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 SIAM J. NUMER. ANAL.
 Vol. 13, No. 4, September 1976

 RATES OF CONVERGENCE FOR DISCRETE APPROXIMATIONS

 TO UNCONSTRAINED CONTROL PROBLEMS*

 WILLIAM W. HAGERt

 Abstract. Convergence rates for the error between the solution to a discrete approximation of a
 fixed time, unconstrained control problem and the corresponding continuous optimal control are
 derived for one-step and multistep integration schemes. The convergence rate for multistep schemes
 depends on the order of the integration scheme and the approximation properties of the discrete co-

 state equation at the right endpoint. Furthermore, the order is < 3 and the error in the optimal discrete
 control exhibits a boundary layer with most of the error concentrated at the right endpoint. For a class
 of one-step integration schemes satisfying a symmetry condition, second order convergence of the
 optimal discrete control is both proved and observed experimentally. The computations also indicate

 that the convergence rate of the optimal discrete state and costate variables equals the order of the
 integration scheme. By an auxiliary computation, this order can also be recovered for the control

 approximation. Some numerical examples indicate that the convergence,estimates are tight. The ques-
 tion of the best integration scheme for achieving a given order of convergence is examined, and the
 modified Euler, the 3-point Adams-Moulton and a Runge-Kutta scheme appear to be optimal for
 orders 2, 3 and 4.

 1. Introduction. Discrete approximations of the following control problem
 are studied:

 (1) Minimize {xo(1): xk(t) = f(x(t), u(t)), x(O) = z.,

 where the minimization in (1) is over u( ) and where x:R -* R u:R -R,
 f:Rn + x Rm -Rn+ 1, and x0 is the zeroth component of x. The variable x is
 called the state variable or trajectory generated by the control u. It is assumed that
 f is not a function of x0 and (z)0 = 0 so that the cost functional to bv minimized
 in (1) is the following:

 (2) xo(l) = fo(x(t), u(t)) dt.

 The differential equations describing the remaining components of x are called
 the system dynamics. By a discrete approximation to the control problem, we
 mean that the differential equation is to be replaced by an integration procedure
 such as modified Euler's method, fourth order Runge-Kutta, or the fifth order
 Milne scheme. This paper estimates the convergence rate as a function of the grid
 interval for the error between the solution to the discrete optimization problem
 and the continuous optimal control.

 A number of papers have developed conditions under which the solution to
 a discrete approximation to (1) will converge to the optimal continuous control.
 For example, see Cullum [6], [7], [8], Budak, Berkovich and Solov'eva [2], [3],
 [4], and Klessig and Polak [13]. The question of convergence rates, however,
 has not been considered although these rates are very important in making
 judgements concerning the efficiency of various discrete approximations; in

 * Received by the editors July 19, 1974, and in final revised form Ociober 24, 1975.
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 450 WILLIAM W. HAGER

 fact, the simplest scheme that achieves a given convergence rate is generally
 the most efficient scheme.

 The results that follow are based on considering the relationship between

 the discrete necessary conditions or Kuhn-Tucker conditions and the continuous

 necessary conditions or Pontryagin minimum principle (see L. S. Pontryagin et al.
 [16]). The continuous necessary conditions are the following: Suppose u* solves

 (1) and x* is the corresponding trajectory; whenever f(., ) is sufficiently smooth

 (see [46]), there exists a function p* called the costate variable such that the follow-

 ing conditions hold for (x, u, p) = (x*, u*, p*):

 (3) x(t) = f(x(t), u(t)), x(O) =z,

 (4) p(t) - -fX(x(t), u(t))Tp(t), p(l)T = (1, 0, 0, * * , o)T

 (5) f"(x(t), u(t))Tp(t) = 0.

 The conditions (3), (4) and (5) are called the state equation, costate equation and

 control minimum principle, respectively.
 Notice that (3H5) define a two-point boundary value problem since (5)

 defines u(t) as a function of x(t) and p(t) and hence (3) and (4) are differential equa-
 tions in x and p with half the boundary conditions specified at t = 0 and the other
 half at t = 1. In fact, one method for solving (1) is to use any of the standard
 two-point boundary value techniques (see [14], [17]) to compute x* and p*

 and then to determine u* by (5).
 This approach, however, ignores much of the basic structure of the control

 problem. It has already been observed with the finite element method for solving

 elliptic partial differential equations, that many of the stability problems associated
 with approximations to the necessary conditions (or the partial differential equa-

 tion) are eliminated by approximating the variational formulation of the problem.
 The finite element method generates very unconventional difference approxima-

 tions to the partial differential equation with very good stability properties.
 Similar behavior is observed for discrete approximations to the uncon-

 strained control problem (1). If standard two-point boundary value approxi-
 mations are used to solve (3H5), stability problems arise since most techniques
 for solving the two-point boundary value problem involve the inversion of a
 transition matrix associated with the linearized problem and the condition number
 of this matrix appears to be very large for many problems. On the other hand,
 if the original optimization problem (1) is discretized, then an algorithm such

 as conjugate gradients with both guaranteed convergence and a high asymptotic
 convergence rate can be utilized. As with the finite element method, the necessary
 conditions for the discrete approximating problem produce some very uncon-
 ventional approximations to the two-point boundary value problem.

 As stated earlier, this paper studies the convergence rate of the optimal
 discrete control as a function of the grid interval h. If the differential equation in (1)
 is replaced by a multistep integration scheme, then the convergence rate is <3
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 RATES OF CONVERGENCE 451

 and depends on the order of the integration scheme and the approximating proper-
 ties of the discrete costate equation at the right endpoint, t = 1.

 Although the Milne schemes possess the highest possible order among all

 integration schemes involving a given number of points, the approximation pro-
 perties of the discrete costate variable are very bad near t = 1 so that the optimal
 discrete control does not converge to the optimal continuous control. The errors
 in the modified Euler and 3-point Adams-Moulton schemes are second and third

 order, respectively, except for a boundary layer at t = 1 where the error is, in
 general, 0(h). With the 4-point Adams-Moulton scheme, however, the convergence
 rate bound of 3, mentioned above, intervenes to keep the convergence rate at
 third order.

 For one-step approximations to the differential equation in (1), the mathe-
 matical theory is much less complete. Using the same techniques employed for
 the multistep schemes, it is shown that the error in the optimal discrete control

 is at most 0(h2) for a class of schemes satisfying a symmetry condition. However,
 numerically it is observed that even though the discrete controls are only accurate
 to order 2, the optimal discrete state and costate variables associated with a bth

 order one-step scheme satisfying the symmetry condition are accurate to order b,
 although the proof of this result in general is still an open question. Using these
 good approximation properties for the state and costate variable, a bth order
 estimate of u* can be obtained. The possibility ofchoosing the integration parameters
 so that the optimal discrete control is accurate to order b was also examined. For
 third and fourth order integration schemes, it was found that the discrete control
 is accurate at best to second and third order, respectively.

 Some numerical examples in the last section indicate that the convergence
 estimates are tight. Also the question of the best integration scheme for obtaining
 a given convergence rate is examined, and the modified Euler, 3-point Adamhs-
 Moulton and a Runge-Kutta scheme appear to be optimal for orders 2, 3 and 4,
 respectively.

 2. Multistep schemes. Multistep schemes of the following form are studied
 r r

 (6) Z a(j)y(j + k) = h , b(j)f(y(j + k), v(j + k))
 j=O j=O

 for k = 0, 1, , N - r. Above h = 1/N, and (y(k), v(k)) are approximations to
 (x(tk), u(tk)) where tk = kh. The {a(j)} and {b(j)} are fixed constants that characterize
 the multistep scheme and Table 1 gives some typical choices for these parameters.

 Notice that once the control sequence {v(k)} and the r initial conditions

 {y(O), y(l), * * *, y(r - 1)} are given, one can often solve for {y(r), y(r + 1), ..,
 y(N)}; for example, (i) the scheme is explicit (b(r) = 0) or (ii) f( , ) is Lipschitz
 continuous in its first argument and h is sufficiently small. Normally, the r starting
 conditions must be determined using a one-step scheme; however, in order to
 isolate the effect of the multistep scheme on the discrete control error, it will be

 assumed that the initial conditions are known exactly. Henrici [11, Chap. 5]
 gives an analysis of error propagation for multistep integration procedures.

 It is assumed that the integration procedure (6) converges to the solution of

 the corresponding differential equation with order b > 1, that there exists a

This content downloaded from 
����������128.227.115.216 on Tue, 23 Apr 2024 23:59:53 +00:00����������� 

All use subject to https://about.jstor.org/terms



 452 WILLIAM W. HAGER

 TABLE 1

 Multistep schemes

 Name of Order of Accuracy of Computed
 Scheme a(i) b(i) Scheme Terminal Convergence

 Condition Rate in (PI)

 Modified Euler (1 -1) (I, 19 2 2 1.95 -+ 2
 3-point Milne (1,0, -1) (f, 4, 1) 4 0 0
 4-point Adams- (1, - 1, 0,0) (9, 7 -N , 2) 4 4 3.05 -- 3

 Moulton

 5-point Milne (1,0,0,0,-i) ( ,4 6 0 0

 solution us to (1) and a corresponding trajectory x*, and that theminimum principle

 (385) holds. Similarly assume that there exists a solution {vh(k)} and a correspond-
 ing trajectory {yh(k)} for the discrete optimization problem and that the discrete
 necessary conditions hold.

 In the Kuhn-Tucker conditions below, the following notation is used:
 A(k) denotes the dual multiplier corresponding to (6), f, and f, are gradients of f
 with respect to x and u, respectively, and G(k) = f,(y(k), v(k))T. To generate the
 discrete necessary conditions, multiply (6) by A(k), sum over k, add the result to the
 cost functional to form the Lagrangian, and equate to zero the gradient of the
 Lagrangian with respect to {y(k)} and {v(k)}. The equations (7) and (8) below cor-
 respond to the state and control gradients, respectively:

 r r

 (7) ZE[a(j)4(k - j)] = e(k) + h ? [G(k)b(j)2(k - j)],
 j=O j=O

 r

 (8) h E [fu(y(k), v(k))Tb(j)A(k - j)]= 0
 J=0

 for k = r, r + 1, N, where A(k)=O for k > N-r, e(k) = O for k#A N, and
 e(N)T = (1,0,0, , 0)T. Note that (7) and (8) only hold for v(k) = V(k) and
 y(k) = yh(k); however, the "h" superscript is omitted below and all variables are
 understood to be optimal. Now change from the variable A to the variable q given
 by

 (9) q(k)= E [b(j)2(k - j)].
 j=O

 After multiplying (7) by b(m), replacing k with k - m and summing from m 0
 to m = r, we obtain

 r' r

 Z E [a(j)b(m)2(k - m - j)]
 (10) m=O j =[

 r f r
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 RATES OF CONVERGENCE 453

 Interchanging the order of summation on the left side of (10), and using'(9) in both
 (10) and (8) leads to the following formulation for the discrete necessary conditions:

 r r

 (I1) E [a(j)q(k - j)] = E b(j)[hG(k - j)q(k - j) + e(k - j)]
 j=O j=O

 fork=N+r,N+r-1, *, 2r,

 (12) q(k) = 0 for k > N,

 (13) hfj(y(k), v(k))Tq(k) = 0 for k = r, r + 1, , N.
 The sequence {q(k)} and the equation (11) will be called the discrete costate variable
 and the discrete costate equation, respectively.

 Since the e(k - j) term in (11) vanishes for k < N, the discrete costate equation
 is the same multistep scheme as (6), except that (4) is integrated in the backward
 direction; that is, the discrete costate is computed in the order q(N), q(N - 1), .
 Also note the difference in the terminal conditions for the discrete and continuous
 costate equations: p(l)T = (1, 0, 0, ** *, 0)T in (4) and q(k) = 0 for k > N in (12).
 As will be seen below, the e(k - j) term in (11) corrects for the discrepancy in the
 terminal conditions. Thus the discrete approximation to the optimization problem
 gives rise to a very unconventional starting procedure for the costate multistep
 integration scheme.

 A summary is now given of the error analysis. The cost functional (2) is an
 unconstrained function of the control; that is, given u(. ), the corresponding cost
 xo(1)canbecomputed.Thusthediscretecostfunctional,denotedJ(v(r), v(r + 1), ... ,
 v(N)), is an unconstrained function of the discrete controls {v(k)}. Hence the
 optimal discrete control satisfies DJ(vh) = 0, where D is the derivative operator.
 Expanding DJ(v) in a Taylor series, DJ(v) = DJ(vh) + D2J(v)(v - vh) where v

 lies on the line segment between v and vh. Defining v* by v*(k) = u*(tq), v* - vh =
 D2J(v)-'DJ(v*) from the expansion above. Thus the error v* - vh depends on
 the properties of the Hessian D2J(v) and the gradient DJ(v*).

 Let {y*(k)} denote the discrete state generated by (6) using the discrete con-
 trols {v*(k)}, and let {q*(k)} denote the discrete costate generated by (11) and (12)
 using y(k) = y*(k) and v(k) = v*(k). We show that DJ(v*) is given by (13) where
 (y, v, q) = (y*, v*, q*). Furthermore, DJ(v*)k = O(h2) for k N and DJ(v*)k =
 0(h+ 1) for k << N where m < b and m depends on the effectiveness of the
 e(k - j) term in (11) in approximating the continuous costate variable near t = 1.
 After estimating D2J(v) in an example, it is proved that the error vh(k) - v*(k) is
 0(h) for k N and 0(h') for k << N where 1 = min {3, m}.

 Step 1. An expression for DJ(v*). RIecall the implicit function theorem: If
 g : R x Rm -* R', (a, b) satisfy the relation g(a, b) = 0, g is continuously differen-
 tiable in a neighborhood of (a, b), and the matrix ag(a, b)/aa is nonsingular, then
 there exists a neighborhood X4/ of b such that the equation g(a, b) = 0 has a solu-
 tion a(b) for b E A; the derivative Oa(b)/Ob exists, and Oa(b)/Ob = - (Og(a, b)/Oa)- '

 * (ag(a, b)/ab). Hence if L: Rn x Rm -* R is a real-valued function differentiable at
 (a, b), then by the chain rule, aL(a(b), b)/ablb=b = L(a, b)/1b + AT(ag(a, b)/lb)
 where AT is the solution to the linear system aL(a, b)/aa + ATQ(g(a, b)/aa) = 0.
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 454 WILLIAM W. HAGER

 Restating these last results, aL(a(b), b)/1b = aY(a, b, ))/1b where Y(a, b,)) =
 L(a, b) + )Jg(a, b) and A is determined from aY(a, b, A)/1b = 0.

 For the control problem, the constraints g(., ) are given by (6) where

 ak = y(k) and bk = v(k). Hence aY(a, b, A)4la yields (7) or equivalently (11) and,
 as stated earlier, aL(a(b), b)/1b reduces to:

 (14) DJ(v*)k = hf.(y*(k), v*(k))Tq*(k).

 By the necessary condition (5) above, hfu(x*(tk), v*(k))Tp*(tk) = 0, and hence

 (15) IDJ(v*)kl ? chlq*(k) - p*(tk)l + chly*(k) -x*(tk)l,

 where c depends on the second partial derivatives of f ( , ) near (x*(t), u*(t))
 for t E [0, 1]. Since the multistep scheme (6) is of order b, Iy*(k) -x*(tk)l = O(hb).
 The next step examines the error in q*.

 Step 2. The error q*(k) - p*(tk). First consider the zeroth component of q*.

 Since f is not a function of xo, the first row of f T is identically zero and hence by
 (4), p*(t) = 0, p*(l) = 1, or equivalently po* =_ 1. Similarly using (11), q* can be
 computed from the initial condition q*(k) = 0 for k > N, and these values are
 given in Table 2 for the schemes in Table 1.

 TABLE 2

 Scheme N N-I N-2 N-3 N-4 N-5 N-6 N-7 N-8

 Modified Euler 2 1 1 1 1 1 1 1 1

 Milne 3-point 1 4 2 4 2 4 2 4 2

 Adams-Moulton 4-point 9 28 23 1 1 1 1 24_ 24- 1241 1

 Milne 5-point 64 24 6 28 64 2 64 28

 Notice that for both the modified Euler and Adams-Moulton 4-point scheme,

 the error Iq*(k)- PoJ(tk) vanishes within r grid intervals while the accuracy of the
 two Milne schemes is 0(1) for all k.

 Now consider the remaining components of the discrete costate variable.

 Let 4(k) denote the solution to (11) when G(k) = fx(y(k), v(k))T is replaced by
 H(k) = fx(x*(tk), U*(tk))T. The error jq*(k) - p*(tk)l is estimated by computing
 q(k) - p*(tk)l and 14(k) - q*(k)l.

 Using a Taylor series expansion, it is possible to express 4(k) in terms of
 f(x*(1), u*(1)) and derivatives of f( , .) evaluated at (x*(1), u*(1)). For example,
 consider the modified Euler scheme in Table 1:

 q(N) = RI - 'hH(N))- ' e(N) (16) 2
 = [-1I + -hH(N) + O(h2)] e(N),

 4(N - 1) = (I - jhH(N - 1))- I [2I + -hH(N))(I - hH(N))- I + 2I]e(N)
 = [I + hH(N) + O(h2)] e(N).
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 RATES OF CONVERGENCE 455

 Thus kq(N) - p*(tN)I = 0(1) and Iq(N - 1) - p*(tN- )I = 0(h2). As Henrici [11]
 shows, the order of approximation for a multistep integration scheme is the minimum
 of the order of initial condition error and integration error. Since the modified

 Euler scheme is second order and q(N - 1) is accurate to second order, q(k) -
 p*(tk)I = 0(h2) for k ? N - 1.

 In general, the Taylor expansion yields kq(k) - p*(tk)l = 0(hS) for k - N - A.
 The value of A is r for the Adams-Moulton and modified Euler scheme. As noted
 above, the value of s is 2 for the modified Euler scheme and 0 for the Milne schemes.

 For the 4-point Adams-Moulton scheme, s = 4. Since the multistep scheme has

 order b, kq(k) - p*(tk)l = 0(hm), where m = min {s, b} except for k satisfying
 N - A < k ? N where the error may be larger.

 Now consider the difference 6(k) = q(k) - q*(k). Subtracting the equations
 for q and q* yields

 r r

 Z a(j)b(k - j) = , b(j) {hH(k - j)b(k - j)
 j=O j=O

 (18) + h[fx(x*(tk-j), u*(tk-j))

 f(y*(k -j), U (tk-j))T ]q*(k - j)}.

 Assuming (x*, u*) are bounded andf( f , ) is continuous, the condition ly*(k) -
 X*(tk)I = 0(hb) implies that both f.(y*(k), v*(k)) and q*(k) are bounded uniformly
 in h and k. Furthermore, if f(,) has two continuous derivatives, then the last
 term in (18) is hO(hb) = 0(hb+l). This last result together with the condition

 6(k) = 0 for k > N and Lemma 5.6 in Henrici [11] proves that 16(k)l = 0(hb) for
 k < N; that is, adding a forcing term of size 0(hb+ ) to the convergent difference
 scheme (18) contributes at most 0(hb) to the solution 6(k) for 0 < k < N.

 Finally, jq*(k) -Ap*(tk)I ? (k) - q*(k)l + kA(k) -p*(tk) = 0(hb) + 0(hm) =
 0(hm).

 Step 3. A boundfor DJ(v*)k. Two regions are considered: N -A < k ? N and

 k ? N - A. In the second region, jq*(k) - p*(tk)l = 0(hm) by the results above.
 Since ly*(k) - x*(tk)l = 0(hb), the relation (15) implies that

 IDJ(v*)kl< hO(hm) + hO(hb) = 0(hm+1)

 In the region N - A < k ? N, we show that DJ(v*)k = 0(h2). Let (f, p, q)
 denote the vectors formed after removal of the zeroth components of (f, p, q).
 First note the following: (i) Iq*(k)l = 0(1) for k ? N and (ii) p*(tk) = 0(h) = q*(k)
 for N - A < k < N. The relation (i) follows since the e(k - j) term in (11) makes
 only a nonzero contribution to q(k) for N - r ? k ? N while (ii) follows since
 q*(k) = O for k > N and p*(1) = 0.

 Inserting p*(t) = 1 in (5), moving the po term to the other side of the equation,
 and multiplying by q*(k), we get the following equalities:

 (19) qq*(k)(fO)u(X*(tk), U*(tk)) = q*(k)fu(x*(tk), U*(tk))Tp* (tk)
 = O(h) forN-A<k<N.
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 456 WILLIAM W. HAGER

 The last equality in (19) follows by (i) and (ii) above and the bound on the gradient
 can now be established:

 DJ(v*)k = hf.(y*(k), v*(k))Tq*(k)

 = hq*(k)(fO).(x*(tk), U*(tk))
 (20)

 + hfu(y*(k), v*(k))Tq*(k) + O(h2)

 = O(h2) for N-A < k ? N,

 where the second equality follows from the condition Ix*(tk) - y*(k)l = O(hb) <
 O(h) and third equality is a consequence of (19) and (ii) above.

 Step 4. The Hessian D2J(v). In many cases, the matrix D2J(v) is observed to

 have the following properties: (i) the diagonal entries are at least O(h) in magnitude,
 (ii) the off-diagonal entries are at most O(h2), (iii) the off-diagonal entries in the
 last A rows and columns are O(h3), and (iv) hID2J(v)- II is bounded uniformly in h.

 These properties are illustrated for the following control problem in one
 dimension:

 minimize [CX(t)2 + U(t)2] dt

 (21) subject to *(t) = ax(t) + bu(t), x(O) = z,

 where c > 0, a and b are scalar constants. We consider only the Euler one-step
 method; however, the analysis is very similar for r + 1 point schemes since they
 can be expressed as one-step schemes involving vectors with r components.

 For Euler's method, J(v) = EkN h(cy(k)2 + v(k)2) where
 k=~~~~~~~~~

 y(k + 1) = y(k) + h(ay(k) + bv(k)) = (1 + ah)kz + h E (1 + -ah)k-jbv(j).
 j=0

 Since y(k) is an affine function of {v(k)}, J(v) is a quadratic in v, and hence D2J(v)
 is a constant matrix denoted H.

 The diagonal of H is at least 2h since the cy(k)2 term in J(v) can only lead to
 a positive contribution to the diagonal while the v(k)2 term contributes 2h to the
 kth diagonal entry. The (i,j)th off-diagonal entry in H arises from differentiation
 of y(k)2 in the cost function:

 (22) Hij = chE y(k)2
 k > max(i,j) av(i)av(])'

 Since y(k) is an affine function of the controls,

 (23) a2y(k)2 2ay(k) ay(k) - 2h2b2(1 + ha)2ki-i-2 2eah b2
 (2) av(i)av(j) - V(i) aV(j
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 RATES OF CONVERGENCE 457

 for k > max (i, j), where the last inequality in (23) follows from the relation
 1 + ah ? eah. Inserting the bound (23) into (22) yields

 (24) IHijI ? [N - max (i,j)]ch2e2ah2b2 ? 0(h2).

 For either the last A rows or columns of H, IN - max (i,j)l ? A and hence the
 expression in (24) is 0(h3). This completes the proof of (iHiii) above; next the

 bound on IH-'I is proved.
 Note that as c -+ 0, the off-diagonal entries in H converge to zero while the

 diagonal entries are at least 2h. Thus for c sufficiently small, H will be a diagonally

 dominant matrix and the ratio of the absolute sum of the off-diagonal entries
 in any row to the corresponding diagonal entry will be bounded by a constant
 p < 1 that is independent of N and the row number. The { - or maximum vector

 norm, lyl, generates a matrix norm IMI = max {IMyl:Jyj = 1}. Since 1/1H-1I =
 min{IHyl :Iyl = 1}, it can be proved that IH'I < 1/(1 - p)bh, where 6 =
 min {IHkkl/h}: Suppose that z satisfies the conditions lzl = 1 and IHzl = 1/H- 11.
 Let Zk be any component of z satisfying Zk = 1. Then

 (25) I(HZ)kI ? IHkkZkl - I E HkjZjl ? IHkkl(l -P)
 j*k

 where the last inequality follows by the condition lzjl < 1 for all j.
 For the control problem (21) above, IH-'I < 1/2(1 - p)h since ( > 2. The

 principal theorem of this section is now presented.
 THEOREM 2.1. Assume thefollowing: (Al) The multistep scheme (6) is of order b,

 (A2) The costate integration scheme (11) is accurate to order m = min {s, b} for

 k < N - A, and (A3) D2J(v) satisfies the conditions (iHiv) in Step 4 uniformly in v.
 Then the solution vh corresponding to the discrete approximation (6) satisfies

 I(Vh - V*)kI = 0(h') for k ? N - A and I(Vh - V*)kI = 0(h) for N - A < k ? N
 where e = min {3, s, b}.

 Proof. By the development above, v* -vh = D2J(v)- lDJ(v*). By Steps 1, 2
 and 3, DJ(v*) = f + g where gk = DJ(v*)k = 0(hm+i) for k < N - A and fk =
 DJ(v*)k = 0(h2) for N - A < k ? N. Letting H denote the Hessian matrix,

 Hg- ?gl H H- ' lgl = 0(ht) by (iv) above.
 Now define f by fk= fk/Hkk and note that Hf = f + ( where 1(1 = 0(h4)

 since the last A columns of H are 0(h3). Also observe that Ifl = 0(h) and fj = 0
 for j < N - A. Thus If - H'fI = IH'-(5 < IH-'I 1(1 = 0(h3) by condition
 (iv) in Step 4. Since fj = 0 for j < N - A, the last inequality implies that (H- 1f)j =
 0(h3) for j N - A while H -lfI < 1H -'I If I = 0(1/h)0(h2 = 0(h). Combining
 these bounds on IH- gl and IH- fl completes the proof of the theorem. E1

 The numerical experiments presented in ? 4 indicate that the convergence
 rates in Theorem 2.1 are tight. To estimate u* more accurately near t = 1, ignore

 the discrete controls near the right endpoint where the error is large, and pass a
 polynomial through the more accurate control parameters to approximate u*(1) by
 extrapolation.

 Also in another paper of the author [10], a large truncation error is shown to
 produce a local error in the discrete approximation for discretizations yielding

 diagonally dominant, banded, linear systems.
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 458 WILLIAM W. HAGER

 3. One-step integration schemes. One-step integration schemes of the follow-
 ing form are studied:

 j-i1

 (26) y(j, k) = y(O, k) + h , a(j, m)f (y(m, k), v(m, k)) for j = 1,2, , r,
 m=0

 (27) y(O, k + 1) = y(r, k)

 for k = 0, 1, , N - 1. In (26), y(j, k) and v(j, k) are the discrete approximations
 to X(tk + hQj) and U(tk + hQ), respectively, where h = 1/N, tk = kh, and the param-
 eters {4J} and {a(j, m)} are fixed constants that characterize the integration scheme.
 Some common one-step methods are given in Table 3, and are discussed in both
 Isaacson and Keller [12] and Gear [9]. Note that always 40 = 0 and Xr = 1 SO
 that y(r, k) = y(O, k + 1) is an approximation to x(tk+ 1). The variables y(j, k) for
 0 < j < r are intermediate variables used to generate y(r, k) and are usually of
 lower order accuracy than the final variable y(r, k).

 The following development is identical with the earlier development for
 multistep schemes; however, only second order convergence of the optimal dis-
 crete control is proved. For the examples of ? 4, this is the convergence rate in the

 {.-norm of the optimal discrete controls. These examples also indicate that the
 discrete costate and state convergence rate is higher than that for the discrete
 control, although the proof of this result in general is still an open question. Using
 the more accurate discrete state and costate, a higher order approximation to the
 optimal control u* can be computed.

 The following properties of the differential equation in (1) will be required:
 (i) there exists an optimal control u*, a corresponding trajectory x*, and, further-
 more, the differential equation in (1) can be integrated for all controls u in some
 neighborhood of u*, (ii) a solution vh and a corresponding trajectory yh exists to
 the discrete optimization problem, (iii) both the discrete and continuous necessary
 conditions hold, (iv) the integration scheme (26) approximates the solution to the
 corresponding differential equation to order b, and (v) the differential equation (3)
 obeys the standard theorem describing the effect of a perturbation in the initial
 condition on the trajectory; namely, if x1(.) and x2( ) are solutions to x(t) =
 f(x(t), u(t)) that satisfy the conditions x1(s) = p1 and X2(S) = p2, respectively, for
 some s E [0, 1], then Ix1(t) -x2(t)l = O(1pl - p2I) for t E [0, 1]. If the cost functional
 is quadratic and strictly convex and the system dynamics are linear, then all the
 assumptions above are satisfied.

 The discrete necessary conditions are given using the following
 notation: A(j, k) denotes the dual multiplier associated with (26) and G(j, k) =

 fA(y(j, k), v(j, k))T. In deriving these necessary conditions, y(r, k) in (26) is replaced by
 y(O, k + 1) and thus (27) is eliminated along with any associated dual multiplier.
 Equations (28), (29), (30) and (31) below correspond to differentiating the Lagrangian
 with respect to y(O, k + 1), the intermediate variable y(j, k) for 0 < j < r, v(j, k),
 and y(O, N), respectively.

 (28) 5? {[I + ha(j,O)G(r,k)]L(j,k + 1)} - A(r,k) = 0,
 j=1
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 460 WILLIAM W. HAGER

 r

 (29) hG(j, k) , [a(m,j)A(m, k)] - A(j, k) = 0 for 1 < j r, 1 ? k < N,
 m=j+ 1

 r

 (30) hfu(y(j, k), v(j, k))T , [a(m,j)A(m, k)] = 0 for O < j < r, 0 < k < N,
 m=j+ 1

 (31) A(r, N- )T = (10, 0, , ,O)T.

 It should be remembered that (28H31) above only hold when v(j, k) = vh(j, k)

 and y(j, k) = yh(j, k); however, the "h" superscript is omitted below and all
 variables are understood to be optimal unless stated otherwise. Now change from

 the variable A to the variable q given by

 (32) q(j,k) = E a(rj) (m,k) forO0 j <r.
 m=j+ Ia(rj)

 It is assumed that a(r,j) # 0 for 0 < j < r so that 1/a(r,j) in (32) is defined. A case

 where a(r,j) = 0 for some j is considered in the Appendix. It was discovered
 that as a(r,j) 0 for some j, the error in the optimal discrete control becomes
 infinite.

 Replacing the summation in (29) by a(r,j)q(j, k), multiplying the resulting

 equation by a(j, l)/a(r, 1), and summing from j = 1 + 1 to r - 1 yields:

 h E a(j, 1) (' G(j,k)q(j,k) = E ' (j, k)

 = q(l, k) - A(r, k) = q(l, k) - q(r - 1, k)

 for l = r - 2, r -3, ,0. Summing (29) from j = 1 to r - 1 leads to

 r-1 r- 1

 (34) Z A(j, k) = h E [a(r,j)G(j, k)q(j,k)].
 j=l j=1

 Substituting (34) into (28) yields (36) below, while (35) is obtained by changing

 the indices in (33):

 r-1 a(r, m)
 (35) q(j, k) = q(r - , k) + h i a(m, j) a(r]j) G(m, k)q(m, k)

 m=j+ 1 ar

 forj = r - 2, r - 3, ,0,
 r-1

 (36) q(r - 1, k - 1) = q(r - 1, k) + h i [a(r, m)G(m, k)q(m, k)],
 m=O

 (37) q(r - 1, N - 1)T = (1, 0, 0,. O)T
 The variable q and the equations (35837) will be called the discrete costate and
 the discrete costate equations, respectively.

 Note that the difference relations (35)-(37) run backward in time; that is, (37)
 gives the terminal condition for q while (35) specifies the intermediate variables
 {q(r - 2, k),q(r - 3, k), . , q(O, k)},and(36)givesthefinalvariableq(r - 1, k - 1).

This content downloaded from 
����������128.227.115.216 on Tue, 23 Apr 2024 23:59:53 +00:00����������� 

All use subject to https://about.jstor.org/terms



 RATES OF CONVERGENCE 461

 Also observe that the one-step schemes in Table 3 satisfy the following identities:

 (38) a(m, j)a(r, m)/a(r, j) = a(r - 1 - j, r - 1 - m)

 forO < j < r - 2, j + 1 ? m < r - 1,

 (39) a(r, j) = a(r, r - 1 - j) for 0 < j ? r - 1.

 Only a small subset of the class of all one-step schemes satisfy the symmetry
 conditions above; however, results given below indicate that when these symmetry
 conditions are violated, either there is a reduction in the anticipated convergence
 rate or the constant c involved in the error bound ch' is so large, that the scheme
 is of little practical interest. (See ? 4 and the Appendix.)

 An alternative statement of (38) and (39) is the following: The difference
 relation describing the discrete costate is the same as the difference relation (26)
 except that the scheme (35H37) integrates the costate equation backward in
 time while (26) integrates the state equation forward in time. Substituting (38)
 and (39) into (35) and (36) yields the following expression for the discrete costate
 equations:

 r- 1

 (40) q(j, k) = q(r - 1, k) + h E a(r - 1 - j, r - 1 - m)G(m, k)q(m, k)
 m=j+ 1

 forj= r - 2,r - 3, , -1,

 (41) q(r - 1, k - 1) = q(- 1, k).

 Also inserting (32) into (30) yields the discrete control minimum principle:

 (42) ha(r,j)f.(y(j, k), v(j, k))Tq(j, k) = 0.

 Repeating the multistep development, Steps 1 and 4 are essentially unaltered,
 and all that remains is to bound the gradient,

 (43) DJ(v*)jk = ha(r, j)fu(y*(j, k), v*(j, k))Tq*(j, k),

 where v* is defined by v*(j, k) = U*(tk + hX), y* is the solution to (26) with v = v*,
 and q* is given by (35)-(37) with (y, v) = (y*, v*). Since

 fu(X*(tk h), U*(tk + hQj))Tp *(tk + hOj) = 0,

 (44) IDJ(v*)jkl < chly*(j, k) - x*(tk + hXj)j + chlq*(j, k) - p*(tk + hXj)J.

 The error in the discrete state y*(j, k) is known for the standard integration schemes
 and is given in Table 3, while the error in the discrete costate q*(j, k) follows from
 Lemma 3.1 below.

 The analysis of the error in the discrete costate variable is complicated by the

 presence of y(j, k) in G(j, k) = f,(y(j, k), v(j, k))T; thus the discrete costate equation
 is implicit. First observe that if the one-step procedure (26) is applied to the linear
 differential equation z(t) = A(t)z(t), then the intermediate variables z(1, k), ...
 z(r - 1, k) can be eliminated, and the scheme can be expressed as z(O, k + 1) =
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 462 WILLIAM W. HAGER

 F(A(O, k), * *, A(r - 1, k))z(O, k) where A(j, k) = A(tk+ h? ). Another interesting
 property of the schemes in Table 3 is the following:

 (45) F(B1,B2, Br)=F(BfTBfTi ,BT)T.

 LEMMA 3.1. Suppose that (38), (39) and (45) hold and that the one-step scheme (26)
 is of order b. Let u be somefixed control (not necessarily optimal) and let x and p be
 the corresponding state and costate variables generated by (3) and (4); let {y(j, k)}

 be the discrete state generated by (26) using the discrete controls v(j, k)= U(tk+ h?),
 and let {q(j, k)} be the corresponding discrete costate generated by (40) and (41).

 Then 1P(tk + 1 - q(r - 1, k) = O(hb).
 Proof: It will be shown that the matrix F(G(r - 1, k), G(r - 2, k), . , G(O, k))

 approximates the transition matrix associated with the linear costate equation
 on the interval [tk, tk+ 1] to O(hb+ 1). The global error in the discrete costate then
 follows by adding up the local errors.

 Consider the coupled system of differential equations

 (46) Xk(t) = f(Xk(t), u(t)), x k(tk) = Px,

 (47) irk(t) =f (Xk(t), u(t))7rk(t), irk(tk) = pAr

 Use the one-step scheme given in (26) to approximate the solution to this system,
 and let xh(. , .) and 7rh(., * ) denote the discrete variables corresponding to the
 continuous variables xk(. ) and 7rk(. ), respectively. Since 7rk does not appear in
 (46), xh(j, k) is the solution y(j, k) of (26) corresponding to the initial condition
 y(O, k) = px. The discrete approximation to (47), on the other hand, can be expressed
 as

 (48) rh(O k + 1) = F(Gh(O k)T, Gh(r - 1, k)T)p,

 where Gh(j, k) = fx(xh(j, k), v(j, k))T. Since the one-step scheme (26) is of order b,
 17rk(tk+ 1) - 7rh(0, k + 1)1 < chb+l, where c depends on the derivatives of f( *, * )
 and u(-) to order b + 1, IpXI and Ip.I. Choose c large enough that the error in
 lrr(0, k + 1) is bounded by chb+ 1for all px and p. satisfying the following bounds:
 $pJ _ 1 and IpXI < max {Ix(t)l + 8: t E [0, 1]} for some fixed E > 0 where x( ) is the
 trajectory corresponding to the control u(- ) in the lemma's statement.

 Now let H(A, t, s) denote the transition matrix or fundamental matrix

 for the linear system i1(t) = A(t)ij(t). That is, H(A, t, s) is a matrix satisfying
 (d/dt)H(A, t, s) = A(t)H(A, t, s) and H(A, s, s) = I, and H(A, *, s) has the property
 that the solution to the linear differential equation satisfies 11(t) = H(A, t, s)r(s).
 Thus by (47),

 (49) rr(tk+ 1) = H(fX(Xk, u), tk + h, tk)P7r

 By comparing (49) with (48), we see

 (50) F(Gh(O, k)T, ... , Gh(r - 1, k)T) = H(fx(xk, u), tk + h, tk) + O(hb+ 1)

 whenever the initial condition px satisfies the bound given above.
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 Taking the transpose of (50) and applying the symmetry condition (45), we see

 (51) F(Gh(r - 1, k), , G(O, k)) = H(fX(xk, u), tk + h, tk)T + O(hb+ 1).

 Transition matrices obey the identity H(A, t, s)T- H(-AT, S, t), which can be
 proved by verifying that both matrices satisfy the differential equation [M(t)-
 M(t)A(t)T, M(s) = I] whose solution is unique. Thus (51) becomes

 (52) F(Gh(r - 1, k), , Gh(O, k)) = H(fX(Xk, U)T, tk, tk + h) + O(hb+ 1).

 Let x k() denote the solution to (46) for the initial condition px = y(O, k)
 where y(O, k) is generated by (26) with the initial condition y(O, 0) = z. Recall
 the assumption (v) of initial condition stability for the state equation; hence

 IXk(t)-x(t)I = O(Iy(?, k) -X(tk)l) for t e [tk, 1]. Since y(O, k) is accurate to O(hb),
 |x (t) - x(t)| = O(h ) and, consequently, ifx(x(t) u(t)) -fX(x(t), u(t))l = O(h b).

 It can be shown that transition matrices possess the following property:

 IH(A1, t, s) - H(A2, t, s)I < cljA, - A211 It -sl where j1Ajj = max {IA(T)I z E [s, t]}
 and c depends on j1AI 11 + j1A211. Thus

 (53) IH(-fx, u),tk, tk + h) - H(- fx(x, u),tk, tk + hl = O(hbl).

 If Px-y(O, k), then Gh(j, k) = G(j, k) = fx(y(i, k), v(j, k))T and hence (52) and
 (53) imply that

 (54) F(G(r - 1, k), , G(O, k)) = H(-fx(x, U)T tk ,tk + h) + O(hb+ l).

 The continuous and the discrete costate variables satisfy the following relations:

 (55) p(tk) = H(-fx(x, u)T, tk, tk + h)p(tk+ 1),

 (56) q(r - 1, k - 1) = F(G(r - 1, k), * , G(O, k))q(r - 1, k)

 (57) = H(-fx(x, u)T, tk, tk + h)q(r - 1, k) + O(h b+),

 where (57) follows by (54). Subtracting (56) from (55), taking the absolute value
 of both sides, defining e(k) = Ip(tk) - q(r - 1, k - 1)1, and using the relation
 H(A, t, s) I + O(It - sl) yields the following:

 (58) e(k) < (1 + O(h))e(k + 1) + O(hb+ 1)

 N

 (59) < (1 + O(h))N-ke(N) + E (1 + O(h))N iO(h b+).
 j=k+ 1

 Since (1 + O(h))N-i < exp [O(h)(N - j)] = 0(1) and e(N) = 0, (59) implies that
 e(k) = 0(hb) as stated in the lemma. O

 Using the result that q*(r - 1, k) is accurate to order b, it can be shown for

 the schemes in Table 3 that the order of the error Ip*(tk + 1-h r- j 1) - q*(j, k)I =
 the order of the error Ix*(tk + hXr-j 1) -y*(r - j - 1, k)I for 0 < j < r - 1. That
 is, the jth intermediate variables in the discrete costate and state equations
 have the same order of accuracy. (Recall that q(r - 2, k) and y(l, k) are the first
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 464 WILLIAM W. HAGER

 intermediate variables computed in the discrete costate equation and state equa-

 tion, respectively.)

 By (44), the convergence rate of DJ(v*)jk/h equals the minimum of the con-
 vergence rates of y*(j, k) and q*(j, k), and this minimum is given in Table 3. The

 analogue of our earlier theorem for the convergence of multistep schemes follows:

 THEOREM 3.1. If hID2J(v)-l is bounded uniformly in h and v and IDJ(v*)jkl =
 0(h3) for all j, k, then Iv*(j, k) - v(j, k)j = 0(h2) for all j, k.

 Proof Iv* - vhl < ID2J(v)I- II DJ(v*)l = 0(1/h)0(h3) = 0(h3). E
 For the schemes in Table 3, the numerical examples in the next section indi-

 cate that the convergence rate for the optimal discrete control is second order.
 Hence the convergence rate given in Theorem 3.1 appears to be tight. However,

 closer inspection of the numerical results revealed that {yh(r, k)} and {qh(r - 1, k)}
 are accurate to order b for a bth order integration scheme, and if v(j, k) is eliminated
 from the discrete state and costate equations by using (42) to express the control

 in terms of y(j, k) and q(j, k), then the resulting system is a bth order implicit

 approximation to the two-point boundary value problem described after (3H5).
 This last result seems very intuitive, but is currently an unsolved problem;

 Lemma 3.1 proved that if u is any control, then the discrete state and costate
 equations represent a bth order implicit scheme for integrating (3) and (4). It
 must now be proved that if u(t) and v(j, k) are required to satisfy the minimum
 principles (5) and (42), respectively, then the resulting discrete state and costate

 equations are bth order implicit schemes for integrating the continuous two-

 point boundary value problem.

 Assuming that yh(r, k) and qk(r - 1, k) are accurate to 0(hb), a bth order
 estimate of u*(tk + 1) is given by the solution to the equation

 fu(yh(r, k), u)Tqh(r - 1, k) = 0.

 4. Numerical examples and discussion of results. The convergence properties
 of the integration schemes given in Tables 1 and 3 were studied for the following
 linear one-dimensional control problems with quadratic cost functionals:

 (P1) minimize {J [.5u(t)2 + x(t)2] dt:2*(t) = .5x(t) + u(t), x(O) = 1

 minimize [.625x(t)2 + .5x(t)u(t) + .5U(t)2] dt: i*(t) = .5x(t) + u(t), x(0) = 1}.

 (P2)

 The optimal control for these regulator problems can be expressed in the feedback

 form u*(t) = - Ki(t)x*(t) for (P1) and u*(t) = - (K2(t) + .5)x*(t) for (P2) where
 K1 and K2 are solutions to the corresponding Riccati equations (see Brockett

 [11):

 k1(t) = -K1(t) + K1(t)2 - 2, K1(1) = 0,

 k2(t) = K2(t)2 - 1, K2(1) = 0.

 These solutions are K1(t) = (2 + ae3t)/(1 - ae3t) where a = - 2/e3 and K2(t)=
 tanh (1 - t). Inserting the feedback expression for u* into the system dynamics
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 yields an equation for x* while u* is computed from x* by the feedback law;
 the optimal solutions to (P1) and (P2) are the following:

 (Si) x*(t) = (ae3t - 1)/e3tl2(a - 1), u*(t) = (2 + ae3t)/e31I2(a -1)

 (S2) x*(t) cosh (1)/cosh (1 -t),

 u*(t) = - [tanh (1 - t) + .5] cosh (1)/cosh (1 - t).

 The control problems (Pl) and (P2) are quite similar-their system dynamics
 are identical, and the only major difference in their cost functionals is the .5x(t)u(t)
 term present in (P2). The optimal controls are plotted in Fig. 1 and also appear
 very similar. However, as will be seen below, the convergence rate for the optimal

 discrete control is quite different for one-step approximations to (P1) and (P2).

 -2.0 -

 -1.5 P1

 0

 0 .. 4 1.0'  ~~~~P2
 -0.5

 0~

 .2 .4 .6 .8 1.0

 TIME

 FIG. 1. The optimal controls for the test problems

 One-step schemes. The optimal solution to the discrete one-step approxima-

 tion was computed as follows: Using (42), we expressed v(j, k) in terms of y(j, k)
 and q(j, k) and the result was inserted into the discrete state and costate equations
 (26) and (35H36) to obtain 2r relations for

 {y(O, k), * * *, y(r, k), q(r - 1,k - 1), q(O, k), , q(r - 1, k)}.

 Then the computer program determined the matrix A such that z(k) = Az(k - 1)

 where z(k)T = [y(r, k)T, q(r - 1, k)T]. Since q(r - 1, N - 1) = 0 and y(r, -1) =
 y(O, 0) = 1 are known, q(r - 1, -1) can be computed from the relation z(N - 1) =
 ANz(-1). Since z(-1) is now known, z(k) = Ak+'z(-1) is also determined and
 the optimal discrete controls can be computed from (42).
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 466 WILLIAM W. HAGER

 For more complicated nonlinear problems, the discrete optimization problem
 can be solved by the conjugate gradient method where the gradient with respect
 to the controls {v(j, k)} is given by (42).

 The convergence rate for the {,,,-error in the optimal discrete controls {vh(J, k)}
 is second order for all the schemes studied so the rate given in Theorem 3.1 appears
 to be tight. However, it was observed that the controls {vh(r - 1, k)} were ac-
 curate to a much higher order as shown by the convergence rates in Table 3

 and Figs. 2 and 3. These rates were determined by computing the {',,-error of
 {vh(r - 1, k)} using 1/h = 10,20,40, 80, 120, 160 and then fitting a least squares line
 to the graph of log (error) versus log (h). The slope of this line shown in Figs. 2 and 3
 is the convergence rate.
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 FIG. 2. Maximum norm error in the discrete controls {vh(r -1, k)} for (P1) -one-step methods

 Notice that for (P1), the order of accuracy of the controls {vh(r - 1, k)}
 is the same as that of the corresponding integration scheme while the accuracy of

 the controls decreases in (P2). Closer study of the discrete variables reveals that

 in both (P1) and (P2), {yh(r, k)} and {qh(r - 1, k)} converge at the same rate as the
 order of the integration scheme. Hence the intermediate variables yh(j, k) and qh(j, k)
 converge at the same rate as y*(j, k) and q*(j, k), respectively. Furthermore, using
 relation (44), the convergence rate of Vh(j, k) must equal the minimum of the orders
 of yh(j, k) and qh(j, k).
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 FIG. 3. Maximum norm error in the discrete controls {vh(r - 1, k)} for (P2)-one-step methods

 The difference in the convergence rate of { vh(r - 1, k)} for (P1) and (P2) can now
 be explained. In (P1)f. is not a function of the state variable so that the state term in
 (44) is not present and hence lv(r - 1, k) - u*(tk+ I)1 < clqh(r - 1, k) - p*(tk+ 1)1.
 In (P2), however, fu depends on the state and both terms in (44) are present. Since
 the convergence rate for yh(r - 1, k) is less than the rate for the costate qh(r - 1, k),
 a reduction in the control accuracy should be expected in (P2).

 As noted earlier, a higher order estimate of u*(tk+ ) in (P2) is given by
 the solution u to fU(y(r, k), u)Tq(r - 1, k) = 0. For (P2) this reduces to u =
 -q(r - 1, k) - y(r, k)/2.

 Since the optimal discrete state and costate converge at a higher rate than
 the discrete control for the schemes in Table 3, the possibility of obtaining a more
 accurate discrete control by a judicious choice of the integration coefficients
 was examined; hence the auxiliary computation given above to obtain an improved
 estimate of u* is unnecessary.
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 468 WIL-LIAM W. HAGER

 Note that for the modified Euler scheme, the discrete parameters {yh(r, k)},

 {Wv(r - 1, k)} and {qh(r - 1, k)} are all second order accurate so that the discrete
 control accuracy is the best that could be expected.

 For the Kutta scheme, however, the optimal discrete control is only second
 order accurate while the discrete state and costate are third order accurate. If
 y(r - 1, k) can be made third order accurate by an appropriate choice of the
 integration coefficients and the third order accuracy of qh(r - 1, k) maintained,
 then vh(r - 1, k) will also be third order accurate.

 There is a two parameter class of third order one-step schemes of the form
 (26) with r = 3. These are developed by Gear [9, p. 34] and in terms of the param-
 eters # and y are given by:

 a(3, 2) = (3y - 2)/(6#3(y - /3)), a(2, 1) = 1/(6ya(3, 2)),

 (60) a(1, 0) = y, a(3, 1) = (3# - 2)/(6y(/ -y)),

 a(3, 0) = 1- a(3, 2) - a(3, 1), a(2, 0) = B - 1/(6ya(3, 2)).

 Since the error in y(2, k) equals (# - -)O(h2) + O(h3), y(2, k) is accurate to O(h3)
 when /3 = . For all choices of the parameter y, however, it can be shown that the
 symmetry conditions (38H39) are violated. Also by numerical experiments using
 problems (P1) and (P2), the discrete state and costate are second order ac-
 curate for all choices of y. Examining the coefficients describing the discrete
 costate integration scheme (35H36), we find that they yield a second order
 integration method. These observations seem to indicate the following: (i) the order
 of accuracy of the optimal discrete state and costate variables is the minimum of the

 order associated with the state and costate integration coefficients, and (ii) if r = 3,
 no choice of the integration coefficients will make vh(r - 1, k) third order accurate.

 Similarly for fourth order schemes with r = 4, requiring y(r - 1, k) to be
 fourth order accurate leads to an inconsistent system of 11 equations in 10 un-
 knowns. Thus the scheme Runge-Kutta 1 in Table 3 appears to have the best
 possible accuracy for the discrete control vh(r - 1, k).

 Multistep schemes. Next the test problems were approximated by the multi-
 step schemes of Table 1, and the discrete optimization problem was solved by the
 conjugate gradient algorithm where the gradient was given by the left side of (13).
 The convergence rates reported in Table 1 were determined by plotting log (error in
 optimal discrete control at t = .5) versus log (h) using 1/h = 10, 20, 40, 80, 120, 160
 and approximating the graph using a least squares line. As noted in Theorem 2.1,
 the error in the discrete control is concentrated at t = 1 so the point t = .5 was
 chosen for measuring the convergence rates to avoid the boundary layer in the
 error at the endpoint.

 Let s and b be as defined in ? 2. For both the Milne schemes in Table 1, s = 0,
 so by Theorem 2.1, the error in vh is at most 0(1). Numerically it was observed that
 vh neither converged nor diverged, but oscillated about u*. For the modified Euler
 scheme, s = b = 2 < 3, so by Theorem 2.1, vh converges to v* at rate 2 except near
 t = 1. This was exactly the convergence rate observed numerically and also shown
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 in Fig. 4. Finally for the Adams-Moulton scheme, s = b =4 > 3, so Theorem 2.1
 implies third order convergence of vh and again this was exactly the convergence
 rate observed numerically and shown in Fig. 4.
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 FIG. 4. Error in the discrete control {vh(N/2)} for (P1)-multistep methods

 Next the problem of finding the most efficient integration scheme for achiev-
 ing the maximum convergence rate of 3 was examined. For any value of the param-
 eter y satisfying - 1 < y < 1, the following multistep scheme is at least third
 order (for y = - 1, the scheme is fourth order):

 (61) a(2) = 1, a(1) =-1-y, a(O) = y,
 b(2) = (5 + y)/12, b(1) = 2(1 -y)/3, b(O) = -(1 + 5y)/12.

 This class of third order schemes is given in Lambert [15, p. 42].
 Convergence of vh to v* requires convergence of q'(k) to p* 1. Solving the

 difference equation for qo( ) yields:

 (5+ y) (- ) N-i-k
 (62) qo(N) = 12 qo(k) = 1 + 1 -
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 470 WILLIAM W. HAGER

 (Note that when y = 0, define 00 = 1 for the solution above to be correct.) For
 -1 < y < 1, the error IpO*(tk) -q(k)l = (y - )2yN 1 -k/12 decays geometrically
 as k decreases.

 Figure 5 plots log (error in vh(k)) as a function of k for various choices for y.
 Note that the discrete control error possesses two distinct characteristics: near
 t = 1 the error decays geometrically (the graph is linear) and far from t = 1, the
 0(h3) error predominates and the discrete control error levels off after some oscil-
 lations. As y -> + 1' the integration schemes approach the unstable region y > 1
 or y < - 1 and the oscillations at the interface of the 0(h3) error and the geometri-
 cally decaying error increase. The case y =-1 corresponds to a Milne scheme and

 since the yN -1k term in (62) does not decay, the error in qo(k) is always 0(1) and
 v' does not converge to v*.
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 FIG. 5. Pointwise error in the discrete controlsfor (P1) using several 3-point schemes

 Note that as y approaches -1, the order of the integration scheme approaches
 4, and hence the contribution to the discrete control error arising from the inte-
 gration error decreases. On the other hand, as y approaches -1, the decay rate
 for the geometric error decreases, and hence the width of the boundary layer near
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 RATES OF CONVERGENCE 471

 t = 1 increases. Thus the most accurate scheme corresponds to either y = 0
 (3-point Adams-Moulton) or y slightly negative. The choice of y = 0 reduces
 the boundary layer at t = 1 to only a few grid intervals while the choice of y
 slightly negative widens the boundary layer but reduces the error far from t = 1.
 (See Fig. 5.)

 Comparison of one-step and multistep schemes. Based on the results in the
 Appendix and an analysis of truncation errors, the modified Euler scheme in
 Table 3 is both the only symmetric and the most accurate one-step method.
 Similarly the Euler scheme in Table 1 is the unique second order multistep scheme
 with r = 1. Comparing the two Euler schemes, the one-step method has the ad-
 vantage of being explicit, while the multistep scheme involves half the number of
 unknown controls per grid interval.

 In the class of third order schemes, the one-step procedures involve three
 unknown controls per grid interval compared to only one unknown control
 for the multistep procedures. If the implicit multistep equations are not too difficult
 to solve, then the Adams-Moulton scheme is probably the most efficient third
 order method. Since there appear to be no multistep methods higher than third
 order, the one-step schemes win by default assuming the conjecture on the ac-
 curacy of yh(r, k) and qh(r - 1, k) holds in general.

 One case where the one-step procedures would have an advantage over
 multistep schemes are situations where there is a discontinuity in the data defining
 the control problem at some fixed times. The error in one-step integration methods
 depends on the derivatives of u* between the grid points while the error in multi-
 step integration procedures depends on the global derivatives of u*. Hence by
 placing grid points wherever there is a discontinuity in the data, the error in the
 discrete approximation caused by the discontinuity can be eliminated with a
 one-step scheme. Similarly the multistep method can be restarted at these points
 of discontinuity, but this increases programming complexity.

 Appendix. The case a(r,j) = 0. If a(r, j)-= 0 for someJ, then q(j, k) in (32) is no
 longer defined. To study the effect of the vanishing of an integration coefficient,
 consider the class of second order one-step schemes with r = 2. In terms of the
 parameter y, the coefficients for these second order schemes are the following:

 (A.1) a(1, 0) = 1/(2y), a(2, 0) = 1 - y, a(2, 1) = y .

 The value y = - gives the modified Euler scheme in Table 3 while the value y = 1
 corresponds to a common Euler method with a(2, 0) = 0.

 Using (35) and (36), it is possible to compute the integration coefficients
 for the costate equation:

 (A.2) a(l, 0) = 1/(2(1 - y)), a(2, 0) = y, a(2, 1) = I -

 Note that y = 2 is the only case where the schemes (A.1) and (A.2) are identical
 and hence satisfy the symmetry conditions (38H39); nonetheless, the scheme (A.2)
 is accurate to second order for all values of y, although the 0(h3) truncation error
 involves a 1(1 - y) term. Hence as y -+ 1 and h remains fixed, the error of the
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 472 WILLIAM W. HAGER

 integration scheme (A.2) becomes infinite. Numerically it is found that the error in
 the optimal solution to the discrete approximation to (P2) is 1000 times bigger
 for y = .999 than the error for y = .5. Thus when r = 2, the effect of an integration
 coefficient a(r,j) approaching zero is disastrous.
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