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Abstract. For a nonlinear optimal control problem with state constraints, we give conditions
under which the optimal control depends Lipschitz continuously in the L2 norm on a parameter.
These conditions involve smoothness of the problem data, uniform independence of active constraint
gradients, and a coercivity condition for the integral functional. Under these same conditions, we
obtain a new nonoptimal stability result for the optimal control in the L∞ norm. And under an
additional assumption concerning the regularity of the state constraints, a new tight L∞ estimate is
obtained. Our approach is based on an abstract implicit function theorem in nonlinear spaces.
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1. Introduction. We consider the following optimal control problem involving
a parameter:

minimize
∫ 1

0
hp(x(t), u(t))dt(1)

subject to
ẋ(t) = fp(x(t), u(t)) a.e. t ∈ [0, 1], x(0) = x0,

gp(x(t)) ≤ 0 for all t ∈ [0, 1], u ∈ L∞, x ∈W 1,∞,

where the state x(t) ∈ Rn, ẋ ≡ d
dtx, the control u(t) ∈ Rm, the parameter p lies

in a metric space, the functions hp : Rn × Rm → R, fp : Rn × Rm → Rn, and
gp : Rn → Rk. Throughout the paper, Lα(J ; Rm) denotes the usual Lebesgue space
of functions u : J → Rm with |u(·)|α integrable, equipped with its standard norm

‖ u ‖Lα=
(∫

J

|u(t)|αdt
)1/α

,

where | · | is the Euclidean norm. Of course, α = ∞ corresponds to the space of
essentially bounded functions. LetWm,α(J ; Rn) be the usual Sobolev space consisting
of vector-valued functions whose jth derivative lies in Lα for all 0 ≤ j ≤ m; its norm
is

‖ u ‖Wm,α =
m∑
j=0

‖ u(j) ‖Lα .

When either the domain J or the range Rn is clear from context, it is omitted. We let
Hm denote the space Wm,2, and Lip denote W 1,∞, the space of Lipschitz continuous
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LIPSCHITZ STABILITY FOR STATE CONSTRAINED CONTROL 699

functions. Subscripts on spaces are used to indicate bounds on norms; in particular,
Wm,α
κ denotes the set of functions in Wm,α with the property that the Lα norm of the

mth derivative is bounded by κ, and Lipκ denotes the space of Lipschitz continuous
functions with Lipschitz constant κ. Throughout, c is a generic constant, independent
of the parameter p and time t, and Ba(x) is the closed ball centered at x with radius
a. The L2 inner product is denoted 〈·, ·〉, the complement of a set A is Ac, and the
transpose of a matrix B is BT. Given a vector y ∈ Rm and a set A ⊂ {1, 2, . . . ,m},
yA denotes the subvector consisting of components associated with indices in A. And
if Y ∈ Rm×n, then YA is the submatrix consisting of rows associated with indices in
A.

We wish to study how a solution to either (1) or the associated variational system
representing the first-order necessary condition depends on the parameter p. We
assume that the problem (1) has a local minimizer (x, u) = (x∗, u∗) corresponding to
a reference value p = p∗ of the parameter, and the following smoothness condition
holds.

Smoothness. The local minimizer (x∗, u∗) of (1) lies in W 2,∞× Lip. There exists a
closed set ∆ ⊂ Rn×Rm and a δ > 0 such that Bδ(x∗(t), u∗(t)) ⊂ ∆ for every t ∈ [0, 1].
The function values and first two derivatives of fp(x, u), gp(x, u), and hp(x, u), and the
third derivatives of gp(x), with respect to x and u, are uniformly continuous relative
to p near p∗ and (x, u) ∈ ∆. And when either the first two derivatives of fp(x, u) and
hp(x, u) or the first three derivatives of gp(x), with respect to x and u, are evaluated
at (x∗, u∗), the resulting expression is differentiable in t, and the L∞ norm of the time
derivative is uniformly bounded relative to p near p∗.

Let A, B, and K be the matrices defined by

A = ∇xf∗(x∗, u∗), B = ∇uf∗(x∗, u∗), and K = ∇xg∗(x∗).

Here and elsewhere the * subscript is always associated with p∗. Let A(t) be the set
of indices of the active constraints at (x∗(t), p∗); that is,

A(t) = {i ∈ {1, 2, · · · , k} : g∗(x∗(t))i = 0}.

We introduce the following assumption.
Uniform independence at A. The set A(0) is empty and there exists a scalar

α > 0 such that ∣∣∣∣∣∣
∑
i∈A(t)

viKi(t)B(t)

∣∣∣∣∣∣ ≥ α|vA(t)|

for each t ∈ [0, 1] where A(t) 6= ∅ and for each choice of v.
Uniform independence implies that the state constraints are first-order (see [12]

for the definition of the order of a state constraint). This condition can be generalized
to higher order state constraints (see Maurer [17]), however, the generalization of the
stability results in this paper to higher order state constraints is not immediate.

It is known (see, for instance, Theorem 7.1 of the recent survey [12] and the
regularity analysis in [8]) that under appropriate assumptions, the first-order necessary
conditions (Pontryagin’s minimum principle) associated with a solution (x∗, u∗) of (1)
can be written in the following way. There exist ψ∗ ∈W 2,∞ and ν∗ ∈ Lip such that
x = x∗, ψ = ψ∗, u = u∗, and ν = ν∗ are a solution at p = p∗ of the variational system:

ẋ = fp(x, u), x(0) = x0,(2)
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700 A. L. DONTCHEV AND W. W. HAGER

ψ̇ = −∇xHp(x, ψ, u, ν), ψ(1) = 0,(3)
0 = ∇uHp(x, ψ, u, ν),(4)

gp(x) ∈ N(ν), ν(1) ≤ 0, ν̇ ≥ 0 a.e.(5)

Here Hp is the Hamiltonian defined by

Hp(x, ψ, u, ν) = hp(x, u) + ψT fp(x, u)− νT∇gp(x)fp(x, u),

and the set-valued map N is defined in the following way: given a nondecreasing
Lipschitz continuous function ν, a continuous function y lies in N(ν) if and only if

y(t) ≤ 0, ν̇(t)Ty(t) = 0 for a.e. t ∈ [0, 1], and ν(1)Ty(1) = 0.

Defining

Q = ∇xxH∗(w∗), M = ∇xuH∗(w∗), and R = ∇uuH∗(w∗),

where w∗ = (x∗, ψ∗, u∗, ν∗), let B be the quadratic form

B(x, u) =
1
2

∫ 1

0
x(t)TQ(t)x(t) + u(t)TR(t)u(t) + 2x(t)TM(t)u(t)dt,

and let L be the linear and continuous operator from H1 × L2 to L2 defined by
L(x, u) = ẋ − Ax − Bu. We introduce the following growth assumption for the
quadratic form.

Coercivity. There exists a constant α > 0 such that

B(x, u) ≥ α〈u, u〉 for all (x, u) ∈M,

where

M = {(x, u) : x ∈ H1, u ∈ L2, L(x, u) = 0, x(0) = 0}.(6)

In the terminology of [12], the form of the minimum principle we employ is the
“indirect adjoining approach with continuous adjoint function.” A different approach,
found in [13], for example, involves a different choice for the multipliers and for the
Hamiltonian. The multipliers in these two approaches are related in a linear fashion
as shown in [11]. Normally, the multiplier ν, associated with the state constraint,
and the derivative of ψ have bounded variation. In our statement of the minimum
principle above, we are implicitly assuming some additional regularity so that ν and
ψ̇ are not only of bounded variation, but Lipschitz continuous. This regularity can
be proved under the uniform independence and coercivity conditions (see [8]).

In section 3 we establish the following result.
THEOREM 1.1. Suppose that the problem (1) with p = p∗ has a local minimizer

(x∗, u∗) and that the smoothness and the uniform independence conditions hold. Let
ψ∗ and ν∗ be the associated multipliers satisfying the variational system (2)–(5) with
ψ∗ ∈W 2,∞ and ν∗ ∈ Lip. If the coercivity condition holds, then there exist a constant
µ and neighborhoods V of p∗ and U of w∗ = (x∗, ψ∗, u∗, ν∗) in W 1,∞×W 1,∞×L∞×
L∞, such that for every p ∈ V , there is a unique solution w = (x, ψ, u, ν) ∈ U to the
first-order necessary conditions (2)–(5) with the property that (ẋ, ψ̇, u, ν) ∈ Lipµ and
(x, u) is a local minimizer of the problem (1) associated with p. Moreover, for every
pi ∈ V, i = 1, 2, if wi = (xi, ψi, ui, νi) is the corresponding solution of (2)–(5), the
following estimate holds:

‖x1 − x2‖H1 + ‖ψ1 − ψ2‖H1 + ‖u1 − u2‖L2 + ‖ν1 − ν2‖L2 ≤ cE2,(7)
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LIPSCHITZ STABILITY FOR STATE CONSTRAINED CONTROL 701

where

Eα = ‖fp1(x1, u1)− fp2(x1, u1)‖Lα + ‖∇xHp1(w1)−∇xHp2(w1)‖Lα
+‖∇uHp1(w1)−∇uHp2(w1)‖Lα + ‖gp1(x1)− gp2(x1)‖W 1,α .

In addition, we have

‖x1 − x2‖W 1,∞ + ‖ψ1 − ψ2‖W 1,∞ + ‖u1 − u2‖L∞ + ‖ν1 − ν2‖L∞ ≤ cE2/3
2 .

The proof of Theorem 1.1 is based on an abstract implicit function theorem
appearing in section 2. In section 4 we show that the L∞ estimate of Theorem 1.1
can be sharpened if the points where the state constraints change between active and
inactive are separated. In section 5 we comment briefly on related work.

2. An implicit function theorem in nonlinear spaces. The following lemma
provides a generalization of the implicit function theorem that can be applied to
nonlinear spaces. To simplify the notation, we let ‖x − y‖X denote the distance
between the elements x and y of the metric space X.

LEMMA 2.1. Let X and Π be metric spaces with X complete, let Y be a subset
of Π, and let P be a set. Given w∗ ∈ X and r > 0, let W denote the ball Br(w∗) in
X and suppose that T : W × P → Y and F : X → 2Π (the subsets of Π) have the
following properties.

(P1) T (w∗, p∗) ∈ F (w∗) for some p∗ ∈ P .
(P2) For some β > 0, ‖T (w∗, p∗)− T (w∗, p)‖Π ≤ β for all p ∈ P .
(P3) For some ε > 0, ‖T (w1, p) − T (w2, p)‖Π ≤ ε‖w1 − w2‖X for all w1, w2 ∈ W

and p ∈ P .
(P4) F−1 restricted to Y is single-valued and Lipschitz continuous, with Lipschitz

constant λ.
If ελ < 1 and r ≥ λβ/(1 − ελ), then for each p ∈ P , there exists a unique w ∈ W
such that T (w, p) ∈ F (w). Moreover, for every pi ∈ P, i = 1, 2, if wi denotes the w
associated with pi, then we have

‖w1 − w2‖X ≤
λ

1− λε‖T (w1, p1)− T (w1, p2)‖Π.(8)

Proof. Fix p ∈ P and define Φ(w) = F−1(T (w, p)) for w ∈W . Observe that

‖Φ(w1)− Φ(w2)‖X = ‖F−1(T (w1, p))− F−1(T (w2, p))‖X
≤ λ‖T (w1, p)− T (w2, p)‖Π ≤ λε‖w1 − w2‖X

for each w1, w2 ∈W . Since λε < 1, Φ is a contraction on W with contraction constant
λε. Let w ∈W . Since w∗ = F−1(T (w∗, p∗)) and r ≥ λβ/(1− ελ), we have

‖w∗ − Φ(w)‖X = ‖F−1(T (w∗, p∗))− F−1(T (w, p))‖X
≤ λ(‖T (w, p)− T (w∗, p)‖Π + ‖T (w∗, p)− T (w∗, p∗)‖Π)
≤ λ(εr + β) ≤ r.

Thus Φ maps W into itself. By the Banach contraction mapping principle, there exists
a unique w ∈W such that w = Φ(w). Since w = Φ(w) is equivalent to T (w, p) ∈ F (w)
for w ∈ W , we conclude that for each p ∈ P , there is a unique w(p) ∈ W such that
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702 A. L. DONTCHEV AND W. W. HAGER

T (w(p), p) ∈ F (w(p)). Defining w1 = w(p1) and w2 = w(p2), we have

‖w1 − w2‖X = ‖F−1(T (w1, p1))− F−1(T (w2, p2))‖X
≤ λ‖T (w1, p1)− T (w2, p2)‖Π
≤ λ‖T (w1, p1)− T (w1, p2)‖Π + λ‖T (w1, p2)− T (w2, p2)‖Π
≤ λ‖T (w1, p1)− T (w1, p2)‖Π + λε‖w1 − w2‖X .

Rearranging this inequality, the proof is complete.
Let X, Y , and P be metric spaces and let w∗ ∈ X. Using the terminology of [3],

f : X × P → Y is strictly stationary at w = w∗, uniformly in p near p∗, if for each
ε > 0, there exists δ > 0 with the property that

‖f(w1, p)− f(w2, p)‖Y ≤ ε‖w1 − w2‖X

for all w1, w2 ∈ Bδ(w∗) and p ∈ Bδ(p∗).
THEOREM 2.2. Let X be a complete metric space, let Π be a linear metric space,

let Y be a subset of Π, and let P be a metric space. Suppose that F : X → 2Π, that
T : X×P → Π, that L : X → Π is continuous, and that for some w∗ ∈ X and p∗ ∈ P
we have:

(Q1) T (w∗, p∗) ∈ F(w∗);
(Q2) T (w∗, · ) is continuous at p∗;
(Q3) T (w, p)− L(w) is strictly stationary at w = w∗, uniformly in p near p∗;
(Q4) (F − L)−1 restricted to Y is single-valued and Lipschitz continuous, with

Lipschitz constant λ;
(Q5) T − L maps a neighborhood of (w∗, p∗) into Y .

Then for each λ+ > λ, there exist neighborhoods W of w∗ and P of p∗ such that for
each p ∈ P , a unique w ∈ W exists satisfying T (w, p) ∈ F(w); moreover, for every
pi ∈ P, i = 1, 2, if wi denotes the w ∈W associated with pi, then we have

‖w1 − w2‖X ≤ λ+‖T (w1, p1)− T (w1, p2)‖Π.

Proof. By (Q5) there exist neighborhoods U ′ of w∗ and P ′ of p∗ such that
T (w, p) − L(w) ∈ Y for each w ∈ U ′ and p ∈ P ′. We apply Lemma 2.1 with the
following identifications: X, Y , and Π are as defined in the statement of the theorem,
F (w) = F(w)− L(w), and T (w, p) = T (w, p)− L(w). (P1) and (P4) follow immedi-
ately from (Q1) and (Q4), respectively. Choose ε > 0 such that ε < (λ+ − λ)/(λ+λ).
Since λ+ > λ, it follows that for this choice of ε, we have ελ < 1 and λ/(1−λε) < λ+.
By (Q3) and the identity T (w1, p1) − T (w1, p2) = T (w1, p1) − T (w1, p2), there exist
neighborhoods P = Br(p∗) ⊂ P ′ of p∗ and W = Br(w∗) ⊂ U ′ of w∗ such that (P3)
of Lemma 2.1 holds. Let β satisfy λβ/(1 − ελ) ≤ r, and by (Q2), choose P smaller
if necessary so that (P2) holds. By Lemma 2.1, for each p ∈ P , there exists a unique
w ∈ W such that T (w, p) ∈ F (w), and the estimate (8) holds. Since T (w, p) ∈ F (w)
if and only if T (w, p) ∈ F(w), the proof is complete.

A particular case of Theorem 2.2 corresponds to the well-known Robinson implicit
function theorem [20] in which X is a Banach space, Π is its dual X∗, F(w) = NΩ(w),
Ω is a closed, convex set in X, NΩ(w) is the normal cone to the set Ω at the point
w, T is differentiable with respect to w, both T and its derivative ∇wT are contin-
uous in a neighborhood of (w∗, p∗), and L(w) = T (w∗, p∗) + ∇wT (w∗, p∗)(w − w∗)
is the linearization of T . The Robinson framework is applicable to control problems
with control constraints after the range space X∗ is replaced by a general Banach
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LIPSCHITZ STABILITY FOR STATE CONSTRAINED CONTROL 703

space Y (see the discussion in section 5). However, for problems with state con-
straints, there are difficulties in applying Robinson’s theory since stability results for
state constrained quadratic problems, analogous to the results for control constrained
problems, have not been established. In our previous paper [3], we extend Robinson’s
work in several different directions. For the solution map of a generalized equation
in a linear metric space, we showed that Aubin’s pseudo-Lipschitz property, that the
existence of a Lipschitzian selection, and that local Lipschitzian invertibility are “ro-
bust” under nonlinear perturbations that are strictly stationary at the reference point.
In Theorem 2.2, we focus on the latter property, giving an extension of our earlier
result to nonlinear spaces. In this nonlinear setting, we are able to analyze the state
constrained problem, obtaining a Lipschitzian stability result for the solution.

3. Lipschitzian stability in L2. To prove Theorem 1.1, we apply Theorem 2.2
using the following identifications. First, we define

w = (x, ψ, u, ν),(9)

where

x, ψ ∈W 2,∞
µ (with the H1 norm), x(0) = x0, ψ(1) = 0,(10)

u, ν ∈ Lipµ (with the L2 norm), ν(1) ≤ 0 and ν̇ ≥ 0 a.e.(11)

An appropriate value for µ is chosen later in the analysis. The space X consists of the
collection of functions x, ψ, u, and ν satisfying (10) and (11) with the norm defined
in (10) and (11). Observe that the norms we use are not the natural norms. For
example, the u and ν components of elements in X lie in W 1,∞, but we use the L2

norm to measure distance. Despite the apparent mismatch of space and norm, X is
complete by Lemma 3.2 below.

The functions T and F of Theorem 2.2 are selected in the following way:

T (w, p) =


ẋ− fp(x, u)

ψ̇ +∇xHp(x, u, ψ, ν)
∇uHp(x, u, ψ, ν)

gp(x)

 and F(w) =


0
0
0

N(ν)

 .(12)

The continuous operator L is obtained by linearizing the map T (·, p∗) in L∞ at the
reference point w∗ = (x∗, ψ∗, u∗, ν∗). In particular,

L(w) =


ẋ−Ax−Bu

ψ̇ +ATψ +Qx+Mu− (K̇T +ATKT)ν
Ru+MTx+BTψ −BTKTν

Kx

 .(13)

Defining π∗ = T (w∗, p∗)−L(w∗), let a∗, s∗, r∗, and b∗ denote the components of π∗:

a∗ = −f∗(x∗, u∗) +Ax∗ +Bu∗,

s∗ = ∇xH∗(w∗)−ATψ∗ −Qx∗ −Mu∗ + (K̇T +ATKT)ν∗,
r∗ = ∇uH∗(w∗)−Ru∗ −MTx∗ −BTψ∗ +BTKTν∗,

b∗ = g∗(x∗)−Kx∗.
The space Π is the product L2 × L2 × L2 ×H1, while the elements π in Y have

the form π = (a, s, r, b), where

a, s, r ∈ Lip (with the L2 norm), b ∈W 2,∞ (with the H1 norm),

‖a− a∗‖W 1,∞ + ‖r − r∗‖W 1,∞ + ‖s− s∗‖W 1,∞ + ‖b− b∗‖W 2,∞ ≤ κ,
(14)
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704 A. L. DONTCHEV AND W. W. HAGER

where κ is a small positive constant chosen so that two related quadratic programs,
(37) and (41), introduced later have the same solution. As we will see, the constant µ
associated with the space X must be chosen sufficiently large relative to κ. Note that
the inverse (F − L)−1π is the solution (x, ψ, u, ν) of the linear variational system:

ẋ = Ax+Bu− a, x(0) = x0,(15)
ψ̇ = −ATψ −Qx−Mu+ (K̇ +ATKT)ν − s, ψ(1) = 0,(16)
0 = Ru+MTx+BTψ −BTKTν + r,(17)
Kx+ b ∈ N(ν), ν(1) ≤ 0, ν̇ ≥ 0 a.e.(18)

Referring to the assumptions of Theorem 2.2, (Q1) holds by the definition of
X, and by the minimum principle, (Q2) follows immediately from the smoothness
condition. In Lemma 3.3, we deduce (Q3) from the smoothness condition and a Taylor
expansion. In Lemma 3.6, (Q5) is obtained by showing that for w near w∗ and p near
p∗, T (w, p)− L(w) and its associated derivatives are near those of π∗ = T (w∗, p∗)−
L(w∗). Finally, in a series of lemmas, (Q4) is established through manipulations of
quadratic programs associated with (15)–(18).

To start the analysis, we show that X is complete using the following lemma.
LEMMA 3.1. If u ∈ Lipµ([0, 1]; R1), then we have

‖u‖L∞ ≤ max{
√

3‖u‖L2 , 3
√

3µ‖u‖2/3L2 } .

Proof. Since u is continuous, its maximum absolute value is achieved at some
time tm on the interval [0, 1]. Let um = u(tm) denote the associated value of u. We
consider two cases.

Case 1. um > µ. Let us examine the maximum ratio between the ∞-norm and
the 2-norm:

maximize {‖u‖L∞/‖u‖L2 : ‖u‖L∞ = um, u ∈ Lipµ}.

Since um > µ, the maximum is attained by the linear function v satisfying v(0) = um
and v̇ = −µ. The 2-norm of this function is readily evaluated:

‖v‖2L2 = u2
m(3− 3α+ α2)/3, where α = µ/um.

Since α ∈ [0, 1] and since 3 − 3α + α2 ≥ 1 on this interval, we have ‖v‖2L2 ≥ u2
m/3.

Taking square roots gives

‖v‖L∞/‖v‖L2 ≤
√

3,

which establishes the lemma in Case 1.
Case 2. um ≤ µ. In this case, let us examine the maximum ratio between the

∞-norm and the 2-norm to the 2/3-power:

maximize {‖u‖L∞/‖u‖2/3L2 : ‖u‖L∞ = um, u ∈ Lipµ}.

The maximum is attained by the piecewise linear function v satisfying v(0) = um,
v̇ = −µ on [0, um/µ], and v = 0 elsewhere. Since

‖v‖2L2 =
u3
m

3µ
,
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LIPSCHITZ STABILITY FOR STATE CONSTRAINED CONTROL 705

it follows that

‖v‖L∞/‖v‖2/3L2 ≤ 3
√

3µ,

which completes the proof of Case 2.
LEMMA 3.2. The space X of functions w satisfying (9), (10), and (11) is com-

plete.
Proof. Suppose that wk = (xk, uk, ψk, νk) is a Cauchy sequence in X. We analyze

the ν-component of wk. The sequence νk is a Cauchy sequence in L∞ by Lemma
3.1. Since L∞ is complete, there exists a limit point ν̄ ∈ L∞. Since the νk converge
pointwise to ν̄ and since each of the νk is Lipschitz continuous with Lipschitz constant
µ, ν̄ is Lipschitz continuous with Lipschitz constant µ. Since each of the νk is non-
decreasing, it follows from the pointwise convergence that ν̄ is nondecreasing; hence,
˙̄ν ≥ 0. Since νk(1) ≤ 0 for each k, the pointwise convergence implies that ν̄(1) ≤ 0.
This shows that the ν-component of X is complete. The other components can be
analyzed in a similar fashion.

LEMMA 3.3. If the smoothness condition holds, then for T and L defined in (12)
and (13), respectively, T − L is strictly stationary at w∗, uniformly in p near p∗.

Proof. Only the first component of T (w, p) − L(w) is analyzed, since the other
components are treated in a similar manner. To establish strict stationarity for the
first component, we need to show that for any given ε > 0,

‖(fp(x, u)− fp(y, v))−A(x− y)−B(u− v)‖L2 ≤ ε‖x− y‖H1 + ε‖u− v‖L2 ,(19)

for p near p∗ and for (x, u) and (y, v) ∈ W 2,∞
µ × Lipµ near (x∗, u∗) in the norm of

H1 × L2, where A = ∇xf∗(x∗, u∗) and B = ∇uf∗(x∗, u∗). By Lemma 3.1, (x, u) and
(y, v) are also near (x∗, u∗) in L∞. After writing the difference fp(x, u)− fp(y, v) as
an integral over the line segment connecting (x, u) and (y, v), we have

(fp(x, u)− fp(y, v))−A(x− y)−B(u− v) = (Ap −A)(x− y) + (Bp −B)(u− v),

where (Ap, Bp) is the average of the gradient of fp along the line segment connecting
(x, u) and (y, v). By the smoothness condition, ‖Ap−A‖L∞ → 0 and ‖Bp−B‖L∞ → 0
as p approaches p∗ and as both (x, u) and (y, v) approach (x∗, u∗) in L∞. This
completes the proof.

LEMMA 3.4. If the smoothness condition holds, then for T and L defined in (12)
and (13), respectively, and for any choice of the parameter κ > 0 in (14), there exists
δ > 0 such that T (w, p)− L(w) ∈ Y for all p ∈ Bδ(p∗) and w ∈ Bδ(w∗) ∩X.

Proof. Again, we focus on the first component of T −L, since the other components
are treated in a similar manner. Referring to the definition of Y , we should show that

‖(fp(x, u)− f∗(x∗, u∗))−A(x− x∗)−B(u− u∗)‖W 1,∞ ≤ κ/4(20)

for p near p∗ and for (x, u) ∈W 2,∞
µ ×Lipµ near (x∗, u∗) in the norm of H1×L2. The

W 1,∞ norm in (20) is composed of two norms, the L∞ norm of the function values,
and the L∞ norm of the time derivative. By the same expansion used in Lemma 3.3,
we obtain the bound

‖(fp(x, u)− f∗(x∗, u∗))−A(x− x∗)−B(u− u∗)‖L∞ ≤ κ/8

for p near p∗ and for (x, u) near (x∗, u∗). Differentiating the expression within the
norm of (20) gives

d
dt(fp(x, u)− f∗(x∗, u∗)−A(x− x∗)−B(u− u∗))

= (∇xfp(x, u)−A)ẋ+ (∇ufp(x, u)−B)u̇− Ȧ(x− x∗)− Ḃ(u− u∗).
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706 A. L. DONTCHEV AND W. W. HAGER

By the smoothness condition, Ȧ and Ḃ lie in L∞, and by the definition of X, we have
‖u̇‖L∞ ≤ µ. By the triangle inequality and by Lemma 3.1,

‖ẋ‖L∞ ≤ ‖ẋ∗‖L∞ + ‖ẋ− ẋ∗‖L∞ ≤ ‖ẋ∗‖L∞ + 3
√

3µ‖x− x∗‖2/3H1

for x near x∗. Moreover, by Lemma 3.1 and by the smoothness condition, ∇xfp(x, u)
approaches A and ∇ufp(x, u) approaches B in L∞ as p approaches p∗ and (x, u)
approaches (x∗, u∗). Hence, for p near p∗ and (x, u) near (x∗, u∗), we have∥∥∥∥ ddt(fp(x, u)− f∗(x∗, u∗)−A(x− x∗)−B(u− u∗))

∥∥∥∥
L∞
≤ κ/8.

Analyzing each of the components of T − L in this same way, the proof is complete.

We now begin a series of lemmas aimed at verifying (Q4). After a technical
result (Lemma 3.5) related to the constraints, a surjectivity property (Lemma 3.6) is
established for the linearized constraint mapping. Then we study a quadratic program
corresponding to the linear variational system (15)–(18). We show that the solution
(Lemma 3.9) and the multipliers (Lemma 3.10) depend Lipschitz continuously on the
parameters. And utilizing the solution regularity derived in [8], the solution and the
multipliers lie in X for µ sufficiently large.

To begin, let I be any map from [0, 1] to the subsets of {1, 2, . . . , k} with the
property that the following sets Ii are closed for every i:

Ii = I−1(i) = {t ∈ [0, 1] : i ∈ I(t)} .

We establish the following decomposition property for the interval [0, 1].
LEMMA 3.5. If uniform independence at I holds, then for every α′, 0 < α′ < α,

there exist sets J1, J2, . . . , Jl, corresponding points 0 = τ1 < τ2 < · · · < τl+1 = 1, and
a positive constant ρ < mini(τi+1 − τi) such that for each t ∈ [τi − ρ, τi+1 + ρ]∩ [0, 1],
we have I(t) ⊂ Ji, and if Ji is nonempty, then∣∣∣∣∣∣

∑
j∈Ji

vjKj(t)B(t)

∣∣∣∣∣∣ ≥ α′|vJi |(21)

for every choice of v. The set J1 can always be chosen empty.
Proof. For each t ∈ (0, 1) with I(t)c 6= ∅, there exists an open interval O centered

at t with O ⊂ ∩i∈I(t)cIci . If t = 0 or 1, then we can choose a half-open interval O,
with t the closed end of the interval, such that O ⊂ ∩i∈I(t)cIci . If I(t)c is empty, take
O = [0, 1]. For any fixed t ∈ [0, 1] with I(t) 6= ∅, choose O smaller if necessary so that∣∣∣∣∣∣

∑
i∈I(t)

viKi(s)B(s)

∣∣∣∣∣∣ ≥ α′|vI(t)|(22)

for each s ∈ O and for each choice of v. Since B and K are continuous, it is possible
to choose O in this way. Observe that by the construction of O, we have I(s) ⊂ I(t)
for each s ∈ O and (22) holds if I(t) is nonempty. Given any interval O on (0, 1), let
O1/2 denote the open interval with the same center but with half the length; for the
open intervals associated with t = 0 or 1, let O1/2 denote the half-open interval with
the same endpoint, 0 or 1, but with half the length. The sets O1/2 form an open cover
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LIPSCHITZ STABILITY FOR STATE CONSTRAINED CONTROL 707

of [0, 1]. Let O1, O2, . . . , Ol be a finite subcover of [0, 1] and let t1, t2, . . . , tl denote
the associated centers of interior intervals, and the closed endpoint of the intervals
associated with t = 0 or 1. It can be arranged so that no Oi is contained in the
union of other elements of the subcover (by discarding these extra sets if necessary).
Arrange the indices of the Oi so that the left side of Oi is to the left of the left side
of Oi+1 for each i. Let τ1, τ2, . . . , τl−1 denote the successive left sides of the Oi, and
let ρ be 1/4 of the length of the smallest Oi. Defining Ji = I(ti) for i ≥ 1, it follows
from the construction of the Oi that I(t) ⊂ Ji and (22) holds for each t in an interval
associated with ti and with length twice that of Oi. Since (τi, τi+1) ⊂ Oi, we have (21).
By taking ρ smaller if necessary, we can enforce the condition ρ < mini(τi+1 − τi).

LEMMA 3.6. If uniform independence at I holds, then for each a ∈ L∞ and
b ∈ W 1,∞, there exist x ∈ W 1,∞ and u ∈ L∞ such that L(x, u) + a = 0, x(0) = x0,
and

Kj(t)x(t) + bj(t) = 0 for each j ∈ I(t), t ∈ [0, 1].(23)

This (x, u) pair is an affine function of (a, b), and for each α ≥ 1, there exists a
constant c > 0 such that

‖x1 − x2‖W 1,α + ‖u1 − u2‖Lα ≤ c(‖a1 − a2‖Lα + ‖b1 − b2‖W 1,α)(24)

for every (ai, bi) ∈ L∞ ×W 1,∞, i = 1, 2, where (xi, ui) is the pair associated with
(ai, bi).

Proof. We use the decomposition provided by Lemma 3.5 to enforce the equations

ẋ(t)−A(t)x(t)−B(t)u(t) + a(t) = 0, x(0) = x0,(25)
Kj(t)x(t) + bj(t) = 0 for each j ∈ Ji \ Ji−1, t ∈ [τi + ρ, τi+1],(26)
Kj(t)x(t) + bj(t) = 0 for each j ∈ Ji ∩ Ji−1, t ∈ [τi, τi+1],(27)

i = 2, 3, . . . , l. Since J1 is empty, (23) holds trivially on [τ1, τ2] = [0, τ2]. Suppose
that i > 1, and let us consider (23) on the interval [τi, τi+1]. Since I(t) ⊂ Ji for
t ∈ [τi, τi+1], we conclude that any j ∈ I(t) is contained in either Ji∩Ji−1 or Ji \Ji−1.
If j ∈ Ji ∩ Ji−1, then by (27), (23) holds. If j ∈ Ji \ Ji−1, then by the construction of
the Ji, j 6∈ I(t) for t ∈ [τi, τi + ρ]. Hence, (26) implies that (23) holds.

Suppose that j ∈ Ji and let σj be any given Lipschitz continuous function. Ob-
serve that if

Kj(τi)x(τi) + σj(τi) = 0 and
d

dt
(Kj(t)x(t) + σj(t)) = 0 a.e. t ∈ [τi, τi+1],(28)

then Kj(t)x(t) +σj(t) = 0 for all t ∈ [τi, τi+1]. Carrying out the differentiation in the
second relation of (28) and substituting for ẋ using the state equation (25), we obtain
a linear equation for u. By Lemma 3.5, this equation has a solution, and for fixed t
and x, the minimum norm solution can be written:

u(t, x) = Mi(t)[−σ̇Ji(t) +KJi(t)a(t)− K̇Ji(t)x−KJi(t)A(t)x],(29)

where

Mi(t) = (KJi(t)B(t))T[KJi(t)B(t)(KJi(t)B(t))T]−1.(30)

In the special case where Ji is empty, we simply set u(t, x) = 0.
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708 A. L. DONTCHEV AND W. W. HAGER

These observations show how to construct x and u in order to satisfy (26) and (27).
On the initial interval [0, τ2], u is simply 0 and x is obtained from (25). Assuming
x and u have been determined on the interval [0, τi], their values on [τi, τi+1] are
obtained in the following way: the control is given in feedback form by (29), where
for j ∈ Ji ∩ Ji−1,

σj(t) = bj(t) for t ∈ [τi, τi+1].(31)

For j ∈ Ji \ Ji−1, σj(t) = bj(t) for t ∈ [τi + ρ, τi+1], while σj is linear on [τi, τi + ρ]
with

σj(τi) = −Kj(τi)x(τi) and σj(τi + ρ) = bj(τi + ρ).(32)

With this choice for σ, the first equation in (28) is satisfied, and with x and u given
by (25) and (29), respectively, the second equation in (28) is satisfied. Also, by the
choice of σ,

Kj(t)x(t) + σj(t) = Kj(t)x(t) + bj(t) = 0

for each j ∈ Ji∩Ji−1 and t ∈ [τi, τi+1], and for each j ∈ Ji \Ji−1 and t ∈ [τi+ρ, τi+1].
Hence, (26) and (27) hold, which yields (23).

For j ∈ Ji, it follows from the definition of σ that

|σ̇j(t)| ≤ c(|x(τi)|+ ‖b‖W 1,∞) a.e. t ∈ [τi, τi+1].

When u in (29) is inserted in (25) and this bound on |σ̇j(t)| is taken into account,
we obtain by induction that x ∈ W 1,∞ and u ∈ L∞. By the equations (25) for the
state, (29) for the control, and (31)–(32) for σ, (x, u) is an affine function of (a, b).
Moreover, the change (δx, δu) in the state and control associated with the change
(δa, δb) in the parameters satisfies

‖δx‖W 1,α([0,τi]) + ‖δu‖Lα([0,τi]) ≤ c(‖δa‖Lα([0,τi]) + ‖δσ̇‖Lα([0,τi])),(33)

for each i where σ is specified in (31)–(32).
To complete the proof, we need to relate the σ term of (33) to the b term of (24).

For j ∈ Ji, δσj(t) = δbj(t) if t ∈ [τi + ρ, τi+1] or if j ∈ Ji−1 and t ∈ [τi, τi + ρ]. For
j ∈ Ji \ Ji−1 and t ∈ [τi, τi + ρ], we have

|δσ̇j(t)| ≤ (|δbj(τi + ρ)|+ |Kj(τi)δx(τi)|)/ρ ≤ c(‖δb‖L∞ + |δx(τi)|)
≤ c(‖δb‖W 1,α + |δx(τi)|).

Consequently, for almost every t ∈ [τi, τi+1],

|δσ̇(t)| ≤ c(‖δb‖W 1,α + |δḃ(t)|+ |δx(τi)|).(34)

Since δx(0) = 0, let us proceed by induction and assume that

|δx(τi)| ≤ c(‖δa‖Lα + ‖δb‖W 1,α) for i = 1, 2, . . . , j.

Combining this with (34) and (33) for i = j + 1 gives

‖δx‖W 1,α([0,τj+1]) + ‖δu‖Lα([0,τj+1]) ≤ c ( ‖δa‖Lα + ‖δb‖W 1,α ) .

Since |δx(τj+1)| ≤ ‖δx‖W 1,α([0,τj+1]), the induction step is complete.
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LIPSCHITZ STABILITY FOR STATE CONSTRAINED CONTROL 709

In the following lemma, we prove a pointwise coercivity result for the quadratic
form B. See [4] and [7] for more general results of this nature.

LEMMA 3.7. If coercivity holds, then there exists a scalar α > 0 such that

B(x, u) ≥ α[〈x, x〉+ 〈u, u〉+ 〈ẋ, ẋ〉] for all (x, u) ∈M(35)

and

vTR(t)v ≥ αvTv for every t ∈ [0, 1] and v ∈ Rm.(36)

Proof. If (x, u) ∈ M, then L(x, u) = 0 and x(0) = 0. Hence, the L2 norm of x
and ẋ are bounded in terms of the L2 norm of u, and (35) follows directly from the
coercivity condition. To establish (36), we consider the control uε defined by

uε(s) =
{
v for t− ε/2 ≤ s ≤ t+ ε/2,
0 otherwise.

Let the state xε be the solution to L(xε, uε) = 0, xε(0) = 0. For any t ∈ (0, 1), we
have

lim
ε→0

B(xε, uε)
ε

= vTR(t)v and lim
ε→0

〈uε, uε〉
ε

= vTv.

Combining this with the coercivity condition gives (36).
Consider the following linear-quadratic problem involving the parameters a, s,

r ∈ L∞ and b ∈W 1,∞:

minimize B(x, u) + 〈s, x〉+ 〈r, u〉(37)
subject to

L(x, u) + a = 0, x(0) = x0,

KI(t)(t)x(t) + bI(t)(t) ≤ 0 for all t ∈ [0, 1],

x ∈W 1,∞([0, 1]; Rn), u ∈ L∞([0, 1]; Rm).

If the feasible set for (37) is nonempty, then coercivity implies the existence of a unique
minimizer over H1×L2. Using the following lemma, we show that this minimizer lies
in W 1,∞ × L∞, and that it exhibits stability relative to the L2 norm.

LEMMA 3.8. If coercivity and uniform independence at I hold, then (37) has a
unique solution for every a, r, s ∈ L∞ and b ∈ W 1,∞. Moreover, the change (δx, δu)
in the solution to (37) corresponding to a change (δa, δb, δs, δr) in the parameters
satisfies the estimate

‖δx‖H1 + ‖δu‖L2 ≤ c(‖δa‖L2 + ‖δb‖H1 + ‖δs‖L2 + ‖δr‖L2).(38)

Proof. By Lemma 3.6, uniform independence at I implies that the feasible set
for (37) is nonempty, while the coercivity condition implies the existence of a unique
solution (x∗, u∗) in H1×L2. From duality theory (for example, see [10]), there exists
λ ∈ L∞ with the property that u = u∗ is the minimum with respect to u of the
expression

B(x, u) + 〈s, x〉+ 〈r, u〉+ 〈λ, ẋ−Ax−Bu+ a〉

over all u ∈ L∞. It follows that

R(t)u∗(t) +M(t)Tx∗(t) + r(t)−B(t)Tλ(t) = 0,(39)
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710 A. L. DONTCHEV AND W. W. HAGER

and by (36), u∗(t) is uniformly bounded in t. From the equations L(x∗, u∗) = 0 and
x∗(0) = x0, x∗ ∈W 1,∞.

The estimate (38) can be obtained, as in Lemma 5 in [2], by eliminating the
perturbation in the constraints. Let Λ be the affine map in Lemma 3.6 relating the
feasible pair (x, u) to the parameters (a, b). By making the substitution (x, u) =
(y, v) + Λ(a, b), we transform (37) to an equivalent problem of the form

minimize B(y, v) + 〈σ, y〉+ 〈ρ, v〉(40)
subject to

L(y, v) = 0, y(0) = 0,
KI(t)(t)y(t) ≤ 0 for all t ∈ [0, 1],

y ∈W 1,∞([0, 1]; Rn), v ∈ L∞([0, 1]; Rm).

Here σ and ρ are affine functions of a, b, s, and r. Utilizing the coercivity condition
and the analysis of [9, section 2], we obtain the following estimate for the change
(δy, δv) corresponding to the change (δσ, δρ):

α(‖δy‖2H1 + ‖δv‖2L2) ≤ ‖δσ‖L1‖δy‖L∞ + ‖δρ‖L2‖δv‖L2

≤ ‖δσ‖L1‖δy‖H1 + ‖δρ‖L2‖δv‖L2 .

Hence,

‖δy‖H1 + ‖δv‖L2 ≤ c(‖δσ‖L1 + ‖δρ‖L2).

Taking into account the relations between (x, u), (y, v), (σ, ρ), and (a, b, s, r), the proof
is complete.

Now let us consider the full linear-quadratic problem where the subscript I on
the state constraint has been removed:

minimize B(x, u) + 〈s, x〉+ 〈r, u〉(41)
subject to

L(x, u) + a = 0, x(0) = x0,

K(t)x(t) + b(t) ≤ 0 for all t ∈ [0, 1],
x ∈W 1,∞([0, 1]; Rn), u ∈ L∞([0, 1]; Rm).

The first-order necessary conditions for this problem are precisely (15)–(18). Observe
that x∗, u∗, ψ∗, and ν∗ satisfy (15)–(18) when π = π∗. Since the first-order necessary
conditions are sufficient for optimality when coercivity holds, (x∗, u∗) is the unique
solution to (41) at π = π∗. In addition, if uniform independence holds, we now show
that the multipliers ψ and ν satisfying (16)–(18) are unique; hence, x∗, u∗, ψ∗, and
ν∗ are the unique solution to (15)–(18) for π = π∗.

To establish this uniqueness property for the multipliers, we apply Lemma 3.5
to the active constraint map A of section 1. Let Ji be the index sets associated
with I = A in Lemma 3.5. Since A(t) ⊂ Ji for each t ∈ [τi, τi+1], the complementary
slackness condition ν∗(1)Tg∗(1) = 0, associated with the condition (5) of the minimum
principle, implies that (ν∗)Jcl = 0 on [τl, 1], while (21) along with (16) and (17)
imply that (ν∗)Jl and ψ∗ are uniquely determined on [τl, 1]. Proceeding by induction,
suppose that ψ∗ and ν∗ are uniquely determined on the interval [τi+1, 1]. Since (ν∗)Jci
is constant on [τi, τi+1], it is uniquely determined by the continuity of ν∗, while (ν∗)Ji
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LIPSCHITZ STABILITY FOR STATE CONSTRAINED CONTROL 711

and ψ∗ on [τi, τi+1] are uniquely determined by (21), (16), and (17). This completes
the induction step.

We now use Lemma 3.8 to show that the solution to (41) depends Lipschitz
continuously on the parameters when coercivity and uniform independence at A hold.
We do this by making a special choice for the map I. Again, let Ji be the index sets
associated with I = A by Lemma 3.5. Since A(t) ⊂ Ji for each t ∈ [τi, τi+1], the
parameter

εi = − sup{(g∗)j(t) : t ∈ [τi, τi+1], j ∈ Jci }(42)

is strictly positive for each i. Setting ε = .5 min εi, we consider (37) in the case I = Aε
where Aε(t) is the index set associated with the ε-active constraints for the linearized
problem:

Aε(t) = {i : Ki(t)x∗(t) + (b∗)i(t) ≥ −ε} = {i : (g∗)i(t) ≥ −ε}.(43)

Since Aε(t) ⊂ Ji for each t ∈ [τi, τi+1], Lemma 3.5 implies that uniform independence
at Aε holds.

We now observe that the solution (x∗, u∗) of (41) at π = π∗ is the solution of
(37) for I = Aε and π = π∗. First, (x∗, u∗) is feasible in (37) since there are fewer
constraints than in (41). By the choice I = Aε, all feasible pairs for (37) near (x∗, u∗)
are also feasible in (41). Since (x∗, u∗) is optimal in (41), it is locally optimal in (37) as
well, and by the coercivity condition and Lemma 3.7, (x∗, u∗) is the unique minimizer
of (37) for π = π∗. By Lemma 3.8, we have an estimate for the change in the solution
to (37) corresponding to a change in the parameters. Since ‖δx‖L∞ ≤ ‖δx‖H1 , it
follows that for small perturbations in the data, the solution to (37) is feasible, and
hence optimal, for (41). Hence, our previous stability analysis for (37) provides us
with a local stability analysis for (41). We summarize this result in the following way.

LEMMA 3.9. If coercivity and uniform independence at A hold, then for s, r,
and a in an L∞ neighborhood of s∗, r∗, and a∗, respectively, and for b in a W 1,∞

neighborhood of b∗, there exists a unique minimizer of (41), and the estimate (38)
holds. Moreover, taking I = Aε with ε = .5 min εi, where εi is defined in (42), the
solutions to (37) and (41) are identical in these neighborhoods.

Now let us consider the multipliers associated with (41).
LEMMA 3.10. If coercivity and uniform independence at A hold, then for s, r,

and a in an L∞ neighborhood of s∗, r∗, and a∗, respectively, and for b in a W 1,∞

neighborhood of b∗, there exists a unique minimizer of (41) and associated unique
multipliers satisfying the estimate:

‖δψ‖H1 + ‖δν‖L2 ≤ c(‖δa‖L2 + ‖δb‖H1 + ‖δs‖L2 + ‖δr‖L2).(44)

Proof. Let Aε be the ε-active constraints defined by (43), where ε = .5 min εi.
Let Ji be the index sets and let ρ be the positive number associated with I = A
by Lemma 3.5. Consider π = π∗ + δπ where δπ is small enough that the active
constraint set for (41) is a subset of Aε(t) for each t. By the same analysis used
to establish uniqueness of (ψ∗, ν∗), there exist unique Lagrange multipliers (ψ, ν) =
(ψ∗, ν∗) + (δψ, δν) corresponding to π = π∗ + δπ. We will show that

‖δψ‖H1 + ‖δν‖L2 ≤ c(‖δx‖L2 + ‖δu‖L2 + ‖δs‖L2 + ‖δr‖L2).(45)

Combining this with Lemma 3.9 yields Lemma 3.10.
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712 A. L. DONTCHEV AND W. W. HAGER

We prove (45) by induction. Let us start with the interval [τl − ρ, 1]. If i ∈ Jcl ,
then νi(t) = 0 for each t ∈ [τl − ρ, 1]. Hence, δνJcl = 0 on [τl − ρ, 1]. Multiplying (17)
by KB, we can solve for δνJl and substitute in (16) to eliminate ν. Since ψ(1) = 0,
it follows that

‖δψ‖H1([σ−ρ,1]) + ‖δν‖L2([σ−ρ,1]) ≤ c(‖δx‖L2 + ‖δu‖L2 + ‖δs‖L2 + ‖δr‖L2)(46)

for σ = τl.
Proceeding by induction, suppose that (46) holds for σ = τj+1; we wish to show

that it holds for σ = τj . If i ∈ Jcj , then νi(t) is constant on [τj − ρ, τj+1], and we have∫ τj+1

τj−ρ
δνi(t)2dt =

τj+1 − τj + ρ

ρ

∫ τj+1

τj+1−ρ
δνi(t)2dt.

Combining this with (46) for σ = τj+1, it follows that

‖δνi‖L2([σ−ρ,1]) ≤ c(‖δx‖L2 + ‖δu‖L2 + ‖δs‖L2 + ‖δr‖L2)

for σ = τj . Again, multiplying (17) by KB, we solve for δνJj and substitute in (16).
Since |δψ(τj)| ≤ ‖δψ‖H1([τj ,1]), the induction bound (46) for σ = τj+1 coupled with
the bound already established for δνi, i ∈ Jcj , gives (46) for σ = τj . This completes
the induction.

LEMMA 3.11. Suppose that smoothness, coercivity, and uniform independence at
A hold and let κ be small enough that Y is contained in the neighborhoods defined in
Lemmas 3.9 and 3.10. Then for some µ > 0 and for each π ∈ Y , there exists a unique
solution (x, u) to (41) and associated multipliers (ψ, ν) satisfying the estimates (38)
and (44), (x, ψ, u, ν) = (F − L)−1π, and we have ẋ, ψ̇, u, ν ∈ Lipµ.

Proof. If w = (x, ψ, u, ν) denotes (F − L)−1π, then w satisfies the first-order
necessary conditions (15)–(18) associated with (41). Lemmas 3.9 and 3.10 tell us that
the unique solution and multipliers for (41) satisfy the estimates (38) and (44) for π
near π∗. Since the first-order necessary conditions are sufficient for optimality when
coercivity holds, the variational system (15)–(18) has a unique solution, for π near
π∗, that is identical to the solution and multipliers for (41), and the estimates (38)
and (44) are satisfied.

To complete the proof, we need to show that ẋ, ψ̇, u, ν ∈ Lipµ for some con-
stant µ > 0. This follows from the regularity results of [8], where it is shown that
the solution to a constant coefficient, linear-quadratic problem satisfying the uniform
independence condition and with R positive definite, Q positive semidefinite, and
M = 0 has the property that the optimal u and associated ν are Lipschitz continuous
in time, while the derivatives of x and ψ are Lipschitz continuous in time. Moreover,
the Lipschitz constant in time is bounded in terms of the constant α in the uniform
independence condition and the smallest eigenvalue of R. Exactly the same analy-
sis applies to a linear-quadratic problem with time-varying coefficients; however, the
bound for the Lipschitz constant of the solution depends on the Lipschitz constants
of the matrices of the problem and of the parameters a, r, s, and ḃ, as well as on
a uniform bound for the smallest eigenvalue of R(t) on [0, 1] and for the parameter
α in the uniform independence condition. By Lemma 3.9 and with the choice for I
given in the statement of the lemma, the quadratic programs (37) and (41) have the
same solution for s, r, and a in an L∞ neighborhood of s∗, r∗, and a∗ and for b in
a W 1,∞ neighborhood of b∗. Hence, for parameters in this neighborhood of π∗, the
indices of the active constraints are contained in I(t) for each t, and the indepen-
dence condition (21) holds. Lemma 3.7 provides a lower bound for the eigenvalues of
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LIPSCHITZ STABILITY FOR STATE CONSTRAINED CONTROL 713

R(t). If (a, s, r, b) ∈ Y , then the Lipschitz constants for a, s, r, and ḃ are bounded
by those for a∗, s∗, r∗, and ḃ∗ plus κ. Hence, taking µ sufficiently large, the proof is
complete.

Proof of Theorem 1.1. We apply Theorem 2.2 with the identifications given at
the beginning of this section and with µ chosen sufficiently large in accordance with
Lemma 3.11. The completeness of X is established in Lemma 3.2, (Q1) is immediate,
(Q2) follows from smoothness, (Q3) is proved in Lemma 3.3, (Q4) follows from Lemma
3.11, and (Q5) is established in Lemma 3.4. Applying Theorem 2.2, the estimate (7) is
established. Under the uniform independence condition, coercivity is a second-order
sufficient condition for local optimality (see [4, Theorem 1]) which is stable under
small changes in either the parameters or the solution of the first-order optimality
conditions. Finally, we apply Lemma 3.1 to obtain the L∞ estimate of Theorem
1.1.

We note that the coercivity condition we use here is a strong form of a second-
order sufficient optimality condition; it not only provides optimality, but also guar-
antees Lipschitz continuity of the optimal solution and multipliers when uniform
independence holds. As recently proved in [6] for finite-dimensional optimization
problems, Lipschitzian stability of the solution and multipliers necessarily requires a
coercivity condition stronger than the usual second-order condition. For the treat-
ment of second-order sufficient optimality under conditions equivalent to coercivity,
see [18] and [21]. These sufficient conditions can be applied to state constraints of
arbitrary order. For recent work concerning the treatment of second-order sufficient
optimality in state constrained optimal control, see [16], [19], and [22].

4. Lipschitzian stability in L∞ . One way to sharpen the L∞ estimate of
Theorem 1.1 involves an assumption concerning the regularity of the solution to the
linear-quadratic problem (41). The time t is a contact point for the ith constraint of
Kx+ b ≤ 0 if (K(t)x(t) + b(t))i = 0 and there exists a sequence {tk} converging to t
with (K(tk)x(tk) + b(tk))i < 0 for each k.

Contact separation. There exists a finite set I1, I2, . . . , IN of disjoint, closed inter-
vals contained in (0, 1) and neighborhoods of (a∗, r∗, s∗) in W 1,∞ and of b∗ in W 2,∞

with the property that for each a, r, s, and b in these neighborhoods, and for each
solution to (41), all contact points are contained in the union of the intervals Ii with
exactly one contact point in each interval and with exactly one constraint changing
between active and inactive at this point.

Observe that if for (1) with p = p∗, there are a finite number of contact points,
at each contact point exactly one constraint changes between active and inactive,
and each contact point in the linear-quadratic problem (41) depends continuously on
the parameters, then contact separation holds. The finiteness of the contact set is a
natural condition in optimal control; for example, in [5] it is proved that for a linear-
quadratic problem with time invariant matrices and one state constraint, the contact
set is finite when uniform independence and coercivity hold.

THEOREM 4.1. Suppose that the problem (1) with p = p∗ has a local minimizer
(x∗, u∗) and that smoothness, contact separation, and uniform independence at A
hold. Let ψ∗ and ν∗ be the associated multipliers satisfying the first-order necessary
conditions (2)–(5). If the coercivity condition holds, then there exist neighborhoods V
of p∗ and U of w∗ = (x∗, ψ∗, u∗, ν∗) in W 1,∞×W 1,∞×L∞×L∞, such that for every
p ∈ V , there exists a unique solution w = (x, ψ, u, ν) ∈ U to the first-order necessary
conditions (2)–(5) and (x, u) is a local minimizer of the problem (1) associated with
p. Moreover, for every pi ∈ V, i = 1, 2, if wi = (xi, ψi, ui, νi) is the corresponding
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714 A. L. DONTCHEV AND W. W. HAGER

solution of (2)–(5), the following estimate holds:

‖x1 − x2‖W 1,∞ + ‖ψ1 − ψ2‖W 1,∞ + ‖u1 − u2‖L∞ + ‖ν1 − ν2‖L∞ ≤ cE∞.

To prove this result, we need to supplement the 2-norm perturbation estimates
provided by Lemmas 3.9 and 3.10 with analogous ∞-norm estimates.

LEMMA 4.2. If coercivity, uniform independence at A, and contact separation
hold, then there exist neighborhoods of (a∗, r∗, s∗) in W 1,∞ and of b∗ in W 2,∞ such
that for each ai, ri, si, and bi, i = 1, 2, in these neighborhoods, the associated solutions
(xi, ui) of (41) satisfy

‖δx‖W 1,∞ + ‖δψ‖W 1,∞ + ‖δu‖L∞ + ‖δν‖L∞
≤ c(‖δa‖L∞ + ‖δb‖W 1,∞ + ‖δr‖L∞ + ‖δs‖L∞).

(47)

Proof. Letting Aε denote the ε-active set defined in (43), we again choose ε =
.5 min εi, where εi is defined in (42). We consider parameters a, r, s, and b chosen
within the neighborhoods of the contact separation condition, and sufficiently close
to a∗, r∗, s∗, and b∗ that the active constraint set for the solution of the perturbed
linear-quadratic problem (41) is contained in Aε(t) for each t. By eliminating the
perturbations in the constraints, as we did in the proof of Lemma 3.8, there is no
loss of generality in assuming that a = b = 0. We refer to the quadratic programs
corresponding to the parameters (r1, s1) and (r2, s2) as Problems 1 and 2.

Let (x, u) be either (x1, u1) or (x2, u2). If t ∈ (0, 1) is a time for which Ki(t)x(t) =
0 for some i, then d

dt (Kix) = K̇ix + Kiẋ = 0. Substituting for ẋ using the state
equation ẋ = Ax+Bu and for u using the necessary condition (17) yields

KiBR
−1(KB)Tν = −K̇ix−KiAx+KiBR

−1(BTψ +MTx+ r).

This equation has the form

Niν = Six+ Tiψ + Uir(48)

for suitable choices of the row vectors Ni, Si, Ti, and Ui. Hence, at any time t where
Ki(t)x1(t) = Ki(t)x2(t) = 0, the change in solution and multipliers corresponding to
a change in parameters satisfies the equation

Ni(t)δν(t) = Si(t)δx(t) + Ti(t)δψ(t) + Ui(t)δr(t).(49)

By the contact separation condition, Problems 1 and 2 have the same active
set near t = 1. Since the components of ν corresponding to inactive constraints
are constant and since νi(1) = 0 if Ki(1)x(1) < 0, it follows that δνi(t) = 0 for
t near 1 when Kix1(1) < 0 > Kix2(1). The relation (49) combined with uniform
independence, with the L2 estimates provided in Lemmas 3.9 and 3.10, and with a
bound for the L∞ norm in terms of the H1 norm, gives

‖δν‖L∞[t,1] ≤ c(‖δr‖L∞ + ‖δs‖L∞).(50)

Using the bound (36) of Lemma 3.7 in (17) and applying Gronwall’s lemma to (16),
we have

‖δx‖W 1,∞[t,1] + ‖δψ‖W 1,∞[t,1] + ‖δu‖L∞[t,1] + ‖δν‖L∞[t,1]

≤ c(‖δr‖L∞ + ‖δs‖L∞)
(51)
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LIPSCHITZ STABILITY FOR STATE CONSTRAINED CONTROL 715

for all t < 1 in some neighborhood of t = 1. As t decreases, this estimate is valid until
the first contact point is reached for either Problem 1 or Problem 2. Proceeding by
induction, suppose that we have established (51) up to some contact point; we now
wish to show that (51) holds up to the next contact point.

Again, by the contact separation condition, there is precisely one constraint, say
constraint j, that makes a transition between active and inactive at the current contact
point. Suppose that on the interval (α, β), the active sets for Problems 1 and 2 differ
by the element j, and let τ be the first contact point to the left of α for either Problem
1 or Problem 2. If there is no such point, we take τ = 0. By the contact separation
condition, the difference α− τ is uniformly bounded away from zero for all choices of
the parameters s and r near s∗ and r∗. There are essentially two cases to consider.

Case 1. Constraint j is active in Problem 2 to the left of t = β, and constraint j
is active in Problem 1 to the left of t = α.

Case 2. Constraint j is active in Problem 2 to the right of t = α, and constraint
j is active in Problem 1 to the right of t = β.

Case 1. Since constraint j is active in both Problems 1 and 2 at t = α, it follows
from (49) and from the uniform independence condition that

|δνΓ(α)| ≤ c(‖δr‖L∞ + ‖δs‖L∞) + c|δνΓc(α)|,

where Γ is the set of indices of active constraints at t = α. Since δνi is constant for
i ∈ Γc on (α, β), the induction hypothesis yields

|δνΓc(α)| = |δνΓc(β)|L∞ ≤ c(‖δr‖L∞ + ‖δs‖L∞).(52)

Hence, we have

|δν(α)| ≤ c(‖δr‖L∞ + ‖δs‖L∞).(53)

Since νj is constant in Problem 1 on (α, β), and since it is monotone in Problem 2,
the bound (53) coupled with the bound (51) at t = β implies that

‖δνj‖L∞([α,β]) ≤ c(‖δr‖L∞ + ‖δs‖L∞).(54)

Since δνi is constant on (α, β) for i ∈ Γc, it follows from (51) that

‖δνΓc‖L∞([α,β]) ≤ c(‖δr‖L∞ + ‖δs‖L∞).(55)

Relation (49), for i ∈ Γ− = Γ \ {j}, along with (54) and (55) yield

‖δνΓ−‖L∞([α,β]) ≤ c(‖δr‖L∞ + ‖δs‖L∞).(56)

Combining (54)–(56) gives

‖δν‖L∞([α,β]) ≤ c(‖δr‖L∞ + ‖δs‖L∞).(57)

On the interval from t = α down to the next contact point τ , precisely the same
constraints are active in both Problems 1 and 2. Again, the relation (49) combined
with uniform independence, with the L2 estimates provided in Lemmas 3.9 and 3.10,
and with a bound for the L∞ norm in terms of the H1 norm gives

‖δν‖L∞([τ,α]) ≤ c(‖δr‖L∞ + ‖δs‖L∞).(58)
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716 A. L. DONTCHEV AND W. W. HAGER

Relation (50) for t = β, along with (57) and (58), gives

‖δν‖L∞([τ,1]) ≤ c(‖δr‖L∞ + ‖δs‖L∞).

And combining this with (15)–(17) gives (51) for t = τ . This completes the induction
step in Case 1.

Case 2. The mean value theorem implies that for some γ ∈ (τ, α), we have

(α− τ)
d

dt
Kj(t)δx(t)| t=γ = Kj(α)δx(α)−Kj(τ)δx(τ)

≤ 2‖Kj‖L∞‖δx‖L∞ ≤ c(‖δr‖L∞ + ‖δs‖L∞).

Hence, even though the derivative of Kjxi may not vanish on (τ, α), the derivative
of the change Kjδx is still bounded by the perturbation in the parameters at some
γ ∈ (τ, α): ∣∣∣∣ ddt (Ki(t)δx(t))

∣∣∣∣
t=γ
≤ c(‖δr‖L∞ + ‖δs‖L∞)/(α− τ).(59)

Since α and τ lie in disjoint closed sets Ik associated with the contact separation
condition, α− τ is bounded away from zero by the distance between the closest pair
of sets. Focusing on the left side of (59), we substitute δẋ = Aδx + Bδu, and we
substitute for δu using (17) to obtain the relation

Nj(γ)δν(γ) = Sj(γ)δx(γ) + Tj(γ)δψ(γ) + Uj(γ)δr(γ) + ∆j ,(60)

where |∆j | ≤ c(‖δr‖L∞ + ‖δs‖L∞)/(α − τ). Let Γ denote the set of indices of the
active constraints at t = β. Combining (60) with (49) for i ∈ Γ− = Γ \ {j} gives

|δνΓ(γ)| ≤ c(‖δr‖L∞ + ‖δs‖L∞) + c|δνΓc(γ)|.

The analysis for Case 1 can now be applied, starting with (52) but with α replaced
by γ.

Remark 4.3. In the proof of Lemma 4.2, we needed to ensure that the difference
α − τ , appearing in Case 2, was bounded away from zero. The contact separation
condition ensures that this difference is bounded away from zero, since α and τ lie in
disjoint closed intervals Ik. On the other hand, any condition that ensures a positive
separation for the contact points α and τ in Case 2 can be used in place of the contact
separation assumption of Theorem 4.1 and Lemma 4.2.

Proof of Theorem 4.1. The functions T , F , and L and the sets X, Π, and Y are
the same as in the proof of Theorem 1.1 except that L2 is replaced by L∞ and H1 is
replaced by W 1,∞ everywhere. Except for this change in norms, and the replacement
of the L2 estimates (38) and (44) referred to in Lemma 3.11 by the corresponding
L∞ estimate (47) of Lemma 4.2, the same proof used for Theorem 1.1 can be used to
establish Theorem 4.1.

5. Remarks. As mentioned in section 2, Theorem 2.2 is a generalization of
Robinson’s implicit function theorem [20] to nonlinear spaces. His theorem assumes
that the nonlinear term is strictly differentiable and that the inverse of the linearized
map is Lipschitz continuous. In optimal control, the latter condition amounts to
Lipschitz continuity in L∞ of the solution-multiplier vector associated with the linear-
quadratic approximation. For problems with control constraints, this property for the
solution is obtained, for example, in [1] or [4].
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LIPSCHITZ STABILITY FOR STATE CONSTRAINED CONTROL 717

In this paper, we obtain Lipschitzian stability results for state constrained prob-
lems utilizing a new form of the implicit function theorem applicable to nonlinear
spaces. We obtain optimal Lipschitzian stability results in L2 and nonoptimal sta-
bility results in L∞ under the uniform independence and the coercivity conditions.
And with an additional contact separation condition, we obtain a tight L∞ stability
result. These are the first L∞ stability results that have been established for state
constrained control problems.

The uniform independence condition was introduced in [8], where it was shown
that this condition together with the coercivity condition yield Lipschitz continuity
in time of the solution and the Lagrange multipliers of a convex state and control
constrained optimal control problem. Using Hager’s regularity result, Dontchev [1]
proved that the solution of this problem has a Lipschitz-type property with respect
to perturbations. Various extensions of these results have been proposed by several
authors. A survey of earlier results is given in [2].

In a series of papers (see [14], [15], and the references therein), Malanowski studied
the stability of optimal control problems with constraints. In [15] he considers an
optimal control problem with state and control constraints. His approach differs from
ours in the following ways: he uses an implicit function theorem in linear spaces and
a compactness argument, and the second-order sufficient condition he uses is different
from our coercivity condition. Although there are some similar steps in the analysis
of L2 stability, the two approaches mainly differ in their abstract framework.

A prototype of Lemma 3.5 is given in [1, Lemma 2.5]. Lemma 3.6 is related to
Lemma 3 in [2], although the analysis in Lemma 3.6 is much simpler since we ignore
indices outside of A(t). In the analysis of the linear-quadratic problem (37), we follow
the approach in [4].
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