1.3) give

(2.5) αD(x,X)2 ≤ f(x) − f∗ ≤ 1

2
‖x − x̄‖‖f ′′[x̄](x − x̄)‖ +

α

3
‖x − x̄‖2.

Again, since f is twice continuously Fréchet differentiable in Bρ(x̂) and f ′[x̄] = 0,
we have

(2.6) f ′[x] = f ′[x] − f ′[x̄] = f ′′[x̄](x − x̄) + R1(x, x̄),

where R1 is the remainder term. The bound (2.2) gives

(2.7) ‖R1(x, x̄)‖ ≤ α

3
‖x − x̄‖

whenever x and x̄ ∈ Bρ(x̂). Combining (2.5)–(2.7) yields

(2.8) αD(x,X)2 ≤ 1

2

(
‖x − x̄‖‖f ′[x]‖ + α‖x − x̄‖2

)
.

Since X ∩ Br(x) is nonempty, we have

D(x,X) = inf
x̄∈X

‖x − x̄‖ = inf{‖x − x̄‖ : x̄ ∈ X ∩ Br(x)}.

Minimizing the right-hand side of (2.8) over x̄ ∈ X ∩ Br(x) gives

αD(x,X)2 ≤ 1

2

(
D(x,X)‖f ′[x]‖ + αD(x,X)2

)
.

Rearranging this yields

‖f ′[x]‖ ≥ αD(x,X).

Hence, ∂f = f ′ provides a local error bound at x̂ with constants α and r.
Conversely, suppose f ′ provides a local error bound at x̂ ∈ X with positive scalars

α and ρ satisfying (2.1). Let ρ be as in the first half of the proof. Choose ρ smaller,
if necessary, so that

(2.9) ‖f ′′[x] − f ′′[y]‖ ≤ 7α2

18(λ + 1)
for all x,y ∈ Bρ(x̂),

where

(2.10) λ = sup{‖f ′′[x]‖ : x ∈ Bρ(x̂)}.

Let r = ρ/2, let x ∈ Br(x̂), and let x̄ ∈ X ∩ Br(x̂).
Since f achieves a minimum at x̄ ∈ X, f ′′[x̄] is positive. Thus, there exists

a unique, positive self-adjoint bounded linear operator B, the square root of f ′′[x̄],
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satisfying f ′′[x̄] = B2 [23, Thm. 13.31]. By (2.6), (2.7), and the local error bound
condition (2.1), we have

αD(x,X) ≤ ‖f ′[x]‖
≤ ‖f ′′[x̄](x − x̄)‖ +

α

3
‖x − x̄‖

= ‖B2(x − x̄)‖ +
α

3
‖x − x̄‖

≤ ‖B‖‖B(x − x̄)‖ +
α

3
‖x − x̄‖.

Squaring both sides yields

α2D(x,X)2 ≤ 2‖B‖2‖B(x − x̄)‖2 +
2α2

9
‖x − x̄‖2

= 2〈x − x̄, f ′′[x̄](x − x̄)〉‖f ′′[x̄]‖ +
2α2

9
‖x − x̄‖2

≤ 2〈x − x̄, f ′′[x̄](x − x̄)〉λ +
2α2

9
‖x − x̄‖2,

where λ is defined in (2.10). It follows that

〈x − x̄, f ′′[x̄](x − x̄)〉 ≥ α2[9D(x,X)2 − 2‖x − x̄‖2]

18(λ + 1)
.

(1 is added to the denominator to allow for the possibility that λ = 0.) Using this in
(2.4) yields

f(x) − f∗ =
1

2
〈(x − x̄), f ′′[x̄](x − x̄)〉 + R2(x, x̄)

≥ α2[9D(x,X)2 − 2‖x − x̄‖2]

18(λ + 1)
+ R2(x, x̄).(2.11)

By the choice of ρ in (2.9), we have

|R2(x, x̄)| ≤ β

2
‖x − x̄‖2, β =

7α2

18(λ + 1)
,

whenever x and x̄ ∈ Bρ(x̂). By (2.11),

f(x) − f∗ ≥ α2[9D(x,X)2 − 2‖x − x̄‖2]

18(λ + 1)
− β

2
‖x − x̄‖2.

Minimizing ‖x − x̄‖ over x̄ ∈ X ∩ Br(x) gives

f(x) − f∗ ≥
(
β

2

)
D(x,X)2,

which completes the proof.

3. Convergence analysis for almost exact minimization. We first show
that (C0) can always be satisfied.

Lemma 3.1. If μk > 0, then there exists xk+1 ∈ H satisfying (C0); moreover,
for any xk+1 satisfying (C0), we have

(3.1) ‖xk+1 − xk‖ ≤
√

1 + μkD(xk,X).
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Proof. If xk ∈ X, then the lemma holds trivially since xk+1 = xk. Hence, assume
that D(xk,X) > 0. Since μk > 0, we have

inf
x∈X

{
Fk(x) +

μ2
k

2
‖x − xk‖2

}
= f∗ +

(
μk + μ2

k

2

)
inf
x∈X

{‖x − xk‖}

= f∗ +

(
μk + μ2

k

2

)
D(xk,X)

> f∗ +
μk

2
D(xk,X)

= inf
x∈X

Fk(x) ≥ inf
x∈H

Fk(x).

Since one of these inequalities is strict, there exists xk+1 ∈ H satisfying (C0). More-
over, for all x ∈ X, (C0) yields

Fk(xk+1) = f(xk+1) +
μk

2
‖xk+1 − xk‖2 ≤ Fk(x) +

μ2
k

2
‖x − xk‖2

= f∗ +
μk + μ2

k

2
‖x − xk‖2.

Since f∗ ≤ f(xk+1), we conclude that

(3.2) ‖xk+1 − xk‖ ≤
√

1 + μk‖x − xk‖

for all x ∈ X. Taking the infimum over x ∈ X gives (3.1).
Iterates which satisfy the criterion (C0) are now analyzed.
Theorem 3.2. Assume the following conditions are satisfied:

(E0) f provides a local error bound at x̂ ∈ X with positive scalars α and ρ satisfying
(1.3).

(E1) β > 0 is small enough that the following inequalities hold:

β + 2β2

2
≤ α

3
and γ :=

β
√

3(1 + β)(3 + 4α)

2α
< 1.

(E2) μk ∈ (0, β].
(E3) x0 is close enough to x̂ that

‖x0 − x̂‖
(

1 +

√
1 + β

1 − γ

)
≤ ρ.

Then any proximal iterates {xk} satisfying (C0) have the property that xk ∈ Bρ(x̂)
for each k, and they approach a minimizer x∗ ∈ X; moreover, for each k, we have

(3.3) ‖xk − x∗‖ ≤ c1γ
kD(x0,X) and D(xk+1,X) ≤ c2μkD(xk,X),

where

(3.4) c1 =

√
1 + β

1 − γ
and c2 = γ/β.

Proof. For j = 0, (E3) implies that

(3.5) ‖xj − x̂‖ ≤ ρ and D(xj ,X) ≤ γjD(x0,X).
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Proceeding by induction, suppose that (3.5) holds for all j ∈ [0, k] and for some k ≥ 0.
We show that (3.5) also holds for j = k + 1. By the triangle inequality, Lemma 3.1,
(E2), and the induction hypothesis, it follows that

‖xk+1 − x0‖ ≤
k∑

j=0

‖xj+1 − xj‖ ≤
k∑

j=0

√
1 + μjD(xj ,X)

≤
√

1 + β

k∑
j=0

γjD(x0,X) ≤
√

1 + β

1 − γ
D(x0,X) ≤

√
1 + β

1 − γ
‖x0 − x̂‖.

Again, by the triangle inequality and (E3),

(3.6) ‖xk+1 − x̂‖ ≤ ‖xk+1 − x0‖ + ‖x0 − x̂‖ ≤
(

1 +

√
1 + β

1 − γ

)
‖x0 − x̂‖ ≤ ρ.

For any x ∈ H, observe that

‖x − xk‖2 − ‖xk+1 − xk‖2

= 〈x + xk+1 − 2xk,x − xk+1〉
≤ (‖x − xk+1‖ + 2‖xk+1 − xk‖)‖x − xk+1‖.(3.7)

Rearranging (C0) and utilizing (3.7) gives, for all x ∈ X,

f(xk+1) − f∗

≤ μk

2
(‖x − xk‖2 − ‖xk+1 − xk‖2) +

μ2
k

2
‖x − xk‖2

≤ μk

2
(‖x − xk+1‖ + 2‖xk+1 − xk‖)‖x − xk+1‖ +

μ2
k

2
‖x − xk‖2

≤ μk

2
(‖x − xk+1‖ + 2‖xk+1 − xk‖)‖x − xk+1‖ +

μ2
k

2
(‖x − xk+1‖ + ‖xk+1 − xk‖)2

≤ μk

2
‖x − xk+1‖2 + μk‖xk+1 − xk‖‖x − xk+1‖

+μ2
k(‖x − xk+1‖2 + ‖xk+1 − xk‖2).

Utilizing the inequalities

μk‖xk+1 − xk‖‖x − xk+1‖ ≤ α

3
‖x − xk+1‖2 +

3μ2
k

4α
‖xk+1 − xk‖2

and μk ≤ β, we obtain

(3.8) f(xk+1) − f∗ ≤
(
β + 2β2

2
+

α

3

)
‖x − xk+1‖2 +

(
3 + 4α

4α

)
μ2
k‖xk+1 − xk‖2.

Taking the infimum over x ∈ X on the right-hand side of (3.8) gives

(3.9) f(xk+1) − f∗ ≤
(
β + 2β2

2
+

α

3

)
D(xk+1,X)2 +

(
3 + 4α

4α

)
μ2
k‖xk+1 − xk‖2.

By (3.6), xk+1 ∈ Bρ(x̂). Since f provides a local error bound at x̂,

(3.10) αD(xk+1,X)2 ≤ f(xk+1) − f∗.
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Combining this with (3.9) gives

(3.11)

(
2α

3
− β + 2β2

2

)
D(xk+1,X)2 ≤

(
3 + 4α

4α

)
μ2
k‖xk+1 − xk‖2.

By (E1), the coefficient of D in (3.11) is bounded from below by α/3. Hence, (3.11),
Lemma 3.1, and (3.5), with j = k, yield

D(xk+1,X) ≤ μk

√
3(3 + 4α)

2α
‖xk+1 − xk‖

≤ μk

√
1 + μk

√
3(3 + 4α)

2α
D(xk,X)

≤ μk

√
3(1 + β)(3 + 4α)

2α
D(xk,X)(3.12)

≤ γD(xk,X) ≤ γk+1D(x0,X).(3.13)

Relations (3.6) and (3.13) complete the proof of the induction step. Relations (3.12)
and (3.13) give the estimate (3.3).

By Lemma 3.1 and (3.5), the proximal iterates xk form a Cauchy sequence in H,
which has a limit denoted x∗. By (3.5), Lemma 3.1, and the bound μk ≤ β, we have

‖xk − x∗‖ ≤
∞∑
j=k

‖xj+1 − xj‖ ≤
∞∑
j=k

√
1 + μkD(xj ,X)

≤
√

1 + β

∞∑
j=k

γjD(x0,X) = γj

√
1 + β

1 − γ
D(x0,X).(3.14)

By (3.5) and (3.14), for any k ≥ 0 we have

D(x∗,X) ≤ D(xk,X) + ‖xk − x∗‖ ≤
(
γk + γk

√
1 + β

1 − γ

)
D(x0,X).

Thus D(x∗,X) = 0. Since X is closed, the limit x∗ ∈ X.
We now give a choice for μk which leads to a quadratic convergence rate for the

proximal point iteration.
Corollary 3.3. Assume that conditions (E0), (E1), and (E3) of Theorem 3.2

are satisfied. In addition, let e : H �→ R be any nonnegative function with the property
that

(3.15) e(x) ≤ β and e(x) ≤ LD(x,X)

for all x ∈ Bρ(x̂) and for some L ∈ R. Then for the choice μk = e(xk), any proximal
iterates {xk} satisfying (C0) have the property that xk ∈ Bρ(x̂) for each k, the iterates
approach a minimizer x∗ ∈ X, and for each k, we have

(3.16) D(xk+1,X) ≤ c2LD(xk,X)2,

where c2 is given in (3.4).
Proof. This follows directly from the proof of Theorem 3.2; simply append the

condition μj ≤ β for each j ∈ [0, k] to the induction hypothesis (3.5):

(3.17) ‖xj − x̂‖ ≤ ρ, D(xj ,X) ≤ γjD(x0,X), and μj ≤ β.
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Since x0 ∈ Bρ(x̂), (3.15) implies that μ0 = e(x0) ≤ β. Hence, (3.17) is satisfied for
j = 0. In the proof of Theorem 3.2, we show that if μj ≤ β for j ∈ [0, k], then the
first two conditions in (3.17) hold for j = k+1. In (3.6), we show that xk+1 ∈ Bρ(x̂).
Consequently, μk+1 = e(xk+1) ≤ β, and (3.17) holds for j = k + 1. Replacing μk by
e(xk) ≤ LD(xk,X) in (3.3) gives (3.16).

If f is Lipschitz continuously differentiable, then the function e(x) = ‖f ′[x]‖
satisfies the hypotheses of Corollary 3.3 when ρ is sufficiently small since f ′[x̄] = 0
for all x̄ ∈ X.

4. Convergence analysis for approximate minimization. We now analyze
the situation where the proximal point iteration (1.2) need only satisfy (C1) or (C2).
The following property of a convex function is used in the analysis.

Proposition 4.1. If x∗ is a local minimizer of Fk and f is convex in Bρ(x
∗)

for some ρ > 0, then

(4.1) Fk(x) ≤ Fk(x
∗) +

‖∂Fk(x)‖2
inf

μk

for all x ∈ Bρ(x
∗).

Proof. If ∂Fk(x) is empty, then ‖∂Fk(x)‖inf = ∞, and there is nothing to prove.
Hence, we assume that ∂Fk(x) �= ∅. Since f is convex in Bρ(x

∗), we have

(4.2) Fk(x
∗) ≥ Fk(x) + 〈y,x∗ − x〉 for all y ∈ ∂Fk(x).

For a convex functional, the subdifferentials satisfy the monotonicity condition [17,
Thm. 3.56]

(4.3) 〈ȳ − y∗,x − x∗〉 ≥ 0 for all ȳ ∈ ∂f(x) and y∗ ∈ ∂f(x∗).

Given ȳ ∈ ∂f(x), define

(4.4) y = ȳ + μk(x − xk) ∈ ∂Fk(x).

Since x∗ is a local minimizer of Fk, 0 ∈ ∂Fk(x
∗), or equivalently, there exists y∗ ∈

∂f(x∗) such that

(4.5) 0 = y∗ + μk(x
∗ − xk).

By (4.3), (4.4), and (4.5), we have

〈y, (x − x∗)〉 = 〈ȳ + μk(x − xk) − (y∗ + μk(x
∗ − xk)),x − x∗〉

= 〈ȳ − y∗,x − x∗〉 + μk‖x − x∗‖2

≥ μk‖x − x∗‖2(4.6)

for any y ∈ ∂Fk(x). The Schwarz inequality yields

(4.7) ‖x − x∗‖ ≤ ‖y‖
μk

.

Thus, it follows from (4.2) and (4.7) that for any y ∈ ∂Fk(x),

Fk(x) ≤ Fk(x
∗) +

‖y‖2

μk
.
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Minimizing over y ∈ ∂Fk(x) gives (4.1).
In our first convergence result, we focus on the case where f is convex over the

level set defined by the starting guess. We also employ a subdifferential generalization
of the gradient-based local error bound condition (2.1): For some x̂ ∈ X, there exist
positive constant α and ρ such that

(4.8) ‖∂f(x)‖inf ≥ αD(x,X) whenever ‖x − x̂‖ ≤ ρ.

If (4.8) is satisfied, then we say that ∂f provides a local error bound at x̂ ∈ X.
Theorem 4.2. Assume that the following conditions are satisfied:

(A0) ∂f provides a local error bound at x̂ ∈ X with positive scalars α and ρ satis-
fying (4.8).

(A1) If L is the level set {x ∈ H : f(x) ≤ f(x0)}, then f is convex and lower
semicontinuous on L, and there exists a constant L such that ‖∂f(x)‖inf ≤
LD(x,X) for all x ∈ L.

(A2) Define the parameters

Λ = L + τ and τ2 = 1 + 2L2 if acceptance criterion (C1) is used,

while

Λ = τ(1 + θ) and τ2 =
1

1 − 2θ2
if acceptance criterion (C2) is used.

β > 0 is small enough that the following inequality holds:

(4.9) γ :=
βΛ

α
< 1.

(A3) μk ∈ (0, β] and θ < 1/
√

2.
(A4) x0 is close enough to x̂ that

‖x0 − x̂‖
(

1 +
τ

1 − γ

)
≤ ρ.

If the approximate proximal iterates xk satisfy either (C1) or (C2), then the iterates
are all contained in Bρ(x̂), and they approach a minimizer x∗ ∈ X; moreover, for
each k, we have

(4.10) ‖xk − x∗‖ ≤ c1γ
kD(x0,X) and D(xk+1,X) ≤ c2μkD(xk,X),

where

c1 =
τ

1 − γ
and c2 = γ/β.

Proof. For j = 0, we have

(4.11) ‖xj − x̂‖ ≤ ρ, xj ∈ L, and D(xj ,X) ≤ γjD(x0,X).

Proceeding by induction, suppose that (4.11) holds for all j ∈ [0, k] and for some
k ≥ 0. We show that (4.11) also holds for j = k + 1.

Due to the convexity and lower semicontinuity of f on L, this level set is closed
and convex. Suppose j ∈ [0, k]. By (C1) or (C2), we have

(4.12) f(xj+1) ≤ Fj(xj+1) ≤ f(xj).
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We conclude that f(xj) ≤ f(x0) for each j. Since Fj(xj) = f(xj) ≤ f(x0), minimizing
Fj over H is equivalent to minimizing Fj over L. Since Fj is strongly convex and lower
semicontinuous on L, Fj is weakly lower semicontinuous on L, and there exists an
exact proximal point iterate x∗

j defined by

x∗
j ∈ arg min {Fj(x) : x ∈ H}.

Moreover, f(x∗
j ) ≤ f(xj) ≤ f(x0). Combining this with (4.12), both xj+1 and x∗

j lie
in L. By (A2) and Proposition 4.1, we have

Fj(xj+1) = Fj(x
∗
j ) + (Fj(xj+1) − Fj(x

∗
j ))

≤ Fj(x
∗
j ) +

‖∂Fj(xj+1)‖2
inf

μj

≤ f∗ +
μj

2
D(xj ,X)2 +

‖∂Fj(xj+1)‖2
inf

μj
.

Since f∗ ≤ f(xj+1), it follows that

(4.13)
μj

2
‖xj+1 − xj‖2 ≤ μj

2
D(xj ,X)2 +

‖∂Fj(xj+1)‖2
inf

μj
.

By (C1) and (A1),

(4.14) ‖∂Fj(xj+1)‖inf ≤ μj‖∂f(xj)‖inf ≤ μjLD(xj ,X).

Combining this with (4.13), we have

(4.15) ‖xj+1 − xj‖2 ≤ (1 + 2L2)D(xj ,X)2.

Similarly, if criterion (C2) is used, then ‖∂Fj(xj+1)‖inf ≤ θμj‖xj+1 − xj‖, and by
(4.13), we have

(4.16) ‖xj+1 − xj‖2 ≤ 1

1 − 2θ2
D(xj ,X)2.

Together, (4.15) and (4.16) yield

(4.17) ‖xj+1 − xj‖ ≤ τD(xj ,X),

where τ is defined in (A2); this holds for any j ∈ [0, k].
By (4.11), we have

‖xk+1 − x0‖ ≤
k∑

j=0

‖xj+1 − xj‖ ≤
k∑

j=0

τD(xj ,X)

≤ τ

k∑
j=0

γjD(x0,X) ≤ τ

1 − γ
D(x0,X) ≤ τ

1 − γ
‖x0 − x̂‖.

Again, by the triangle inequality and (A4),

‖xk+1 − x̂‖ ≤ ‖xk+1 − x0‖ + ‖x0 − x̂‖ ≤
(

1 +
τ

1 − γ

)
‖x0 − x̂‖ ≤ ρ.
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Hence, xk+1 ∈ Bρ(x̂), which establishes the first relation in (4.11).
By (A0), we have

(4.18) αD(xk+1,X) ≤ ‖∂f(xk+1)‖inf ≤ ‖∂Fk(xk+1)‖inf + μk‖xk+1 − xk‖.

If (C1) is used, then ‖∂Fk(xk+1)‖inf ≤ μk‖∂f(xk)‖inf ; hence, (A1) and (4.18) imply
that

αD(xk+1,X) ≤ μk(‖∂f(xk)‖inf + ‖xk+1 − xk‖)
≤ μk(LD(xk,X) + ‖xk+1 − xk‖).(4.19)

If (C2) is used, then ‖∂Fk(xk+1)‖inf ≤ θμk‖xk+1 − xk‖, and by (4.18), we have

(4.20) αD(xk+1,X) ≤ μk(1 + θ)‖xk+1 − xk‖.

Inserting the bound (4.17) into (4.19) or (4.20) yields the second half of (4.10). By
the second half of (4.10) and (A3), we have

D(xk+1,X) ≤
(

Λμk

α

)
D(xk,X) ≤ γD(xk,X) ≤ γk+1D(x0,X).

This establishes the last relation in (4.11) for j = k+1, and the proof of the induction
step is complete. The proof that the xk form a Cauchy sequence converging to a limit
x∗ ∈ X and the first part of (4.10) are exactly as in Theorem 3.2.

Suppose that x∗ is a local minimizer of Fk, f is convex in Bρ(x
∗) for some ρ > 0,

and the following inequality holds:

(4.21) f(x1) ≥ f(x2) +
1

2
〈y1 + y2,x1 − x2〉

whenever yi ∈ ∂f(xi), i = 1, 2. For example, when f is a quadratic, (4.21) is satisfied
with equality. When (4.21) holds, Proposition 4.1 can be strengthened to

(4.22) Fk(x) ≤ Fk(x
∗) +

‖∂Fk(x)‖2
inf

2μk

for all x ∈ Bρ(x
∗). In Theorem 4.2, we require that θ < 1/

√
2 in (A3); this requirement

arises at inequality (4.16) since we need to ensure that 1−2θ2 > 0. If f satisfies (4.21),
then by exploiting the stronger inequality (4.22), the restriction on θ for stopping
criterion (C2) can be relaxed to θ < 1.

We now relax the convexity requirement for f while strengthening the smoothness
condition. We require only that X is locally convex, while f is locally, twice continu-
ously differentiable. If the set Bρ(x̂)∩X is convex for some ρ > 0, then the projection
x̄ of x onto Bρ(x̂) ∩ X exists. For x ∈ Bρ/2(x̂), it follows that ‖x − y‖ ≥ ρ/2 when
y ∈ Bρ(x̂)c, where c denotes complement. Hence, the distance from x ∈ Bρ/2(x̂) to
X is the same as the distance from x to X ∩ Bρ(x̂):

‖x − x̄‖ = min{‖x − y‖ : y ∈ Bρ(x̂) ∩ X} = min {‖x − y‖ : y ∈ X} = D(x,X).

The following lemma plays the role of Proposition 4.1 when we remove the convexity
requirement for f .

Lemma 4.3. Suppose f provides a local error bound at x̂ ∈ X with positive scalars
α and ρ satisfying (1.3), X ∩ Bρ(x̂) is convex, and f is twice Lipschitz continuously
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Fréchet differentiable on Bρ(x̂). If μk = β‖f ′[xk]‖η, where η ≥ 0 and β > 0, then
there exist r ∈ (0, ρ/2] and positive constants C1 and C2 with the following property:
For each xk ∈ Br(x̂), we have

(4.23) Fk(x) − Fk(x̄) ≤ C1

μk
‖F ′

k(x)‖2

whenever x ∈ Br(x̂) and ‖x − x̄‖ ≤ C2‖xk − x̄k‖η.
Proof. If xk = x̄k, then (4.23) is trivial. Hence, we assume that xk �= x̄k. By

Lemma 2.1, f ′ provides a local error bound with constants α and r ∈ (0, ρ/2]. Hence,
for any xk ∈ Br(x̂), we have

α‖xk − x̄k‖ = αD(xk,X) ≤ ‖f ′[xk]‖.

Raising this inequality to the η power and utilizing the definition of μk gives

(4.24) μk ≥ βαη‖xk − x̄k‖η.

By the second-order necessary optimality condition, the second derivative operator
f ′′[x] is positive for any x ∈ X. Hence, given any x ∈ Br(x̂) and y ∈ H, we deduce
from (4.24) that

〈y, F ′′
k (x)y〉 = 〈y, (f ′′[x̄] + μkI + f ′′[x] − f ′′[x̄])y〉

≥ μk‖y‖2 + 〈y, (f ′′[x] − f ′′[x̄])y〉

≥
(
βαη‖xk − x̄k‖η − L2‖x − x̄‖

)
‖y‖2,

where L2 is a Lipschitz constant for f ′′ on Bρ(x̂). Hence, if x ∈ Br(x̂) satisfies

(4.25) ‖x − x̄‖ ≤ C2‖xk − x̄k‖η, C2 =
βαη

2L2
,

then we have

(4.26) 〈y, F ′′
k (x)y〉 ≥ βαη

2
‖xk − x̄k‖η‖y‖2.

Let A be the collection of x ∈ Br(x̂) which satisfies (4.25):

A = {x ∈ Br(x̂) : ‖x − x̄‖ ≤ C2‖xk − x̄k‖η}.

We now show that A is closed and convex. Since r ≤ ρ/2, it follows from the discussion
preceding the lemma that for each y and z ∈ Br(x̂), the projections ȳ and z̄ onto X
exist in Bρ(x̂). By the convexity of Bρ(x̂) ∩ X, the line segment [ȳ, z̄] is contained in
Bρ(x̂) ∩X. Thus, if y and z ∈ A, then each x ∈ [y, z] lies in A. A is closed since the
projection onto a convex set is Lipschitz continuous.

By (4.26), Fk is strongly convex over the closed, convex set A. Consequently,
there exists a unique minimizer x∗

k:

(4.27) x∗
k = arg min{Fk(x) : x ∈ A}.

Given x ∈ A and t ∈ [0, 1], we define x(t) = x∗
k + t(x − x∗

k). Since A is convex
and both x and x∗

k ∈ A, it follows that x(t) ∈ A for all t ∈ [0, 1]. Since x(0) = x∗
k
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achieves the minimum in (4.27), we have Fk(x
∗
k) ≤ Fk(x(t)) for all t ∈ [0, 1]. Thus for

φ(t) := Fk(x(t)), we have φ′(0) ≥ 0, and by (4.26),

‖F ′
k(x)‖‖x − x∗

k‖ ≥ F ′
k(x)(x − x∗

k) = φ′(1) ≥ φ′(1) − φ′(0) = φ′′(s)

= 〈F ′′
k (x(s))(x − x∗

k),x − x∗
k〉

≥ βαη

2
‖xk − x̄k‖η‖x − x∗

k‖2

for some s ∈ [0, 1]. Hence, we have

(4.28) ‖x − x∗
k‖ ≤ 2

βαη‖xk − x̄k‖η
‖F ′

k(x)‖.

By (4.26), Fk(x(t)) is convex as a function of t ∈ [0, 1]. This implies that φ′(t) is an
increasing function of t ∈ [0, 1]. We combine this observation with (4.27) and (4.28)
to obtain

Fk(x) − Fk(x̄k) ≤ Fk(x) − Fk(x
∗
k)

= Fk(x(1)) − Fk(x(0))

=

∫ 1

0

φ′(t)dt ≤ φ′(1) = F ′
k(x)(x − x∗

k)

≤ 2

βαη‖xk − x̄k‖η
‖F ′

k(x)‖2(4.29)

whenever x ∈ A and xk ∈ Br(x̂).
If L1 is a Lipschitz constant for f ′ over Bρ(x̂), then we have

‖f ′[xk]‖ = ‖f ′[xk] − f ′[x̄k]‖ ≤ L1‖xk − x̄k‖

whenever xk ∈ Br(x̂). By the definition of μk, it follows that

‖xk − x̄k‖η ≥ μk/(βL
η
1).

Combining this with (4.29) gives (4.23) with C1 = 2Lη
1/α

η.
Theorem 4.4. Assume that the following conditions are satisfied:

(B0) f provides a local error bound at x̂ ∈ X with positive scalars α and ρ satisfying
(1.3).

(B1) The set Bρ(x̂) ∩ X is convex.
(B2) f is twice Lipschitz continuously Fréchet differentiable in Bρ(x̂).
(B3) The proximal iterates xk satisfy either (C1) or (C2) with μk = β‖f ′[xk]‖η,

where η ∈ (0, 2) and β is positive. If (C2) is used, then θ is small enough
that 2C1θ

2 < 1, where C1 is the constant in (4.23).
Then for ε sufficiently small and for each x0 ∈ Bε(x̂), the proximal iterates xk are
all contained in Bρ(x̂), and they approach a minimizer x∗ ∈ X; moreover, for each
k, we have

‖xk − x∗‖ ≤ c1γ
kD(x0,X) and

D(xk+1,X) ≤ c2μkD(xk,X) ≤ βc2L
η
1D(xk,X)1+η,(4.30)

where γ < 1, c1, and c2 are constants independent of k.
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Proof. We start by explaining how to choose ε so that the theorem holds. Define
the parameters

Λ = L1 + τ and τ2 = 1 + 2C1L
2
1 if acceptance criterion (C1) is used,

while

Λ = τ(1 + θ) and τ2 =
1

1 − 2C1θ2
if acceptance criterion (C2) is used,

where C1 is the constant in (4.23) and L1 is a Lipschitz constant for f ′ over Bρ(x̂).
Notice that the hypotheses of the theorem are satisfied if ρ is decreased. Choose ρ
small enough that

(4.31) γ := sup
x∈Bρ(x̂)

β‖f ′[x]‖ηΛ
α

< 1.

By Lemma 2.1, we can choose ρ smaller, if necessary, so that f ′ provides a local
error bound with constants α and ρ/2. By Lemma 4.3, we can choose ρ smaller, if
necessary, so that (4.23) holds whenever x ∈ Bρ(x̂) and ‖x − x̄‖ ≤ C2‖xk − x̄k‖η.
Choose ε > 0 small enough that

(4.32)

(
ε +

Eε1−η/2

1 − γ1−η/2

)
≤ ρ

2
, where E =

√
L1

2βαη
,

and

ε(L1 + Eε−η/2)

(
βLη

1

α

)
≤ C2 if stopping criterion (C1) is used,(4.33)

Eε1−η/2(1 + θ)

(
βLη

1

α

)
≤ C2 if stopping criterion (C2) is used.(4.34)

Since η ∈ (0, 2), (4.33) and (4.34) are satisfied for ε sufficiently small.
We now prove the theorem. Again, let x̄ be the projection of x onto X. For

j = 0, we have

(4.35) ‖xj − x̂‖ ≤ ρ/2 and ‖xj − x̄j‖ ≤ γj‖x0 − x̄0‖

since x0 ∈ Bε(x̂) ⊂ Bρ/2(x̂). Proceeding by induction, suppose that (4.35) holds for
all j ∈ [0, k] and for some k ≥ 0.

For any j ∈ [0, k], the condition Fj(xj+1) ≤ f(xj) in (C1) or (C2) implies that

(4.36) μj‖xj+1 − xj‖2 ≤ f(xj) − f(xj+1) ≤ f(xj) − f(x̄j).

By the induction hypothesis, xj ∈ Bρ/2(x̂), and by the triangle inequality, we have

(4.37) ‖x̄j − x̂‖ ≤ ‖x̄j − xj‖ + ‖xj − x̂‖ ≤ ‖x̄0 − x0‖ +
ρ

2
≤ ρ.

Hence, x̄j ∈ Bρ(x̂). We expand f in (4.36) in a Taylor series around x̄j and use the
fact that f ′[x̄j ] = 0 to obtain

(4.38) μj‖xj+1 − xj‖2 ≤ L1

2
‖xj − x̄j‖2,
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where L1 is a Lipschitz constant for f ′. Since f ′ provides a local error bound with
constants α and ρ/2 and xj ∈ Bρ/2(x̂), it follows that

μj = β‖f ′[xj ]‖η ≥ βαη‖xj − x̄j‖η.

Combining this with (4.38) gives

(4.39) ‖xj+1 − xj‖ ≤ E‖xj − x̄j‖1−η/2

for j ∈ [0, k], where E is defined in (4.32). By the triangle inequality, (4.32), (4.35),
and (4.39), we have

‖xk+1 − x̂‖ ≤ ‖x0 − x̂‖ +

k∑
j=0

‖xj+1 − xj‖

≤ ‖x0 − x̂‖ + E

k∑
j=0

‖xj − x̄j‖1−η/2

≤ ‖x0 − x̂‖ + E‖x0 − x̂‖1−η/2
k∑

j=0

(γ1−η/2)j

≤ ‖x0 − x̂‖ +
E‖x0 − x̂‖1−η/2

1 − γ1−η/2

≤ ε +
Eε1−η/2

1 − γ1−η/2
≤ ρ/2.

This establishes the first half of (4.35) for j = k + 1.
To establish the second half of (4.35), we will apply Lemma 4.3 to x = xk+1.

Since xk+1 ∈ Bρ/2(x̂), we need only show that x = xk+1 satisfies the qualification
‖x − x̄‖ ≤ C2‖xk − x̄k‖η for (4.23). Since ‖xk+1 − x̂‖ ≤ ρ/2 and since f ′ provides a
local error bound at x̂ with constants α and ρ/2,

(4.40) α‖xk+1 − x̄k+1‖ ≤ ‖f ′[xk+1]‖ ≤ ‖F ′
k(xk+1)‖ + μk‖xk+1 − xk‖.

Since f ′ is Lipschitz continuous over Bρ(x̂), it follows from (4.39), (4.40), and the
definition of μk that for stopping criterion (C1),

‖xk+1 − x̄k+1‖ ≤ μk

α
(‖∇f(xk)‖ + ‖xk+1 − xk‖)

≤
(
βLη

1

α
(L1‖xk − x̄k‖ + ‖xk+1 − xk‖)

)
‖xk − x̄k‖η

≤
(
βLη

1

α
(L1‖x0 − x̄0‖ + E‖xk − x̄k‖1−η/2)

)
‖xk − x̄k‖η

≤
(
βLη

1

α
(L1‖x0 − x̂‖ + E‖x0 − x̂‖1−η/2)

)
‖xk − x̄k‖η

≤ C2‖xk − x̄k‖η.(4.41)

The first inequality is due to (4.40) and (C1); the second inequality is based on the
definition of μk and the Lipschitz continuity of f ′; the third inequality utilizes the
induction hypothesis (4.35), the bound (4.39) for j = k, and the fact that xk and
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x̄k ∈ Bρ(x̂) (see (4.37)); and the fourth inequality is a consequence of the induction
hypothesis and the fact that ε satisfies (4.33).

If stopping criterion (C2) is used, then in the same fashion, (4.34) gives

‖xk+1 − x̄k+1‖ ≤ μk

α
(1 + θ)‖xk+1 − xk‖

≤
(
βLη

1

α
(1 + θ)‖xk+1 − xk‖

)
‖xk − x̄k‖η

≤
(
βLη

1

α
(1 + θ)E‖xk − x̄k‖1−η/2

)
‖xk − x̄k‖η

≤
(
βLη

1

α
(1 + θ)E‖x0 − x̂‖1−η/2

)
‖xk − x̄k‖η

≤ C2‖xk − x̄k‖η.(4.42)

Thus, if either stopping criterion (C1) or (C2) is used, then x = xk+1 satisfies the
qualifications of Lemma 4.3.

We now give another bound for the change ‖xk+1 − xk‖. Lemma 4.3 yields

(4.43) Fk(xk+1) ≤ Fk(x̄k) +
C1

μk
‖F ′

k(xk+1)‖2.

Since f(x̄k) ≤ f(xk+1), we conclude that

(4.44)
μk

2
‖xk+1 − xk‖2 ≤ μk

2
‖x̄k − xk‖2 +

C1

μk
‖F ′

k(xk+1)‖2.

If (C1) is used, then we have

‖xk+1 − xk‖2 ≤ ‖x̄k − xk‖2 + 2C1‖f ′[xk]‖2

≤ ‖x̄k − xk‖2 + 2C1L
2
1‖x̄k − xk‖2.

If (C2) is used, then (4.44) gives

‖xk+1 − xk‖2 ≤ 1

1 − 2C1θ2
‖xk − x̄k‖2.

In either case,

(4.45) ‖xk+1 − xk‖ ≤ τ‖xk − x̄k‖,

where τ is defined at the start of the proof.
If (C1) is used, then

‖F ′
k(xk+1)‖ ≤ μk‖f ′[xk]‖ = μk‖f ′[xk] − f ′[x̄k]‖ ≤ μkL1‖xk − x̄k‖.

By (4.40) and (4.45), we have

(4.46) ‖xk+1 − x̄k+1‖ ≤ μk

α
(L1 + τ)‖xk − x̄k‖.

If (C2) is used, then ‖F ′
k(xk+1)‖ ≤ θμk‖xk+1−xk‖, and by (4.40) and (4.45), we have

(4.47) ‖xk+1 − x̄k+1‖ ≤ τμk(1 + θ)

α
‖xk − x̄k‖.
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In either case, since xk ∈ Bρ/2(x̂), it follows from the definition of γ and μk that

‖xk+1 − x̄k+1‖ ≤ γ‖xk − x̄k‖.

This establishes the second half of (4.35) for j = k + 1. Hence, the proof of the
induction step is complete. The proof that the xk form a Cauchy sequence converging
to a limit x∗ ∈ X is exactly as in Theorem 3.2. The first half of (4.30) follows from
(4.46) and (4.47). In the second half of (4.30), we replace μk by β‖f ′[xk]‖η and exploit
the Lipschitz continuity of f ′.

Remark. During the proof of Theorem 4.4, in (4.41) and (4.42), we show that
each iterate xk+1 lies in the region where Fk is convex (4.26).

When η = 0, we can drop the requirement of Theorem 4.4 that X is locally
convex. This convexity requirement arose since we use Lemma 4.3, which assumes
that X is locally convex. We now show that Lemma 4.3 can be established without
local convexity when μk is bounded away from 0.

Lemma 4.5. Let β > 0 and suppose that μk ≥ β for each k. Given x̂ ∈ X and
δ ∈ (0, 1), suppose f is twice Lipschitz continuously Fréchet differentiable on Bρ(x̂),
let L2 be a Lipschitz constant for f ′′ on Bρ(x̂), and let r = min{ρ, δβ/L2}. Then we
have

(4.48) Fk(x) − F ∗
k ≤

(
1

(1 − δ)μk

)
‖F ′

k(x)‖2

for all x ∈ Br(x̂), where

F ∗
k = min

x∈Br(x̂)
Fk(x).

Proof. Suppose x ∈ Br(x̂). We start with the identity

〈F ′′
k [x]y,y〉 = 〈F ′′

k [x̂]y,y〉 + 〈(F ′′
k [x] − F ′′

k [x̂])y,y〉.

By the second-order optimality condition, f ′′[x̂] is positive. Consequently, we have

〈F ′′
k [x̂]y,y〉 ≥ μk‖y‖2.

Since F ′′
k [x] − F ′′

k [x̂] = f ′′[x] − f ′′[x̂], it follows from the Lipschitz continuity of f ′′

that

〈(F ′′
k [x] − F ′′

k [x̂])y,y〉 ≤ L2‖x − x̂‖ ‖y‖2 ≤ δβ‖y‖2 ≤ δμk‖y‖2

since r ≤ δβ/L2. Hence, if x ∈ Br(x̂), we have

(4.49) 〈F ′′
k [x]y,y〉 ≥ (1 − δ)μk‖y‖2.

By (4.49), Fk is convex on Br(x̂). Consequently, the minimizer x∗
k over Br(x̂)

exists:

x∗
k = arg min{Fk(x) : x ∈ Br(x̂)}.

Since Br(x̂) is a convex set, the first-order optimality condition

〈F ′
k[x

∗
k],x − x∗

k〉 ≥ 0
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holds for all x ∈ Br(x̂). It follows that

〈F ′
k[x],x − x∗

k〉 ≥ 〈F ′
k[x] − F ′

k[x
∗
k],x − x∗

k〉.

We utilize the strong convexity property (4.49) to obtain

〈F ′
k[x],x − x∗

k〉 ≥ (1 − δ)μk‖x − x∗
k‖2,

which gives

(4.50) ‖x − x∗
k‖ ≤ 1

(1 − δ)μk
‖F ′

k[x]‖.

The convexity of Fk on Br(x̂) implies that

Fk(x
∗) ≥ Fk(x) + F ′

k[x](x∗
k − x).

Combining this with (4.50) completes the proof.
Theorem 4.4 holds with the following modifications: (i) The assumption (B0)

that Bρ(x̂) ∩ X is convex is dropped; and (ii) μk ∈ [β0, β1], where β1 is chosen small
enough that the constant γ = β2Λ/α is less than 1. For completeness, we state the
modified result.

Theorem 4.6. Assume that the following conditions are satisfied:
(b0) f provides a local error bound at x̂ ∈ X with positive scalars α and ρ satisfying

(1.3).
(b1) f is twice Lipschitz continuously Fréchet differentiable in Bρ(x̂).
(b2) The proximal iterates xk satisfy either (C1) or (C2) with μk ∈ [β0, β1], where

β0 > 0. If (C2) is used, then θ < 1/
√

2. δ ∈ (0, 1) is chosen small enough
that θ2 < (1 − δ)/2.

(b3) Define the parameters

Λ = L1 + τ and τ2 = 1+2L2
1/(1− δ) if acceptance criterion (C1) is used,

while

Λ = τ(1+θ) and τ2 =
1

1 − 2θ2/(1 − δ)
if acceptance criterion (C2) is used,

where L1 is a Lipschitz constant for f ′ over Bρ(x̂). β1 is small enough that

γ :=
β1Λ

α
< 1.

Then for ε sufficiently small and for each x0 ∈ Bε(x̂), the proximal iterates xk are
all contained in Bρ(x̂), and they approach a minimizer x∗ ∈ X; moreover, for each
k, we have

‖xk − x∗‖ ≤ c1γ
kD(x0,X),

where c1 is a constant independent of k.
The proof of Theorem 4.6 is the same as the proof of Theorem 4.4, except that

we use Lemma 4.5 instead of Lemma 4.3 and we replace expressions like ‖x − x̄‖ by
D(x,X).
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5. Final discussion. The local convergence results obtained in [7] for a new
class of self-adaptive proximal point methods have been extended from a finite di-
mensional setting to a Hilbert space setting. In particular the local convergence
estimates obtained for exact iterates in [7] are now established for approximate it-
erates satisfying (C0). Our analysis, which permits multiple minimizers, employs a
local error bound condition (1.3) relating the growth in f to the distance from the
set of minimizers. The gradient-based acceptance criteria in [7] have been replaced
by subdifferential-based criteria (C1) and (C2). The local convergence results for
the subdifferential-based stopping criteria are similar to the convergence results for
iterates satisfying (C0). Three types of assumptions were considered in our analysis
connected with (C1) and (C2): (a) f is convex and lower semicontinuous on a level
set; (b) the set X ∩ Bρ(x̂) is convex for some ρ > 0, and f is twice continuously
differentiable on Bρ(x̂); and (c) μk ∈ [β0, β1], with β1 sufficiently small, β0 > 0, and
f twice continuously differentiable on Bρ(x̂). The conditions (b) and (c) are weaker
than the local convexity requirement for f in [7].

The analysis in this paper has focused on local convergence. Global convergence
issues are studied in section 6 of [7], where we also present computational results which
show that for a class of ill-conditioned nonlinear optimization problem, a proximal
point approach could reduce the computing time.
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