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Summary. The convergence rate is determined for Runge-Kutta discretiza-
tions of nonlinear control problems. The analysis utilizes a connection be-
tween the Kuhn-Tucker multipliers for the discrete problem and the adjoint
variables associated with the continuous minimum principle. This connec-
tion can also be exploited in numerical solution techniques that require the
gradient of the discrete cost function.
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1. Introduction

We analyze the convergence rate of Runge-Kutta discretizations of con-
trol problems. Unless the coefficients in the final stage of the Runge-Kutta
scheme are all positive, the solution to the discrete problem can diverge
from the solution to the continuous problem. In the case that these final
coefficients are all positive, Runge-Kutta schemes of orders 1 or 2 yield
discretizations of optimal control problems of orders 1 or 2 respectively.
A third-order Runge-Kutta scheme for differential equations must satisfy
an additional condition to achieve third-order accuracy for optimal control
problems, while a fourth-order Runge-Kutta scheme for differential equa-
tions must satisfy another four conditions to achieve fourth-order accuracy
in optimal control. One particular family of integration schemes for dif-
ferential equations, the 4-stage explicit fourth-order Runge-Kutta schemes,
satisfy all the conditions needed for fourth-order accuracy in optimal con-
trol. For third and fourth-order Runge-Kutta schemes, the discrete controls
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often converge to the continuous solution more slowly than the discrete state
and adjoint variables at the grid points. As a result, a better approximation to
the continuous optimal control is obtained fromegposterioricomputation
involving the computed discrete state and adjoint variables.

The analysis exploits the tree-based expansions and order conditions de-
veloped by Butcher [8] for ordinary differential equations, and a transforma-
tion of the first-order necessary conditions for the discrete control problem
presented by the author in [31]. This transformation leads to a Runge-Kutta
scheme for the adjoint (costate) equation in the optimal control problem
which is often different from the original Runge-Kutta discretization of the
state equation. This discrepancy between the state and costate discretiza-
tions leads to additional conditions that the coefficients of the Runge-Kutta
scheme must satisfy to achieve third or fourth-order accuracy in the control
context. This local order-of-accuracy analysis can be extended f6“an
error bound using previously developed theory (see [35], [20], and [22]). In
a companion paper [24] itis shown for second-order Runge-Kutta schemes,
the positivity restriction for the coefficients in the final stage can be removed
through a reduction in the dimension of the discrete control space. Some of
the earlier work on discrete approximations to problems in optimal control
includes the following papers and books: [4]-[7], [9]-[22], [28], [30]-[32],
[35]-[37], [41]-[47], [49], and [50].

The paper is organized in the following way: Section 2 presents the
Runge-Kutta discretization and the main theorem for unconstrained control
problems. Section 3 derives the transformed adjoint system, and relates it
both to the continuous adjoint equation and to the original discretization.
Section 4 analyzes the order of approximation of Runge-Kutta discretiza-
tions of optimal control problems. This analysis is local in nature and in-
volves conditions that the Runge-Kutta coefficients must satisfy so that the
Taylor expansion of the discrete and the continuous problem match to a given
order. Section 5 uses the abstract framework in [22, Thm. 3.1] to convert
the local analysis into ah* error estimate for the solution to the discrete
problem. Section 6 gives specific illustrations of the theory, and proves that
a 4-stage explicit fourth-order Runge-Kutta scheme for differential equa-
tions yields a fourth-order discretization in optimal control. Finally, Sect. 7
analyzes the effect of control constraints.

2. The problem and its discretization
We consider the following optimal control problem:

(1) minimize C(x(1))
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subjecttox’(t) = f(x(¢),u(t)), u(t) eU, a.ete]l0,1],
x(0)=a, xeWh>® uelL>®,

where the state&(t) € R”, x’ stands for%x, the controlu(t) € R™,
f:R"xR"— R",C:R"+— R,andU C R™ is closed and convex.

Throughout the papet,?(R") denotes the usual Lebesgue space of
measurable functionsg : [0,1] — R™ with |x(-)|P integrable, equipped
with its standard norm

il = ([ o) "

where|- | is the Euclidean norm. Of courge= oo corresponds to the space

of essentially bounded, measurable functions equipped with the essential
supremum norm. Furthef)”*P(R™) is the Sobolev space consisting of
vector-valued measurable functiors [0, 1] — R"™ whosej-th derivative
liesin LP for all 0 < j < m with the norm

m .
xllwme = > [1x9|s.
§=0

When the rang®” is clear from context, it is omitted. Throughoutis a
generic constant, that has different values in different relations, and which
is independent of time and the mesh spacing in the approximating problem.
The transpose of a matrik is AT, and B, (x) is the closed ball centered
atx with radiusa.

We now present the assumptions that are employed in our analysis of
Runge-Kutta discretizations of (1). The first assumption is related to the
regularity of the solution and the problem functions.

SmoothnessFor some integer > 2, the problem(1) has a local solution
(x*,u*) which lies inW"> x Wr=1 There exists an open s C
R" x R™ andp > 0 such thatB,(x*(t), u*(t)) C 2 for everyt € [0, 1],
the first x derivatives off are Lipschitz continuous 2, and the firstx
derivative ofC' are Lipschitz continuous i, (x*(1)).

Under this assumption, there exists an associated Lagrange multiplier
Y* € W for which the following form of the first-order optimality
conditions (minimum principle) is satisfied @t*, 4", u*):

(2) xX'(t) = f(x(t),u(t)) forallte0,1], x(0)=a,
() ¥'(t) = =V H(x(t),(t),u(t)) forallte[0,1],

P(1) = VC(x(1)),
4) ut) eU, —V,H(x(t),v(t),u(t)) € Ny(u(t)) forallte[0,1].
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Here H is the Hamiltonian defined by

5) H(x,,u) = ¢f(x, ),

wheret) is a row vector inR™. The normal cone mappindyy; is the fol-
lowing: For anyu € U,

Ny(u)={weR™:w'(v—u)<0forallveU}.
Let us define the following matrices:
A(t) = Vo f(x(t),u" (1)), B(t) = Vuf(x"(t),u"(t)), V = VO(x*(1)),
Q(t) = Vaa H(W'(t)), R(t) = Vuu H(W"(t)), S(t) = Vau H(W" (1)),

wherew™* = (x*,4*,u*). Let 5 be the quadratic form defined by

B(x,u) = ;(X(1)Tvx(1) + (x,Qx) + (u, Ru) + 2(x, Su>>,

where(-, -) denotes the usudl? inner product. Our second assumption is a
growth condition:

Coercivity. There exists a constant > 0 such that
B(x,u) > allul?, forall (x,u)€ M,
where
M={(x,u):xe Wh? ue L? %= Ax+ Bu,
x(0) =0, u(t) e U —U a.e.t €0,1]}.

Coercivity is a strong form of a second-order sufficient optimality condi-
tion in the sense that it implies not only strict local optimality, but also
Lipschitzian dependence of the solution and multipliers with respect to pa-
rameters (see [20], [23], [21]). For recent work on second-order sufficient
conditions, see [26] and [51].

We consider the discrete approximation to this continuous problem thatis
obtained by solving the differential equation using a Runge-Kutta integration
scheme. For convenience, we consider a uniform mesh of widthl /N
where N is a natural number, and we I8}, denote the approximation to
x(tx) wheret, = kh. An s-stage Runge-Kutta scheme [8] with coefficients
a;j andb;, 1 <4, j < s, is given by

(6) X = Y bif (vi, ugi),

=1
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where

(7) Yi =Xp + hzaijf(Yjaukj)’ 1<i<s,
=

and prime denotes, in this discrete context, the forward divided difference:

Xp+1 — Xg
—
In (6) and (7)y; anduy; are the intermediate state and control variables on
the intervalt,, t;11]. The dependence of the intermediate state variables on
k is not explicit in our notation even though these variables have different
values on different intervals.

With this notation, the discrete control problem is the following:

X, =

(8) minimize C(xy)
subjecttox), = >0 | bif(yi,uki), xo=4a, uyeU,

Yi = Xk =+ hz;:l aljf(y]7uk])’
1<i<s, 0<k<N-1

For x;, nearx*(t;) anduy;, 1 < j < s, nearu*(t;), it follows from
Smoothness and the implicit function theorem that whénsmall enough,
the intermediate variablgs in (7) are uniquely determined. More precisely,
the following holds (for example, see [8, Thm. 303A] and [1, Thm. 13.7] or
[29, Thm. 10.8]):

State Uniqueness PropertyThere exist positive constantandg < psuch
that wheneveh < v and(x,u;) € Bg(x*(t), u*(t)) for somet € [0, 1],

j=1, --- s, the system of equations
S

(9) vi=x+h) agflyju), 1<i<s,
7j=1

has a unique solutiogr; € B,(x*(t),u*(t)), 1 <i < s. If y(x,u) denotes
the solution of9) associated with givefx,u) € R" x R*", theny(x, u)
is k times continuously differentiable #nandu.

Letf* : R” x R*™ — R" be defined by
f(x,u) = Zbif(yi(x, u), u;).
i=1

In other words,

£ (x,u) = > bif (i, wa),
i=1
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Table 1. Order of a Runge-Kutta discretization for optimal control

Order Conditions ¢; = >°°_, aij,  dj =37, biaij)
15 b =1

1
3 Yedi=¢, Ybici=3, Ydifbi=3
4 Ybict =, Ybiciage; = 5,3 dic} = {5, Y diagie; = 35,

chd?/bl = %, de/b? = i, Ebiciaijdj/bj = %, Zdiaijd]’/bj = é

wherey is the solution of (9) given by the state uniqueness property and
u = (ug,ug,---,us) € R¥. The corresponding discrete Hamiltonian
H" :R" x R" x R*™ — R is defined by

Hh(x, P,u) = Q,bfh(x, u).

We consider the following version of the first-order necessary optimality
conditions associated with (8) (see [3]):

(10) x) = ' (xp,up), x0=a,
(11) ,(p;c = _VxHh(Xk:a ¢k+17 uk)a Il»bN = VC(XN)7
(12) ww €U, —VyH"(xp, %00, ) € Ny(ug), 1<i<s,

wherey, € R", 0 < k < N — 1. Hereu, € R™ is the entire discrete
control vector at time levet:

ms
u; = (W, Upg, - -, W) € R™.

Throughout the paper, the indéxrefers to the time level in the discrete
problem, whileu; andu; € R™ denote components of the vectoe R

Our estimate for the error in the discrete approximation to the control
problem depends both on the smoothness of the solution to the continuous
problem and on the order-of-accuracy of the Runge-Kutta scheme used for
the discretization. In Table 1 we give the order conditions for Runge-Kutta
discretizations of control problems. The conditions for any given order are
those listed in Table 1 for that specific order along with those for all lower
orders. We employ the following summation convention:

Summation Convention.If an index range does not appear on a summation
sign, then the summation is over each index, taking valuesffrmns.

This deviates slightly from the usual Einstein summation notation in which
only repeated indices are summed over.

Notice that the order conditions of Table 1 are not the usual order condi-
tions[8, p. 170] associated with a Runge-Kutta discretization of a differential
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Table 2. Order of a Runge-Kutta discretization for differential equations

Order | Conditions ¢: = >°7_, aij, d; =3>°7_, biaij)

1| Sbi=1
2| Ydi=1
3 Zcidi:é, Z

3 _ 1 _ 1 2 _ 1 _ 1
4| Yobic; =7, Ybiciaic; =g, Yodici = 35, Yo diaijc; = 54

equation. For orders up to 4, these conditions appear in Table 2. Through
order 2, the conditions in Tables 1 and 2 are identical. At order 3, one new
condition emerges in the control context, and at order 4, four new conditions
emerge.

Our main result is formulated in terms of the averaged modulus of
smoothness of the optimal control. Jffis an interval ands : J — R",
letw(v, J;t, h) denote the the modulus of continuity:

w(v,J;t,h) =sup{|v(s1) — v(s2)| : s1,82 € [t — h/2,t + h/2] N J}.
(13)

The averaged modulus of smoothness v over|[0, 1] is the integral of the
modulus of continuity:

1
T(v;h) :/0 w(v,[0,1];¢, h) dt.

It is shown in [48, Sect. 1.3] thdim,;, o 7(v;h) = 0 if and only if v is
Riemannintegrable, andv; k) < chif v has bounded variation. Our main
resultis stated below in the context of unconstrained control problems, while
the generalization to constrained problems is given in Sect. 7.

Theorem 2.1.1f Smoothness and Coercivity holg, > 0 for eachi, the
Runge-Kutta scheme is of orderfor optimal control, and/ = R™, then
for all sufficiently small h, there exists a strict local minimizef, u”) of
the discrete optimal control proble(8) and an associated adjoint variable
" satisfying(11) and (12) such that

ma [ — " (t) | 4} = 9" ()] + Julock, ) — w(8)

d/{fl
14 < ch" 1 h u*: h
(14) S (R C= )

whereu(x, 1) is a local minimizer of the Hamiltoniafs) corresponding
to x = x; andy = v,
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Remark 2.2Note that the estimate for the error in the discrete control in
(14) is expressed in terms afx?, 1) notu}. For Runge-Kutta schemes
of third or fourth order, the error in the discrete contmj;g may be one or

more orders larger than the error in the control approximatitty, )
obtained by minimization of the Hamiltonian using the discrete state/costate
pair. On the other hand, the control approximation obtained by minimization
of the Hamiltonian has the same order of accuracy as that of the discrete
state and costate.

3. The transformed adjoint system

We now rewrite the first-order conditions (10)—(12) in a way that is better
suited for analysis and computation. Suppose that a multipliés intro-
duced for thei-th intermediate equation (7) in addition to the multiplier
1,1 for the equation (6). Taking into account these additional multipliers,
the first-order necessary conditions are the following:

(15) by — i1 =D A, ¢y =VC(xy),
=1

(16) h(bjppys + Zaij)\i)vzf(}’j, ug;) = A,
i=1

A7) wy €U, —(bjthpyr + Y aijAi) Vuf (v, ugs) € Ny (ug;),
=1

1<j<sand0 < k < N — 1. Here and elsewhere the dual multipliers are
treated as row vectors.

In the case thali; > 0 for eachj, we now reformulate the first-order
conditions in terms of the variablgg; defined by

SN, 1<j<s.
bj

(18) X; = Yre1+ Y
=1

With this definition, (16) reduces to
(19) hbjxjvxf(yj, ukj) = )\j.

Multiplying (19) by a;; /b;, summing oveyj, and substituting from (18), we
have

S

*biai ai;
(20)  hYy L VE(yimg) =D A =X~ Wi

j=1 j=1



Runge-Kutta methods in optimal control and the transformed adjoint system 255

Summing (19) ovey and utilizing (15) gives
(21) hY bix;Vaf (5, uk) = Y A = — Prp1
7=1 7=1
Finally, substituting (18) in (17) yields
(22) u; € U, —bjxjvuf(yj,ukj) S NU(ukj), 1< <s.

SinceNys is a cone, the positive factéy in (22) can be removed and equa-
tions (20)—(22) yield the transformed first-order system:

(23) Y =Y+ hzbixivxf(yz‘, ug), Yy =VC(xy),

i=1

24)  Xi =+
i=1

b Qi
JbAﬂ va$f(y]7 uk])v
(]

(25) u €U, —x;Vuf(yiu) € Ny(ug),

1<i<sand0 <k <N -—1.

Observe that conditions (23) and (24) are in essence a Runge-Kutta
scheme applied to the continuous adjoint equation (4). Although the adjoint
Runge Kutta scheme is generally not the same as the scheme (6) and (7) for
the state equation, it is observed in [31] that some common Runge-Kutta
schemes are symmetric in the sense that the state and adjoint schemes are
the same.

Proposition 3.1.1f b; > 0 for eachy, then the first-order syste(5)—(17)

and the transformed first-order syst¢@8)—(25) are equivalent. That is, if
A1, -, A satisfy(15)—(17), then(23)—(25) hold for x; defined in(18).
Conversely, ifxq, - - - , x, satisfy(23)—(25), then(15)—(17) hold for X;
defined in(19).

Proof. We already derived the transformed first-order conditions starting
from the original first-order conditions. Now suppose that --- , x,
satisfy the transformed conditions (23)—(25). Summing gver(19), and
utilizing (23) yields (15). To verify (16) and (17), we substitute Jgrusing

(19) to obtain

bjthisr + D aihi = bjthpgr +h Y biaijx; Vot (vi, ugs)
=1 i=1

ai-bi
=X Vat (v, ug;)
j

=1
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where the last line comes from (24). Multiplying (26) on the right by
V.f(yj, ux;) and substituting from (19) gives (16). Multiplying (26) on
the right byV . f(y;, ux;) and utilizing (25) yields (17). O

Remark 3.2Letu € R*™" denote the vector of intermediate control values
for the entire interval0, 1], and letC'(u) denote the valu€’(xy) for the
discrete cost function associated with these controls. The transformed first-
order system (23)—(25) provides a convenient way to compute the gradient
of the discrete cost function (8). In particular, as seen in [37],

(27) vukjc<u) = hijjvuf(Yja ukj)

where the intermediate values for the discrete state and costate variables are
gotten by first solving the discrete state equations (6) and (7}; fei, 1,

-, N — 1, using the given values for the controls, and then using these
computed values for both the state and intermediate variables in (23) and
(24) when computing the values of the discrete costate forN —1, N —2,

.-+, 0. Thus the discrete state equation is solved by marching forward from
k = 0 while the discrete costate equation is solved by marching backward
fromk =N — 1.

We now observe that the multipliep, gotten by solving (24) fory
and substituting into (23) is identical to the multiplier gotten from (11).
Moreover, the condition (25) involving ; satisfying (24) is equivalent to
the condition (12).

Proposition 3.3.Suppose that
(Xk: Wgj) € Ba(x"(t), u*(tr)), 1<j<s,

and fory = y(xx, ux), let M be thes x s block matrix whoséi, j) block
is then x n matrixa;; V.£(y;, ux;). If b is small enough thak — hM is
invertible, then there exists a solutiggy, - - - , x; to (24), and we have

Vo H" (X, Ppp W) = > biXa Vet (Vi uri) = > biVe H(yi, X, Uki)
i=1 i=1

(28)
and
Vuth(Xk;, ¢k+17 uk) = ijvuf(YJv ukj)

Proof. Our approach is to obtain identities in the vecdowhich are then
converted to identities iry. Equation (16) has the form

AM = hpy 4, C,
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whereC is thel x s block matrix whosej-th element ish; V£ (y;, ug;).
Using the implicit function theorem and differentiating the solutyoof (9)
with respect tax and evaluating gtxy, uy ), we obtain a relation of the form

(30) MV,y=D or V,y=M D,

whereD is thes x 1 block matrix with each element an x n identity
matrix I. Utilizing (11) and (30), we have

Ve H" (%1, i1, W) = W0 Y biVaf (vi, ki) Vi
=1

=,,1CV,y = ¢, ,CM'D
1 1
1 =-AD=—-> X\
(31) A 7O A

Since (16) has a (unique) solution, it follows from Proposition 3.1 that (24)

has a solution, and # is a solution, then the unigue solution to (16) is given

by Aj = hb;x; V£ (y;, ux;). With this substitution in (31), we obtain (28).
Now consider the second relation (29). Differentiating (9) with respect

tou; and evaluating gtxy, uy ), we obtain the relatioMV,,y = hD;V,f

(v, ux;) whereD; is thes x 1 block matrix whose-th element isi;;1. In

terms of the matridC introduced above, we have

Vo, H' (%6, Y1 wk) = g <ijuf(}’j, uy;)

+ Z bVt (yi, uki)vuj}’i>

i=1

v (ijuf(yj, ) + CVij)

= Ppi1 (bjI + hCMle>Vuf(Yjv ;)

= (bjz/;kH - ADj> Vuf (y;, ug;)

= <bj¢k+1 + Zs: %’\i) Vuf(yj, uij)
=1

= bix;Vuf (¥, ur;)-

This completes the proof.0

Since the boundary conditions fa¥, are the same in both (11) and
(15), it follows from (28) that when is sufficiently small andx;,, u;) €
Bg(x*(t),u*(ty)) for eachj andk, then they,, given by (11) and by
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(23)—(24) are the same. Moreover, the control gradient satisfies (12) if and
only if the following relation holds in the transformed variables:

ug €U, -V H(yi, X uri) € Nu(ug;), 1<i<s.

The transformed discrete costate equations (23)—(24) march backwards
in time while the discrete state equations (6)—(7) march forwards in time. To
facilitate the error analysis, we now reverse the order of time in the costate
equation. That is, we solve fap, , ; in (23) and substitute in (24) to obtain
the following forward marching scheme:

(32) Ppp1 = P — h D> bix;Vaf (i, ua),
i=1

(33)  xi =i —h) ayx;Vel(yj we), @i =
j=1

bibj — bja,jz-
b; '

We will now remove the control from the state equation and the trans-
formed adjoint equation by use of the minimum principle. As noted in [27]
or [23, Lem. 2], Coercivity implies that

(34) v'R(t)v>alv]? foral veU—-U and te€l0,1].

It follows by Smoothness and [33, Thm. 4.1] that the Hamiltonian has a
locally unique minimizer in the control and the following property holds:

Control Uniqueness Property.There exist positive constantando, both
smaller thanp, such that whenevelx, ) € Bg(x*(t), 1 (t)) for some
t € [0,1], the problem

35 min  H(x,1,u

(35) weptin  Hx, 9, u)

has a unique solution denotadx, v») depending Lipschitz continuously
onx andt. Moreover, ifU = R™, then (by the implicit function theorem)
u(x,) is k — 1 times Lipschitz continuously differentiablestrand ).

By the control uniqueness property(i, 1) is sufficiently close tdx* (¢ ),

Y™ (tx)), there exists a locally unique minimizer= u(x, ) of the Hamil-
tonian in (35). Focusing on the situation where the control is uniquely de-
termined by(x, 1) through minimization of the Hamiltonian, let denote

the function defined by

¢(x,9) = —VoH (X, 0, P) [y qh) -

And with some abuse of notation, I€{x, ) denote the functiorf(x,
u(x,1)). In the case where the control has the special fagn= u(y;,
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X ), the Runge-Kutta discretization (6)—(7), coupled with the transformed,
time reversed costate equations (32)—(33), can be expressed:

(36) Xkp+1 = Xk +h Z bzf(y“ Xz)a Xp = 4,
i=1

B7)  Yr =t +h Y bidlyixi), Py =VC(xy),

=1
(38) yi=xr+h>_ af(y;,x;),
j=1
(39) Xi =Pr+hY a0y, X;):
j=1

wherea;; is defined in (33).

Sinceu(x, 1) depends Lipschitz continuously ennearx*(t) and
neary*(t), for anyt € [0, 1], we have the following uniqueness property,
analogous to the state uniqueness property:

Costate Uniqueness PropertyThere exist positive constanisand g < p
such that whenever < v and (x,v) € Bg(x*(t), v (t)) for somet
[0, 1], the system of equations

(40) yi=x+hY_aif(y; x;),
j=1

(41) Xi =% +h Y aidyx;),
Jj=1

has aunique solutiofy;, x;) € B,(x*(t),¥"(t)),1 < i < s. Thefunctions
f and ¢ are Lipschitz continuous il 3(x*(t),y*(t)) for eacht € [0, 1].
Moreover, ifU = R™, thenf and ¢ are x — 1 times Lipschitz continuously
differentiable inBg(x*(t), ¥ (t)).

The scheme (36)—(39) can be viewed as a discretization of the following
two-point boundary-value problem:

(42) X (1) = £(x(), (1), x(0) = a,
(43) Y1) = p(x(t), (1), (1) = VO(x(1)).

This two-point boundary-value problem is gotten by substituting in (2)—(4)
the control obtained by solving (4) fer(¢) in terms of(x(¢), ¥ (t)).
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4. Order of approximation

Butcher [8] has devised an elegant theory for determining the order of ac-
curacy of a Runge-Kutta integration scheme for a differential equation. If
the continuous solution to the differential equation is substituted into the
discrete equations, the residual(¥h”*) wherek can be determined by
checking the order conditions in Table 2. The theory developed by Butcher
does not apply to the discretization (36)—(39) since the coeffiaigfor the
costate equation, given in (33), may not match the coefficigrf the state
equation. In this section, we carry out an order analysis analogous to that of
Butcher, but in the context of the special discretization (36)—(39) connected
with optimal control. Conceptually, our approach applies to schemes of any
order, however, the particular results that we present are for schemes of order
less than 5.

Let z andg denote the following pairs:

= (3) =)

With this notation, the differential equation (42)—(43) has the fafm-=
g(z). There are two facets to Butcher’s analysis. First, there is a tree-based
formulation for the Taylor expansion ef Restricting the expansion to terms
up to fourth order, [8, Thm. 302D] yields:
1 1
z(tpy1) = z(tg) + gh + 5g’gh2 +3 <g”g2 + g’g’g) h?

(44) +i (g’”gS +3g"gg's + 888’ + (g’)3g> R+ 0(h).

z(tx)

In this expansiong and its derivatives are all evaluatedzt; ), and the
various derivatives should be viewed in an operator context. That is, the first
derivativeg’ of g operates on a vector to give a vector. Of course, the first
derivative of a vector-valued function corresponds to the Jacobian matrix
and the operatiog’g corresponds to multiplying the Jacobian matrix by the
vectorg. The second derivativg” operates on a pair of vector to yield a
vector; hence, the 4-th order tegghg”’g? means that the second derivative

operates on the pair of vectafs, g) to give a vector which is acted on by
/

g

The expansion (44) is the standard Taylor expansiorzféy around
t = 1.

1
z(tpr1) = z(ty) + 2 (tp)h + 5z”(tk)h2
tr4+1

1 . ) 1 oo
(45) 4o+ ﬁZ(J)(tk)hJ + i (t — )2V (t) dt.
: s Jt
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In (44) the various derivatives af are replaced by their equivalent repre-
sentation in terms o and its derivatives. In Theorem 302D, Butcher uses
the integral form for the remainder term shown above. However, in optimal
control, where the solutions may have limited smoothness, it is better to
modify the expansion in the following way:

1
z(tgr1) = z(ty) + Z,(tk)h + §Z”(tk)h2

tet+1

1 . . 1
AT ()| Ja -
+ +j!z (tx)h + (j—l)!/

tk

(46) x(t — )12V (t) — 29 (8,)) dt.

This form is gotten by stopping one term earlier in the Taylor series, and
then adding and subtracting ta€) (¢;,) term under the integral sign. The
polynomials inh appearing in (45) and (46) are identical, the expansions
only differ in the form of the remainder term. The remainder term in (46)
involves one less derivative afthan that in (45).

The second facet of Butcher’s analysis is an analogous expansion for the
next Runge-Kutta iterate,; in terms of the current iteratg,. For given
values ofx;, andt),, the solutiony; andx; to (38) and (39) are functions
of h that we denotg;(h) andx;(h). Letx;,1(h) andyp, ;(h) denote the
valuesxy, 1 andi, , , obtained by substituting; = y;(h) andx; = x;(h)
in (36) and (37), and leg (%) be the vector of lengtbn(s + 1) given by

oy [ Yi(h) ‘ _ [ e (h)
Cz(h’) (X,L(h/)> 9 1 S ? S S, Cs—l—l(h’) <¢k+1(h)> .
With this notation, the system (36)—(39) can be expressed
¢(h) = ¢(0) + hG(¢(h)),
where
> 5-10i5£(C;)
G;(¢) = Fa J
(C) (Zjl aij(b(gj)

with the convention that

), 1<i<s+1,

(47) Ust1,j = Gst1,5 = bj, 1<j<s.

Expanding¢ (k) in a Taylor series arounkl = 0, Butcher’s result [8, Thm
303C] yields

QM:C®H{M+%@GGM2

1
6<§GWG2+6G%yG>h3
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1
+o (4(;’”(;3 +24G"GG'G + 12G'G"G?

+O(h).
¢

HereG and its derivatives are all evaluated(@0) where

(48) + 24(G/)3G> ht

Xk

Ci(0) =z = <¢k

), 1< <s+1.

The error that results from stopping the Taylor expansion (48) at any term

is again given by an integral as in either (45) or (46), but witeplaced by

¢ and with the integration performed oveiinstead oft. (Note that in [8],

Butcher utilizes a different representation for the error in the Taylor series

for ¢, while here we utilize the integral representation appearing in (46)).
We say that the Runge-Kutta scheme (36)—(39) for the system (42)—(43)

is of orderv if the expansion (44) and th@ + 1)-st componeng (k) in

the expansion (48) agree through terms of ofdewhenf and¢ have the

necessary derivatives ang = z(ty).

Theorem 4.1.For v = 1, 2, 3, or 4, the Runge-Kutta schenia6)—(39) is
of orderv if the conditions of Tablé are satisfied.

Proof. Throughout the proof, no arguments are given for functions, which
are all evaluated af;,. Also, we define

S
Ei:Zdij, 1< <s+1.
j=1
Due to the convention (47¥s+1 = Cs+1 = »_ b;. SinceG,11 = > big,
we see immediately that if the order 1 condition of Table 1 holds, then the

expansion (44) matches the corresponding term in (48) to first order.
By the definition ofc in Table 1, we have

G, = <§:;> cifo + ¢y, where fy = (;) ,
0
(49) P = <¢> .

The derivative ofG can be viewed as a block matrix with the following
elements:

(G))j = aijfy +aijdy,  (Ghyp); = bsg.
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Hence, we have

+1G Z s+1

(50) = Z big' (cifo + Cigpy).

On the other hand, the corresponding term in the expansion (45) is
1 /I 1 /

288 = 58/(fo + ¢o)-

This term is identical to (50) if

(51) Zbici = % = Z b;c;.

The first equality is already contained in Table 1. For the second equality,
we use the definition af;; to obtain the identity

(52) a-:zibibj ;Abjaj” :I—Z—bba“—l—d/b
]:1 3 (]

J=1

Hence, by the conditions in Table 1 for orders 1 and 2, we have

_ 1
Zbicizzbi_di:§7

which establishes the second equality in (51). Consequently, the second-
order conditions of Table 1 imply that the Runge-Kutta scheme is second-
order accurate for optimal control.

Now consider the third-order conditions. Due to the structui@gfany
mixed derivative vanishes:

0G;
9¢;OCk,

As a result, the derivatives have a very special structure. In particular, for
the second derivative, we have

=0 forallj+#k.

G/(v,w) Zawfo Vi, W;) —|—Za”¢0 vi,w;), 1<i<s+1.
Jj=1 j=1

In the special casé= s + 1, this reduces to

s+1 Vv, W) Zblg Vi, W;).
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Utilizing (49), we have

(G, G) = Z big” (cifo + i)

This is equal to the corresponding term in (44) if the following conditions
hold:

(53) é = Z bic? = Z b;cic; = Z 61512

The first equality is contained in Table 1. For the second equality, we utilize
the relation (52) and Table 1 to obtain

sz’CiEi:E ci(bi —d Zd

For the third equality in (53), observe that

D obie; = (b —di)?/bi = b —2d; + d /b; = é

which completes the proof of (53).
The final third-order term coming from (48) is

G1G'G = big/(aiffy + aij¢p) (cfo + o).

This term is equal to the corresponding term in (44) if the following condi-
tions hold:

- = Zb a;jcj = Zb a;;Cj = Zb aijcj = Zbi&ijéj.

The first equality is contained in Table 1. For the second equality, Table 1
and (52) yield

D biage; =Y di(1—d;/b)) (13

For the third equality, we have

1
Zbawc] Z baﬂc] Zbcj jjzf.

And for the fourth equality,

> bidige; = (bibj — bjagi)(1—d;/b) = (1= ¢;)(b; — dj) = t

At this point, we have checked the conditions of Table 1 up to third order.
Observe that the conditions that need to be checked at each order correspond
to all the ways of distributing bars on the various factors that appear in the
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order conditions of Table 2. For example, the condifiom,c; =  in Table
2 will expand into the following set of relations:

i = szcf’ = Z bicgéz- = Z biciaf = széf’

Altogether there are 26 separate conditions that must be satisfied to achieve
fourth order accuracy, and besides the original 4 conditions in Table 2, 4
new conditions emerge in Table 1. We now check each of the 26 conditions
associated with a fourth order scheme. There are 4 different terms that need
to be checked, denoted 1, 2, 3, 4 below. The various ways of arranging the
bars are denoted 1a, 1b, , 4g.

1. > bicd = 1 (in Table 1)
la. Yobicle; = > 2 (b — d;) =
1b. S bicie? = S cilby — di)2/b; = X2 ciby — 2¢id; + cid? Jby = 1
1c. Yobied = > (b — d;)3/b? = S b; — 3d; + 3d?/b; — d3 /b? = i
2. Y bicia;jc; = % (in Table 1)
2a. Y bicajjc; =Y (b — d;)aije;
=Y djej — diazje; = g
2b. Y biciaiic; = Y ci(bibj — bjaji)cj
= (X cibi)® = Y bicsaijc; = &
2¢C. Y biciaiic; =) biciaii(1 —dj/bj)
=Y bic? — biciai;d;/bj = &
2d. > biciagic; =Y (b — d;)bj(b; — aji)cj/b;
= (bi — di)bjc; — bjajicj + bjdazici /b
=7+ biciagd;/bj — b-c2- = %
2e. Y biciaijc; = Y (bi — di)aij(b; — dj)/b;
= Sd; — cidi — df/bi + diaijd; /by = L
2f. > biciaiic; =) ci(bi — aj)(bj — dj)
=Y bic; — cid; — bicid; + diaijej = &
29. 3 biciaiicy = (bi — di)(bi — agi)(bj — d;)/bs
=22(bi — di)(b; — d;)
—(bi = di)aji(bj — dj)/bi
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=S bib; — 2d; + did;
—aji(bj — dj) + diaji(bj — d;)/bi
=" bib; — 3d; + did;
+eids + d2 /b — diagyd; /b = L
3. Y biaijc; = 15 (in Table 1)
3a. ) biay 3 = bi(b; — aji)cz = Zb-(cjz — c?) = 1—12
3b. > biaijcic; = biaije;(by — dj) /b
=) cjd; cjd /b =5
3C. Y biaijcic =Y bjajicic; = Y (bj — aj)ci(by — d;)
=3 bici — cidi — bic? + c2d; = 45
3d. 3 biai;c; = 3o d;(b; — ') 263
=Y dj —2d3/b; + d3 /b3 = 5
3e. Y- biaic; = 3 bjagic; = Y (bj — aig)(bi — di)?/b;
=21 —ci)(bi — di)?/bi
=3(1 = i) (b — 2di + dF /bi) = 15
4. > biajjajicr = i (in Table 1)
4a. ) biajjajrer = Y bi(by — aji)ajrer = Y bi(1 — ¢j)ajrcs
=3 epdy — bjcjancy = 3
4b. > biajiarer = Y djbi (b — agj)cr/bj
= djbrcr — djbgagjcr/b; = 55
4c. > biagjapcr = Y djasr(by — di) /by
=Y cjdj — djajedi /by = 55
4d. > bagjajpcr =Y be(bi — aji)(bj — agj)c
=22 0k(1 = ¢j)(bj — akj)ex
=Y brer(bj — ag; — bjcj + cjak;)
=3 %bkck — bkci + brcragjcy = i
4e. > biaijagcy = 32 bj(bi — aji)ajk(by — di)/be
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=Y bjar(1 —¢j) (b — di) /by
=Y bja;i(by — di, — brej + cjdy) /by
=Y d — dz/bk — bjcjz +bjcjajrdy /by = i
af. > biagiance = - dj(bj — ak;)(bk — di) /b;
=Y djby, — djdy, — d3 /bj + dyar;d; /by = 55
49. > biaijaikcr = (by — aji)(bj — ag;) (by — di)
= (1 —¢;)(bj — ak;) (b — di,)
= (bj — ak;)(bx — di) — ¢j(bj — ak;)(by — di)
= (5 — cr)(bk — di) + anje;(by — di) = 5

This completes the proof.O

5. Error estimate

Our proof of Theorem 2.1, as well as that of the constrained version in
Sect. 7, are based on the following abstract result.

Proposition 5.1. Let X’ be a Banach space and Igtbe a linear normed
space with the norm in both spaces denofed|. Let F : X — 2 be

a set-valued map, lef : X — ) be a bounded, linear operator, and let
T : X — Y with T continuously Frecét differentiable inB, (w*) for some

w* € X andr > 0. Suppose that the following conditions hold for some
0 € Y and scalars, A, ando > 0:

(P1) T(w*)+6 € F(w").

(P2) |[VT (w) — L|| < eforall w € B, (w*).

(P3) The map(F — £)~! is single-valued and Lipschitz continuous in
By (m), 7 = (T — L£)(w*), with Lipschitz constant.

If e < 1,er < o, ||6]| < o,and||d|| < (1 — Xe)r/A, then there exists

a uniquew € B,(w*) such that7 (w) € F(w). Moreover, we have the
estimate

(54) lw —w*|| <

Proof. This result is obtained from [22, Thm. 3.1] by identifying the et
of that theorem with the balB, (7). O

In applying Proposition 5.1, we utilize discrete analogues of various
continuous spaces and norms. In particular, for a sequanes, - - -, zy
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whosei-th element is a vectat; € R”, the discrete analogues of tiié
and L*° norms are the following:

N p
lzlle = > hlzl” and ||z|z~ = sup |zil.
i—0 0<i<N

_1/_

With this notation, the spack in the discrete control problem is the discrete
L= space consisting of 3-tuples = (x, ¥, u) where

X:(a7X17X27”'7XN)7 Xk’ERna
¢:(¢07¢17¢27'“7¢N)’ '(pk,‘ERn’
u = (ug,up,ug, -, uy_1), ug€ R

The mappingg™ and.F of proposition 5.1 are selected in the following way:

x, — A (xg,up), 0<k<N -1
W)+ Vo H (xp, Yppq,u), 0<k<N-—1

T(x,%,u) =
vuth(Xk7¢k+lauk)> 1<j<s,0<k<N-1
Yy — VCO(xn)

(55)

and
0
0

f b b =
GOV =1 s Np(uw), 0<k<N—1

0

The space), associated with the four componentsTofis a space of 4-
tuples of finite sequences ' x L' x L>® x R™. The reference point*
is the sequence with elements

wZ = (XZ’ 'lwbl?» u;;)v
wherex; = x*(tx), ¥ = ¥*(tx), andu;, = u(y’, x;). Herey; andx;

are the solution to (40)—(41) correspondingte- x*(t) andy) = ¥*(t).
Sinceuy, is a solution to (35) associated with= y; andy = x;, we have

(56) up; €U, =V, H(yi, X uri) € Nu(ug;).

The operatolL is gotten by linearizing arouna@*, evaluating all variables
on each interval at the grid point to the left, and dropping terms that vanish
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ath = 0. In particular, we choosg(w) =
x}C—Akxk—Bkukb, OSkJSN—l
Y+ Y A + (Qexy + Spub)T, 0<E<N-—1
bj(uijk+XgSk+¢k+1Bk), 1<5<s, 0<k<N-1

(57)

For these choices of the spaces and the functions, we now examine each
of the hypotheses of Proposition 5.1. First, in [24, Lem. 5.1] we show that
by Smoothness,

(58) VT (w) = L < VT (w) = L] < e(flw —w™|[ + h)

for everyw € Bg(w*), whered appears in the state uniqueness property.
Moreover, by Smoothness, Coercivity, and [24, Lem. 6.1], the (fap-
£)~!is Lipschitz continuous with a Lipschitz constanindependent of
for h sufficiently small. Thus we can take= oo in Proposition 5.1.

To finish the analysis, we need an estimate for the distanceTrant)
to F(w™). In this section, we focus on the case whére- R™ and.F = 0,
while Sect. 7 shows how the analysis must be changed to handle control con-
straints. WherF = 0, estimating the distance #is equivalent to obtaining
an estimate fof{ 7 (w*)||. By (4) we haveyy, = VC(x},). Consequently,
the last component of (w*) vanishes. By the identities (29) and (56), the
next-to-last component of (w*) also vanishes. The first two components
of T (w*) are estimated using the Taylor expansions of Sects. 4. Consistent
with the notation of Sect. 4, we define

* x* zF = X*(tk)
.- (w) and. i <¢*<tk>>‘

Similarly, ¢* (k) is the vector whose firstcomponents are paitg; (h), x;
(h)) satisfying (38) and (39) witlx,, = x} andy, = 1}, and whose last
componentis

Coyr(h) = zf+ b)Y big(yi (h), X (h)).

i=1

Using this notation and exploiting the identity (28) of Proposition 3.3, the
first two components of (w*), evaluated at time levéd, can be expressed:

*/ h (% *
xp — £(x}, up) ) N
* * * * = (ZkJrl - CS"‘I(h)) °
< k, + v:cHh(Xk;’ ¢k+1a uk)

S
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The order conditions of Table 1 were devised so that the terms in the
Taylor expansions (44) fax; |, and (48) for¢; (k) match through order
k, leaving us with integral remainder terms:

tr4+1
2hay = Conn(B)] < h( [0 - a
tr
(59) / €™ () = ¢ <0>\dt>.

(Note that although we only assumed® lies in L, it follows from the
smoothness propertiesand Control Uniqueness, thett*) is continuous
whenU = R™). By the chain rule, Smoothness, and Costate Uniqueness,
the k-derivative ofz* can be written

2 () = FOuw ™V (¢) + H(t),

where bott¥ andH are Lipschitz continuous. Hence, for eaach [t tx11],
we have

2 (1) — 2 (1) < |(F(t) — F(£)u V(1)
HF (1) (™ (@) — D (1) + [F() — H(2)|
< e(h+w@ ™ [ty ta]st,20)).
After summing ovet, we have

tpi1

S [ Ow - ) a
< ch(h+ Z/tkﬂ

< ch(h + r(u* ", 2n))
< ch(h + 2r(u* "7V p)),

D) [t tes s £, 20)] dt>

where the last inequality is found, for example, in [48, p. 11].
Now consider the last term in (59). By Costate Unigueness, we know
that the equation

(60) ¢(h) = €(0) + hG(¢(R))

has a locally unique solution whenever< ~. Moreover, by the implicit
function theorem¢ (h) is k — 1 times Lipschitz continuously differentiable
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in h. Hence, thes-th derivative of¢ (k) lies in L>°. To see more precisely the
structure of the:-th derivative, we differentiate the identity (60) to obtain

= (¢(0) + hG(¢(R)))™)
= G(¢(h) "V + hG(C(h)™)
(61) = G(¢(h), -+, ¢ (R)) + RG(¢(R) ™,

whereG is a function that involves various products of derivativesGbf
to orderx — 1. The last term in (61) i$)(h) since thex-th derivatives
are all bounded. Since the derivative@fto orderx — 1 are all Lipschitz
continuous, it follows that

1€ (h) — ¢9(0)]
= O(h) + | G((¢(h), -+, <" (h) = G((0), -~ ,¢"D(0))]
1

KR—

< O(h) + ¢ 1€ (h) = ¢ (0)] = O(h).

1=0

Hence, the lasttermin (59)3(h). To summarize, ilk! x L' x L>° x R,
we have

17 (w)]
= 0> (I3 = £ c, w)| + 195+ Vo H (i, W )
(62) < ch (h 4D, h)) .

To complete the proof of Theorem 2.1, using Proposition 5.1) le¢
chosen large enough and letoe chosen small enough that the Lipschitz
constant ofC ! is less tham\ for all . < h. Chooser small enough that
e\ < 1.Choose asmatland choosé smaller if necessary so thétr+h) <
¢ wherec is the constant appearing in (58). Finally, chodsemaller if
necessary so that for the residual bound in (62), we have

ch® 1 (71 + T(u*('{”*l); ]_I)) < (1-=Xe)r/\

Since the hypotheses of Proposition 5.1 are satisfied, we conclude that
for eachh < h, there existsw” = (x" 4", u") € B,.(w*) such that

T (w") = 0 and the estimate (54) holds, which establishes the bounds for
the state and costate variables in (14). The estimate in (14) for the error in
the control follows from the control uniqueness property and the fact that
V. H (x*(tg), ¥*(tr), u* (tx)) = 0. Finally, by [24, Lem. 7.2]x", u") is a

strict local minimizer in (8) forh sufficiently small.
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6. Numerical illustrations

Through second order, the conditions in Tables 1 and 2 are the same, and
at order three, one new condition emerges for the control problem. In [8, p.
174] Butcher shows that the set of third-order explicit Runge-Kutta schemes
includes the following family involving the two parametess=- %, 0, and

c3 # c2,0:

0 0 0 2coc3—c3—ca+2/3
2coc3
3c3—2

(63)A = Co 0 0, b=| &i=n
c3(3ca—c3—3c3) c3(cz3—ca) 0 2—3co
02(27302) 02(27302) 603(03_02)

There are also two one-parameter families of schemes v;dwen%, how-
ever, it can be shown that neither of these families satisfies the condition

(64) > & /bi=1/3

of Table 1 needed for third-order accuracy in optimal control. Moreover,
for the two-parameter family (63), the condition (64) is satisfied if and
only if c3 = 1 (a symbolic manipulation package like Maple facilitates the
derivation of this result).

The following specific third-order schemes have appeared in the litera-
ture (for example, see [38, p. 402] and [39, p. 506]):

1 2

000 3 000 2

@A=| 300, b=[2|, (BA=|500|, b=|3
1 3 4

-120 3 050 5

The scheme (a) correspondsdp = 1/2 andcz = 1 in (63), while (b)
corresponds te; = 1/2 andces = 3/4. The first scheme satisfies (64) since

cs = 1 while the second scheme does not satisfy (64). Let us consider the
following simple test problem [31, (P1)]:

R B
(65) minimize 2/ u(t)? + 2x(t)* dt
0

subjecttoz’(t) = .5x(t) +u(t), x(0)=1,
with the optimal solution

263t 4 83 2(e3t _ 83)

€ TO=Grgray YO ERgre)
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Table 3. Discrete state error ik > for problem (65) and the schemes (a) and (b)

N @ (b)

10 8.820781e05 7.236809e04

20 9.716458e06 1.732318e04

40 1.110740e06 4.231934e05

80 1.317159e07 1.045581e05
160 1.600043e08 2.598415e06
320 1.970437e09 6.476597e07

In Table 3 we give thd.*° error for the discrete state at the grid points for
the schemes (a) and (b) and various choices of the mesh. When we perform
a least squares fit of the errors in Table 3 to a function of the fafifi
we obtaing =~ 3.09 for (a) andg ~ 2.02 for (b). The errors observed in
this example are typical for Runge-Kutta discretizations of the form (63). If
¢s = 1 and condition (64) holds, then the control discretization is third-order
accurate, and f3 # 1 so that (64) is violated, then the control discretization
is second-order accurate.

In Theorem 2.1, we require that > 0 for eachs. If b; vanishes, then
the solution of the discrete problem may not converge to the solution of the
continuous problem, as the following discretization of (65) illustrates:

N-1
... h
(67)  minimize D upiaje+ 2,
k=0

subject t09€k+1/2 =T+ %(51% + uk),
Tkl =Tk + h(.5$k+1/2 + uk+1/2), zg = 1.

This scheme is second-order accurate for differential equations. The first
stage of the Runge-Kutta scheme approximateg the midpoint of the
interval [kh, (k 4+ 1)h], and the second stage gives a second-order approxi-
mation toz((k + 1)h). Obviously, zero is a lower bound for the cost func-
tion. A discrete control that achieves this lower bound,is= —%xk and
ug41/2 = 0 for eachk, in which caser; ., = 0 andx;, = 1 for eachk.
This optimal discrete control oscillates back and forth between 0 and a value
around—2/h; hence the solution to the discrete problem diverges from the
solution (66) to the continuous problem/agends to zero. In [24] we show
that this divergent scheme can be fixed by replacing the coatrat the
first stage byt 12

Next, we illustrate the observation contained in Remark 2.2: For third or
fourth-order Runge-Kutta schemes, the discrete com@lsften converge

to the continuous solution more slowly thahx’,;, sz). To see this property,
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Table 4. Discrete control errors i, > for test problem (68) and scheme (a)

h

h

h

N U Ugo Ugs U(Xza 1/’2)
10 2.581245e03 1.285116e03 2.639595e03 1.933271e05
20 7.999243e04 3.605417e04 6.481638e04 2.699320e06
40 2.191605e04 9.455063e05 1.594966e04 3.569218e07
80 5.715833e05 2.415251e05 3.948989e05 4.589058e08
160 1.458317e05 6.099989e06 9.820382e06 5.817758e09
320 3.682317e06 1.532569e06 2.448334e06 7.323739%e10

we need a slightly more complicated example than (65). We consider the
following quadratic problem [31, (P2)] which includes anterm:

(68) minimize ;/1u(t)2 + 2(t)u(t) + 2z(t)? dt
0

subjecttox’/(t) = .5x(t) + u(t),
with the optimal solution
«/y _ cosh(l—1) «/, _ (tanh(1 —¢%)+.5)cosh(1 —t)
7 (t) = cosh(1) ~’ w(t) = cosh(1) '

In Table 4 we give the.> error in the discrete controls},, 1 < i < 3,
for scheme (a) and problem (68), while the last column gives the error in
u(x, ). Note that the errors in the last column of Table 4 are much
smaller than the errors in the preceding columns. The error in each of the
discrete controls i©)(h?) while the error in the approximatiom(x, 4!
generated by the discrete state and costate variallg®19, in accordance
with Theorem 2.1. More precisely, if we perform a least squares fit of the
errors in Table 4 to a function of the forah?, we obtaing ~ 1.90, 1.95,
2.01, and 2.94 for the respective columns of Table 4.

For 3-stage explicit third-order Runge-Kutta schemes, there are 6 nonzero
coefficients to be specifiedsyy, as1, ass, b1, b2, andbs. In Table 1, there are
5 conditions to be satisfied in order to achieve third-order accuracy. Hence,
we might anticipate a one-parameter family satisfying these 5 conditions.
This family of solutions corresponds to (63) ang = 1. Proceeding to
4-stage explicit fourth-order Runge-Kutta schemes, there are 10 nonzero
coefficients to be specified and 13 conditions in Table 1 to be satisfied.
Hence, by the same reasoning used for third-order schemes, one may think
that a 4-stage explicit fourth-order method is impossible in optimal control.
Quite to the contrary, we have

z(0) =1,

Proposition 6.1.Every 4-stage explicit Runge-Kutta scheme wjth> 0
for everyi that satisfies all the conditions of Talfealso satisfies all the
conditions of Tabld.
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In other words, any 4-stage explicit Runge-Kutta scheme Witly 0 for
everyi that is fourth-order accurate for differential equations is also fourth-
order accurate for optimal control.

Proof. In [8, p. 178] it is shown that in any 4-stage explicit fourth-order
Runge-Kutta scheme, the following identity holds:

> by =bi(1 - ¢)),

j=1,2,3,4. Thusl; = b;(1 — ¢;) for eachj. With this substitution, each
of the 5 conditions in Table 1, not appearing in Table 2, can be deduced
directly from the conditions in Table 2.0

For a practical illustration, we consider the orbit transfer problem pre-
sented in [6, pp. 66—68]. Given a constant-thrust rocket engine with thrust
operating for a given length of ting, we wish to find the thrust-direction
history ¢(t) that transfers a spacecraft from a given initial circular orbit to
the largest possible circular orbit. The notation is the following:

r =radial distance of spacecraft from attracting center
u = radial component of velocity

v = tangential component of velocity

mg = initial mass of spacecratt

m = fuel consumption rate (assumed constant)

¢ =thrustdirection angle

i = gravitational constant of attracting center

The problem of maximizing the radius of the final orbit can be expressed:
maximize r(ty)

subjecttor’ = wu, r(0) = ro,

2
, v n T'sin ¢
b r r2+mof|m\t u(0) (ts)

, uv T cos ¢
vV =———+ — tf
r mo— |m|t’ tf

We have solved the following instance of this problem stated in [6] (also
see [40])mg = 10,000 kg, i = 12.9 kg/dayrg = 149.6 x 10 m (distance
from Sun to Earth)T = 8.336 N, p = 1.3273310%°m3/s? (gravitational
constant for the Sun), arig = 193 days. The trajectory, appearing in Fig. 1,
takes the spacecraft from an Earth orbit around the Sun to a Mars orbit.

The terminal constraints om andv at¢; were treated using penalty/
multiplier techniques (see [2] and [34]). We discretized the problem using
the 3-stage methods (a) and (b). To estimate the errors associated with each
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Fig. 1. Transfer spacecraft from Earth orbit to Mars orbit.

Table 5. Discrete state errors for orbit transfer problem and schemes (a) and (b)

(@) (b) (@) (b)
N L>=error L% error L2error L?error
500 () 1.2e+03 2.3er05 2.3e+06 6.4e+-08
1000 ¢) 1.5e+02 5.8er04 2.8er05 1.6e-08
2000 ¢) 1.9e01 1.4er04 3.5e-04 4.0e-07

500 @) 6.9e-04 2.2e-01 5.1e-01 1.3e+02
1000 ) 8.5e-05 5.6e-02 6.4e-02 3.2e+01
2000 ©) 1.0e-05 1.4e-02 7.9e-03 7.9e+00

500 ) 7.6e-04 1.3e-01 9.8e-01 1.0e}-02
1000 ) 9.4e-05 3.2e-02 1.2e-01 2.6e+01
2000 ) 1.2e-05 8.1e-03 1.5e-02 6.4e-00

discretization, solutions were obtained for three meshes corresponding to
N =500, 1000, and 2000, and Aitken’s extrapolation was used to estimate
the exact solution at each grid point corresponding ta\the 500 mesh. The
error in the discrete approximations in both theand L> norms appears
in Table 5. Observe that the discrete errors are several orders of magnitude
smaller for scheme (a) compared to scheme (b).

The orbit transfer problem was solved using a software package called
optconxrk. To apply this collection of Fortran programs, the user provides
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the coefficients of an explicit Runge-Kutta scheme along with subroutines to
evaluate the right side of the differential equation, the terminal cost, and their
gradients. The optimization is performed using steepest descent followed
by the conjugate gradient method, where the transformed adjoint system
(23)—(24) and the formula (27) are used to compute the gradient of the cost
function. The software package optcrrk, along with a sample program
based on the orbit transfer problem, is available at the following web site:

http://www.math.ufl.eddihager

7. Control constraints

When control constraint are present, adjustments are needed in the way we
estimate the distance frof(w*) to 7 (w™*) sinceg is often at best Lipschitz
continuous when control constraints are present. All the other analysis in
Sect. 5 remains unchanged in the control constrained case. Let us define the
following quantities:

Xp =X (tk + cih), i =P (tg + cih), P =P (tp + Gh).

Also, we setz!, = (x},,v};) andz;, = (x};, ;). By (60), we have
¢;(h) = zj + O(h). Consequently, the Lipschitz continuity gfyields

Ci(h) =z, + hG;i(C(h)) = z;, + hz a;ifo(¢;(h)) + hzaw¢0 ¢;(h))

Jj=1 j=1
= 2} + heifo(z)) + héipg(zi) + O(h?) =z}, + O(h?).

With this substitution fo;(k), the Lipschitz continuity of also yields:

Cor1(h) =2 +h Y _big(Ci(h) = 2k +h > big(zi;) + O(h®).

On the the other hand, the fundamental theorem of calculus gives
tr41
sin—zit [ g () d
tx
Combining these last two identities, we obtain
* bt * * 3
(690700~ Con() = [ 8(a(0) dt > big(a) + O(H).
tg

In the case that; = ¢; for eachi, the difference (69) can be estimated by
the following formula for the error in quadrature ([48, Thm. 3.4]):
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Proposition 7.1. For anyb ando € R? such that
S S 1
261‘_1, 25@0’1'_2, and 0<0; <1, 1<1<s,
1= 1=

and for allp € W1, we have

h S
/0 ¢(s) ds —h Y _bip(oih)
=1

wherew is the modulus of continuity defined(it8). Here c depends on the
choice ofb ande, but not ong or h.

Suppose that the Runge-Kutta scheme is at least second-order accurate,
and that0 < ¢; < 1. If ¢; = ¢; for eachi, thenz;, = z;, for eachi, and
applying Proposition 7.1 with; = ¢;, we have

h
<ch [ w(@, (0.5, h) ds,
0

th+1
!%H—gﬂmMzﬂ; g(2" (1)) dt
(70) —h> big(zy;)| + O(h?)
(71) sm/““wafxmﬂmmaMﬁ+0m%
12

The functiong, evaluated at*, has the following special form:

(2") = £(x*, u(x*, 9")) _ f(x*,u")
ST Vo ¢ uxt, ) |~ \ VoH(x 9 ut) |
For anyt € [tk, tr+1], Smoothness yields

w(g(z*)’, [tka tk+1];t7 h) < w(u*/, [tk? thrl]; t, h’) dt + O(h)
Hence, (71) yields

tet1
WMQH—@Hwﬂsmﬂ‘ w(u, [ty tea];t, h) dt + O(h?).
k

After multiplying this inequality byh and summing ovek, we again obtain
(62) in the case: = 2. This shows that it; = ¢; for eachi, then Theorem
2.1 is valid in the control constrained case.

If ¢; # ¢; for somei, thenz; may not equat;. In this case, we write the
difference (69) in the following way:

ﬁﬂ—cﬁamz(/“”gfwwﬁ—ngwm)

ty

(73) +Y bi(g(zh) — 8(z7,) + O(h°).
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The term in (73) involving the integral is again bounded by the expression
on the right side of (72). For the second term, we use fundamental theorem
of calculus to estimate the differengg¢z;,) — g(z;,). Sinceg is the sum

of two termsf, and¢,, and both terms can be analyzed in similar ways, we
focus on thd term:

f(zr,) — £(2) = £k, u(zg)) — £, u(zr,) = F(ulz,) —u(z),

whereF?, is the average of the-gradient off evaluated along a line seg-
ment connectlngl( ¥) andu(z;). Since the control function(x, v) is a
Lipschitz contlnuous function of its arguments, we have

F; (u(z};) — u(zj;)) = Fur(u(zf;) — u(zj,)) + O(h?)
whereF,;, = V,f(z}). By the Lipschitz continuity ofi, we can write
. . trp+cih d
7)) -ulE) = [ Sl () d
trp+cih
To bound this term, we need to utilize a modulus of contindityor a
function of two variabless (s, t) defined in the following way:
d‘)(v7 ']7 tv h) - Sup{|V(sl, tl)
—v(sa,t2)| : 81,892, t1,t2 € [t —h/2,t+ h/2] N J}.

The identity) " b;c; = > b;c; implies that

tp+cih
bi/ 1dt=0.
tp+cih

Utilizing this relation, we can subtract any fixed value¥arnder the integral
in (74). With the choice
(75) v¥(s,t) =

Sl (5),97(1),

we have
tet1
‘Zb(u : )’ < c/ O(V*, [ths trer )it ) dt.
tg

This bound for the second term in (73) coupled with the bound (72) for
the first term leads to the following analogue of Theorem 2.1 in the case of
control constraints:

Theorem 7.2.1f Coercivity and Smoothness with = 2 hold, b; > 0
and0 < ¢; < 1 for eachi, and the Runge-Kutta scheme is second-order
accurate, then for all sufficiently small h, there exists a strict local minimizer
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(x*,u”) of the discrete optimal control problerf3) and an associated
adjoint variabley" satisfying(11) and (12) such that

— t — t)| + W) — t
orgr}eang’Xk X" ()| + [ — " (te)| + [ulxy, ¥y) — u*(t)]

(76) < ch <h Pt + (v h>>,

wherev* is defined in(75), and7 is given by

1
%(v*;h):/ w(v*,[0,1];t, h) dt.
0

In the case that; = ¢; for eachi, or equivalentlyd; = b;(1 — ¢;), the?
term in(76) can be dropped.

With regard to the conditiod; = b;(1 — ¢;) of Theorem 7.2, we noted in the
proof of Proposition 6.1 that this is satisfied by every 4-stage explicit fourth-
order Runge-Kutta scheme for differential equations. Also, it can be shown,
using (63) withcg = 1, that this holds for any 3-stage explicit Runge-Kutta
schemehat is third-order accurate for optimal control
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