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Abstract. We study two continuity concepts for set-valued maps that play central roles in quan-
titative stability analysis of optimization problems: Aubin continuity and Lipschitzian localization.
We show that various inverse function theorems involving these concepts can be deduced from a
single general result on existence of solutions to an inclusion in metric spaces. As applications, we
analyze the stability with respect to canonical perturbations of a mathematical program in a Hilbert
space and an optimal control problem with inequality control constraints. For stationary points of
these problems, Aubin continuity and Lipschitzian localization coincide; moreover, both properties
are equivalent to surjectivity of the map of the gradients of the active constraints combined with a
strong second-order sufficient optimality condition.
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1. Introduction

In this paper we consider two continuity concepts for set-valued maps which play
leading roles in stability analysis of optimization problems. The first is Aubin con-
tinuity; in optimization this concept goes back to the Lyusternik theorem and is
usually identified with a regularity property for the constraints guaranteeing the
existence of (normal) Lagrange multipliers. The second is Lipschitzian localiza-
tion, a concept which appears in implicit function type theorems. We prove here
that these two concepts are the same for optimality maps of an infinite-dimensional
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program and an optimal control problem, both subject to canonical perturbations.
This extends a result in [9] where this equivalence was shown for a variational
inequality over a polyhedral convex set inRn. It is an open question exactly when
these two concept are equivalent.

The concept of Aubin continuity can be extracted from the proof of the classical
Lyusternik theorem and is even more explicit in the proof of the Graves theorem,
see [3] for a discussion. In mathematical programming it has appeared as ‘metric
regularity’; in a topological framework, it was called ‘openness with linear rate’.
J.-P. Aubin was the first to define this concept as a continuity property of set-valued
maps, calling it ‘pseudo-Lipschitz’ continuity ([1, 2]). Following [9] we use the
name ‘Aubin continuity’. There are many studies of this concept; for a discussion
see e.g. the bibliographical comments in [13].

The Lipschitzian localization property, a name we use after [13], simply says
that when restricted to a neighborhood of a point in its graph, a set-valued map
becomes a Lipschitz continuous (single-valued) function. Both Aubin continuity
and Lipschitzian localization have the remarkable property of invariance under
(non)linearization, which makes them very instrumental in stability analysis. This
invariance property was cast in [5] in the following general form. LetF be a set-
valued map with closed graph acting from a complete metric spaceX into the
subsets of the linear normed spaceY , and letf : X → Y be a function which
is ‘strictly stationary’, e.g. its strict derivative is equal to zero. Then(f + F)−1

is Aubin continuous [resp., has a Lipschitzian localization] if and only ifF−1 is
Aubin continuous [resp., has a Lipschitzian localization]. In this paper we show
that inverse mapping theorems of this type follow from a single general result
(Theorem 2.1) on existence of solutions to an inclusion in metric spaces. Not
surprisingly, the proof of this result uses an abstract version of Newton’s method
in the spirit of the original proofs of Lyusternik and Graves.

We give this result in Section 2 followed by several corollaries. Section 3 con-
tains corresponding results for the Lipschitzian localization property.

The rest of the paper is dedicated to specific optimization problems. In Section 4
we consider a mathematical program in a Hilbert space in the presence of canonical
perturbations. We show that, for the map of Karush–Kuhn–Tucker points with
the primal variables being optimal solutions, Aubin continuity and Lipschitzian
localization coincide; moreover, both properties are equivalent to surjectivity of the
gradients of the active constraints combined with the strong second-order sufficient
condition. This generalizes [9], Theorem 6. In Section 5, we establish a similar
result for an optimal control problem with inequality control constraints, extending
the work [8].

2. Aubin Continuous Maps

LetX andY be metric spaces with both metrics denotedρ(·, ·) and letBr(x) be the
closed ball with centerx and radiusr. In writing ‘f mapsX into Y ’ we adopt the
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convention that the domain off is a (possibly proper) subset ofX. Accordingly,
a set-valued mapF from X to the subsets ofY may have empty values for some
points ofX. Given a mapF from X to the subsets ofY , we define graphF ={
(x, y) ∈ X × Y | y ∈ F(x)} andF−1(y) = {x ∈ X | y ∈ F(x)}. We denote by

dist(x,A) the distance from a pointx to a setA.

DEFINITION 2.1. Let0 mapY to the subsets ofX and let(y∗, x∗) ∈ graph0.
We say that0 is Aubin continuous at(y∗, x∗) with constantsa, b andM if for
everyy′, y′′ ∈ Bb(y∗) and everyx′ ∈ 0(y′)∩Ba(x∗), there existsx′′ ∈ 0(y′′) such
thatρ(x′, x′′) 6 Mρ(y′, y′′) .

The following properties of Aubin continuous maps follows directly from the
definition:

PROPERTY 2.1. If0 is Aubin continuous at(y∗, x∗) with constantsa, b and
M, then for every 0< a′ 6 a and 0< b′ 6 b the map0 is Aubin continuous
at (y∗, x∗) with constantsa′, b′ andM. If, in addition, b′ 6 a′/M, then0(y) ∩
Ba′(x

∗) 6= ∅ for all y ∈ Bb′(y∗).
PROPERTY 2.2. If0 is Aubin continuous at(y∗, x∗) with constantsa, b and
M, then there exist constantsa′, b′ andc′ such that for every(y, x) ∈ graph0 ∩
Bc′((y

∗, x∗)), the map0 is Aubin continuous at(y, x) with constantsa′, b′ andM.

PROPERTY 2.3. LetX be a complete metric space andY be a linear normed
space. LetG be a set-valued map fromX to Y , and letG−1 be Aubin continuous
at (y∗, x∗) with constantsa, b, andM. Then for everyε < b the map

y 7→ {
x ∈ X | y ∈ G(x)+ Bε(0)

}
is Aubin continuous at(y∗, x∗) with constantsa, b − ε, andM.

THEOREM 2.1. LetG mapX to the subsets ofY and let(x∗, y∗) ∈ graphG. Let
G−1 be Aubin continuous at(y∗, x∗) with constantsa, b, andM. Suppose that the
set(graphG) ∩ (Ba(x∗) × Bb(y∗)) is closed andBa(x∗) is complete. Let the real
numbersλ, M̄, ā,m andδ satisfy the relations

λM < 1, M̄ > M

1− λM , m+ δ 6 b and ā + M̄δ 6 a. (1)

Letg: X→ Y be a Lipschitz continuous function in the ballBa(x∗) with Lipschitz
constantλ and such that

sup
x∈Ba(x∗)

ρ(g(x), y∗) 6 m. (2)

Then for every(x′, y′) ∈ graphG with x′ ∈ Bā(x∗) and ρ(y′, g(x′)) 6 δ, there
existsx′′ ∈ Ba(x∗) such that

g(x′′) ∈ G(x′′) and ρ(x′, x′′) 6 M̄ρ(y′, g(x′)). (3)
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Proof.Let us choose positiveλ, M̄,m, ā andδ such that the inequalities in (1)
hold and let(x′, y′) ∈ graphG be such thatx′ ∈ Bā(x∗) andρ(y′, g(x′)) 6 δ.
Then

ρ(g(x′), y∗) 6 m 6 b

and

ρ(y′, y∗) 6 ρ(y′, g(x′))+ ρ(g(x′), y∗) 6 δ +m 6 b.
From the Aubin continuity ofG−1, there existsx1 such that

g(x′) ∈ G(x1) and ρ(x1, x
′) 6 Mρ(y′, g(x′)). (4)

We define inductively a sequence{xk} in the following way. Letx0 = x′ and let for
somek > 1, x1, . . . , xk satisfy:

ρ(xi, xi−1) 6 (λM)i−1ρ(x1, x0), (5)

and

g(xi−1) ∈ G(xi) for i = 1, . . . , k. (6)

From (4),x0 = x′ andx1 satisfy these relations. Using the inequality in (4), we
estimate

ρ(xi, x
∗) 6 ρ(x0, x

∗)+
i∑

j=1

ρ(xj , xj−1) 6 ρ(x′, x∗)+
∞∑
j=0

(λM)jρ(x1, x0)

6 ā + M

1− λMρ(y′, g(x′)) 6 ā + M̄δ 6 a.

Hence, thexi , i = 1,2, . . . , k, lie in Ba(x∗), and by (2)

ρ(g(xi), y
∗) 6 m 6 b, i = 1,2, . . . , k.

By Aubin continuity ofG−1, there existsxk+1 such thatg(xk) ∈ G(xk+1) and

ρ(xk+1, xk) 6 Mρ(g(xk), g(xk−1)).

It follows from (5) and the Lipschitz continuity ofg that

ρ(xk+1, xk) 6 Mλρ(xk, xk−1) 6 (λM)kρ(x1, x0).

This completes the induction step for (5) and (6).
From (5) and the conditionλM < 1 we conclude that{xk} is a Cauchy se-

quence, hence it has a limit, denotedx′′. Since allxk ∈ Ba(x∗), the limit point
x′′ ∈ Ba(x∗). Passing to the limit in (6), we obtaing(x′′) ∈ G(x′′).
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To prove (3) observe that for any choice ofk > 1,

ρ(x′, x′′) 6 ρ(x0, xk)+ ρ(xk, x′′) 6
k−1∑
i=0

ρ(xi+1, xi)+ ρ(xk, x′′)

6
k−1∑
i=0

(λM)iρ(x1, x0)+ ρ(xk, x′′) 6 M̄

M
ρ(x1, x0)+ ρ(xk, x′′).

Letting k tend to infinity in the last inequality and utilizing (4), we obtain (3).2
COROLLARY 2.1. LetX be a complete metric space,U be a metric space, and
Y be a linear normed space. LetF be a set-valued map fromX to the subsets ofY ,
with closed graph. If the mapF−1 is Aubin continuous at(v∗, x∗) with constants
a, b andM, then for everyL > 0 and everyλ ∈ (0,1/M) there exist positive
numberŝa and b̂ such that the following holds: For every functionϕ: X×U 7→ Y

which is Lipschitz continuous onBa(x∗)× U with Lipschitz constantsλ for x and
L for u, the map

(u, v) 7→ X(u, v) = {x ∈ X | v ∈ ϕ(x, u)+ F(x)} (7)

is Aubin continuous at((u∗, v∗ + ϕ(x∗, u∗)), x∗) with constantŝa, b̂, M̂ = (L +
1)M/(1− λM) (the constantM̂ corresponds to the metricρ((u′, v′), (u′′, v′′)) =
max{ρ(u′, u′′), ‖v′ − v′′‖} in U × Y ).

Proof. Let us fixL > 0 andλ < 1/M. According to Property 2.1, there is no
loss of generality in assuming thatλa < b. Choose positive numbersâ andb̂ such
that

3(L+ 1)b̂ 6 b − λa, â + 2M

1− λM (L+ 1)b̂ 6 a. (8)

Let ϕ be a function which satisfies the conditions of the theorem, and definey∗ =
v∗ + ϕ(x∗, u∗). Let (u′, v′), (u′′, v′′) ∈ Bb̂((u

∗, y∗)), and letx′ ∈ X(u′, v′) ∩
Bâ(x

∗). We shall prove that there existsx′′ ∈ X(u′′, v′′) satisfyingρ(x′, x′′) 6
M̂max{ρ(u′, u′′), ‖v′ − v′′‖}.

The inclusionx ∈ X(u′′, v′′) is equivalent tov′′ − ϕ(u′′, x) ∈ F(x). We apply
Theorem 2.1 with the following specifications:G = F , g(x) = v′′ − ϕ(x, u′′),
M̄ = M/(1− λM), ā = â, b̄ = b̂, m = (L + 1)b̂ + λa andδ = 2(L + 1)b̂. The
inequalities in (1) are satisfied because of (8).

Defining y′ = v′ − ϕ(x′, u′), (x′, y′) ∈ graphG sincex′ ∈ X(u′, v′). By
definition, the functiong is Lipschitz continuous onBa(x∗) with a constantλ.
Further, forx ∈ Ba(x∗),
‖g(x)− v∗‖ = ‖v′′ − ϕ(x, u′′)− v∗‖

6 ‖v′′ − y∗‖ + ‖ϕ(x, u′′)− ϕ(x∗, u∗)‖ 6 b̂ + λa + Lb̂ = m
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and

‖y′ − g(x′)‖ = ‖v′ − ϕ(x′, u′)− v′′ + ϕ(x′, u′′))‖
6 ‖v′ − v′′‖ + L‖u′ − u′′‖ 6 2(1+ L)b̂ = δ.

Hence, by Theorem 2.1 there existsx′′ ∈ Ba(x∗) such that

v′′ − ϕ(x′′, u′′) ∈ F(x′′)
and

ρ(x′, x′′) 6 M̄‖v′ − ϕ(x′, u′)− v′′ + ϕ(x′, u′′))‖
6 M̄(1+ L)max{ρ(u′, u′′), ‖v′ − v′′‖}. 2

COROLLARY 2.2. The claim in Corollary2.1holds, under the same conditions,
with X(u, v) replaced by the map

(u, v) 7→ Xε(u, v) =
{
x ∈ X | v ∈ ϕ(x, u)+ F(x)+ Bε(0)

}
,

for anyε in the interval[0, b̂).
Proof.Apply Corollary 2.1 to the mapF +Bε(0), the inverse of which is Aubin

continuous according to Property 2.3. 2
COROLLARY 2.3. LetX, Y andU be as in Corollary2.1, let F be a set-valued
map fromX to the subsets ofY , and let the map8 be a closed graph selection of
F−1, that is,8(v) ⊂ F−1(v) for all x ∈ X andgraph8 is closed. Let8 be Aubin
continuous at(v∗, x∗) with constantsa, b andM. Then the claim in Corollary2.1
holds with ‘the mapX [defined in(7)]’ replaced by ‘the mapX [defined in(7)]
has a selection’.

Proof.Apply Corollary 2.1 withG = 8−1 and observe that{
x ∈ X | v ∈ ϕ(x, u)+8−1(x)

} ⊂ X(u, v). 2
From Corollary 2.1 we also obtain

COROLLARY 2.4. LetX be a Banach space,U be a metric space, andY be a
linear normed space. LetF be a set-valued map fromX from to subsets of aY with
closed graph, lety∗ ∈ F(x∗), and letg: X×U → Y be a(single-valued) function
with the following properties:(a) g is Fréchet differentiable with respect tox and
its derivative∇xg is continuous in a neighborhood of(x∗, u∗); (b) g is Lipschitz
continuous inu onU uniformly inx in a neighborhood ofx∗. Then the following
are equivalent:

(i) The map(u, y) 7→ {x ∈ X | y ∈ g(x, u) + F(x)} is Aubin continuous[resp.,
has a closed graph Aubin continuous selection] at ((u∗, y∗), x∗);
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(ii) The map(g(x∗, u∗)+∇xg(x∗, u∗)(·−x∗)+F(·))−1 is Aubin continuous[resp.,
has a closed graph Aubin continuous selection] at (y∗, x∗).

3. Lipschitzian Localization

We use the notation from the previous section.

DEFINITION 3.1. Let0 mapsY to the subsets ofX and let(y∗, x∗) ∈ graph0.
We say that0 has a Lipschitzian localization at(y∗, x∗) with constantsa, b and
M if the mapy 7→ 0(y) ∩ Ba(x∗) is single-valued (a function) and Lipschitz
continuous inBb(y∗) with a Lipschitz constantM.

PROPERTY 3.1. If0 has a Lipschitzian localization at(y∗, x∗), then it is Aubin
continuous at(y∗, x∗) with the same constants. Conversely, if0 is Aubin con-
tinuous at(y∗, x∗) with constantsa, b andM and in addition, for some positive
constantsα andβ, 0(y) ∩ Bα(x∗) consists of at most one point for everyy ∈
Bβ(y

∗), then0 has a Lipschitzian localization at(y∗, x∗) with constantsa′, b′,M
provided that

0< a′ < min{a, α} and 0< b′ 6 min{b, β, a′/M, (α − a′)/M}.
The following theorem is an analog of Theorem 2.1 for maps with the Lip-

schitzian localization property. It was first published in [7]; here we supply it with
a shorter proof based on Theorem 2.1.

THEOREM 3.1. Suppose thatGmapsX into the subsets ofY , (x∗, y∗) ∈ graphG,
G−1 has a Lipschitzian localization at(y∗, x∗) with constantsa, b, andM, the set
(graphG) ∩ (Ba(x∗) × Bb(y∗)) is closed, andBa(x∗) is complete. Let the real
numbersλ, M̄, ā,m andβ satisfy the relations

λM < 1, M̄ > M

1− λM , m+ β < b and ā + M̄β < a,
let g: X→ Y be a Lipschitz continuous function in the ballBa(x∗) with Lipschitz
constantλ and such that

sup
x∈Ba(x∗)

ρ(g(x), y∗) 6 m,

and let the set1 = {x ∈ Bā | dist(g(x),G(x)) 6 β
}

be nonempty. Then the set

X̂ = {x ∈ Ba | g(x) ∈ G(x)}
consists of exactly one point,x̂, and for everyx′ ∈ 1, we have

ρ(x′, x̂) 6 M̄dist(g(x′),G(x′)).
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Proof.Let x′ ∈ 1. Let ε > 0 be such that

m+ β + ε 6 b and ā + M̄(β + ε) 6 a.
Choosey′ ∈ G(x′) such that

ρ(y′, g(x′)) 6 dist(g(x′),G(x′))+ ε.
Let δ = β + ε. Thenρ(y′, g(x′)) 6 β + ε = δ. SinceG−1 has a Lipschitzian
localization at(y∗, x∗), G−1 is Aubin continuous at the same point with the same
constants. Applying Theorem 2.1 with the constantsλ, M̄, ā, m andδ we obtain
that there existsx′′ ∈ Ba(x∗) with g(x′′) ∈ G(x′′) and such that

ρ(x′, x′′) 6 M̄ρ(y′, g(x′)) 6 M̄dist(g(x′),G(x′))+ ε. (9)

Suppose that the set̂X is not a singleton; that is, there existx, x̄ ∈ X̂ with
ρ(x, x̄) > 0. Thenρ(g(x̃), y∗) 6 m 6 b for both x̃ = x and x̃ = x̄. From
the Lipschitzian localization property ofG−1 we obtain

ρ(x, x̄) 6 Mρ(g(x), g(x̄)) 6 Mλρ(x, x̄) < ρ(x, x̄),

which is a contradiction. ThuŝX consists of exactly one point, sayx̂, and the point
x′′ = x̂ does not depend on the choice ofε. Passing to zero withε in (9) we
complete the proof. 2

As a corollary of Theorem 3.1, we obtain an analog of Corollary 2.4 which is a
version of Robinson’s implicit function theorem [12]:

COROLLARY 3.1. Under the assumptions of Corollary2.4, the following are
equivalent:

(i) The map(u, y) 7→ {x ∈ X | y ∈ g(x, u) + F(x)} has a Lipschitzian
localization at((u∗, y∗), x∗);

(ii) The map(g(x∗, u∗)+∇xg(x∗, u∗)(·− x∗)+F(·))−1 has a Lipschitzian local-
ization at(y∗, x∗).

4. Mathematical Programming

In this section we consider the following infinite-dimensional nonlinear program
with a variablex in a Hilbert spaceH and parametersp ∈ H, q ∈ Rm andu ∈ Rl:

minimize g0(x, u) + 〈p, x〉 subject tox ∈ Q(u, q), (10)

where

Q(u, q) = {x ∈ H | gi(x, u) 6 qi, i = 1, . . . ,m
}
. (11)
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We study the properties of the solution to (10) in a neighborhood of a fixed ref-
erence point(x0, u0, p0, q0). We assume that the functionsgi : H × Rl → R,
i = 0,1, . . . ,m are twice continuously Fréchet differentiable with respect tox

and their first and second derivatives are continuous functions in bothx andu in
a neighborhood of(x0, u0); moreover, the first derivatives∇xgi, i = 0,1, . . . ,m
are Lipschitz continuous with respect tou uniformly in x around(x0, u0). In the
sequel〈·, ·〉 denotes the inner product. Denotingg = (g1, . . . , gm) and the positive
orthant inRm by Rm+, we also assume that

0 ∈ int
{−q0+ g(x0, u0)+∇xg(x0, u0)(H − x0)+ Rm

+
}
, (12)

the latter being equivalent to the Aubin continuity of the map(
g(·, u0)+ Rm

+
)−1

at the point(q0, x0), via the Robinson–Ursescu theorem and Corollary 2.4. In finite
dimensions the regularity condition (12) becomes the well-known Mangasarian–
Fromovitz constraint qualification.

Under (12), the local optimality of a pointx0 for (p0, q0, u0) implies the ex-
istence of a (normal) Lagrange multipliery0 such that(x0, y0) solves the Karush–
Kuhn–Tucker (KKT) system associated with (10) for(p0, q0, u0). The KKT system
has the form

p +∇xg0(x, u)+∇xg(x, u)∗y = 0,
−q + g(x, u) ∈ NRm+(y).

(13)

HereNRm+(x) denotes the normal cone toRm+ at the pointx and∗ denotes the adjoint
operator.

Let v denote the parameter triple(u, p, q) and setv0 = (u0, p0, q0). For a given
v, let SKKT (v) be the set of solutions(x, y) of the KKT system (13). We study the
continuity properties of the KKT mapv 7→ SKKT(v).

We associate with a point(u0, p0, q0, x0, y0) ∈ graphSKKT the index setsI1, I2,
I3 in {1,2, . . . ,m} defined as

I1 =
{
i ∈ {1, . . . ,m} ∣∣ gi(x0, u0)− q0i = 0, y0i > 0

}
,

I2 =
{
i ∈ {1, . . . ,m} ∣∣ gi(x0, u0)− q0i = 0, y0i = 0

}
,

I3 =
{
i ∈ {1, . . . ,m} ∣∣ gi(x0, u0)− q0i < 0, y0i = 0

}
.

We introduce the Lagrangian

L(x, y, u) = g0(x, u) + 〈y, g(x, u)〉,
and the bounded linear operators

B0 = (∇xgi(x0, u0))i∈I1∪I2, B+ = (∇xgi(x0, u0))i∈I1,
A = ∇2

xxL(x0, y0, u0);
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that is,B0 mapsH into the spaceRI1∪I2 of vectors with components corresponding
to the active constraints at the reference point(p0, q0, x0, y0), while B+ mapsH
into the spaceRI1 of vectors whose components correspond to the active constraints
associated with positive componentsy0i of the Lagrange multipliery0.

We say that thesurjectivity condition (S) holds at (u0, p0, q0, x0, y0)∈
graphSKKT if the operatorB0 is surjective. We say that thestrong second-order
sufficient condition(SSOSC) holds at(u0, p0, q0, x0, y0) ∈ graphSKKT if

〈x,∇2
xxL(x0, y0, u0)x〉 > α‖x‖2 for all x ∈ ker B+.

In the proof of the following theorem we use the solution setLKKT(p, q) of
the following linear variational inequality obtained by a linearization of (13) with
respect to(x, y) at the point(u0, p0, q0, x0, y0):

p − p0+A(x − x0)+ B∗(y − y0) = 0,
−(q − q0)+ g0+ B(x − x0) ∈ NRm+(y),

(14)

whereB = ∇xg(x0, u0) andg0 = g(x0, u0). Note that

(p0, q0, x0, y0) ∈ graphLKKT .

THEOREM 4.1. The following are equivalent:

(i) The mapSKKT is Aubin continuous at(u0, p0, q0, x0, y0) and has the property
that for all (u, p, q, x, y) ∈ graphSKKT in some neighborhood of(u0, p0, q0,

x0, y0), x is a local solution of(10) for (u, p, q);
(ii) The mapSKKT has a Lipschitzian localization at(u0, p0, q0, x0, y0) and has

the property that for all(u, p, q, x, y) ∈ graphSKKT in some neighborhood
of (u0, p0, q0, x0, y0), x is a local solution of(10) for (u, p, q);

(iii) Both(S)and(SSOSC)hold at(u0, p0, q0, x0, y0).

We note that the implication (iii)⇒ (ii) is a known result; in finite dimensions, it
is due to Robinson [12], while for infinite-dimensional programs, see, e.g., [6]. The
equivalence (ii) of (iii) has been established in [9] for finite-dimensional programs
(see [4] for a simpler proof) and is based on the following general result ([9], The-
orem 3):for the solution map of a linear variational inequality over a polyhedral
convex set, Aubin continuity and Lipschitzian localization properties coincide. It
is an open problem whether this result can be extended to variational inequalities
over nonpolyhedral sets or to more general maps with a polyhedral structure.

Note that the Lipschitzian localization property ofSKKT in (ii) alone is not suf-
ficient to obtain (iii); one needs information about optimal solutions. For instance,
one can require the map ‘v 7→ set of optimal solutions forv’ be lower semicontin-
uous at(v0, x0, y0). In finite dimensions this requirement is automatically satisfied
if x0 is merely an isolated local minimizer of (10) forv0, see [11].

Remark 4.1.From Corollary 2.2, the Aubin continuity of the mapSKKT is equiv-
alent to the Aubin continuity of the map associated with the appropriately defined
ε-KKT points.
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Proof of Theorem4.1. For a proof that (iii) implies the Lipschitzian localization
property ofSKKT at (p0, q0, u0, x0, y0), see Lemma 5 in [6]. Further, (SSOSC) is a
sufficient condition for local optimality ofx for (u, p, q, x, y) in a neighborhood
of (u0, p0, q0, x0, y0); hence for points(u, p, q, x, y) in the graph ofSKKT around
(u0, p0, q0, x0, y0), x is a local solution to (10). Thus (iii)⇒ (ii). Of course, (ii)⇒
(i); it remains to show that (i)⇒ (iii).

Let (i) hold. For a realδ > 0, let δ̂ ∈ Rm have components

δ̂i =
{

0 for i ∈ I1 ∪ I3,
δ for i ∈ I2

and let

ŷ = y0 + δ̂, p̂ = p0− B∗δ̂.
Observe that for all sufficiently smallδ > 0, (u0, p̂, q0, x0, ŷ) ∈ graphSKKT. From
Property 2.2,SKKT is Aubin continuous at(u0, p̂, q0, x0, ŷ). By applying Corollary
2.4, thus passing to the linearization, we obtain that the mapL̂KKT , defined by the
relations (14) withp0 andy0 replaced byp̂ andŷ respectively, is Aubin continuous
at (p̂, q0, x0, ŷ).

On the other hand, for a sufficiently small neighborhoodW of (p̂, q0, x0, ŷ)

such thatŷi > 0 for i ∈ I1 ∪ I2, if (p, q, x, y) ∈ graphL̂KKT ∩W , then

B0x = B0x0 − [g0]1,2+ [q0]1,2+ [q]1,2, (15)

where[q]1,2 denotes the subvector ofq containing components with indices from
the setI1∪I2. In particular, from the Aubin continuity of̂LKKT , the equationB0x =
r must have a solution for anyr in the neighborhood of the origin, hence for every
r ∈ RI1∪I2. Thus,B0 must be surjective; that is, (S) holds.

We proceed with the proof of (SSOSC). Forδ > 0, let

q̃i =
{
q0i for i ∈ I1 ∪ I3,
q0i + δ for i ∈ I2. (16)

Observe that(u0, p0, q̃, x0, y0) ∈ graphSKKT . Let L̃KKT be the map obtained by
linearization of the KKT system around(u0, p0, q̃, x0, y0); that isL̃KKT is defined
by (14) withq0 replaced bỹq. From Property 2.2 and Corollary 2.4, for every suffi-
ciently small and fixedδ > 0, the mapL̃KKT is Aubin continuous at(p0, q̃, x0, y0).
In particular, for any(p, q, x, y) close to(p0, q̃, x0, y0), the equation

Ax + B∗+y = Ax0+ B∗+y0+ p0− p,
B+x = B+x0 − [g0]1− [q0]1+ [q]1 (17)

has a solution(x, y). This means that for any(a, b) ∈ H ×RI1 the equation[
A B∗+
B+ 0

] [
x

y

]
=
[
a

b

]
(18)
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has a solution. Thus the operator

A :=
[
A B∗+
B+ 0

]
is surjective; since it is self-adjoint, it is invertible. Thus there exists a constant
λ > 0 such that‖Az‖ > λ‖z‖ for all z ∈ H ×RI1. The last inequality implies

‖Ax‖ > λ‖x‖ for all x ∈ kerB+. (19)

Hence the interval(−λ, λ) does not belong to the spectrumσ of the operatorπAπ ,
whereπ is the projection fromH into the closed subspace kerB+. Recall that for
self-adjoint operators in Hilbert spaces we have

min{µ ∈ R | µ ∈ σ } = inf{〈x,Ax〉 | x ∈ kerB+, ‖x‖ = 1}. (20)

Thus it is sufficient to show thatσ ⊂ [λ,∞].
For anyy neary0 the normal coneNRm+(y) is a subset of the subspaceL :=

{0}I1 × RI2∪I3. Hence, for any(p, q) near(p0, q0), every element ofLKKT (p, q)

is a solution of the equation (17). We established that the operatorA is invertible,
henceLKKT is single-valued, that is, it has a Lipschitzian localization at(v0, x0, y0).
Hence,SKKT has a Lipschitzian localization at(v0, x0, y0), by Corollary 3.1.

By (i), for anyv = (p, q, u) nearv0 = (p0, q0, u0) there exists a local solution
x(v) of (10), which is close tox0 (Property 2.1). This solution must satisfy the
KKT system (13) with some multipliery(v) which, because of the already proved
surjectivity property (S), is unique and close toy0. SinceSKKT is locally single-
valued, for some neighborhoodU of (x0, y0), (x(v), y(v)) is the unique element
of SKKT(v)∩U. Observe that, forq = q̃, q̃ as in (16), withδ > 0 sufficiently small,
the point(x0, y0) ∈ SKKT(ṽ) ∩U for ṽ = (p0, q̃, u0). Sincex0 is locally optimal
for ṽ, the second-order necessary optimality condition holds at(ṽ, x0, y0). In this
particular case the critical cone associated with this condition is just the subspace
kerB+, hence

〈x,Ax〉 > 0 for all x ∈ kerB+.

Then the spectrumσ of the operatorπAπ is a subset of the nonnegative reals,
hence, by (19),σ ⊂ [λ,∞]. This implies (SSOSC) and the proof is complete.2

5. Optimal Control

In this section we show that, with appropriate definitions of the surjectivity and
the strong second-order sufficient condition, we can obtain a result with exactly
the same statement as Theorem 4.1 for an optimal control problem with point-
wise inequality control constraints. This result extends the characterization of the
Lipschitzian stability in optimal control obtained in [8].
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In this section we use the standard notation in optimal control which is not
consistent with the notation in Section 4.

We consider the following problem:

(O)p Minimize F(x, u, p) = ∫ 1
0 [ϕ(x(t), u(t), h)+ ϑ(t)Tu(t)+ ψ(t)Tx(t)]dt

subject to
ẋ(t)− f (x(t), u(t), h) + ξ(t) = 0 for a.e.t ∈ [0,1], x(0) = 0,
g(u(t), h)+ χ(t) 6 0 for a.e.t ∈ [0,1],
x ∈ W1,∞(0,1;Rn), u ∈ L∞(0,1;Rm),

whereT denotes transposition,

x(t) ∈ Rn, u(t) ∈ Rm, h ∈ Rd, ϕ: Rn ×Rm ×Rd 7→ R,

f : Rn ×Rm × Rd 7→ Rn, g: Rm ×Rd 7→ Rk,

(h, ξ, χ,ψ, ϑ) := p is the vector of parameters, and

p ∈ P := Rd × L∞(0,1;Rn)× L∞(0,1;Rk)× L∞(0,1;Rn)× L∞(0,1;Rm).

We assume that the functionsϕ, f , andg are twice continuously differentiable.
Let p0 = (h0, ξ0, χ0, ψ0, ϑ0) be a given reference value of the parameter and

let (x0, u0) be a local solution of (O)p0. Without going into details when exactly
necessary optimality conditions of the form below hold (there is a vast literature
on that question), we assume that there exists an associated (normal) Lagrange
multiplier (q0, ν0) ∈ W1,∞ × L∞ such that the following first-order optimality
system is satisfied atw0 := (x0, u0, q0, ν0) for p0:

(VI)p ẋ − f (x, u, h)+ ξ = 0, x(0) = 0,
g(u, h)+ χ ∈ NRk+(ν),

q̇ +∇xH(x, u, q, h) + ψ = 0, q(1) = 0,
∇uH̃ (x, u, q, ν, h) + ϑ = 0,

for a.e.t ∈ [0,1], where

H(x, u, q, h) = ϕ(x, u, h)+ qTf (x, u, h),

H̃ (x, u, q, ν, h) = H(x, u, q, h) + νTg(u, h).

We denote bySP(p) the set of solutions to (VI)p (analogous toSKKT) and byLP(δ)

the set of solutions to the following linear variational inequality (LVI)δ, being the
linearization of (VI)p at the reference point(p0, w0):

(LVI )δ ẏ(t)−A(t)y(t) − B(t)v(t)+ δ1(t) = 0, y(0) = 0,
2(t)v(t)+ δ2(t) ∈ NRk+(µ(t)),

ṙ(t)+AT(t)r(t) +∇2
xxH0(t)y(t)+ ∇2

xuH0(t)v(t)+ δ3(t) = 0,
r(1) = 0,
B(t)Tr(t)+∇2

uuH̃0(t)v(t)+∇2
uxH0(t)y(t) +2(t)Tµ(t)+ δ4(t) = 0,
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for a.e.t ∈ [0,1], where the subscript0 indicates that a given function is evaluated
at the reference point,A = ∇xf0, B = ∇uf0, 2 = ∇ug0, and the parameter
δ := (δ1, δ2, δ3, δ4) ∈ 1 := L∞(0,1;Rn) × L∞(0,1;Rk) × L∞(0,1;Rn) ×
L∞(0,1;Rm). The reference valueδ0 = (δ01, δ02, δ03, δ04) is:

δ01(t) = −(ẋ0(t)−Ax0(t)− Bu0(t)),

δ02(t) = g(u0(t), h0)−2(t)u0(t),

δ03(t) = −(q̇0(t)+AT(t)q0(t)+∇2
xxH0(t)x0(t)+∇2

xuH0(t)u0(t)),

δ04(t) = −(B(t)Tq0(t)+∇2
uuH̃0(t)u0(t)+∇2

uxH0(t)x0(t)+2(t)Tν0(t)).

Let zδ = (yδ, vδ, rδ, µδ) denote a solution to (LVI)δ. Certainly,zδ0 = w0.
Let I := {1,2, . . . , k}. For t ∈ [0,1] andα > 0 denote

Iα(t) := {i ∈ I | gi(u0(t), h0) > −α},
that is,Iα(t) is the index set of theα-active control constraints att . Define the
submatrix

2α(t) =
[
2i(t)

]
i∈Iα(t).

In a similar way, for aβ > 0 we introduce the set

Jβ(t) := {i ∈ I0(t) | ν0(t) > β}
of the indices of those constraints active att for which the strict complementarity
is satisfied with a marginβ. We also define the submatrix2+β (t) = [2i(t)]i∈Jβ(t).

Next, we introduce the condition which will play the role of the conditions (S)
and (SSOSC) in Theorem 4.1.

(S)There exist constantsα > 0 andη > 0 such that

|2α(t)
Tν| > η|ν|

for a.e.t ∈ [0,1] and for allν of appropriate dimension.
(SSOSC)There exist constantsγ > 0 andβ > 0 such that the quadratic form

〈z,Bz〉 := 1

2

∫ 1

0

[
x(t)

u(t)

]T [ ∇2
xxH0(t) ∇2

xuH0(t)

∇2
uxH0(t) ∇2

uuH̃0(t)

][
x(t)

u(t)

]
dt

satisfies

〈z,Bz〉 > γ ‖u‖2
L2 for all z = (x, u) ∈ ϒ2

β,

whereϒ2
β =

{
(x, u) ∈ W1,2(0,1;Rn)×L2(0,1;Rm) | ẋ −Ax −Bu = 0, x(0) =

0 and2+β u = 0
}
.

In the following lines we give a more compact reformulation of (SSOSC).
Define the linear and continuous mapS fromL2 toL2:

(Su)(t) =
∫ T

0
9(t, s)B(s)u(s)ds,
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where9(t, s) is the fundamental matrix solution of the equationẋ = Ax. If we
consider the matrices∇2

xxH0, ∇2
xuH0 and∇2

uuH0 as linear and continuous maps
from L2 to L2 (that is, formally,(∇2

xxH0w)(t) = ∇2
xxH0(t)w(t)), then (SSOSC)

can be written as

〈u, (M +∇2
uuH̃0)u〉 > γ ‖u‖2L2 for all u ∈U2

β, (21)

where

M = S∗∇2
xxH0S + S∗∇2

xuH0+∇2
uxH0S (22)

and

Uκ
β =

{
u ∈ Lκ(0,1;Rm) | 2+β (t)u(t) = 0 for a.e.t ∈ [0,1]}, κ ∈ [1,∞].

If (S) holds, then the matrix2+β (t)(2
+
β (t))

T is nonsingular for a.e.t ∈ [0,1] and
the projection map fromRm on the linear subspace{v ∈ Rm | 2+β (t)v = 0} has the
form

4(t) = I − (2+β (t))T[2+β (t)(2+β (t))T]−12+β (t).

Then the condition (21) can be further written as

〈u,Cu〉 > γ ‖4u‖2
L2 for all u ∈ L2(0,1;Rm),

where, regarding again4 as a linear and bounded operator fromL2 toL2 given by
the matrix4(t), the operatorC is defined asC = 4∗(M +∇2

uuH̃0)4. Note thatC
is a linear, continuous and self-adjoint operator fromL2 toL2.

The next theorem is analogous to Theorem 4.1, but it concerns the optimal
control problem (O)p and the behavior of the set of extremal primal/dual solu-
tionsSP (p) considered as a mapping fromP to the subsets ofW1,∞(0,1;Rn) ×
L∞(0,1;Rm)×W1,∞(0,1;Rn)× L∞(0,1;Rk).

THEOREM 5.1. The following are equivalent:

(i) The mapSP is Aubin continuous at(p0, w0), wherew0 = (x0, u0, q0, ν0), and
has the property that for all(p, x, u, q, ν) ∈ graphSP in some neighborhood
of (p0, w0), (x, u) is a local solution of(O)p;

(ii) The mapSP has a Lipschitzian localization at(p0, w0) and has the property
that for all (p, x, u, q, ν) ∈ graphSP in some neighborhood of(p0, w0),
(x, u) is a local solution of(O)p;

(iii) Both(S)and(SSOSC)hold at(p0, w0).

Proof of Theorem5.1. The proof goes along the lines of the proof of Theo-
rem 4.1, with some important adjustments connected with the so calledtwo-norm
discrepancy. Namely, the Aubin continuity holds in the norm of the spaceL∞,
while (SSOSC) holds inL2. We adapt the approach in [8]. The main steps of the
proof of (i)⇒ (iii) are the following.
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(i) ⇒ (S). As in the proof of Theorem 4.1, by applying Corollary 2.4 we con-
clude that the mapLP is Aubin continuous at(δ0, z0), say with constantsa, b and
M. Letα andε be positive numbers such that

α < b and ε < min

{
a

2
, α

[
k∑
i=1

‖2i‖L∞
]−1}

.

Let Mi
α =

{
t ∈ [0,1] | i ∈ Iα(t)

}
. Introduce the following variations of the

parameterδ:

1δi2(t) =
{ −gi(u0(t), h0) for t ∈Mi

α,

0 otherwise,
1δ4(t) = −ε6i∈Iα(t)2i(t).

Denote1δ = (0,1δ2,0,1δ4) andδ̃ = δ0+1δ. Clearly,δ̃ ∈ Bb(δ0) and we have

2i(t)v0(t)+ δ̃i2(t)
{ = 0 for t ∈ Mi

α,

6 −ε for t ∈ [0,1] \Mi
α.

(23)

Let us define

µ̃i(t) =
{
µi0(t)+ ε for t ∈Mi

α,

µi0(t) = 0 otherwise,
(24)

and let z̃ = (y0, v0, q0, µ̃). It can be easily checked thatz̃ ∈ LP (δ̃) ∩ Ba(z0),
then the Aubin property holds at(δ̃, z̃) (cf. Property 2.2). It follows from (23) and
(24) that, in a small neighborhood of(δ̃, z̃), the inclusion in (LVI)δ reduces to the
equality

2i(t)v(t)+ δi2(t) = 0 for all i ∈ Iα(t), and a.a.t ∈ [0,1].
By the Aubin continuity ofLP, this equation must have a solutionv ∈ L∞(0,1;Rm)

for anyδ2(t) = δ̃2(t)+1δ̃2(t), with ‖1δ̃2‖L∞ sufficiently small. This implies (S).
(i)⇒ (SSOSC). Let

β < a and ε < min
{
a‖2‖−1

L∞, b
}
, (25)

and letNj

β = {t ∈ [0,1] | j ∈ Jβ(t)}. Introduce the following variations:

1χi(t) =
{

0 for t ∈ Ni
β,

−ε for t ∈ [0, T ] \Ni
β,

1νi(t) =
{

0 for t ∈ Ni
β,

−νi0 for t ∈ [0, T ] \ Ni
β,

1ϑ(t) = −2(t)1ν(t).

(26)

Denote1p := (0,0,1χ,0,1ϑ), p̂ := p0 + 1p, ν̂ := ν0 + 1ν andwp̂ :=
(x0, u0, q0, ν̂). It is easy to check thatwp̂ is a solution to (VI)̂p. By (25),p̂ ∈ Bb(p0)



ON QUANTITATIVE STABILITY IN OPTIMIZATION AND OPTIMAL CONTROL 47

andwp̂ ∈ Ba(w0). Hence, in particular,(x0, u0) is a solution to (O)̂p. From the
choice of variations (26), it follows that:

gi(u0(t), h0)+ χ̂ i(t)
{ = 0 for t ∈ Ni

β,

6 −ε for t ∈ [0, T ] \ Ni
β,

(27)

ν̂i(t) =
{
νi0(t) > β for t ∈ Ni

β,

0 for t ∈ [0, T ] \Ni
β.

(28)

In view of (27) and (28), in a small neighborhood of(p̂, wp̂), problem (O)p can be
considered as the problem withequalityconstraints:

gi(u(t), h)+ χi(t)
{ = 0 for t ∈ Ni

β,

free fort ∈ [0, T ] \Ni
β.

(29)

Applying the second-order necessary optimality condition, see [8], Section 4, we
obtain

〈u,Cp̂u〉 > 0 for all u ∈ U2
β, (30)

where

Cp̂ = 4∗(M +∇2
uuH̃p̂)4

with M defined in (22) andH̃p̂ = H̃ (x0, u0, q0, ν̂, h0). By (30) we have

σ ⊂ [0,∞), (31)

whereσ is the spectrum of the self-adjoint operatorCp̂: U2
β → U2

β . We are going
to show that

〈u,Cp̂u〉 > M−1

2
‖u‖2

L2 for all u ∈U2
β. (32)

Since

min{λ ∈ R | λ ∈ σ } = inf{(v,Cp̂v) | v ∈ U2
β, ‖v‖ = 1},

then in view of (31), to prove (32), it is enough to show that[
0,
M−1

2

)
6⊂ σ. (33)

Denoteδ̂ = (0,1χ,0,1ϑ). It can be easily seen thatwp̂ = zδ̂ is a solution to
the linear variational inequality(LVI )δ̂. In the same way as in (29), we find that,
for all (δ, zδ), in a small neighborhood of(δ̂, zδ̂), the inclusion in(LVI )δ̂ becomes
an equation of the form

2+β (t)+ δ+2 (t) = 0, (34)
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whereδ+2 (t) is the subvector ofδ2(t) containing the components belonging toJβ(t).
Choose1δ = (0,0,0,1δ4), with 1δ4 ∈ U∞β , so small that (34) holds forδ =
δ̂+1δ. Subtracting (LVI)δ evaluated atδ = δ̂+1δ and atδ = δ̂, respectively, and
performing simple calculations, we find that the equation

C1u = 1δ4 (35)

must have a solution for any1δ4 ∈ U∞β , that is,C: U∞β → U∞β is surjective. This
implies that the homogeneous equation

Cu = 0 has a unique, inU2
β , solutionu = 0. (36)

Indeed, letu ∈ U2
β be such thatCu = 0, then for anyv ∈ U∞β we have 0=

(v,Cu) = (Cv, u). SinceC is surjective and the embeddingU∞β ⊂ U2
β is dense,

we getu = 0.
The property (36) together with the surjectivity implies thatC: U∞β → U∞β is

invertible and (35) has a unique solution for any1δ4 ∈ U∞β . Hence, by the Aubin
continuity, (35) implies

‖Cu‖L∞ > M−1‖u‖L∞ for all u ∈U∞β . (37)

Choosing a sufficiently smallε > 0 in (25),wp̂ can be moved arbitrarily close to
w0. In particular, we can chooseε so small that

‖(Cp̂ − C)u‖L∞ = ‖4∗(∇2
uuH̃p̂ −∇2

uuH̃0)4u‖L∞ 6 M−1

2
‖u‖L∞ (38)

for all u ∈U∞β . Hence

‖Cp̂u‖L∞ > M−1

2
‖u‖L∞ for all u ∈ U∞β . (39)

Let J denote the identity inRn. It follows from Lemma 4.3 in [8] and from (39)
that, for anyµ ∈ [0,M−1/2) the matrix

4(t)T[∇2
uuH̃p̂(t)− µJ ]4(t)

is invertible for a.e.t ∈ [0, T ], with the norm of its inverse bounded by a constant
independent oft . Hence the operator

4∗(∇2
uuH̃p̂ − µ · J)4: Uκ

β → Uκ
β

is invertible for anyκ ∈ [1,∞]. Define the operator

Np̂ :=
[
4∗(∇2

uuH̃p̂ − µ · J)4
]−1

4∗M4+ J: Uκ
β → Uκ

β.

In view of (39), Np̂ is invertible forκ = ∞. Observe that (33) will be satisfied
if Np̂ is invertible forκ = 2. Also, observe that the operatorS: L2(0, T ;Rm) →
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L2(0, T ;Rn) is compact, henceM: L2(0, T ;Rm) → L2(0, T ;Rm) is also com-
pact. Then the operator

Rp̂ :=
[
4∗(∇2

uuH̃p̂ − µ · J)4
]−1

4∗M4: U2
β → U2

β

is compact. Moreover, it follows from the definition ofRp̂ that

Rp̂ U2
β ⊂ U∞β . (40)

Consider the homogeneous equation

Np̂ u := (Rp̂ + J)u = 0, u ∈U2
β. (41)

From (40) we haveu = −Rp̂u ∈ U∞β , then by (39),u = 0 is the only solution of
(41). By a known property of the compact operators (see, e.g., Theorem 2, Chap.
XIII, Sec. 1 in [10]), the uniqueness of the solution to the homogeneous equation
(41) implies that the operatorNp̂ := (Rp̂+J): U2

β → U2
β has a bounded inverse.

This implies that (33) holds, i.e., (32) is satisfied.
As in (38), movingwp̂ sufficiently close tow0 and using (32), we obtain

〈u,Cu〉 = 〈u, [C − Cp̂]u〉 + 〈u,Cp̂u〉 > M−1

4
‖u‖2

L2 for all u ∈ U2
β, (42)

which completes the proof of (SSOSC). Note that, in view of (37), the estimate
(42) can be strengthened to

〈u,Cu〉 > M−1‖u‖2
L2 for all u ∈U2

β. 2
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