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1. Introduction

In this paper we consider two continuity concepts for set-valued maps which play
leading roles in stability analysis of optimization problems. The first is Aubin con-
tinuity; in optimization this concept goes back to the Lyusternik theorem and is
usually identified with a regularity property for the constraints guaranteeing the
existence of (normal) Lagrange multipliers. The second is Lipschitzian localiza-
tion, a concept which appears in implicit function type theorems. We prove here
that these two concepts are the same for optimality maps of an infinite-dimensional
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program and an optimal control problem, both subject to canonical perturbations.
This extends a result in [9] where this equivalence was shown for a variational
inequality over a polyhedral convex setRf. It is an open question exactly when
these two concept are equivalent.

The concept of Aubin continuity can be extracted from the proof of the classical
Lyusternik theorem and is even more explicit in the proof of the Graves theorem,
see [3] for a discussion. In mathematical programming it has appeared as ‘metric
regularity’; in a topological framework, it was called ‘openness with linear rate’.
J.-P. Aubin was the first to define this concept as a continuity property of set-valued
maps, calling it ‘pseudo-Lipschitz’ continuity ([1, 2]). Following [9] we use the
name ‘Aubin continuity’. There are many studies of this concept; for a discussion
see e.g. the bibliographical comments in [13].

The Lipschitzian localization property, a name we use after [13], simply says
that when restricted to a neighborhood of a point in its graph, a set-valued map
becomes a Lipschitz continuous (single-valued) function. Both Aubin continuity
and Lipschitzian localization have the remarkable property of invariance under
(non)linearization, which makes them very instrumental in stability analysis. This
invariance property was cast in [5] in the following general form. Edbe a set-
valued map with closed graph acting from a complete metric spaasto the
subsets of the linear normed spaiceand letf: X — Y be a function which
is ‘strictly stationary’, e.g. its strict derivative is equal to zero. Thigh+ F)~*
is Aubin continuous [resp., has a Lipschitzian localization] if and onlfif is
Aubin continuous [resp., has a Lipschitzian localization]. In this paper we show
that inverse mapping theorems of this type follow from a single general result
(Theorem 2.1) on existence of solutions to an inclusion in metric spaces. Not
surprisingly, the proof of this result uses an abstract version of Newton’s method
in the spirit of the original proofs of Lyusternik and Graves.

We give this result in Section 2 followed by several corollaries. Section 3 con-
tains corresponding results for the Lipschitzian localization property.

The rest of the paper is dedicated to specific optimization problems. In Section 4
we consider a mathematical program in a Hilbert space in the presence of canonical
perturbations. We show that, for the map of Karush—Kuhn—Tucker points with
the primal variables being optimal solutions, Aubin continuity and Lipschitzian
localization coincide; moreover, both properties are equivalent to surjectivity of the
gradients of the active constraints combined with the strong second-order sufficient
condition. This generalizes [9], Theorem 6. In Section 5, we establish a similar
result for an optimal control problem with inequality control constraints, extending
the work [8].

2. Aubin Continuous Maps

Let X andY be metric spaces with both metrics denoidd -) and letB, (x) be the
closed ball with centet and radius-. In writing * f mapsX into Y’ we adopt the
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convention that the domain gf is a (possibly proper) subset &f. Accordingly,

a set-valued map’ from X to the subsets of may have empty values for some
points of X. Given a mapF from X to the subsets of, we define graplt =
{x,y) eXxY|yeFx)}andF(y) ={x € X | y € F(x)}. We denote by
dist(x, A) the distance from a pointto a setA.

DEFINITION 2.1. Letl’ mapY to the subsets ok and let(y*, x*) € graphl'.
We say thatl” is Aubin continuous aty*, x*) with constantsz, b and M if for
everyy’, y" € B,(y*) and every’ € I'(y") N B, (x*), there exists” € I'(y”) such
thatp(x’, x”) < Mp(y', y") .

The following properties of Aubin continuous maps follows directly from the
definition:

PROPERTY 2.1. Ifl" is Aubin continuous aty*, x*) with constantsz, » and
M, then for every O< @’ < a and O0< b’ < b the maprI’ is Aubin continuous
at (y*, x*) with constantsy’, b" and M. If, in addition, b’ < a’/M, thenT'(y) N

B, (x*) £ 0 for all y € By (y").

PROPERTY 2.2. Ifl" is Aubin continuous aty*, x*) with constantsz, b and
M, then there exist constants, »" andc¢’ such that for everyy, x) € graphl’ N
B ((y*, x*)), the map" is Aubin continuous aty, x) with constants:’, »’ and M.

PROPERTY 2.3. LeX be a complete metric space afidbe a linear normed
space. LetG be a set-valued map froii to Y, and letG—! be Aubin continuous
at (y*, x*) with constants:, b, andM. Then for everyg < b the map

y {xeX|yeGkx) + B:(0)]}
is Aubin continuous aty*, x*) with constants:, » — ¢, andM.
THEOREM 2.1. Let G mapX to the subsets df and let(x*, y*) € graphG. Let
G~ be Aubin continuous dty*, x*) with constants:, », and M. Suppose that the

set(graphG) N (B, (x*) x B,(y*)) is closed andB, (x*) is complete. Let the real
numbersy, M, a, m and$ satisfy the relations

AM <1, M>—r,

1-M
Letg: X — Y be a Lipschitz continuous function in the ba&JJ(x*) with Lipschitz
constanty and such that

m+8<b and a+ Ms<a. 1)

sup p(g(x),y") <m. (2

xX€B,(x*)

Then for every(x’, y") € graphG with x" € B;(x*) and p(y’, g(x)) < 8, there
existsx” € B,(x*) such that

gx") e G and p(',x") < Mp(y', g(x). ®3)
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Proof. Let us choose positive, M, m, a ands such that the inequalities in (1)
hold and let(x’, y') € graphG be such thak’ € B;(x*) andp(y’, g(x’)) < §.
Then

p(g(x"), y) <m < b
and
PO Y < p(Y, 8(XN) + p(g(x), y*) <8 +m < b.
From the Aubin continuity o5 1, there exists:; such that
g(x) € Glx)) and p(x,x) < Mp(y', g(x)). (4)

We define inductively a sequenge,} in the following way. Letxg = x" and let for
somek > 1, xq, ..., x; Satisfy:

Py xi-1) < WM~ p(x1, x0), (5)
and

gxi_) e Gx;) fori=1,... k. (6)
From (4),xo = x’ andx; satisfy these relations. Using the inequality in (4), we

estimate

i 00
pxi, x*) < plxo, x*) + Y plxj, x5-1) < p(x', x*) + Y (M)’ p(x1, Xo)
j=1 j=0

<a+ p(y,g(x)) <a+ Ms<a.

1-M
Hence, they;,i = 1,2,...,k, liein B,(x*), and by (2)
p(g(x),y)<m<b, i=12... k
By Aubin continuity ofG1, there exists;1 such thatg (x;) € G(x;41) and
P (X1, X)) < Mp(8(xp), 8(xk—1))-
It follows from (5) and the Lipschitz continuity gf that
p(is1, X6) < MAp (i, xi-1) < (WM)* p(xa, x0).

This completes the induction step for (5) and (6).

From (5) and the conditionM < 1 we conclude thatx;} is a Cauchy se-
guence, hence it has a limit, denoted Since allx, € B,(x*), the limit point
x" € B,(x*). Passing to the limit in (6), we obtag(x”) € G(x").
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To prove (3) observe that for any choicekof 1,

k=1
p(x', x") < pxo, xk) + px, x7) < Y p(xiga, xi) + p(xg, x7)
i=0

k-1

M 4
< Y M) p(x1, x0) + p(xp, x") < 77" 1 X0) + o (e, X7).
i=0

Letting k tend to infinity in the last inequality and utilizing (4), we obtain (3)O

COROLLARY 2.1. Let X be a complete metric spack, be a metric space, and
Y be alinear normed space. LEtbe a set-valued map froixi to the subsets df,
with closed graph. If the map ! is Aubin continuous atv*, x*) with constants
a, b and M, then for everyL > 0 and every. € (0,1/M) there exist positive
numbersi andb such that the following holds: For every functign X x U — Y
which is Lipschitz continuous aBy, (x*) x U with Lipschitz constants for x and
L for u, the map

(u,v) > X, v) ={x € X |vepx u)+ Fx) (7)

is Aubin continuous at(u*, v* 4+ ¢(x*, u*)), x*) with constantsi, b, M = (L +
HM/(1— AM) (the constantV corresponds to the metrie((u’, v'), (", v")) =
maxX @', u”), v =V} iInU x Y).

Proof. Let us fixL > 0 andx < 1/M. According to Property 2.1, there is no
loss of generality in assuming thiat < b. Choose positive numbefisandb such
that

A R 2M A
3(L+1)b<b—Aa, a+1—AM(L+1)b<a' (8)
Let ¢ be a function which satisfies the conditions of the theorem, and dgfire
v 4 o, ut). Let (W', v'), ", v") € Bi((u*,y*)), and letx’ € X(u',v') N
B, (x*). We shall prove that there exist§ € X (u”, v”) satisfyingp(x’, x") <
Mmax{p',u"), v —v"||}.

The inclusionx € X (u”, v") is equivalent taw” — ¢ (", x) € F(x). We apply
Theorem 2.1 with the foIIowing specifications: = F, g(x) = v" — ¢(x, u"),
M=M/A1—AM),a=a,b=bm=(L+1)b+raands = 2(L + 1)b. The
inequalities in (1) are satisfied because of (8).

Definingy’ = v — o', u'), (x',y") € graphG sincex’ € X(u',v"). By
definition, the functiong is Lipschitz continuous orB,(x*) with a constanta.
Further, forx € B,(x*),

lgC) = v*ll = [Iv" = @(x, u”) — vl
< ' =y I+ g, u") — o(x*, )| < b+ ra+ Lb =m
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and

Iy — gD = vV —e& u') — 0"+ o, u")]|
< W =o'l + Lilu' —u”"|| <201+ L)b = 8.

Hence, by Theorem 2.1 there existse B,(x*) such that
v// _(p(x//’ M//) E F(x//)
and

v — @&, u') —v" + o', u")
A+ Lymaxp@’,u”), v —v"|}. O

< =

COROLLARY 2.2. The claim in Corollary2.1 holds, under the same conditions,
with X (u, v) replaced by the map

(,v) > Xo(u,v) = {x € X | v e g, u)+ Fx)+ B.(0)},

for anye in the interval[O, 13).
Proof. Apply Corollary 2.1 to the map’ + B, (0), the inverse of which is Aubin
continuous according to Property 2.3. O

COROLLARY 2.3. LetX, Y andU be as in Corollary2.1, let F be a set-valued
map fromX to the subsets df, and let the mapb be a closed graph selection of
F~1 thatis,®(v) ¢ F~1(v) for all x € X andgraph® is closed. Letb be Aubin
continuous afv*, x*) with constants:, » and M. Then the claim in Corollarg.1
holds with ‘the mapX [defined in(7)]’ replaced by ‘the mapX [defined in(7)]
has a selection’.

Proof. Apply Corollary 2.1 withG = ®~! and observe that

{x eX|veopkx,u)+ Q_l(x)} C X(u,v). O
From Corollary 2.1 we also obtain

COROLLARY 2.4. Let X be a Banach spacé/ be a metric space, antl be a
linear normed space. L&t be a set-valued map froxxi from to subsets of & with

closed graph, ley* € F(x*), and letg: X x U — Y be a(single-valuel function

with the following properties(a) g is Fréchet differentiable with respect toand

its derivativeV, g is continuous in a neighborhood ¢f*, u*); (b) g is Lipschitz
continuous int on U uniformly inx in a neighborhood ok*. Then the following
are equivalent:

(i) The map(u, y) — {x € X | y € g(x,u) + F(x)} is Aubin continuougresp.,
has a closed graph Aubin continuous seledtiat((u*, y*), x*);
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(i) The mapg(x*, u*)+V,g(x*, u*)(-—x*)+F(-))~*is Aubin continuougresp.,
has a closed graph Aubin continuous seledtiat(y*, x*).

3. Lipschitzian Localization

We use the notation from the previous section.

DEFINITION 3.1. LetI’ mapsY to the subsets of and let(y*, x*) € graphI'.
We say that" has a Lipschitzian localization &v*, x*) with constants:, » and
M if the mapy — I'(y) N B,(x*) is single-valued (a function) and Lipschitz
continuous inB,(y*) with a Lipschitz constand/.

PROPERTY 3.1. If" has a Lipschitzian localization &t*, x*), then it is Aubin
continuous at(y*, x*) with the same constants. ConverselyI'ifis Aubin con-
tinuous at(y*, x*) with constants:, » and M and in addition, for some positive
constantsy and 8, I'(y) N B,(x*) consists of at most one point for eveyy e
Bg(y*), thenI" has a Lipschitzian localization abt*, x*) with constants:’, b’, M
provided that

0<ad <minfa,a} and O< b <min{b, B,a'/M, (a —a')/M}.

The following theorem is an analog of Theorem 2.1 for maps with the Lip-
schitzian localization property. It was first published in [7]; here we supply it with
a shorter proof based on Theorem 2.1.

THEOREM 3.1. Suppose thatr mapsX into the subsets df, (x*, y*) € graphG,
G~ has a Lipschitzian localization a&b*, x*) with constants:, b, and M, the set
(graphG) N (B, (x*) x B,(y*)) is closed, andB,(x*) is complete. Let the real
numbersk, M, a, m and g satisfy the relations

M <1, M> ,
1— M

let g: X — Y be a Lipschitz continuous function in the b&JJ(x*) with Lipschitz
constanti and such that

m+pB<b and a+ MB <a,

sup p(g(x), y*) < m,

X€B,(x*)

and let the set\ = {x € B; | dist(g(x), G(x)) < B} be nonempty. Then the set
X = {x €B,|gkx) e G(x)}

consists of exactly one poirdt, and for every’ € A, we have

p(x', 1) < Mdist(g(x"), G(x")).
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Proof.Letx” € A. Lete > 0 be such that
m+pB+e<b and a+MPB+e) <a.
Choosey’ € G(x’) such that

p(y', g(x)) < dist(g(x'), G(x)) +e.

Lets = B+ e Thenp(y, g(x")) < B+ & = 8. SinceG~! has a Lipschitzian
localization at(y*, x*), G~* is Aubin continuous at the same point with the same
constants. Applying Theorem 2.1 with the constantd/, a, m ands we obtain
that there exists” € B, (x*) with g(x”) € G(x”) and such that

p(x',x")y < Mp(y', g(x") < Mdist(g(x), G(x)) +e. )

Suppose that the séf is not a singleton; that is, there exist ¥ € X with
p(x,%) > 0. Thenp(g(x),y*) < m < bforbothx = x andx = k. From
the Lipschitzian localization property @f~* we obtain

p(x,x) < Mp(g(x), g(x)) < Mrp(x, x) < p(x, X),

which is a contradiction. Thu% consists of exactly one point, sdyand the point
x" = x does not depend on the choice &fPassing to zero witl in (9) we
complete the proof. O

As a corollary of Theorem 3.1, we obtain an analog of Corollary 2.4 which is a
version of Robinson’s implicit function theorem [12]:

COROLLARY 3.1. Under the assumptions of Corollag.4, the following are
equivalent:

(i) The map(u,y) — {x € X | y € g(x,u) + F(x)} has a Lipschitzian
localization at((u*, y*), x*);

(i) The map(g(x*, u*) + V,g(x*, u*)(- —x*) + F(-))~* has a Lipschitzian local-
ization at(y*, x*).

4. Mathematical Programming

In this section we consider the following infinite-dimensional nonlinear program
with a variablex in a Hilbert spaced and parameterg € H, ¢ € R™ andu € R’:

minimize go(x, u) + (p, x) subjecttox € Q(u, q), (20)
where

Q(u,q):{erlgi(x,u)gqi,i:l,...,m}. (1))
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We study the properties of the solution to (10) in a neighborhood of a fixed ref-
erence point(xo, ug, po, o). We assume that the functiogs: # x R — R,

i = 0,1,...,m are twice continuously Fréchet differentiable with respect to
and their first and second derivatives are continuous functions inxattd« in

a neighborhood ofxg, ug); moreover, the first derivatives, g;,i = 0,1,...,m

are Lipschitz continuous with respectadauniformly in x around(xo, uo). In the
sequel(-, -y denotes the inner product. Denotipg= (g1, . .., g&») and the positive
orthant inR™ by R™, we also assume that

0 € int{—qo + g(xo, uo) + Vig(xo, uo) (H — xo) + R}, (12)

the latter being equivalent to the Aubin continuity of the map

(gC,up) +R7)

at the point(go, xo), via the Robinson—Ursescu theorem and Corollary 2.4. In finite
dimensions the regularity condition (12) becomes the well-known Mangasarian—
Fromovitz constraint qualification.

Under (12), the local optimality of a point for (po, qo, ug) implies the ex-
istence of a (normal) Lagrange multipligs such that(xg, yg) solves the Karush—
Kuhn-Tucker (KKT) system associated with (10) @b, go, uo). The KKT system
has the form

P+ Vigolx,u) + Vig(x,u)*y =0,

—q + g(x,u) € Nrr(y). (13)

Herer» (x) denotes the normal coneRy’ at the pointr and* denotes the adjoint
operator.
Let v denote the parameter triple, p, g) and sety = (uq, po, go). FOr a given
v, let Skkr (v) be the set of solutionér, y) of the KKT system (13). We study the
continuity properties of the KKT map > Sk (v).
We associate with a poiizo, po. go. xo, yo) € graphSgkr the index setsy, I,
I3in{1,2,...,m} defined as
L= {ief{l....,m}|gi(xo uo) — qoi =0, yor >0},
I, = {ie{1,....,m}|gi(x0, u0) — go: =0, yoi =0},
Iy = {i e {1,...,m}|gi(x0,u0) — qoi <O, yo; =0}.

We introduce the Lagrangian
L(x,y, u) = golx,u) + (y, g(x, u)),

and the bounded linear operators

Bo = (V. gi(x0, u0))icnun, By = (Vigi(x0, u0))icrn,
A = V2, L(xo, Yo, Uo);
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that is, Bo mapsH into the spac®/1Y’2 of vectors with components corresponding
to the active constraints at the reference pomy, o, xo, yo), While B, mapsH
into the spac®”" of vectors whose components correspond to the active constraints
associated with positive components of the Lagrange multipliery.

We say that thesurjectivity condition (S) holds at (uq, po, go, X0, Yo) €
graphSkkr if the operatorBg is surjective We say that thetrong second-order
sufficient conditiofSSOSC) holds &g, po, go, X0, yo) € graphSkgr if

(x, foL(xo, yo, ug)x) > allx||> forall x € ker B,.

In the proof of the following theorem we use the solution Bgkr(p, g) of
the following linear variational inequality obtained by a linearization of (13) with
respect tax, y) at the point(uo, po. 9o, Xo, Yo):
p—po+ Alx —x0) + B*(y — yo) =0,
—(q — qo) + g%+ B(x — x0) € Nrn (),

whereB = V,g(xo, ug) andg® = g(xo, ug). Note that

(14)

(po, qo, X0, Yo) € graphLykr.

THEOREM 4.1. The following are equivalent

(i) The mapSkkr is Aubin continuous alug, po, 9o, X0, yo) @and has the property
that for all (u, p, g, x, y) € graphSkkr in some neighborhood @f.q, po, o,
X0, Yo), X is a local solution of10) for (u, p, ¢);
(i) The mapSkkr has a Lipschitzian localization &dtq, po, go, X0, yo) and has
the property that for allu, p, g, x, y) € graphSkxr in some neighborhood
of (uo, po. go, X0, ¥0), x is a local solution of10)for (u, p, q);
(III) Both (S) and (SSOSC”]Old at(uo, po, 90, X0, Y0)-

We note that the implication (iiB= (ii) is a known result; in finite dimensions, it
is due to Robinson [12], while for infinite-dimensional programs, see, e.g., [6]. The
equivalence (ii) of (iii) has been established in [9] for finite-dimensional programs
(see [4] for a simpler proof) and is based on the following general result ([9], The-
orem 3):for the solution map of a linear variational inequality over a polyhedral
convex set, Aubin continuity and Lipschitzian localization properties coindtide
is an open problem whether this result can be extended to variational inequalities
over nonpolyhedral sets or to more general maps with a polyhedral structure.

Note that the Lipschitzian localization property Sk in (ii) alone is not suf-
ficient to obtain (iii); one needs information about optimal solutions. For instance,
one can require the map > set of optimal solutions for’ be lower semicontin-
uous at(vg, xo, yo). In finite dimensions this requirement is automatically satisfied
if xo is merely an isolated local minimizer of (10) fos, see [11].

Remark 4.1 From Corollary 2.2, the Aubin continuity of the m&pxr is equiv-
alent to the Aubin continuity of the map associated with the appropriately defined
&-KKT points.
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Proof of Theorend.1 For a proof that (iii) implies the Lipschitzian localization
property ofSkxr at(po, qo, 4o, X0, Yo), See Lemma 5 in [6]. Further, (SSOSC) is a
sufficient condition for local optimality aof for (u, p, ¢, x, y) in a neighborhood
of (ug, po, 90, X0, Yo); hence for pointsu, p, g, x, y) in the graph ofSxxt around
(u0, po, 9o, Xo, Yo), x is a local solution to (10). Thus (iis (ii). Of course, (ii))=
(i); it remains to show that (i3 (iii).

Let (i) hold. For areab > 0, let§ € R” have components

8' o 0 fori e I U I3,
718 foriels

and let
¥ =yo+34, p = po— B*S.

Observe that for all sufficiently small> 0, (uo, p, qo, X0, ¥) € graphSkkr. From
Property 2.2 Skkr is Aubin continuous atuo, p, o, X0, y). By applying Corollary
2.4, thus passing to the linearization, we obtain that the ag, defined by the
relations (14) withpg andyg replaced byp andy respectively, is Aubin continuous
at(ﬁ7 qo, X0, ﬁ)

On the other hand, for a sufficiently small neighborhowdof (p, go, xo, y)
such thaty; > Ofori € I, U I, if (p, ¢, x, y) € graphLxxr N W, then

Box = Boxo — [£°11.2 + [qol1.2 + [q]1.2, (15)

where[q]1 2> denotes the subvector gfcontaining components with indices from
the setl; UI,. In particular, from the Aubin continuity dt ki, the equatiorBox =
r must have a solution for anyin the neighborhood of the origin, hence for every
r € R1Y2_ Thus, By must be surjective; that is, (S) holds.

We proceed with the proof of (SSOSC). Foe 0, let

- qoi fori € I U I,
"= { goi+8 forieb. (16)
Observe thatug, po, ¢, x0, yo) € graphSkxr. Let Lyt be the map obtained by
linearization of the KKT system aroun@o, po, ¢, Xxo, yo); that is Lkt is defined
by (14) withg, replaced by;. From Property 2.2 and Corollary 2.4, for every suffi-
ciently small and fixed > 0, the mapiKKT is Aubin continuous atpg, g, xo, Yo)-

In particular, for any(p, ¢, x, y) close to(po, ¢, xo, yo), the equation

Ax + BYy = Axo+ B} yo + po — P,

Byx = Bixo — [gol1 — [go]1 + [q]1 ()

has a solutiorix, y). This means that for any:, b) € H x R’ the equation

5o |13 )= [0 &
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has a solution. Thus the operator

_|A B}
am[4 B

is surjective; since it is self-adjoint, it is invertible. Thus there exists a constant
A > 0 such that|Az| > A|jz|| for all z € H x R, The last inequality implies

|Ax|| > Allx|| forall x € kerB,. (19)

Hence the interval—A, A) does not belong to the spectruimof the operatorr Ar,
wherer is the projection fromH into the closed subspace ker. Recall that for
self-adjoint operators in Hilbert spaces we have

min{u € R| n € o} = inf{{x, Ax) | x e kerB,, |x| =1}. (20)

Thus it is sufficient to show that C [A, oo].

For anyy nearyo the normal coneVg: (y) is a subset of the subspate:=
{012 x R2Y3, Hence, for any(p, ¢) near(po, q0), every element oLkt (p, q)
is a solution of the equation (17). We established that the ope#atsiinvertible,
henceL kT is single-valued, that is, it has a Lipschitzian localizatiofvat xo, yo).
Hence,Skkt has a Lipschitzian localization &g, xg, yo), by Corollary 3.1.

By (i), for anyv = (p, g, u) nearvg = (po, qo, 1o) there exists a local solution
x(v) of (10), which is close torg (Property 2.1). This solution must satisfy the
KKT system (13) with some multipliey(v) which, because of the already proved
surjectivity property (S), is unique and close g SinceSkxr is locally single-
valued, for some neighborhodd of (xq, yo), (x(v), y(v)) is the unique element
of Skt (v)NU. Observe that, fog = g, g asin (16), withs > 0 sufficiently small,
the point(xg, yo) € Skt (¥) N U for v = (po, G, ug). Sincexg is locally optimal
for v, the second-order necessary optimality condition hold$ aty, yo). In this
particular case the critical cone associated with this condition is just the subspace
ker B, hence

(x,Ax) > 0 forallx € kerB,.

Then the spectrura of the operatorr A is a subset of the nonnegative reals,
hence, by (19)¢ C [A, oo]. This implies (SSOSC) and the proof is complete]

5. Optimal Control

In this section we show that, with appropriate definitions of the surjectivity and
the strong second-order sufficient condition, we can obtain a result with exactly
the same statement as Theorem 4.1 for an optimal control problem with point-
wise inequality control constraints. This result extends the characterization of the
Lipschitzian stability in optimal control obtained in [8].
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In this section we use the standard notation in optimal control which is not
consistent with the notation in Section 4.
We consider the following problem:

(O), Minimize F(x,u,p) = fol[ga(x(t), u(®), h) +9@) u(t) + ) x()]dt
subject to
x@) — fx@),u(@),h) +&@) =0fora.er €[0,1], x(0) =0,
gu(t),h) + x(@) < O0fora.er € [0, 1],
x € Wh®(0,1; R"), u e L*(0,1;R™),

where' denotes transposition,

x(t) € R", u(t) e R™, heRY, ¢: R"xR" x RY > R,

fi R"x R" x R > R", g: R" xR —» Rk,
(h, &, x, ¥, ) := pis the vector of parameters, and
pe P :=Rx L®0,1;R") x L¥(0, 1; R*) x L*(0, 1; R") x L*(0, 1; R™).

We assume that the functiops f, andg are twice continuously differentiable.

Let po = (ho, &0, X0, Yo, Do) be a given reference value of the parameter and
let (xo, uo) be a local solution of (Q). Without going into details when exactly
necessary optimality conditions of the form below hold (there is a vast literature
on that question), we assume that there exists an associated (normal) Lagrange
multiplier (go, vo) € WL x L* such that the following first-order optimality
system is satisfied atg := (xo, ug, go, vo) for po:

v, x—fx,u,h)y+&=0 x(0) =0,
glu, h) + x € Mg (v),
g+ ViH(x,u,q,h)+¥ =0, ¢q() =0,
V.H(x,u,q,v,h) +9 =0,

for a.e.r € [0, 1], where

Hx,u,q,h) =¢(x,u,h)+ qTf(x, u,h),

I:I(x, u,q,v,h) =H(x,u,q,h)+ ng(u, h).

We denote bysp(p) the set of solutions to (V})(analogous tdkkr) and byLp(5)
the set of solutions to the following linear variational inequality (LyBeing the
linearization of (VI), at the reference poiriipg, wo):

(LV1), 3(t) — A(D)y(t) — B(Ow(t) +8:1(t) =0, y(0) =0,
OV() + 85(t) € Nt (11(1)),
F(t) + AT(0)r(t) + V2 Ho(t)y(t) + V2, Ho(t)v(t) + 83(t) = 0,
r(l) =0,
B()Tr(t) + V2,Ho(t)v(t) + V2, Ho(t)y(t) + O (1) () + 84(t) = 0,
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fora.e.r € [0, 1], where the subscriptindicates that a given function is evaluated
at the reference poind = V. fo, B = V,fo, © = V,go, and the parameter
8 = (81,682,83,84) € A := L>®(0,1;R") x L®(0, 1;RF) x L*®(0,1; R") x
L*®(0, 1; R™). The reference valu& = (891, 802, 803, 804) iS:
801(t) = —(xo(t) — Axo(t) — Buo(t)),
802(1) = g(uo(t), ho) — O (Huo(1),
80a(t) = —(Go(t) + AT(1)qo(t) + VZ, Ho(t)xo(1) 4+ V2, Ho(1)uo(1)),
S0a(t) = —(B(1)"qo(t) + V2, Ho(t)uo(t) + Vi, Ho(t)xo(t) + O (1) vo(1)).
Letzs = (ys, vs, 75, i45) denote a solution to (LV})) Certainly,zs, = wo.
Letl :=1{1,2,...,k}. Forr € [0, 1] and« > O denote
I(t) :={i € I| g'(uo(1), ho) > —a},
that is, I,(¢) is the index set of the-active control constraints at Define the
submatrix
O, (1) = [®i(t)]iela(t)'
In a similar way, for @ > 0 we introduce the set
Jp(t) :={i € Ip(t) | vo(t) > B}

of the indices of those constraints activer &r which the strict complementarity
is satisfied with a margip. We also define the submatr@l‘g(t) = [@"(t)],»ejﬁ(,).
Next, we introduce the condition which will play the role of the conditions (S)
and (SSOSC) in Theorem 4.1.
(S) There exist constants > 0 andn > 0 such that

1O ()] = nlv]

for a.e.r € [0, 1] and for all v of appropriate dimension.
(SSOSCrhere exist constants > 0and 8 > 0 such that the quadratic form

_ L1 (T x( ] [ V2 Ho) V2Ho®) ][ x(t)
2 Bz) ‘:E/O [u(t)} [vgxﬂo(z) vjuﬁo(z)][u(t)]d’

satisfies
(z, Bz) =2 y||u||i2 forall z = (x,u) € Y2,

whereY7 = {(x,u) € W0, 1, R") x L0, 1, R") | x — Ax — Bu = 0,x(0) =
Oand®}u = 0}.

In the following lines we give a more compact reformulation of (SSOSC).
Define the linear and continuous mégrom L2 to L?:

T
(/Su)(t):/ W(t, s)B(s)u(s)ds,
0
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where W (¢, s) is the fundamental matrix solution of the equatibr= Ax. If we
consider the matrice¥2_Hy, V2, Hy and V2 Hy as linear and continuous maps
from L2 to L? (that is, formally,(V2 How)(t) = V2 Ho(t)w(t)), then (SSOSC)
can be written as

(u, (M + V2, Ho)u) > ylul7, forallu e U3, (21)
where
M = 8*V2 Ho8 + 8*V2 Hy + V2 Ho4 (22)

and
U = {u € L0, ,R™) | ©f ()u(t) = 0fora.es € [0,1]}, « €[1, o0].

If (S) holds, then the matri® (1)(®} (+))" is nonsingular for a.e. € [0, 1] and

the projection map frorR™ on the linear subspade € R™ | @;(t)v = 0} has the
form

@) =1—(OF0)' 05O )05 ).
Then the condition (21) can be further written as
(u, Cu) > y||Eull3, forallu e L*0,1;R™),

where, regarding agaiB as a linear and bounded operator frafito L2 given by
the matrixZ(¢), the operatoe is defined a® = E*(M + Vfulflo) E. Note that®
is a linear, continuous and self-adjoint operator frbfrto L2.

The next theorem is analogous to Theorem 4.1, but it concerns the optimal
control problem (O) and the behavior of the set of extremal primal/dual solu-
tions Sy (p) considered as a mapping fromto the subsets o> (0, 1; R") x
L>®(0, 1; R™) x WL>(0, 1; R") x L>(0, 1; R¥).

THEOREM 5.1. The following are equivalent:

(i) The mapSp is Aubin continuous atpo, wo), Wherewg = (xg, 1o, go, Vo), and
has the property that for allp, x, u, g, v) € graphSe in some neighborhood
of (po, wo), (x, u) is a local solution 0fO),;

(i) The mapSe has a Lipschitzian localization dlpg, wg) and has the property
that for all (p, x,u,q,v) € graphSp in some neighborhood dfpg, wo),
(x, u) is a local solution 0o{O),;

(i) Both(S)and(SSOSChold at(pg, wo).

Proof of Theorenb.l The proof goes along the lines of the proof of Theo-
rem 4.1, with some important adjustments connected with the so ¢altedorm
discrepancy Namely, the Aubin continuity holds in the norm of the spdcg,
while (SSOSC) holds i.2. We adapt the approach in [8]. The main steps of the
proof of (i) = (iii) are the following.
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() = (S). As in the proof of Theorem 4.1, by applying Corollary 2.4 we con-
clude that the mag.p is Aubin continuous atso, zo), say with constants, » and
M. Leto ande be positive numbers such that

« -1
. |a ,
a<b and 8<m|n{§,a|:;||®’||mo:| }

Let M, = {r € [0,1] | i € L,(}. Introduce the following variations of the
parametes:

i _ | =& o), ho) forte M, - ;
Ady(1) = { 0 otherwisg, Aby(t) = —€Zicr,(n®' (7).
DenoteAs = (0, Ad,, 0, Ady) andd = 8o + AS. Clearly,s € B,(8p) and we have

l_ . -0 fort e M!,
O (t)vo(t) + 05(2) { < —e forte[0,1]\ M.

Let us define

(23)

- B Mé([)+g fOI'ZEMé,a
() = { pb(t) =0  otherwise, “

and letZ = (yo, vo, go, f1). It can be easily checked thate Lp(8) N B,(zo),
then the Aubin property holds &, ?) (cf. Property 2.2). It follows from (23) and
(24) that, in a small neighborhood 6f, 7), the inclusion in (LVI} reduces to the
equality

O ()v(t) + 85(t) =0 foralli € I,(r), and a.at € [0, 1].

By the Aubin continuity ofZp, this equation must have a solutiore L>°(0, 1; R™)
for anyda(t) = 82(t) + Ada(2), with || Ads ||~ sufficiently small. This implies (S).
(i) = (SSOSC). Let

B<a and e<minla|®|;L, b}, (25)

and IetNB’ = {t €[0,1] | j € Jg(#)}. Introduce the following variations:

_ 0 forreN:
L f— ﬁ’ ]

Ax(l)—{_g fors e [0, T]1\ Ng,
_ 0 fors € N} (20
L f— . ’B’ ]

Av (l)—{—vé fort € [0, T]\ Ng,

AD (1) = —O (1) Av(r).

DenoteAp := (0,0, Ax,0,Ad), p :== po+ Ap, b := vo+ Av andw; =
(xo, uo, qo, V). Itis easy to check that ; is a solution to (VI}. By (25), p € B,(po)
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andw; € B,(wg). Hence, in particular(xg, uo) is a solution to (O). From the
choice of variations (26), it follows that:

0 fort e N;',,

daom+ 70 20, o S v @1
i v =g forre Ny,
v = { 0 fors € [0, T1\ N} (28)

In view of (27) and (28), in a small neighborhood (@, w;), problem (O), can be
considered as the problem widlgualityconstraints:

=0 forre N},

free  forr € [0, T]\ Nj. (29)

g (), h) +x"(r){

Applying the second-order necessary optimality condition, see [8], Section 4, we
obtain

(u, Cpu) >0 forallu e U3, (30)
where

Cp = E*(M + V2 H;)E
with M defined in (22) and?; = H (xo, uo, qo D, ho). By (30) we have

o C [0, 00), (31)

whereo is the spectrum of the self-adjoint opera@y: u,_%, — ‘ug. We are going
to show that

-1

M
(u, Cpu) > Tnuniz for all u € UZ. (32)

Since
minfA e R 1 e o} =inf{(v,Csv) |v e U2, vl =1},

then in view of (31), to prove (32), it is enough to show that

[o, M l) ¢ o (33)

2

Denoted = (0, Ax, 0, A®). It can be easily seen that; = z; is a solution to
the linear variational inequalityLV1);. In the same way as in (29), we find that,

for all (8, zs), in a small neighborhood ab, z5), the inclusion in(LVI); becomes
an equation of the form

O (1) + 85 () =0, (34)
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wheres; (1) is the subvector af,(¢) containing the components belonging/idr).
ChooseAs = (0,0,0, Ady), with A, € u;O, so small that (34) holds fat =

5+ AS. Subtracting (LVI) evaluated at = § + As and ats = §, respectively, and
performing simple calculations, we find that the equation

CAu = A8, (35)

must have a solution for anyd, ‘ug@, that is,C: ‘u;;o — ‘ug@ is surjective. This
implies that the homogeneous equation

Cu =0 has aunique, iU2, solutionu = 0. (36)

Indeed, letu € ‘u/_% be such thaCu = 0, then for anyv € U3 we have 0=
(v, Cu) = (Cv, u). SinceC is surjective and the embeddir?{t;;o C ‘u,_%, is dense,
we getu = 0.

The property (36) together with the surjectivity implies tifat Uz> — U% is
invertible and (35) has a unique solution for ahy, € Uz’. Hence, by the Aubin
continuity, (35) implies

ICulle = M~ ull~ forallu e UF. (37)

Choosing a sufficiently smadl > 0 in (25), w; can be moved arbitrarily close to
wo. In particular, we can choogeso small that

-1

— 2 17 2 17\ M
1(Cp — Cullpe = |E"(V,, Hp — V;, Ho)Bullp~ < TIIMIILoo (38)
forall u e ‘ug@. Hence
-1
ICputll Lo = 5 lull forallu e Uy (39)

Let J denote the identity ifR". It follows from Lemma 4.3 in [8] and from (39)
that, for anyu e [0, M~1/2) the matrix

E(N)'IVZHy(t) — pJ1E ()
is invertible for a.er < [0, T'], with the norm of its inverse bounded by a constant
independent of. Hence the operator

EX(V,Hy — - PHE Uy — U

is invertible for anyx € [1, co]. Define the operator

- 1
Npi= B (V2 H; — - HE| B ME+ G Uy — U,

In view of (39), N; is invertible fork = oco. Observe that (33) will be satisfied
if N is invertible fork = 2. Also, observe that the operatér L?0,T;R") —
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L?(0, T; R") is compact, hence: L?(0, T; R™) — L?(0, T; R™) is also com-
pact. Then the operator

~ 1
Ry = [E*(Vquf, - gz)s] EPME: U — UG

is compact. Moreover, it follows from the definition & that

Rp U5 C U (40)
Consider the homogeneous equation

Nyu:=Rp+Pu=0, ueUj. (41)

From (40) we have = —R;u € U, then by (39)u = 0 is the only solution of
(41). By a known property of the compact operators (see, e.g., Theorem 2, Chap.
Xlll, Sec. 1 in [10]), the uniqueness of the solution to the homogeneous equation
(41) implies that the operata¥; := (R;+§): U5 — U3 has a bounded inverse.
This implies that (33) holds, i.e., (32) is satisfied.

As in (38), movingw; sufficiently close tavg and using (32), we obtain

M—l
(u, Cu) = (u, [C — Cplu) + (u, Cpu) > T||u||§2 forallu e U2, (42)

which completes the proof of (SSOSC). Note that, in view of (37), the estimate
(42) can be strengthened to

(u, Cuy > M~ |u|7, forallu e U3. O
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