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Abstract. Iterative methods are developed and studied for near-singular linear systems Cx = b.
Our approach, called the transformed minimal residual algorithm (TMRES), is derived from any
convergent iterative scheme Sxk+1 = Txk + b associated with a splitting C = S − T. In each step
of TMRES, the transformed residual S−1(b − Cx) is minimized over a Krylov space generated by
S−1T. The original iterative scheme typically converges slowly when C is nearly singular, while a
Krylov space generated by S−1T often contains a much better approximation to a solution. TMRES
is algebraically equivalent to the generalized minimal residual algorithm (GMRES) preconditioned
by S−1, although there are numerical differences since a different matrix S−1C is used to generate
the Krylov space in preconditioned GMRES. Special attention is given to sparsity and convergence
issues related to linear systems of the form (AAT + σI)x = b, where σ ≥ 0.
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1. Introduction. Iterative methods are developed and analyzed for singular
or near-singular linear systems Cx = b, where C is an m × m matrix, possibly
nonsymmetric. In the generalized minimal residual algorithm (GMRES) of Saad and
Schultz [43], the residual r(x) = b−Cx is minimized over a Krylov space generated
by the matrix C. Our transformed minimal residual approach (TMRES) is based on
a splitting C = S−T, where S is nonsingular and the spectral radius of S−1T is less
than one. The transformed residual S−1r(x) is minimized over x = x0 + z with z in
the Krylov space

K(S−1T,g, k) = span{g, (S−1T)g, (S−1T)2g, . . . , (S−1T)k−1g}
generated by S−1T starting from the vector g = S−1(b − Cx0). Even though the
associated iterative scheme Sxk+1 = Txk + b converges slowly when C is nearly
singular, we observe that K(S−1T,g, k) often yields a good approximation to a so-
lution of Cx = b for relatively small k. Theoretically, the Krylov space generated
by S−1T is the same as that generated by the GMRES preconditioned matrix S−1C.
Numerically, these spaces differ since the matrices S−1T and S−1C are different.

The splittings that we consider include successive overrelaxation (SOR), damped
Jacobi (see Hageman and Young [22]), and a new splitting applicable to situations
where the columns in a matrix are selected from the columns of a larger matrix. Some
early work on preconditioned conjugate gradient methods generated by splittings was
developed by Concus, Golub, and O’Leary [12, 13]. Work leading up to GMRES
includes that of Paige and Saunders [40], who developed a minimum residual algorithm
MINRES for symmetric systems. Other related work includes [31] and [50]. In [18]
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Greenbaum examines various preconditioners for the conjugate gradient method in
the context of partial differential equations. In [7] Brown and Walker examine the
convergence (or lack of it) for GMRES applied to singular or near-singular matrices.
The use of deflation with GMRES is studied in [37].

In [4] Baglama et al. develop preconditioned restarted GMRES algorithms
in which the preconditioner is generated by Sorensen’s implicitly restarted Arnoldi
method [46]. Their approach approximates an invariant subspace of the matrix as-
sociated with eigenvalues close to the origin. This subspace is used in a precondi-
tioner that moves these small eigenvalues to one, leading to more rapid convergence
in the GMRES algorithm. In this paper, we observe that for any convergent splitting
C = S −T, the eigenvalues of C close to the origin are often associated with eigen-
values of S−1T of nearly largest magnitude; as a result, a good approximation to the
solution of a nearly singular system Cx = b is often obtained from the Krylov space
K(S−1T,g, k) for relatively small k.

One possible application of the methods developed in this paper is to quadratic
programming with a sphere constraint. Problems of this form must be solved in
each iteration of the trust region algorithm [8, 10, 16, 38, 42]. The first-order opti-
mality system for these quadratic programs leads to a linear system whose matrix
becomes more singular as we increase either the radius of the sphere or the norm of
the linear term in the cost function. Hence, the quadratic programs arising in trust
region methods can lead to near-singular linear systems for which TMRES is well
suited. Other possible application areas include homotopy continuation methods [2],
nonlinear eigenvalue problems [11], and seismic inversion problems.

Throughout this paper, we illustrate convergence properties in the near-singular
setting using a prototype linear system of the form

(AAT + σI)x = b,(1.1)

where σ ≥ 0 and A is an m × n real matrix. Systems of this form, with σ a small
positive number, are solved in each iteration of the LP dual active set algorithm [23].
In interior point methods for linear programming [33, 51], each iteration involves
solving a linear system with matrix of the form ZΣZT. This system has the form
(1.1) when we take A = ZΣ1/2 and σ = 0. The test matrices in this paper are
obtained from the LP problems in David Gay’s Netlib collection (www.netlib.org/lp).
These matrices, which are all sparse, can be obtained in a variety of formats through
the COAP Software Forum (www.math.ufl.edu/∼coap).

For symmetric linear systems of the form (1.1), the TMRES scheme with SSOR
preconditioning and an SSOR preconditioned conjugate gradient scheme [6, 12, 13]
exhibit similar convergence when applied to ill-conditioned matrices emanating from
linear programming. In theory, these two schemes generate iterates in the same Krylov
space, but they differ in the merit function used to select the approximation from the
Krylov space.

To illustrate convergence problems that are encountered when solving nearly sin-
gular linear systems, we consider a netlib/lp matrix A for the (small) problem bea-
confd (m = 173, n = 295). The right side b was randomly generated on the unit
sphere1 in Rm, σ = 0, and the columns of A in (1.1) were scaled to be unit vectors.
This column scaling is the one we use in the LP dual active set algorithm. In interior

1A vector can be randomly generated on the Euclidean unit sphere by first randomly generating
its components using a Gaussian distribution with mean 0 then dividing the resulting vector by its
length.
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Fig. 1.1. Convergence for the conjugate-gradient method (CGM), the Gauss–Seidel method
(GS), the generalized minimal residual algorithm (GMRES) without restarts, and the transformed
minimal residual algorithm (TMRES) obtained from Gauss–Seidel splitting when A in (1.1) is the
test problem beaconfd.

point methods, the diagonal scaling matrix Σ becomes increasingly ill-conditioned,
and the condition number of the associated AAT could be much larger than that for
the normalized A used in our experiments.

We solve the linear system (1.1) using three different iterative methods: Gauss–
Seidel (GS), conjugate gradients (CGM), and GMRES. Although various Lanczos and
conjugate gradient type methods [41, 44, 45] have been developed for special versions
of (1.1), we do not take into account special structure for (1.1) in our computations;
rather, we treat this system as having the form Cx = b, where C is an m × m
symmetric, positive definite matrix. All of the schemes, GS, CGM, and GMRES,
are guaranteed to converge (see [49, p. 77], [36, Chap. 8], and [43]). Moreover, the
conjugate gradient method yields the best approximation to the solution from an
associated Krylov space, where the approximation quality is measured using the C-
norm defined by ‖x‖C =

√
xTCx. GMRES minimizes the residual norm ‖b −Cx‖,

where ‖ · ‖ is the Euclidean norm, over the same Krylov space. According to the
convergence theory, both CGM and GMRES solve Cx = b in at most m iterations,
assuming exact arithmetic.

With the starting guess x = 0, we plot in Figure 1.1 the iteration number versus
the base 10 logarithm of the residual norm for the associated iterate. The computa-
tions were done in double precision in Matlab on a Sun workstation. For this small
problem, the Gauss–Seidel and conjugate gradient methods converge slowly to the
solution, taking nearly 1200 iterations. The generalized minimal residual algorithm
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requires about 173 iterations, the number of rows inA. Paige and Saunders’ MINRES
routine would probably yield results similar to GMRES because C = AAT + σI is
symmetric and the two routines are algebraically equivalent in this case. TMRES will
be developed in sections 3 and 4. Its convergence behavior shown in Figure 1.1 for a
Gauss–Seidel splitting is typical for many netlib/lp test problems.

With GMRES and TMRES, restarts may be essential to reduce the storage re-
quirements when the matrix is nonsymmetric. In this paper, we do not analyze
restarts.

2. Convergence properties. Let us study more closely the convergence behav-
ior illustrated in Figure 1.1. The matrix associated with the test problem beaconfd,
like many of the problems in netlib/lp, has some rows that are nearly linear com-
binations of other rows. The 10 smallest and largest eigenvalues of AAT are the
following:

0.00000177 2.8954
0.00000415 3.5490
0.00001338 4.9565
0.00002115 5.1235
0.00002367 6.5875
0.00004273 7.1127
0.00004399 7.5612
0.00004847 10.9200
0.00005424 43.9156
0.00006267 63.2578

The matrix AAT is nearly singular in the sense that the ratio between the largest
and the smallest eigenvalue of AAT is of order 107, much larger than 1.

Let C = L+U be symmetric and positive definite, where

lij = cij and uij = 0 for i ≥ j, lij = 0 and uij = cij for i < j.(2.1)

The Gauss–Seidel method for solving Cx = b is given by the iteration

xk+1 = −L−1(Uxk − b).

If x∗ is the exact solution to Cx = b, then the error ek = xk − x∗ satisfies the recur-
rence ek+1 = Mek, where M = −L−1U. When C is positive definite, the spectral
radius of M, denoted ρ(M), is strictly less than 1 [49, p. 77]. The spectral radius
measures the convergence speed in the sense that the magnitude of error components
associated with eigenvectors whose eigenvalue magnitudes are equal to the spectral
radius is multiplied by the spectral radius in each iteration.

If C is singular and z is a nonzero vector such that Cz = 0, then the relation
(L + U)z = 0 implies that z = −L−1Uz, or z = Mz. Hence, z is an eigenvector
of M corresponding to the eigenvalue 1, and the spectral radius of M is at least 1.
Consequently, the error ek in the Gauss–Seidel iteration may not tend to zero. If
C is nearly singular, then the distance between the eigenvalues of M and 1 can be
estimated using Gerschgorin’s theorem.

Proposition 2.1. Let C0 be a square singular matrix, and consider the perturbed
matrix C = C0 + τI. Let S be any nonsingular matrix for which S−1C0 is diagonal-
izable: S−1C0 = FΦF−1, where Φ is a diagonal matrix containing the eigenvalues.
If T is chosen so that C = S−T (i.e., T = S−C0− τI), then for τ sufficiently close
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to zero, the eigenvalues µ1, µ2, . . . , µn of S−1T satisfy

min
i
|µi − 1| ≤ |τ |‖F‖1‖F−1‖1‖S−1‖1,

where ‖ · ‖1 is the matrix 1-norm (largest absolute column sum).
Proof. Observe that

F−1(S−1T)F = F−1(I− S−1C0 − τS−1)F = I−Φ− τF−1S−1F.(2.2)

Since C0 is singular, one of the diagonal elements of Φ is zero. Hence, one of the
diagonal elements of I −Φ is 1. Let δ be the minimum absolute difference between
distinct diagonal elements of Φ and choose τ close enough to zero that

|τ |‖F‖1‖F−1‖1‖S−1‖1 < δ.

By Gerschgorin’s theorem and the fact that S−1T and F−1(S−1T)F are similar, it
follows from (2.2) that S−1T has an eigenvalue in the sphere in the complex plane
with center 1 and radius |τ |‖F‖1‖F−1‖1‖S−1‖1. This completes the proof.

Loosely speaking, eigenvalues of C near 0 correspond to eigenvalues ofM = S−1T
near 1 and to slow convergence of the Gauss–Seidel method.

A number of papers [32, 35, 47] have appeared in the literature relating the
spectrum of the conjugate gradient method to its convergence. More recent work
is surveyed in [1]. Here we focus on the effect of near singularity on convergence.
The following result is the key to understanding the behavior for CGM depicted in
Figure 1.1.

Proposition 2.2. If C is a symmetric matrix, then as σ tends to zero, we have

σ(σI+C)−1 = P+O(σ),

where P denotes the orthogonal projection into the null space of C and O(σ) denotes
a term that can be bounded in magnitude by a constant times |σ|.

Proof. LetC = QΛQT denote the diagonalization ofC, whereQ is the orthogonal
matrix of eigenvectors and Λ is a diagonal matrix whose diagonal elements λ1, λ2,
. . . , λm are the eigenvalues. We assume that the eigenvalues are ordered so that

|λ1| ≥ |λ2| ≥ · · · ≥ |λk| > 0 and λi = 0 for i > k.

Hence,

σ(σI+C)−1 = σQ(Λ+ σI)−1QT(2.3)

and

σ(Λ+ σI)−1 = J+O(σ),(2.4)

where

J =

(
0 0
0 I

)
.

Above, the lower right I is (m− k)× (m− k), and 0 stands for a block of zeros. Since
QJQT = P, (2.3) and (2.4) complete the proof.
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The CGM applied to the linear system Cx = b, where C is symmetric and
positive definite, is the following [25, p. 340]: d0 = r0 = b−Cx0 and for k ≥ 0,

pk ← Cdk,
xk+1 ← xk + αkdk, where αk = rT

krk/d
T
kpk,

rk+1 ← rk − αkpk,
dk+1 ← rk+1 + βkdk, where βk = rT

k+1rk+1/r
T
krk.

In each step of the conjugate gradient method, the current direction dk is multiplied
by C in the process of obtaining the new direction dk+1. By induction, xk = x0+zk,
where zk lies in the Krylov space K(C, r0, k).

Let x∗ = C−1b denote the solution to Cx = b. The conjugate gradient method
is designed to minimize ‖xk−x∗‖C over xk = x0+zk with zk ∈ K(C, r0, k). Observe
that

‖x− x∗‖C =
√
(x− x∗)C(x− x∗) =

√
(Cx− b)TC−1(Cx− b) =

√
r(x)TC−1r(x),

where r(x) = b−Cx. If (λi,qi), i = 1, . . . ,m, are orthonormal eigenpairs of C, then

‖x− x∗‖2C =
m∑
i=1

ci(x)
2/λi, where ci(x) = r(x)Tqi.(2.5)

Since the reciprocal of the eigenvalues appears in this expression, the components ci
of the residual r associated with the smallest eigenvalues are amplified the most in
(2.5).

Suppose that we apply CGM to a linear system of the form (1.1), where the
rows of A are linearly dependent and σ is small. By Proposition 2.2, the solution
x ≈ Pb/σ, the projection of b into the null space of AT, divided by σ. On the
other hand, the kth conjugate gradient iterate lies in the Krylov space K(C,b, k) if
x0 = 0. The vectors forming this space are all contained in the range of C, and if
σ is small, then each of these vectors is nearly in the range of A. We saw in (2.5)
that CGM attaches the greatest weight to those components of the error associated
with the smallest eigenvalues. Hence, the conjugate gradient method is using vectors
that nearly lie in the range of A to approximate solution components that are nearly
orthogonal to the range. In theory, CGM is guaranteed to reach the solution in a
finite number of steps. This convergence must involve the subtraction of nearly equal
numbers followed by the division of numbers that are nearly zero.

For the example depicted in Figure 1.1 with σ = 0, the effect is very similar.
The rows of A are nearly dependent, the solution nearly lies in the space spanned
by eigenvectors associated with the smallest eigenvalues of AAT, while the conjugate
gradient iterates nearly lie in the space spanned by eigenvectors associated with the
largest eigenvalues of AAT. For a nice survey of results concerning the convergence
of the conjugate gradient method in finite precision arithmetic, see the paper [20]
of Greenbaum and Strakos̆. There they observe that the finite precision conjugate
gradient method behaves similarly to the exact algorithm applied to a matrix with
nearby eigenvalues.

In the generalized minimal residual algorithm applied to Cx = b, the kth ap-
proximation xk to the solution is obtained by solving the problem

min ‖r(x)‖ subject to x = x0 + z, z ∈ K(C, r0, k).(2.6)
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Thus when C is symmetric, the GMRES iterates are contained in the same Krylov
space used by the conjugate gradient method. Unlike CGM, GMRES does not weight
the components of the residual in (2.6). As k increases, the components of the vector
Ckr0 associated with the large eigenvalues of C become much larger in magnitude
than the components associated with the small eigenvalues. Hence, we expect that
GMRES approximates the solution components associated with the largest eigenvalues
first. As the number of iterations approaches the dimension of the matrix, GMRES
generates vectors orthogonal to the eigenvectors associated with the large eigenvalues.
These orthogonal vectors correspond to the space associated with the eigenvectors of
the smallest eigenvalues. Observe in Figure 1.1 that when the approximating space
approaches the space corresponding to the smallest eigenvalues, the GMRES error
quickly decreases. In order to improve on GMRES in this near-singular setting, we
will strive to reach this space sooner. Note that for nonsymmetric matrices, the
convergence of GMRES depends on both eigenvalues and departure from normality.
For example, see [9, 19, 39] for related results and discussion.

3. Krylov, Arnoldi, and TMRES. With CGM or GMRES, the approximate
solution lies in a Krylov space, and an orthonormal basis for this space is generated
by the Arnoldi (Gram–Schmidt) process. The following algorithm generates such an
orthonormal basis {v1,v2, . . . ,vk} for the Krylov space K(M,g, k):

Algorithm 1 (Arnoldi).
v1 ← g/‖g‖
for j = 1 : k − 1

s←Mvj

for i = 1 : j
hij ← sTvi (= vT

i Mvj)
s← s− hijvi

end
hj+1,j ← ‖s‖
vj+1 ← s/hj+1,j

end
end Algorithm 1
Obviously, if hk+1,k = 0 for some k, the Arnoldi process should stop because

K(M,g, j + 1) = K(M,g, j) for all j ≥ k.(3.1)

CGM or GMRES corresponds to the choice M = C.
In order to more quickly generate vectors near the space spanned by the eigenvec-

tors of C associated with the smallest eigenvalues, we consider the matrixM = S−1T
associated with a splitting C = S − T, where S is nonsingular. This splitting leads
to an iterative method

Sxk+1 = Txk + b,(3.2)

which converges to a solution of Cx = b for all choices of the initial condition x0

if and only if ρ(S−1T) < 1. The terminology “convergent splitting” will mean that
ρ(S−1T) < 1. From the discussion of section 2, we know that the eigenpairs of
C whose eigenvalues are near zero correspond to eigenpairs of S−1T whose eigen-
values are near 1. Hence, the eigenvectors of S−1T associated with its eigenval-
ues of largest magnitude include approximations to the eigenvectors of C associated
with its eigenvalues of smallest magnitude. Suppose that S−1T has m linearly in-
dependent eigenvectors f1, f2, . . . , fm and associated eigenvalues µ1, µ2, . . . , µm. If
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g = c1f1 + c2f2 + · · · + cmfm is the expansion of g in terms of the eigenvectors,
then

Mkg = (S−1T)kg = c1µ
k
1f1 + c2µ

k
2f2 + · · ·+ cmµk

mfm.

It follows that the components of g associated with the absolute largest eigenvalues of
M are amplified more rapidly than the components of g associated with the absolute
smallest eigenvalues. Loosely speaking, the Krylov space K(M,g, k) converges, as k
grows, to those eigenvectors associated with the absolute largest eigenvalues of M
much more quickly than to those eigenvectors associated with the absolute smallest
eigenvalues ofM. Since those eigenvectors associated with the large eigenvalues ofM
correspond to eigenvalues of C associated with its smallest eigenvalues, we converge
to that space associated with the small eigenvalues of C that is critical in the near-
singular setting.

After generating a Krylov space and a basis for it using Algorithm 1, we now
return to the linear system Cx = b. If we were to minimize the norm of the residual
r = b − Cx over the space spanned by the basis vectors vi, 1 ≤ i ≤ k, we would
need to multiply each vi by C. To circumvent this multiplication, we minimize the
transformed residual t given by

t(x) = S−1r(x) = S−1(b−Cx) = S−1b− (I−M)x.

Now when x is expanded in the basis vectors vi and we minimize the norm of t, we
need to compute the product Mvi, which is available from Algorithm 1.

At step k, the TMRES approximation xk to x = C−1b is the solution to the
transformed problem

min ‖t(x)‖ subject to x = z+ x0, z ∈ K(M,g, k).(3.3)

Making the special choice g = S−1(b−Cx0), and substituting x = z+x0, we obtain
the problem

min ‖g − (I−M)z‖ subject to z ∈ K(M,g, k).(3.4)

If Vk denotes the matrix whose columns are the vectors v1, v2, . . . , vk generated by
the Arnoldi process, then (3.4) reduces to the following equivalent problem:

min
y
‖g − (I−M)Vky‖.(3.5)

The solution to the least-squares problem (3.5) can be obtained by a process
similar to that described in [43]. If H is the (k + 1) × k upper Hessenberg matrix
whose elements are given by the Arnoldi process, then the following relation holds:

MVk = Vk+1H.(3.6)

Let e denote the vector whose first component is ‖g‖ and whose remaining components
are zero. After substituting g = Vk+1e in (3.5) and utilizing (3.6), we obtain the
equivalent problem

min
y
‖Vk+1e−Vky +Vk+1Hy‖.(3.7)
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Since the columns of Vk+1 are orthonormal, we have

‖Vk+1e−Vky +Vk+1Hy‖ = ‖Vk+1e−Vk+1

[
y
0

]
+Vk+1Hy‖

= ‖Vk+1e+Vk+1

(
H−

[
I
0

])
y‖

= ‖e+ H̄y‖,
where H̄ is the same as the Hessenberg matrix H generated by Algorithm 1 except
that 1’s have been subtracted from the diagonal elements. With this substitution,
(3.7) simplifies to

min
y
‖e+ H̄y‖.(3.8)

Finally, the vector e + H̄y is multiplied on the left by a series of Givens rotations
reducing H̄ to triangular form R and reducing e to a vector f . Our approximation to
the solution of Cx = b is xk = x0 +Vky, where y is the solution of the triangular
system (Ry)1:k = f1:k. The minimum norm in (3.8) is |fk+1|.

In the following statement of TMRES, we overwrite H and e with R and f ,
respectively. This algorithm is basically the same as preconditioned GMRES; in
GMRES preconditioned by S−1, the multiplication by S−1T is replaced by S−1C
and the diagonal of H is not modified. The function Givens(a) below generates a
2× 2 rotation matrix Q with the property that (Qa)2 = 0.

Algorithm 2 (TMRES for Cx = b).
C = S−T, S nonsingular, ρ(S−1T) ≤ 1
g← S−1(b−Cx0), v1 ← g/‖g‖, e← 0, e1 ← ‖g‖
for j = 1, 2 . . . until convergence

s← S−1(Tvj)
for i = 1 : j

hij ← sTvi

s← s− vihij

end
hj+1,j ← ‖s‖
vj+1 ← s/hj+1,j

hii ← hii − 1
for i = 1 : j − 1

H(i : i+ 1, j)← QiH(i : i+ 1, j)
end
Qj ← Givens(H(j : j + 1, j))
H(j : j + 1, j)← QjH(j : j + 1, j)
e(j : j + 1)← Qje(j : j + 1)

end
xj ← x0 −Vj

(
H(1 : j, 1 : j)−1e(1 : j)

)
end Algorithm 2
Possible choices of S with the property that ρ(S−1T) < 1 are the following: (i) if

C is symmetric and positive definite, then S = L, where L is the lower triangular
matrix whose lower triangle matches that of C (Gauss–Seidel choice); (ii) if C is row
diagonally dominant, then S = L or S = D, where D is the diagonal matrix whose
diagonal matches that of C (Jacobi choice); (iii) if C = AAT+σI where the columns
of A come from the columns of a larger matrix B = (A|N), then S = BBT + σI (see
Theorem 6.2 below).
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4. Convergence analysis. The convergence of TMRES follows readily from
previously established theory. Recall [29, p. 471] that the index of the matrixM with
respect to the zero eigenvalue is the size of the largest singular Jordan block. If R(C)
denotes the range of C, then we have the following result.

Theorem 4.1. Let C be a square matrix with C = S − T, where S is non-
singular, and define M = S−1T. Then Cx = b has a solution in the Krylov space
K(M,S−1b, k) for some k if and only if S−1b ∈ R((I−M)i), where i is the index of
the zero eigenvalue of I−M.

Proof. By [30, Thm. 2] the linear system (I −M)x = g has a solution in the
Krylov space K(I−M,g, k) for k sufficiently large if and only if g ∈ R((I−M)i), where
i is the index of the zero eigenvalue of I−M. If Pk denotes the set of polynomials of
degree at most k, it can be shown that

Pk = {p(y) : y = 1− x, p ∈ Pk}.

As a result, we have K(M,g, k) = K(I−M,g, k). Hence, by [30, Thm. 2] the linear
system (I−M)x = g has a solution in the Krylov space K(M,g, k) for k sufficiently
large if and only if g ∈ R((I−M)i). We take g = S−1b to complete the proof.

If one is not an eigenvalue ofM, then the index of the zero eigenvalue of I−M is
zero and the condition S−1b ∈ R(I) holds trivially. If one is a nondefective eigenvalue
ofM, then the index of the zero eigenvalue of I−M is one and the condition S−1b ∈
R(I−M) is equivalent to b ∈ R(C).

An analysis of the convergence of TMRES in terms of the spectrum ofM can be
given along the lines of the analysis for the conjugate gradient method in [48] or [14],
and for GMRES in [43]. For example, we have the following result.

Theorem 4.2. Suppose that C = S − T, where S is invertible, and that there
exists a nonsingular matrix F such that M = S−1T = FΦF−1, where Φ is diagonal.
If xk denotes a solution to (3.3), and µi is the ith diagonal element of Φ, then we
have

‖t(xk)‖ ≤ ‖F‖ ‖F−1‖ ‖t(x0)‖ min
p∈Pk
p(0)=1

max
i
|p(1− µi)|.

Proof. Simply apply [43, Prop. 4] to the transformed system (I−M)z = g, where
g = t(x0).

5. More examples. When C is symmetric and positive definite, the Gauss–
Seidel splitting is convergent and, hence, yields an appropriate TMRES splitting.
Figure 1.1 shows the iterates for the TMRES/GS algorithm applied to (1.1) where
A is the matrix from beaconfd and σ = 0. After about 35 iterations, the norm of
the residual has been reduced by 12 orders of magnitude, providing relatively rapid
convergence.

Next, we examine the convergence for progressively larger problems from the
netlib/lp directory. Figure 5.1 shows the convergence for the system (1.1) where A
is the matrix from fffff800 (m = 524, n = 1028, σ = 0). The condition number for
AAT is of order 1019. Also, in Figure 5.1 we show the convergence of preconditioned
GMRES with the preconditioner S = L, the lower triangular part of C. Theoretically,
the TMRES and the preconditioned GMRES curves should coincide since the Krylov
spaces generated by M and by I −M are identical, algebraically. Note though that
when a vector is multiplied by I −M, some subtraction of nearly equal numbers
occurs: If f is an eigenvector of M whose associated eigenvalue µ is near one, then
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Fig. 5.1. Convergence for the test problem fffff800, σ = 0.
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Fig. 5.2. Convergence for the test problem greenbea, zero rows deleted, σ = 0.

(I −M)f = (1 − µ)f ≈ 0. As is well known (see [25, sects. 1–4]), the subtraction
of nearly equal numbers can produce a large relative error and numerical differences
between TMRES and GMRES.

Figures 5.2 and 5.3 show the convergence for greenbea (m = 2392, n = 5598).
Since 3 rows in greenbea are completely zero, we ran two variations of the problem.
In the variation of Figure 5.2, the zero rows are deleted, while in the variation of
Figure 5.3, the zero rows are included, but σ = 10−6 to keep the diagonal of C
nonzero. In each case, the TMRES algorithm exhibits an attractive convergence
rate. Since the TMRES algorithm minimizes the norm of the transformed residual in
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Fig. 5.3. Convergence for the test problem greenbea, zero rows included, σ = 10−6.
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Fig. 5.4. Convergence for the test problem greenbea, σ = 10.

each step, the norm of the residual itself, plotted in Figures 1.1 and 5.1–5.3, is not
guaranteed to decay in each iteration. In fact, GMRES is the only algorithm depicted
in these figures that is guaranteed (in theory) to reduce the norm of the residual in
each step.

Finally, we took σ = 10 in greenbea in order to examine the convergence speed
when the eigenvalues of the matrix are strongly bounded away from zero and the
matrix is well-conditioned. As seen in Figure 5.4, all the schemes converge quickly.
The convergence of CGM and GMRES is almost identical since the ratio between the
largest and smallest eigenvalue in (2.5) is of order 1, and hence, CGM and GMRES
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minimize almost the same expression in each step. We emphasize that although
TMRES with Gauss–Seidel splitting is effective for nearly singular linear systems
such of those found in netlib/lp, its convergence when applied to a well-conditioned
partial differential equation may be no better than either CGM or GMRES.

6. Symmetric TMRES. It is well known that for the Arnoldi process (Algo-
rithm 1), the leading submatrices of the upper Hessenberg matrix H are tridiagonal if
M = S−1T is symmetric. Hence, in this symmetric case, we can skip the evaluation
of hij when i < j − 1. In the spirit of Hageman and Young’s terminology [22], we
say that the iteration (3.2) is symmetrizable if there exists an invertible matrix W
such that WMW−1 is symmetric. With the change of variables x = W−1w + x0,
the iteration (3.2) can be written

wk+1 =WMW−1wk +Wg, g = S−1(b−Cx0).(6.1)

We now form a least-squares problem analogous to (3.4) to obtain an approximation
xk to a solution of Cx = b. In particular, xk =W−1zk + x0, where zk is a solution
to

min ‖Wg − (I−WMW−1)z‖ subject to z ∈ K(WMW−1,Wg, k).(6.2)

This symmetric least squares problem can be solved using Algorithm 2. After
taking into account the tridiagonal structure of H, the resulting algorithm is closely
connected with Paige and Saunders’ MINRES algorithm [40]. Although the orthonor-
mal vectors vi for i ≤ j are needed in Algorithm 2, the following idea of Paige and
Saunders [40, 41] can be used to avoid their storage. Instead of evaluating

Vj

(
H(1 : j, 1 : j)−1e(1 : j)

)

as we do in Algorithm 2, Paige and Saunders evaluate

(
VjH(1 : j, 1 : j)

−1
)
e(1 : j).

LetR denote the upper triangular matrixH(1 : j, 1 : j) generated by Algorithm 2, and
define Z = VjR

−1. Since the Hessenberg matrix used to generate R is tridiagonal,
R has three bands, a diagonal band and two superdiagonal bands. Hence, the jth
column zj of Z is given by the recurrence

zj = (vj − zj−1rj−1,j − zj−2rj−2,j)/rjj .

The complete algorithm is the following.
Algorithm 3 (TMRES for Cx = b, WS−1CW−1 symmetric).

g← S−1(b−Cx0), e← 0, e1 ← ‖Wg‖, v1 ←Wg/e1
u← 0, Q0 ← I, Q−1 ← 0
for j = 1, 2, . . . until convergence

r←W−1vj

s←W(Mr) (C = S−T, M = S−1T)
d← sTvj , ū← u
s← s− dvj − uvj−1

u← ‖s‖
vj+1 ← s/u
d← d− 1
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[t ū]← [0 ū]QT
j−2

[ū d]← [ū d]QT
j−1

Qj ← Givens(d, u)
e(j : j + 1)← Qje(j : j + 1)
d← ([d u]QT

j )1
zj ← (r− ūzj−1 − tzj−2)/d
xj ← xj−1 − zjej

end
end Algorithm 3
Since an iteration of Algorithm 3 requires only the vectors vj , vj−1, zj−1, zj−2,

and xj−1, all the preceding vectors can be discarded. As in Algorithm 2, for a nearly
singular linear system Cx = b, the iteration (6.1) should be devised in such a way
that ρ(M) ≤ 1. If z lies in the null space of C, then Wz is an eigenvector of
WMW−1 =W(S−1T)W−1 whose eigenvalue is 1. Thus the eigenvalues of smallest
modulus in the original problem are associated with eigenvalues of largest modulus in
the transformed problem.

There are various ways to choose a symmetrizing matrix W. If C = S − T is a
splitting for which ρ(M) = ρ(S−1T) < 1 where S is symmetric and positive definite
and T is symmetric, then we can take W = S1/2. With this choice for W, we
can avoid squares roots in Algorithm 3 if vectors like s and vj are replaced by new
variables that are equal to W−1 times old variables. The resulting algorithm is the
following.

Algorithm 3a (TMRES for Cx = b, WS−1CW−1 symmetric).
g← S−1(b−Cx0), e← 0, e1 ← ‖Wg‖, v1 ← g/e1
u← 0, Q0 ← I, Q−1 ← 0
for j = 1, 2, . . . until convergence

r← vj

s←Mr (C = S−T, M = S−1T)
d← (Ws)T(Wvj), ū← u
s← s− dvj − uvj−1

u← ‖Ws‖
Continue as in Algorithm 3

end
end Algorithm 3a

In this variation of Algorithm 3, W enters as a product WTW. Hence, when
W = S1/2, we have WTW = S, and the square root is gone.

As an illustration of this symmetrization, suppose that C is symmetric and posi-
tive definite and D is a block diagonal matrix whose diagonal blocks match those of
C. The damped Jacobi iteration (see [22]) corresponding to the splitting S = ωD is
convergent when the damping parameter ω is sufficiently large, and for this splitting,
S is positive definite. To determine a suitable value for ω, observe that

S−1T = I− 1

ω
D−1C,

where D−1C is similar to the symmetric, positive definite matrix D−1/2CD−1/2.
The eigenvalues of S−1T are real and less than 1 for any choice of ω > 0, and for
ω > 1

2ρ(D
−1C), the eigenvalues of S−1T are greater than −1. Since the spectral

radius of a matrix is bounded by any matrix norm, we have ρ(M) ≤ ‖M‖1. An
estimate for the 1-norm of a matrix can be obtained using the algorithm developed
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Fig. 6.1. Convergence for TMRES using the test problem fffff800 and various symmetrization
schemes.

in [24]. Also see [25, p. 139] and [15, Alg. 7] for symbolic formulations of this algo-
rithm. A Matlab version of this 1-norm estimation algorithm, due to Tim Davis, is
available in Mathwork’s contributed m-files ftp site, ftp.mathworks.com, as the file
pub/contrib/v4/linalg/normest1.m, while Nick Higham gives a Fortran implementa-
tion in ACM TOMS Algorithm 674 [28].

In Figure 6.1, we show the convergence of TMRES using the damped Jacobi
scheme, where D is the diagonal of C and ω is 2

3‖D−1C‖1, for the test problem
fffff800. We also show in Figure 6.1 convergence for TMRES/GS and for a damped
Jacobi scheme associated with a block diagonal D gotten from the Chaco partitioning
code [27] of Hendrickson and Rothberg by permuting the rows and columns in order
to maximize the number of nonzero elements of C in diagonal blocks of size 8 × 8
and 9× 9 (60 blocks altogether). Similar partitions are generated by the code Metis
[34]. Observe that the TMRES/Block Jacobi scheme converges slightly faster than
TMRES/Jacobi, but not as fast as TMRES/GS.

For schemes like Gauss–Seidel or successive overrelaxation (SOR), the S matrix is
not symmetric, and the square root S1/2 may be complex or nonsymmetric. However,
when C = S−T is symmetric, a two-step symmetrization is possible using the original
iteration followed by its transpose:

Sxk+1/2 = Txk + b, STxk+1 = TTxk+1/2 + b.

If the two steps are combined into one step, then

xk+1 =M2xk + g, where M2 = S−TTTS−1T and g = S−T(TTS−1 + I)b.

In particular, for the SOR splitting of C, this two-step scheme is the same as symmet-
ric SOR (SSOR). As we now show, these two-step schemes are always symmetrizable
when C is symmetric and positive definite.

Proposition 6.1. If C = S − T, where S is nonsingular and C is symmetric
and positive definite, then M2 = S−TTTS−1T is symmetrizable with W = C1/2.



762 WILLIAM W. HAGER

Proof. Substituting T = S−C, we obtain

M2 = I− S−TC− S−1C+ S−TCS−1C.

Hence, C1/2M2C
−1/2 is symmetric.

Let D be the diagonal of a symmetric, positive definite matrix C. For the SOR
splitting S = L + ρD, where ρ = (1 − ω)/ω and 0 < ω < 2, another possible sym-
metrization isW = D−1/2(L+ρD)T (see [22, p. 31]). In Figure 6.1, the curve labeled
TMRES/SSOR, we show the convergence of symmetrized TMRES for the Gauss–
Seidel/SOR splitting S = L (ρ = 0). Also in Figure 6.1 we show the convergence
of a preconditioned conjugate gradient method [6, 12, 13] with SSOR preconditioner
(ω = 1). Observe that the convergence of TMRES/SSOR and CGM/SSOR are very
similar. Both schemes generate iterates in the same Krylov space, but they differ in
the merit function used to select the approximate solution.

The following identities can be used to streamline the implementation of the SSOR
preconditioned iteration:

M2 = I− (2ρ+ 1)(S−TDS−1)C,

WM2W
−1 = I− (2ρ+ 1)D1/2S−1CS−TD1/2.(6.3)

From this relation, we see that if z lies in the null space ofC, thenWz is an eigenvector
ofWM2W

−1 with eigenvalue 1. Hence, eigenvalues of smallest modulus for C again
correspond to eigenvalues of largest modulus for WM2W

−1.
In some optimization applications, such as the LP dual active set algorithm, we

need to solve many different systems of the form (1.1) where the columns of A come
from the columns of a larger matrix B: B = (A|N). As a consequence of the following
result, which is basically a reformulation of the classical convergence theorem used
for the SOR scheme, the splitting obtained by taking S = BBT + σI and T = NNT

is convergent.

Theorem 6.2. Suppose that C is symmetric and positive definite and C = S−T,
where S is invertible. If S+TT is positive definite, then ρ(M) < 1 > ρ(M2).

Proof. Our proof that ρ(M) < 1 is essentially that which appears in [49, p. 77]
recast in terms of a matrix splitting. A proof that ρ(M2) < 1 for the SOR iteration
appears in [21] (also see the classic reference [52]), while here we obtain a more general
result.

Let f be any vector and define g =Mf and δ = f−g. From the identity Sg = Tf ,
we obtain the following relations:

(S−T)g +Tg = Tf or Cg = Tδ,

and

Sg = (T− S)f + Sf or Cf = Sδ.

Multiplying the first relation by g∗ (the conjugate transpose of g) and the second
relation by f∗, subtracting, and exploiting the identity Sg = Tf , we have

f∗Cf − g∗Cg = (f∗S− g∗T)δ
= (f∗S− g∗T)δ + (Tf − Sg)∗δ
= f∗(S+TT)δ − g∗(T+ ST)δ.(6.4)
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Since C is symmetric,

CT = ST −TT = C = S−T.

Hence, S+TT = ST +T, and substituting this in (6.4) gives

f∗Cf − g∗Cg = δ∗(S+TT)δ.(6.5)

If f is an eigenvector associated with an absolute largest eigenvalue λ of M, then
g =Mf = λf , and it follows from (6.5) that

(1− |λ|2)f∗Cf = δ∗(S+TT)δ ≥ 0

since S + TT is positive definite. Since C is also positive definite, we conclude that
|λ| ≤ 1. If |λ| = 1, then δ = 0, or g = f =Mf . Rearranging this last identity gives
Cf = 0, which is impossible since C is invertible. Hence |λ| < 1 and ρ(M) < 1.

With h defined by h = S−TTTg = S−TTTS−1Tf =M2f , the same manipulations
used to obtain (6.5), but with S and T replaced by ST and TT, yield the relation

g∗Cg − h∗Ch = ε∗(S+TT)ε, ε = g − h.

Adding this relation to (6.5), we obtain

f∗Cf − h∗Ch = δ∗(S+TT)δ + ε∗(S+TT)ε ≥ 0.

Now, if f is an eigenvector associated with the absolute largest eigenvalue µ of M2,
then |µ| ≤ 1 and |µ| = 1 if and only if δ = 0 = f − g and ε = 0 = g − h. Again, the
identity g = f =Mf implies that C is singular. Hence |µ| < 1 and ρ(M2) < 1.

7. Sparsity considerations. If TMRES is implemented using either a Gauss–
Seidel or an SOR splitting, then for a linear system of the form (1.1), it would appear
that the product AAT must be evaluated. After forming this product, the number
of multiplications and additions needed to perform the iteration is nnz(AAT), where
nnz is (Matlab) notation for the number of nonzero elements. When A is sparse,
AAT often has more nonzero entries than A itself. Hence, for some sparse matrices,
it may be more efficient to express an iteration for (1.1) in terms of A itself rather
than AAT. In [6] (also see [5, p. 284]) Björck and Elfving show that for SSOR pre-
conditioned conjugate gradient iterations, the matrix-vector product (WM2W

−1)x
associated with the SSOR matrix (6.3) and AAT can be evaluated in about 4nnz(A)
multiplications since products of the form S−Tx and A(S−Tx) can be simultaneously
evaluated in 2nnz(A) multiplications altogether. A similar approach applies to SOR
splittings as we now observe.

If y and z denote the iterates xk and xk+1, respectively, in (3.2) (so that Sz =
Ty + b), then for the SOR iteration with relaxation parameter 0 < ω < 2, we have

zi − yi =
ω
(
bi −

∑i−1
j=1 cijzj −

∑m
j=i cijyj

)
cii

, i = 1 to m.

Since C = AAT + σI for the system (1.1), it follows that

cij = aT
i aj for i �= j, cii = σ + ‖ai‖2,
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Table 1
Method and approximate number of multiplications and additions.

Method Operations
TMRES/SSOR 4nnz(A)
CGM/SSOR 4nnz(A)
TMRES/SOR 2nnz(A)
GS 2nnz(A)
GMRES 2nnz(A)
TMRES/Jacobi 2nnz(A)
CGM 2nnz(A)

where ai denotes the ith column of A
T. Let us define qi ∈ Rn by

qi =

i−1∑
j=1

ajzj +

m∑
j=i

ajyj .

From this definition, it follows that

zi − yi = ω(bi − σyi − qT
i ai)/cii, where qi+1 = qi + ai(zi − yi).

Hence, an iteration of SOR, overwriting the current iterate xk by the new iterate
xk+1, can be implemented in the following way.

Algorithm 4 (SOR for (AAT + σI)x = b,q = ATxk).
for i = 1 : m

d← ω(bi − σxi − qTai)/(σ + ‖ai‖2)
q← q+ aid
xi ← xi + d

end
end Algorithm 4

After completing the loop in Algorithm 4, q contains ATxk+1 and x contains
xk+1, assuming x initially stores xk. Note that this SOR iteration requires 2nnz(A)
multiplications and additions.

8. Conclusions. In Table 1 we give work estimates for various iterative schemes
studied in this paper and for the prototype system (1.1). We assume that the product
AAT is not formed, and that the computations utilize A by itself. Table 1 only gives
the matrix-vector product work; for Algorithm 3 and symmetric schemes such as
CGM, TMRES/SSOR, CGM/SSOR, and TMRES/Jacobi, each iteration involves a
small number (between 5 and 10) of additional vector-vector or scalar-vector products.
For schemes based on the nonsymmetric Algorithm 2, there are about (k − 1)(k + 2)
additional vector-vector or scalar-vector products.

The numerical experiments in this paper show that iterative schemes may con-
verge slowly when the matrix is nearly singular. In the TMRES approach, we start
with a convergent splitting C = S−T and compute an orthonormal basis for a Krylov
space generated byM = S−1T. Since TMRES is algebraically equivalent to GMRES
preconditioned by S−1, TMRES converges in theory if and only if GMRES precondi-
tioned by S−1 converges. We observed that when ρ(S−1T) < 1, a small dimensional
Krylov space often contains a good approximation to the solution of a nearly singu-
lar linear system. For the prototype system (1.1), TMRES/SSOR and CGM/SSOR
exhibited similar (rapid) convergence and were more efficient than unpreconditioned
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schemes. The efficiency of TMRES/Jacobi was comparable to that of the SSOR-based
schemes when its lower operation count 2nnz(A) was taken into account.
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[6] Å. Björck and T. Elfving, Accelerated projection methods for computing pseudoinverse so-

lutions of systems of linear equations, BIT, 19 (1979), pp. 145–163.
[7] P. N. Brown and H. F. Walker, GMRES on (nearly) singular systems, SIAM J. Matrix

Anal. Appl., 18 (1997), pp. 37–51.
[8] R. H. Byrd, R. B. Schnabel, and G. A. Schultz, A trust region algorithm for nonlinearly

constrained optimization, SIAM J. Numer. Anal., 24 (1987), pp. 1152–1170.
[9] S. L. Campbell, I. C. F. Ipsen, C. T. Kelley, and C. D. Meyer, GMRES and the minimal

polynomial, BIT, 36 (1996), pp. 664–675.
[10] M. R. Celis, J. E. Dennis, and R. A. Tapia, A trust region strategy for nonlinear equal-

ity constrained optimization, in Numerical Optimization, SIAM, Philadelphia, PA, 1985,
pp. 71–82.

[11] T. F. Chan, Newton-like pseudo-arclength methods for computing simple turning points, SIAM
J. Sci. Statist. Comput., 5 (1984), pp. 135–148.

[12] P. Concus, G. H. Golub, and D. P. O’Leary, A generalized conjugate gradient method for the
numerical solution of elliptic partial differential equations, in Sparse Matrix Computations,
J. R. Bunch and D. J. Rose, eds., Academic Press, New York, 1976, pp. 309–332.

[13] P. Concus, G. H. Golub, and D. P. O’Leary, Numerical solution of nonlinear elliptic partial
differential equations by a generalized conjugate gradient method, Computing, 19 (1978),
pp. 321–339.

[14] J. W. Daniel, The conjugate gradient method for linear and nonlinear operator equations,
SIAM J. Numer. Anal., 4 (1967), pp. 10–26.

[15] T. A. Davis and W. W. Hager, Modifying a sparse Cholesky factorization, SIAM J. Matrix
Anal. Appl., 20 (1999), pp. 606–627.

[16] M. El-Alem, A global covergence theory for the Celis-Dennis-Tapia trust-region algorithm for
constrained optimization, SIAM J. Numer. Anal., 28 (1991), pp. 266–290.

[17] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins University
Press, Baltimore, MD, 1989.

[18] A. Greenbaum Comparison of splittings used with the conjugate gradient algorithm, Numer.
Math., 33 (1979), pp. 181–194.

[19] A. Greenbaum, V. Pták, and Z. Strakos̆, Any nonincreasing convergence curve is possible
for GMRES, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 465–469.

[20] A. Greenbaum and Z. Strakos̆, Predicting the behavior of finite precision Lanczos and con-
jugate gradient computations, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 121–137.

[21] G. J. Habetler and E. L. Wachspress, Symmetric successive overrelaxation in solving dif-
fusion difference equations, Math. Comp., 15 (1961), pp. 356–362.

[22] L. A. Hageman and D. M. Young, Applied Iterative Methods, Academic Press, New York,
1981.

[23] W.W. Hager, The LP dual active set algorithm, in High Performance Algorithms and Software
in Nonlinear Optimization, R. D. Leone, A. Murli, P. M. Pardalos, and G. Toraldo, eds.,
Kluwer, Dordrecht, the Netherlands, 1998, pp. 243–254.

[24] W. W. Hager, Condition estimates, SIAM J. Sci. Statist. Comput., 5 (1984), pp. 311–316.
[25] W. W. Hager, Applied Numerical Linear Algebra, Prentice–Hall, Englewood Cliffs, NJ,

1988 (available from W. W. Hager, Department of Mathematics, University of Florida,
Gainesville).



766 WILLIAM W. HAGER

[26] W. W. Hager,Minimizing a Quadratic over a Sphere, Department of Mathematics, University
of Florida, Gainesville, http://www.math.ufl.edu/∼hager/papers/sphere.ps (May 1999).

[27] B. Hendrickson and E. Rothberg, Improving the Runtime and Quality of Nested Dissection
Ordering, Technical report, Sandia National Laboratories, Albuquerque, NM, 1997.

[28] N. J. Higham, Fortran codes for estimating the one-norm of a real or complex matrix with
applications to condition estimation, ACM Trans. Math. Software, 14 (1988), pp. 381–396.

[29] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press,
Cambridge, UK, 1991.

[30] I. C. F. Ipsen and C. D. Meyer, The idea behind Krylov methods, Amer. Math. Monthly, 105
(1998), pp. 889–899.

[31] K. C. Jea and D. M. Young, Generalized conjugate gradient acceleration of nonsymmetrizable
iterative methods, Linear Algebra Appl., 34 (1980), pp. 159–194.

[32] A. Jennings, Influence of the eigenvalue spectrum on the convergence rate of the conjugate
gradient method, J. Inst. Math. Appl., 20 (1977), pp. 61–72.

[33] N. Karmarkar, A new polynomial time algorithm for linear programming, Combinatorica, 4
(1984), pp. 373–395.

[34] G. Karypis and V. Kumar, METIS: Unstructured Graph Partitioning and Sparse Matrix
Ordering System, Technical report, Department of Computer Science, University of Min-
nesota, Minneapolis, 1995.

[35] D. G. Luenberger, Convergence rate of a penalty-function scheme, J. Optim. Theory Appl.,
7 (1971), pp. 39–51.

[36] D. G. Luenberger, Linear and Nonlinear Programming, Addison-Wesley, Reading, MA, 1984.
[37] J. C. Meza and W. W. Symes, Deflated Krylov subspace methods for nearly singular linear

systems, J. Optim. Theory Appl., 72 (1992), pp. 441–457.
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