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THE SWITCH POINT ALGORITHM\ast 

MAHYA AGHAEE\dagger AND WILLIAM W. HAGER\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . The switch point algorithm is a new approach for solving optimal control problems
whose solutions are either singular or bang-bang or both singular and bang-bang, and which possess
a finite number of jump discontinuities in an optimal control at the points in time where the solution
structure changes. Problems in this class can often be reduced to an optimization over the switching
points. Formulas are derived for the derivative of the objective with respect to the switch points,
the initial costate, and the terminal time. All these derivatives can be computed simultaneously
in just one integration of the state and costate dynamics. Hence, gradient-based unconstrained
optimization techniques, including the conjugate gradient method or quasi-Newton methods, can
be used to compute an optimal control. The performance of the algorithm is illustrated using test
problems with known solutions and comparisons with other algorithms from the literature.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . switch point algorithm, singular control, bang-bang control, total variation regu-
larization

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 49M25, 49M37, 65K05, 90C30

\bfD \bfO \bfI . 10.1137/21M1393315

1. Introduction. Let us consider a fixed terminal time control problem of the
form

minC(x(T )) subject to \.x(t) = f(x(t),u(t)), x(0) = x0, u(t) \in \scrU (t),(1.1)

where x : [0, T ] \rightarrow \BbbR n is absolutely continuous, u : [0, T ] \rightarrow \BbbR m is essentially bounded,
C : \BbbR n \rightarrow \BbbR , f : \BbbR n \times \BbbR m \rightarrow \BbbR n, and \scrU (t) is a closed and bounded set for each
t \in [0, T ]. The dynamics f and the objective C are assumed to be differentiable. The
costate equation associated with (1.1) is the linear differential equation

\.p(t) =  - p(t)\nabla xf(x(t),u(t)), p(T ) = \nabla C(x(T )),(1.2)

where p : [0, T ] \rightarrow \BbbR n is a row vector, the objective gradient \nabla C is a row vector,
and \nabla xf denotes the Jacobian of the dynamics with respect to x. At the end of the
introduction, the notation and terminology are summarized. Under the assumptions
of the Pontryagin minimum principle, a local minimizer of (1.1) and the associated
costate have the property that

H(x(t),u(t),p(t)) = inf\{ H(x(t),v,p(t)) : v \in \scrU (t)\} 

for almost every t \in [0, T ], where H(x,u,p) = pf(x,u) is the Hamiltonian.
The switch point algorithm is well suited for problems where an optimal control

is piecewise smooth with one or more jump discontinuities at a finite set of times
0 < s1 < s2 < \cdot \cdot \cdot < sk < T where there is a fundamental change in the solution
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SWITCH POINT ALGORITHM 2571

structure. We also define s0 = 0 and sk+1 = T . For illustration, suppose that
\scrU (t) = \{ v \in \BbbR m : \bfitalpha (t) \leq v \leq \bfitbeta (t)\} , where \bfitalpha and \bfitbeta : [0, T ] \rightarrow \BbbR m, and f(x,u) =
g(x) + B(x)u with B : \BbbR n \rightarrow \BbbR n\times m and g : \BbbR n \rightarrow \BbbR n. The switching function,
the coefficient of u in the Hamiltonian, is given by \scrS (t) = p(t)B(x(t)). Under the
assumptions of the Pontryagin minimum principle, an optimal solution of (1.1) has
the property that

ui(t) = \alpha i(t) if \scrS i(t) > 0,
ui(t) = \beta i(t) if \scrS i(t) < 0, and
ui(t) \in [\alpha i(t), \beta i(t)] otherwise,

for each index i \in [1,m] and for almost every t \in [0, T ]. On intervals where \scrS i is either
strictly positive or strictly negative, ui is uniquely determined from the minimum
principle, and the control is said to be bang-bang. If for some i, \scrS i vanishes on an
interval [\sigma , \tau ], then the problem is said to be singular, and on this singular interval,
the first-order optimality conditions provide no information concerning ui except that
it satisfies the control constraints.

On any singular interval (sj , sj+1), not only does a component \scrS i of the switching
function vanish, but also [46] the derivatives of \scrS i vanish, assuming they exist. If the
singularity has finite order, then after equating derivatives of the switching function to
zero, we eventually obtain a relationship of the form ui(t) = \phi ij(x(t),p(t), t) for all t \in 
(sj , sj+1). In vector notation, this relation can be expressed u(t) = \bfitphi j(x(t),p(t), t).
In many cases, it is possible to further simplify this to u(t) = \bfitphi j(x(t), t), where there
is no dependence of the control on p.

In the switch point algorithm, two separate cases are considered:
Case 1. For every j, \bfitphi j is independent of p.
Case 2. For some j, \bfitphi j depends on p.
In a nutshell, the switch point algorithm is based on the following observations. In
Case 1, the control has the feedback form u(t) = \bfitphi j(x(t), t) for t \in (sj , sj+1), 0 \leq j \leq 
k. For any given choice of the switching points, the solution of the state dynamics
(assuming a solution exists) yields a value for the objective C(x(T )). Hence, we can
also think of the objective as a function C(s) depending on s. In Case 2, where the
control also depends on p, we could (assuming a solution exists) integrate forward in
time the coupled state and costate dynamics from any given initial condition p(0) = p0

with the control given by u(t) = \bfitphi j(x(t),p(t), t) on (sj , sj+1), 0 \leq j \leq k, to obtain
a value for the objective. The objective would then be denoted C(s,p0) since x(T )
depends on both s and p0.

Suppose that s = s\ast corresponds to the switching points for a solution of (1.1)
and p(0) = p\ast 

0 is the associated initial costate. In many applications, one finds
that u(t) = \bfitphi j(x(t), t) or u(t) = \bfitphi j(x(t),p(t), t) remain feasible in (1.1) for s in a
neighborhood of s\ast and for p(0) in a neighborhood of p\ast 

0. Moreover, C(s) or C(s,p0)
achieves a local minimum at s\ast or (s\ast ,p\ast 

0). Therefore, at least locally, we could replace
(1.1) by the problem of minimizing the objective over s and p0.

We briefly review previous numerical approaches for singular control problems.
Since the literature in the area is huge, our goal is to mostly highlight historical
trends. One of the first approaches for singular control problems was what Jacobson,
Gershwin, and Lele [30] called the \epsilon - \alpha (\cdot ) algorithm, although today it would be called
the proximal point method. The idea was to make a singular problem nonsingular by
adding a strongly convex quadratic term to the objective. The new objective is

C(x(T )) +
\epsilon k
2

\int T

0

\| u(t) - uk(t)\| 2 dt,
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2572 MAHYA AGHAEE AND WILLIAM W. HAGER

and the solution of the problem with the modified objective yields uk+1. Jacobson
denoted the approximating control sequence by \alpha k, so the scheme was referred to as
the \epsilon - \alpha (\cdot ) algorithm. The choice of \epsilon k is a delicate issue; if it is too small, then uk+1

can oscillate wildly, but if it is chosen just right, good approximations to solutions of
singular control problems have been obtained.

In a different approach, Anderson [3] considers a problem where the control starts
out nonsingular, and then changes to singular at switch time s1. It is proposed to make
a guess for the initial costate p(0) and then adjust it until the junction conditions
at the boundary between the singular and nonsingular control are satisfied. Then
further adjustments to the initial costate are made to satisfy the terminal conditions
on the costate. If these further adjustments cause the junction conditions to be
violated unacceptably, then the entire process would be repeated, first modifying the
initial costate to update the switching point and to satisfy the junction conditions,
and then to further modify the initial costate to satisfy the terminal conditions. Aly
[2] also considers the method of Anderson, but with more details. Maurer [37] uses
multiple shooting techniques to satisfy junction conditions and boundary conditions
in singular control problems. In general, choosing switching points and adjusting
the initial costate condition to satisfy the junction and terminal conditions could be
challenging.

Papers closer in spirit to the switch point algorithm include more recent works
of Maurer et al. [38] and Vossen [50]. In both cases, the authors consider general
boundary conditions of the form \phi (x(0),x(T ), T ) = 0, where \phi : \BbbR 2n+1 \rightarrow \BbbR r, 0 \leq 
r \leq 2n. In [38] the authors focus on bang-bang control problems, while Vossen
considers singular problems where the control has the feedback form of Case 1. In
both papers, the authors view the objective as a function of the switching points,
and the optimization problem becomes a finite dimensional minimization over the
switching points and the initial state subject to the boundary condition. Vossen in
his dissertation [49] and in [51, Prop. 4.12] shows that when the switching points
correspond to the switching points of a control for the continuous problem which
satisfies the minimum principle, then the first-order optimality conditions are satisfied
for the finite dimensional optimization problem. This provides a rigorous justification
for the strategy of replacing the original infinite dimensional control problem by a
finite dimensional optimization over the switching points and the boundary values of
the state.

A fundamental difference between our approach and the approaches in [38] and
[50] is that in the earlier work, the derivative of the objective is expressed in terms
of the partial derivative of each state variables with respect to each switching point,
where this matrix of partial derivatives is obtained by a forward propagation using the
system dynamics. We circumvent the evaluation of the matrix of partial derivatives
by using the costate equation to directly compute the partial derivative of the cost
with respect to all the switching points; there is one forward integration of the state
equation and one backward integration of the costate equation to obtain the partial
derivatives of the objective with respect to all the switching points at the same time.
In a sense, our approach is a generalization of [26, Thm. 2] which considers purely
bang-bang controls. One benefit associated with the computation of the matrix of
partial derivatives of each state with respect to each switch point is that with marginal
additional work, second-order optimality conditions can be checked.

When the control has the feedback form of Case 1 and the dynamics are affine
in the control, our formula for the objective derivative reduces to the product be-
tween the switching function and the jump in the control at the switching point.
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SWITCH POINT ALGORITHM 2573

Consequently, at optimality in the finite dimensional problem, the switching func-
tion should vanish. The vanishing of the switching function at the switching point
is a classic necessary optimality condition [1, 39, 42]. Our formula, however, applies
to arbitrary, not necessarily optimal controls, and hence it can be combined with a
nonlinear programming algorithm to solve the control problem (1.1).

The methods discussed so far are known as indirect methods; they are indirect in
the sense that steps of the algorithm employ information gleaned from the first-order
optimality conditions. In a direct method, the original continuous-in-time problem
is discretized using finite elements, finite differences, or collocation to obtain a finite
dimensional problem which is solved by a nonlinear optimization code. These discrete
problems can be difficult due to both ill conditioning and discontinuities in the optimal
control at the switching points. If the location of the switching points were known,
then high-order approximations are possible using orthogonal collocation techniques
[25]. But in general, the switching points are not known, and mesh refinement tech-
niques [17, 18, 32, 33, 40] can lead to highly refined meshes in a neighborhood of
discontinuities, which can lead to a large dimension for the discrete problem in order
to achieve a specified error tolerance.

Betts briefly touched on a hybrid direct/indirect approach to singular control in
[9, sect. 4.14.1], where the switching points between singular and nonsingular regions
are introduced as variables in the discrete problem, a junction condition is imposed
at the switching points, and the form of the control in the singular region is explicitly
imposed. A relatively accurate solution of the Goddard rocket problem [12] was
obtained.

In a series of papers (see [4, 5, 14, 15] and the reference therein), Biegler and
colleagues develop approaches to singular control problems that combine ideas from
both direct and indirect schemes. In [14], the algorithm utilizes an inner problem
where the mesh and the approximations to the switching points are fixed, and the
discretized control problem is solved by a nonlinear optimization code such as IPOPT
[52]. Then an outer problem is formulated where the finite element mesh is modified so
as to reduce errors in the dynamics or make the switching function and its derivative
closer to zero in the singular region. In [15] more sophisticated rules are developed for
moving grid points or either inserting or deleting grid points by monitoring errors or
checking for spikes. In [5], the inner and outer problems are also combined to form a
single nonlinear program that is optimized. In [4] the direct method is mostly used to
obtain a starting guess for the indirect phase of the algorithm. In the indirect phase,
special structure is imposed on the control to reduce or eliminate wild oscillation, and
conditions are imposed to encourage the vanishing of the switching function in the
singular region and the constancy of the Hamiltonian.

In comparing the switch point algorithm to the existing literature, the necessary
optimality conditions are not imposed except for our assumption, in the current ver-
sion of the algorithm, that the control in the singular region has been expressed as a
function of the state and/or costate. Note that the papers of Biegler and colleagues
do not make this assumption; instead the vanishing of the switching function in the
singular region is a constraint in their algorithms. The switch point algorithm focuses
on minimizing the objective with respect to the switching points; presumably, the
necessary optimality conditions will be satisfied at a minimizer of the objective, but
these conditions are not imposed on the iterates.

After solving the switch point algorithm's finite dimensional optimization prob-
lem associated with a bang-bang or singular control problem, one may wish to check
the optimality of the computed finite dimensional solution in the original continuous
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2574 MAHYA AGHAEE AND WILLIAM W. HAGER

control problem (1.1); to check whether a switching point was missed in the finite di-
mensional optimization problem, one could return to the original continuous control
problem and test whether the minimum principle holds at other points in the domain,
not just at the switching points, by performing an accurate integration of the differ-
ential equations between the switching points. To check the local optimality of the
computed solution of the finite dimensional problem, one could test the second-order
sufficient optimality conditions. As noted in [38, Thm. 3.1] for bang-bang control,
satisfaction of the second-order sufficient optimality conditions in the finite dimen-
sional problem implies that the associated solution of the continuous control problem
is a strict minimum. Second-order sufficient optimality conditions for bang-singular
controls are developed in [50].

The paper is organized as follows. In section 2, we explain how to compute the
derivative of C with respect to s (Case 1), while section 3 deals with the derivative
of C with respect to both s and p0 (Case 2). Section 4 considers free terminal time
problems and obtains the derivative of the objective with respect to the final time T .
The efficient application of the switch point algorithm requires a good guess for the
structure of an optimal control. In section 5 we explain one approach for generating
a starting guess using total variation (TV) regularization, which has been effective
in image reconstruction [45] at replacing blurry edges with sharp edges. Finally,
section 6 provides some comparisons with other methods from the literature using
test problems with known solutions.

Notation and terminology. By a valid choice of the switch points, we mean
that s satisfies the relations 0 = s0 < s1 < s2 < \cdot \cdot \cdot < sk < sk+1 = T . Throughout
the paper, \| \cdot \| is any norm on \BbbR n. The ball with center c \in \BbbR n and radius \rho is given
by \scrB \rho (c) = \{ x \in \BbbR n : \| x  - c\| \leq \rho \} . The expression \scrO (\Delta s) denotes a quantity that
is bounded in absolute value by c| \Delta s| , where c is a constant that is independent of
\Delta s. Given x and y \in \BbbR n, we let [x,y] denote the line segment connecting x and y.
In other words,

[x,y] = \{ x+ \alpha (y  - x) : \alpha \in [0, 1]\} .

The Jacobian of f(x,u) with respect to x is denoted \nabla xf(x,u); its (i, j) element is
\partial fi(x,u)/\partial xj . For a real-valued function such as C, the gradient \nabla C(x) is a row
vector. The costate and the generalized costate (introduced in section 3) are both
row vectors, while all other vectors in the paper are column vectors. The L2 inner
product on [0, T ] is denoted \langle \cdot , \cdot \rangle .

2. Objective derivative in Case 1. In Case 1, it is assumed that the control
has the form u(t) = \bfitphi j(x(t), t) for all t \in (sj , sj+1), 0 \leq j \leq k. With this substitution,
the dynamics in (1.1) has the form \.x(t) = fj(x(t), t) on (sj , sj+1), where fj(x, t) =
f(x,\bfitphi j(x, t)). Note that fj is viewed as a mapping from \BbbR n \times [0, T ] to \BbbR n. The
objective is C(x(T )), where x is the solution to an initial value problem of the form

\.x(t) = F(x(t), t), F(x, t) = fj(x, t) for t \in (sj , sj+1), x(0) = x0,(2.1)

0 \leq j \leq k. In the switch point algorithm, the goal is to minimize the objective value
over the choice of the switching points s1, s2, . . . , sk. This minimization can be done
more efficiently if the gradient of the objective with respect to the switching points
is known since superlinearly convergent algorithms such as the conjugate gradient
method or a quasi-Newton method could be applied. In Theorem 2.4, a formula is
derived for the gradient of C with respect to s. The following three preliminary results
are used in the analysis.
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SWITCH POINT ALGORITHM 2575

Lemma 2.1. If x : [\sigma 1, \sigma 2] \rightarrow \BbbR n is Lipschitz continuous, then so is \| x(\cdot )\| and

d

dt
\| x(t)\| \leq \| \.x(t)\| (2.2)

for almost every t \in [\sigma 1, \sigma 2].

Proof. For any s, t \in [\sigma 1, \sigma 2], the triangle inequality gives

\| x(s)\| = \| x(s) - x(t) + x(t)\| \leq \| x(s) - x(t)\| + \| x(t)\| .

Rearrange this inequality to obtain

\| x(s)\|  - \| x(t)\| \leq \| x(s) - x(t)\| .(2.3)

Interchanging s and t in (2.3) yields \| x(t)\|  - \| x(s)\| \leq \| x(s)  - x(t)\| . Hence, the
absolute value of the difference \| x(s)\|  - \| x(t)\| is bounded by \| x(t)  - x(s)\| . Since
x(\cdot ) is Lipschitz continuous, then so is \| x(\cdot )\| . It follows by Rademacher's theorem
that both x(\cdot ) and \| x(\cdot )\| are differentiable almost everywhere. Suppose t \in (\sigma 1, \sigma 2)
is a point of differentiability for both x(\cdot ) and \| x(\cdot )\| , and take s = t + \Delta t in (2.3).
Dividing the resulting inequality by \Delta t and letting \Delta t tend to zero yields (2.2).

The following result can be deduced from Gronwall's inequality.

Lemma 2.2. If w : [0, T ] \rightarrow \BbbR is absolutely continuous and for some nonnegative
scalars a and b,

\.w(t) \leq aw(t) + b for almost every t \in [0, T ],

then for all t \in [0, T ], we have

w(t) \leq eat(w(0) + bt).(2.4)

The following Lipschitz result is deduced from Lemmas 2.1 and 2.2.

Corollary 2.3. Suppose that x is an absolutely continuous solution of (2.1) and
y has the same dynamics but a different initial condition:

\.y(t) = F(y(t), t), y(0) = y0.(2.5)

If for some \rho > 0 and L \geq 0, independent of j, fj(\bfitchi , t), 0 \leq j \leq k, is continuous with
respect to \bfitchi and t and Lipschitz continuous in \bfitchi , with Lipschitz constant L, on the
tube

\{ (\bfitchi , t) : t \in [sj , sj+1] and \bfitchi \in \scrB \rho (x(t))\} ,(2.6)

then for any y0 \in \BbbR n which satisfies eLT \| x0 - y0\| \leq \rho , the initial value problem (2.5)
has a solution on [0, T ], and we have

\| y(t) - x(t)\| \leq eLt\| y0  - x0\| for all t \in [0, T ].(2.7)

Proof. For t = 0 and j = 0, y0 is in the interior of a face of the tube (2.6). Due
to the Lipschitz continuity of F(\cdot , t), a solution to (2.5) exists for near t = 0. Define
w(t) = \| y(t) - x(t)\| , subtract the differential equations (2.1) and (2.5), and take the
norm of each side to obtain

\| \.x(t) - \.y(t)\| \leq Lw(t)(2.8)
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2576 MAHYA AGHAEE AND WILLIAM W. HAGER

for any t where y satisfies (2.5) and y(t) lies within the tube around x(t) where F(\cdot , t)
satisfies the Lipschitz continuity property. Any solution x of (2.1) and y of (2.5) is
Lipschitz continuous since their derivatives are bounded. Lemma 2.1 and (2.8) imply
that \.w(t) \leq Lw(t) for t near 0. Hence, for t near 0, the bound (2.4) of Lemma 2.2
with b = 0 yields

w(t) \leq eLtw(0) = eLt\| x0  - y0\| < \rho when t < T.

For t < T , y(t) continues to lie in the interior of the tube where F(\cdot , t) satisfies the
Lipschitz property, which leads to (2.7).

In order to analyze the objective derivative with respect to the switch points,
we need to make a regularity assumption concerning the functions fj in the initial
value problem (2.1) to ensure the stability and uniqueness of solutions to (2.1) as the
switching points are perturbed around a given s.

State regularity. Let x denote an absolutely continuous solution to (2.1). It
is assumed that there exist constants \rho > 0, s - j \in (sj - 1, sj), and s+j \in (sj , sj+1),
1 \leq j \leq k, such that fj is continuously differentiable on the tube

\scrT j = \{ (\bfitchi , t) : t \in [s - j , s
+
j+1] and \bfitchi \in \scrB \rho (x(t))\} , 0 \leq j \leq k,

where s - 0 = 0 and s+k+1 = T . Moreover, fj(\bfitchi , t) is Lipschitz continuously differentiable

with respect to \bfitchi on \scrT j , uniformly in j and t \in [s - j , s
+
j ].

Theorem 2.4. Suppose that s is a valid choice for the switching points, that the
state regularity property holds, and C is Lipschitz continuously differentiable in a
neighborhood of x(T ). Then for j = 1, 2, . . . , k, C(s) is differentiable with respect to
sj and

\partial C

\partial sj
(s) = Hj - 1(x(sj),p(sj), sj) - Hj(x(sj),p(sj), sj),(2.9)

where Hj(x,p, t) = pfj(x, t), and the row vector p : [0, T ] \rightarrow \BbbR n is the solution to the
linear differential equation

\.p(t) =  - p(t)\nabla xF(x(t), t), t \in [0, T ], p(T ) = \nabla C(x(T )).(2.10)

Remark 2.1. The formula (2.9) for the derivative of the objective C with respect
to a switching point generalizes the result derived in [26, Thm. 2] for a bang-bang
control. Note that (2.10) differs from the costate equation in (1.2) since the Jacobian
of f appears in (1.2), while the Jacobian of F appears in (2.10). However, when the
control u enters the Hamiltonian linearly, \nabla xF approaches \nabla xf as the switch points
approach the switch points for an optimal solution of the control problem, and the
solution p of (2.10) approaches the costate of the optimal solution.

Proof. Let s denote the switching point sj . To compute the derivative of the cost
with respect to s, we need to compare the cost associated with s to the cost gotten
when s is changed to s+\Delta s. Let x and y denote the solutions of (2.1) associated with
the original and the perturbed switching points, respectively. The dynamics associated
with these two solutions are identical except for the time interval [s, s + \Delta s]. With
the definitions F0 = fj - 1 and F1 = fj , the dynamics for t \in [s, s + \Delta s] and for \Delta s
sufficiently small are

\.x(t) = F1(x(t), t) and \.y(t) = F0(y(t), t).(2.11)
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SWITCH POINT ALGORITHM 2577

The objective value associated with the switching point s is C(x(T )), where x is the
solution of the initial value problem (2.1). The objective value associated with the
switching point s+\Delta s is C(y(T )) where y has the same dynamics as x except on the
interval [s, s +\Delta s]. To evaluate the derivative of the objective with respect to s, we
need to form the ratio [C(y(T )) - C(x(T ))]/\Delta s, and then let \Delta s tend to zero.

Since the dynamics for x and y are identical except for the interval [s, s + \Delta s],
x(t) = y(t) for t \leq s. Let xs denote x(s) = y(s). Expanding x and y in Taylor series
around xs yields

x(s+\Delta s) = xs + (\Delta s)F1(xs, s) +\scrO ((\Delta s)2),(2.12)

y(s+\Delta s) = xs + (\Delta s)F0(xs, s) +\scrO ((\Delta s)2),(2.13)

where the remainder term is \scrO ((\Delta s)2) due to the state regularity property, which
ensures the Lipschitz continuous differentiability of F0 and F1. For t > s + \Delta s,
\.x(t) = F(x(t), t) and \.y(t) = F(y(t), t) since the dynamics of x and y only differ on
[s, s+\Delta s]. Apply Corollary 2.3 to the interval [s+\Delta s, T ]. Based on the expressions
(2.12) and (2.13) for the values of x and y at s + \Delta s, it follows from Corollary 2.3
that

\| y(t) - x(t)\| = \scrO (\Delta s) for all t \in [s+\Delta s, T ].(2.14)

Let z : [s+\Delta s, T ] \rightarrow \BbbR n be the solution to the linear differential equation

\.z(t) = \nabla xF(x(t), t)z(t), z(s+\Delta s) = \Delta s[F0(xs, s) - F1(xs, s)].(2.15)

By assumption, x is absolutely continuous and hence bounded; consequently, there
exists a scalar a such that \| \nabla xF(\bfitchi , t)\| \leq a for all t \in [s, T ] and \bfitchi \in \scrB \rho (x(t)). Take
the norm of the differential equation for z and apply Lemma 2.1 to obtain

d\| z(t)\| 
dt

\leq a\| z(t)\| for all t \in [s+\Delta s, T ].

By Lemma 2.2 with b = 0 and the specified initial condition in (2.15), it follows that

\| z(t)\| = \scrO (\Delta s) for all t \in [s+\Delta s, T ].(2.16)

Define \bfitdelta (t) = y(t) - x(t) - z(t) for every t \in [s+\Delta s, T ] and

x(\alpha , t) = x(t) + \alpha (y(t) - x(t)).

Differentiating \bfitdelta and utilizing a Taylor expansion with integral remainder term, we
obtain for all t \in [s+\Delta s, T ],

\.\bfitdelta (t) = \.y(t) - \.x(t) - \.z(t) = F(y(t), t) - F(x(t), t) - \nabla xF(x(t), t)z(t)

(2.17)

=

\biggl( \int 1

0

\nabla xF(x(\alpha , t), t) d\alpha 

\biggr) 
(y(t) - x(t)) - 

\biggl( \int 1

0

\nabla xF(x(t), t) d\alpha 

\biggr) 
z(t)

=

\biggl( \int 1

0

[\nabla xF(x(\alpha , t), t) - \nabla xF(x(t), t)] d\alpha 

\biggr) 
z(t)+

\biggl( \int 1

0

\nabla xF(x(\alpha , t), t) d\alpha 

\biggr) 
\bfitdelta (t).

Take \Delta s in (2.14) small enough that y(t) lies in the tube around x(t) where \nabla xF is
Lipschitz continuous. By the definition of a, we have \| \nabla xF(x(\alpha , t), t)\| \leq a. If L is
the Lipschitz constant for \nabla xF, then by (2.14), we have

\| \nabla xF(x(\alpha , t), t) - \nabla xF(x(t), t)\| \leq \alpha L\| y(t) - x(t)\| = \scrO (\Delta s).
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2578 MAHYA AGHAEE AND WILLIAM W. HAGER

Hence, taking the norm of each side of (2.17) and utilizing Lemma 2.1 on the left side
and the triangle inequality and the bound (2.16) on the right side yields

d\| \bfitdelta (t)\| 
dt

\leq a\| \bfitdelta (t)\| +\scrO ((\Delta s)2).(2.18)

By (2.12), (2.13), and (2.15), we have

\bfitdelta (s+\Delta s) = y(s+\Delta s) - x(s+\Delta s) - z(s+\Delta s) = \scrO ((\Delta s)2).

Consequently, by (2.18) and Lemma 2.2, we deduce that

\| \bfitdelta (t)\| = \scrO ((\Delta s)2) for all t \in [s+\Delta s, T ].(2.19)

If p is the solution of (2.10) and z is the solution of (2.15), then we have

0 =

\int T

s+\Delta s

p(t)

\biggl[ 
\nabla xF(x(t), t)z(t) - \.z(t)

\biggr] 
dt

=

\int T

s+\Delta s

\biggl[ 
p(t)\nabla xF(x(t), t) + \.p(t)

\biggr] 
z(t) dt - p(T )z(T ) + p(s+\Delta s)z(s+\Delta s)

=  - p(T )z(T ) + p(s+\Delta s)z(s+\Delta s)

= \Delta sp(s+\Delta s)(F0(xs, s) - F1(xs, s)) - \nabla C(x(T ))z(T ).(2.20)

Since C is Lipschitz continuously differentiable in a neighborhood of x(T ), the
difference between the perturbed objective and the original objective can be expressed

C(y(T )) - C(x(T )) = \nabla C(x\Delta )(y(T ) - x(T )),(2.21)

where x\Delta \in [y(T ),x(T )]; that is, x\Delta is a point on the line segment connecting y(T )
and x(T ). Since the distance between x(t) and y(t) is \scrO (\Delta s) by (2.14), the distance
between x\Delta and x(T ) is \scrO (\Delta s). Add the right side of (2.20) to the right side of (2.21)
and substitute

y(T ) - x(T ) = y(T ) - x(T ) - z(T ) + z(T ) = \bfitdelta (T ) + z(T )

to obtain

C(y(T )) - C(x(T )) = \nabla C(x\Delta )\bfitdelta (T ) + [\nabla C(x\Delta ) - \nabla C(x(T )]z(T )

+\Delta sp(s+\Delta s)[F0(xs, s) - F1(xs, s)].(2.22)

By (2.19), \| \bfitdelta (T )\| = \scrO ((\Delta s)2) so | \nabla C(x\Delta )\bfitdelta (T )| = \scrO ((\Delta s)2). Since C is Lipschitz
continuously differentiable at x(T ), the distance from x\Delta to x(T ) is at most \scrO (\Delta s)
by (2.14), and z(T ) = \scrO (\Delta s) by (2.16), we have

\| [\nabla C(x\Delta ) - \nabla C(x(T )]z(T )\| = \scrO ((\Delta s)2).

Consequently, the first two terms on the right side of (2.22) are \scrO ((\Delta s)2). Divide
(2.22) by \Delta s and let \Delta s tend to zero to obtain

lim
\Delta s\rightarrow 0

C(y(T )) - C(x(T ))

\Delta s
= p(s)[F0(xs, s) - F1(xs, s)],

which completes the proof since F0 = fj - 1 and F1 = fj .
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3. Objective derivative in Case 2. In Case 2, an optimal control which min-
imizes the Hamiltonian also depends on p in the singular region, so the control has
the form u(t) = \bfitphi j(x(t),p(t), t) for t \in (sj , sj+1). The functions fj and F of sec-
tion 2 now have the form fj(x,p, t) = f(x,\bfitphi j(x,p, t)) and F(x,p, t) = fj(x,p, t)
for t \in (sj , sj+1). The Jacobian appearing in the costate dynamics is \nabla xf(x,u); in
the switch point algorithm, we evaluate this dynamics at u = \bfitphi j(x,p, t). Hence,
analogous to the definition given in section 2, let us define

fjx(x,p, t) = \nabla xf(x,u)
\bigm| \bigm| \bigm| 
u = \bfitphi j(x,p, t)

.

Also, we define
Fx(x,p, t) = fjx(x,p, t) for t \in (sj , sj+1).

In the switch point algorithm, we consider the coupled system

\.x(t) = F(x(t),p(t), t), \.p(t) =  - p(t)Fx(x(t),p(t), t),(3.1)

where (x(0),p(0)) = (x0,p0). If u\ast is a local minimizer for the control problem
(1.1) and (x\ast ,p\ast ) are the associated state and costate, then we could recover u\ast (t) =
\bfitphi j(x

\ast (t),p\ast (t), t), t \in (sj , sj+1), by integrating the coupled system (3.1) forward in
time starting from the initial condition (x(0),p(0)) = (x0,p

\ast (0)). From this perspec-
tive, we can think of the objective C(x(T )) as being a function C(s,p0) that depends
on both the switching points and the starting value p0 for the costate (the starting
condition for the state x0 is given). To solve the control problem, we will search for a
local minimizer of C(s,p0). Again, to exploit superlinearly convergent optimization
algorithms, the derivatives of C with respect to both s and p0 should be evaluated.

The derivative of the objective with respect to the switching points in Case 2 is a
corollary of Theorem 2.4. In this case, the x that satisfies (2.1) is identified with the
pair (x,p) which solves the coupled system (3.1). The pair (x,p) might be viewed
as a generalized state in the sense that for a given starting value p(0) = p0 and for
a given choice of the switch points, we can in principle integrate forward in time the
coupled system (3.1) to evaluate the objective C(x(T )). The generalized version of
the state regularity property, which applies to the pair (x,p), is the following.

Generalized state regularity. Let (x,p) denote an absolutely continuous solution
to (3.1). It is assumed that there exist constants \rho > 0, s - j \in (sj - 1, sj), and s+j \in 
(sj , sj+1), 1 \leq j \leq k, such that the pair (fj , fjx) is continuously differentiable on the
tube

\scrT j = \{ (\bfitchi , t) : t \in [s - j , s
+
j+1] and \bfitchi \in \scrB \rho (x(t))\} , 0 \leq j \leq k,

where s - 0 = 0 and s+k+1 = T . Moreover, (fj(\bfitchi , t), fjx(\bfitchi , t)) is Lipschitz continuously

differentiable with respect to \bfitchi on \scrT j , uniformly in j and t \in [s - j , s
+
j ].

The generalized costate associated with the system (3.1) is a row vector y \in \BbbR 2n

whose first n components are denoted y1 and whose second n components are denoted
y2. The generalized Hamiltonian is defined by

\scrH j(x,p,y, t) = y1fj(x,p, t) - pfjx(x,p, t)y
\sansT 
2 , 0 \leq j \leq k.

The generalized costate y : [0, T ] \rightarrow \BbbR 2n is the solution of the linear system of
differential equations

\.y1(t) =  - \nabla x\scrH j(x(t),p(t),y(t), t), y1(T ) = \nabla C(x(T )),(3.2)

\.y2(t) =  - \nabla p\scrH j(x(t),p(t),y(t), t), y2(T ) = 0,(3.3)
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2580 MAHYA AGHAEE AND WILLIAM W. HAGER

on (sj , sj+1) for j = k, k  - 1, . . . , 0. If the generalized state regularity property
holds, then by Theorem 2.4, we have

\partial C

\partial sj
(s,p0) = \scrH j - 1(x(sj),p(sj),y(sj), sj) - \scrH j(x(sj),p(sj),y(sj), sj)(3.4)

for j = 1, 2, . . . , k. Note that the boundary condition for y2 is y2(T ) = 0 since
there is no p in the objective, and the objective C only depends on x(T ).

Remark 3.1. If the formula (3.4) is used to evaluate the derivative of the objective
with respect to a switch point in the case where \bfitphi does not depend on p, then the
formula (3.4) reduces to the formula (2.9). In particular, when \bfitphi does not depend on
p, the dynamics for y2 becomes

\.y2(t) = y2Fx(x,\bfitphi j(x(t), t))
\sansT , t \in (sj , sj+1), j = k, k  - 1, . . . , 0, y2(T ) = 0.

Consequently, y2 is the solution to a linear differential equation with the initial con-
dition y2(T ) = 0. The unique solution is y2 = 0, and when y2 = 0, (3.2) is the same
as (2.10). Thus y1 = p and the formula (3.4) is the same as (2.9).

Now let us consider the gradient of C(s,p0) with respect to p0. Let (x,p) denote
a solution of (3.1) for a given starting condition p(0) = p0, and let (x,p) denote a
solution corresponding to p(0) = p0. Let y denote the generalized costate associated
with (x,p). Since (x,p) is a solution of (3.1), we have

0 =

\int T

0

y1(t)[F(x(t),p(t), t) - \.x(t)] - [p(t)Fx(x(t),p(t), t) + \.p(t)]y\sansT 
2 (t) dt.(3.5)

The two derivative terms in (3.5) are integrated by parts to obtain

 - [\langle y1, \.x\rangle + \langle y2, \.p\rangle ] = \langle \.y1,x\rangle + \langle \.y2,p\rangle + y1(0)x0 + y2(0)p
\sansT 
0  - \nabla C(x(T ))x(T ),

(3.6)

where \langle \cdot , \cdot \rangle denotes the L2 inner product on [0, T ], and the boundary conditions in
(3.1), (3.2), and (3.3) are used to simplify the boundary terms.

We now combine (3.5) and (3.6), differentiate the resulting identity with respect
to p0, and evaluate the derivative at p0 = p0. Recall that y is independent of
p0 since it corresponds to (3.2) and (3.3) in the special case where (x,p) = (x,p).
The only terms depending on p0 are those involving x and p, the solution of (3.1).
In particular, the partial derivatives of the three boundary terms y1(0)x0, y2(0)p

\sansT 
0 ,

and \nabla C(x(T ))x(T ) with respect to p0 are zero, y2(0), and \nabla C(x(T ))\partial x(T )/\partial p0,
respectively. When we differentiate (3.5) and (3.6) with respect to p0 and evaluate
at p0 = p0, every term cancels except for these three terms (and one of these three
terms is zero). To see how these terms in the integrals cancel, let us consider those
terms with the common factor (\partial x/\partial p0)(t). This factor in the integral is multiplied
by

\.y1(t) +\nabla x\scrH j(x(t),p(t),y(t), t),

which vanishes for x = x and p = p by (3.2). The remaining terms with the common
factor (\partial p/\partial p0)(t) vanish due (3.3). After taking into account the three boundary
terms in (3.6), we obtain

\partial C(s,p0)

\partial p0

\bigm| \bigm| \bigm| \bigm| 
\bfp 0=\bfp 0

= \nabla C(x(T ))
\partial x(T )

\partial p0

\bigm| \bigm| \bigm| \bigm| 
\bfp 0=\bfp 0

= y2(0).(3.7)
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In summary, the gradient of the objective with respect to p0 is available almost
for free after evaluating the derivative of the objective with respect to the switching
points; the gradient is simply y2(0). As pointed out in Remark 3.1, y2 = 0 when the
\bfitphi j are independent of p.

4. Free terminal time. So far, the terminal time T has been fixed. Let us now
suppose that the terminal time is free, and we are minimizing over both the terminal
time T and over the control u. It is assumed that the control constraint set \scrU is
independent of t, and we make the change of variable t = \tau T , where 0 \leq \tau \leq 1. After
the change of variables, both the state and the control are functions of \tau rather than
t. The reformulated optimization problem is

minC(x(1)) subject to \.x(\tau ) = T f(x(\tau ),u(\tau )), x(0) = x0, u(\tau ) \in \scrU ,(4.1)

where x : [0, 1] \rightarrow \BbbR n is absolutely continuous and u : [0, 1] \rightarrow \BbbR m is essentially
bounded. In the reformulated problem, the free terminal time T appears as a param-
eter in the system dynamics.

For fixed T , the optimization problem over the control has the same structure
as that of the problem analyzed in sections 2 and 3. Hence, the previously derived
formula for the derivative of the objective with respect to a switching point remains
applicable. If a gradient-based algorithm will be used to solve (4.1), then we also need
a formula for the derivative of the objective with respect to T when the switch points
for the control are fixed. Since the switch points for the control are fixed throughout
this section, the objective value in (4.1) only depends on the choice of the parameter
T in the dynamics. Assuming that for some given T there exists a solution x to the
dynamics in (4.1), we let C(T ) := C(x(1)) denote the objective value. By the chain
rule,

dC(T )

dT
= \nabla C[x(1)]

dx(1)

dT
.(4.2)

Similar to the approach in section 3, our goal is to obtain an expression for the right
side of (4.2) that avoids the computation of the derivative of the state with respect
to T . Let us first consider Case 1 where the control has the form u(\tau ) = \bfitphi j(x(\tau ), \tau )
for all \tau \in (sj , sj+1), 0 \leq j \leq k.

Theorem 4.1. Suppose that for T = T , x = x is an absolutely continuous solu-
tion of

\.x(\tau ) = TF(x(\tau ), \tau ), x(0) = x0, 0 \leq \tau \leq 1,(4.3)

where F is defined in (2.1). We assume that for some \rho > 0, fj(\bfitchi , \tau ), 0 \leq j \leq k, is
continuous with respect to \bfitchi and \tau and Lipschitz continuous with respect to \bfitchi on the
tube

\{ (\bfitchi , \tau ) : \tau \in [sj , sj+1] and \bfitchi \in \scrB \rho (x(\tau ))\} , 0 \leq j \leq k.

Then we have

dC(T )

dT

\bigm| \bigm| \bigm| \bigm| 
T=T

=

\int 1

0

H(x(\tau ),p(\tau ), \tau ) d\tau ,(4.4)

where H(x,p, \tau ) = Hj(x,p, \tau ) when sj \leq \tau \leq sj+1, and the row vector p : [0, 1] \rightarrow \BbbR n

is the solution to the linear differential equation

\.p(\tau ) =  - Tp(\tau )\nabla xF(x(\tau ), \tau ), \tau \in [0, 1], p(1) = \nabla C[x(1)].(4.5)
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Proof. If p denotes the costate given by (4.5), and x for T near T denotes the
solution of (4.3), then we have the identity

0 =

\int 1

0

p(\tau )[TF(x(\tau ), \tau ) - \.x(\tau )] d\tau 

= p(0)x0  - p(1)x(1) +

\int 1

0

\Bigl[ 
Tp(\tau )F(x(\tau ), \tau ) + \.p(\tau )x(\tau )

\Bigr] 
d\tau ,(4.6)

where the second equation comes from an integration by parts. Let us differentiate
with respect to T . Since p in (4.5) does not depend on T , the derivative of p(0)x0

with respect to T is zero. Hence, the derivative of (4.6) with respect to T , evaluated
at T = T , yields

p(1)
dx(1)

dT

\bigm| \bigm| \bigm| \bigm| 
T=T

=

\int 1

0

\Biggl\{ 
p(\tau )F(x(\tau ), \tau ) +

\bigl[ 
T\nabla xF(x(\tau ), \tau ) + \.p(\tau )

\bigr] dx(\tau )

dT

\bigm| \bigm| \bigm| \bigm| 
T=T

\Biggr\} 
d\tau .

Substituting for p from (4.5), the factor multiplying dx(\tau )/dT is zero. It follows from
(4.2) that

dC(T )

dT

\bigm| \bigm| \bigm| \bigm| 
T=T

= \nabla C[x(1)]
dx(1)

dT

\bigm| \bigm| \bigm| \bigm| 
T=T

=

\int 1

0

H(x(\tau ),p(\tau ), \tau ) d\tau ,

which completes the proof.

Remark 4.1. Note that the Hamiltonian in (4.4) does not contain the terminal
time, while the Hamiltonian associated with (4.3) and the objective derivative with
respect to a switch point does contain the terminal time. It follows from (4.4) that the
integral of the Hamiltonian vanishes along an optimal solution to the control problem
(1.1). Hence, due to the constancy of the Hamiltonian along an optimal solution, (4.4)
implies that the Hamiltonian vanishes along an optimal solution, a classic first-order
optimality condition for free terminal time control problems.

Now consider Case 2 where the control has the form u(\tau ) = \bfitphi j(x(\tau ),p(\tau ), \tau ) for
all \tau \in (sj , sj+1), 0 \leq j \leq k. The generalized state (x,p) satisfies the coupled system

\.x(t) = TF(x(t),p(t), t), \.p(t) =  - Tp(t)Fx(x(t),p(t), t),(4.7)

where (x(0),p(0)) = (x0,p0) and the terminal time T is a parameter in the equations.
For fixed T and a fixed choice of the switching times s, the derivative of the objective
with respect to p0 is given by the formula (3.7). Now for a fixed choice of both s
and p0, say, p0 = p0, our goal is to evaluate the objective derivative with respect to
T evaluated at some given terminal time T = T , assuming a solution (x,p) to (4.7)
exists for T = T and p0 = p0.

The analogue of (4.6) is a slightly modified version of (3.5) where the integration
limit T is replaced by 1, while T appears as a parameter next to the dynamics:

0 =

\int 1

0

y1(t)[TF(x(t),p(t), t) - \.x(t)] - [Tp(t)Fx(x(t),p(t), t) + \.p(t)]y\sansT 
2 (t) dt,(4.8)

where (x,p) is the solution to (4.7) corresponding to a general T , but with the initial
condition p0 = p0. The generalized costate y in (4.8) is the solution to

\.y1(t) =  - T\nabla x\scrH j(x(t),p(t),y(t), t), y1(T ) = \nabla C(x(T )),

\.y2(t) =  - T\nabla p\scrH j(x(t),p(t),y(t), t), y2(T ) = 0,
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SWITCH POINT ALGORITHM 2583

on (sj , sj+1) for j = k, k - 1, . . . , 0. Proceeding as in the proof of Theorem 4.1, we
integrate by parts in (4.8), differentiate with respect to T , and evaluate at T = T to
obtain the relation

dC(T )

dT

\bigm| \bigm| \bigm| \bigm| 
T=T

= \nabla C[x(1)]
dx(1)

dT

\bigm| \bigm| \bigm| \bigm| 
T=T

=

\int 1

0

\scrH (x(\tau ),p(\tau ),y(\tau ), \tau ) d\tau ,

where \scrH (x,p,y, \tau ) = \scrH j(x,p,y, \tau ) when sj \leq \tau \leq sj+1, 0 \leq j \leq k.

5. Starting guess. This section discusses how to generate a starting guess for
the switch point algorithm. Detailed illustrations of these techniques are given in [6].
If the optimal control is bang-bang without singular intervals, then the optimization
problem could be discretized by Euler's method, and the location of the switching
point can often be estimated with a few iterations of a gradient or a conjugate gradi-
ent method. On the other hand, when a singular interval is present, wild oscillations
in the control can occur and the problem becomes more difficult. An effective way to
approximate the optimal control in the singular setting is to incorporate TV regular-
ization in the objective. TV regularization has been very effective in image restoration
since it preserves sharp edges; for singular optimal control problems, it helps to remove
the wild oscillations in the control, and better exposes the switch points.

We consider the Euler discretization of (1.1) with \rho -amplified TV regularization:

minC(xN ) + \rho 

m\sum 
i=1

N - 1\sum 
j=1

| uij  - ui,j - 1| (5.1)

subject to xj+1 = xj + hf(xj ,uj), uj \in \scrU (tj),

where 0 \leq j \leq N  - 1, h = T/N , tj = jh, and N is the number of mesh intervals. The
parameter \rho controls the strength of the TV regularization term, and as \rho increases,
the oscillations in u should decrease. The nonsmooth problem (5.1) is equivalent to
the smooth optimization problem

minC(xN ) + \rho 

m\sum 
i=1

N - 2\sum 
j=1

vij + wij(5.2)

s.t. xj+1 = xj + hf(xj ,uj), uj \in \scrU (tj), ul+1  - ul = vl  - wl, vl \geq 0, wl \geq 0,

where 0 \leq j \leq N  - 1 and 0 \leq l \leq N  - 2. The equivalence between (5.1) and (5.2) is
due to the well-known property in optimization that

| u| = min\{ v + w : u = v  - w, v \geq 0, w \geq 0\} .

The smooth TV-regularized problem (5.2) can be solved quickly by the polyhedral
active set algorithm (PASA) [27] due to the sparsity of the linear constraints.

Figure 5.1 shows how the optimal control of (5.1) for the catalyst mixing problem
of the next section depends on \rho . When \rho = 0 the control oscillates wildly, when
\rho = 10 - 5 many of the oscillations are gone, and when \rho = 10 - 3 the computed solution
provides a good fit to the exact solution, and the switching points for the discrete
problem are roughly within the mesh spacing (N = 100) of the exact switching points.
In some problems with highly oscillatory solutions, convergence of TV regularized
optimal values is established in [13].

When solving (5.1), we also obtain an estimate for the initial costate p(0) asso-
ciated with a solution of (1.1). In particular, the KKT conditions at a solution of
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Time
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0.8

1
Control u with rho = 0

0 0.2 0.4 0.6 0.8 1
Time
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Control u with rho = 1.e-5
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1
Control u with rho = 1.e-3

Fig. 5.1. Numerical solutions to (5.1) for the catalyst mixing problem and three different choices
for the regularization: \rho = 0, 10 - 5, 10 - 3. Exact switching points appear as dashed lines.

(5.1) yield the following equation for the multiplier pj associated with the constraint
xj + hf(xj ,uj) - xj+1 = 0:

pj - 1 = pj(I+ h\nabla xf(xj ,uj)), 1 \leq j \leq N  - 1, pN - 1 = \nabla C(xN ),

where p0 is an approximation to p(0) and I is the n by n identity matrix.

6. Numerical studies. We consider four classic singular control problems from
the literature to examine the performance of the switch point algorithm relative to
that of previously reported algorithms. The test problems are the following:

1. the catalyst mixing problem, first proposed by Gunn and Thomas [24], and
later solved by Jackson [29], with additional analytic formulas given by Li
and Liu [31];

2. a problem posed by Jacobson, Gershwin, and Lele [30];
3. a problem posed by Bressan [11];
4. a problem posed by Goddard [23].

All the test problems have known solutions. The switch point algorithm was imple-
mented in MATLAB; the gradients of the objective were evaluated using the formulas
given in the paper. The differential equations were integrated using MATLAB ODE45
code, which implements the Dormand--Prince [19] embedded explicit Runge--Kutta
(4,5) scheme (both fourth and fifth order accuracy with error estimation). The op-
timization was performed using PASA [27] (available from Hager's web page). The
experiments were performed on a Dell T7610 workstation with 3.40 GHz processors.
We did not implement other algorithms; we simply compare to previously reported
results in the literature.
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SWITCH POINT ALGORITHM 2585

6.1. Catalyst mixing problem. The optimal control problem is as follows:

min a(T ) + b(T ) - 1

s.t. \.a(t) =  - u(t)(k1a(t) - k2b(t)),

\.b(t) = u(t)(k1a(t) - k2b(t)) - (1 - u(t))k3b(t),

a(0) = 1, b(0) = 0, 0 \leq u(t) \leq 1.

(6.1)

Here a and b are the mole fractions of substances A and B which are catalyzed by
fraction u to produce C in a reactor of length T . The parameters ki, i = 1, 2, 3, are
given constants, and the objective corresponds to the maximization of C. Symboli-
cally, the relation is denoted A \rightleftharpoons B \rightarrow C. As seen in Figure 5.1, the pattern of the
optimal control is bang, singular, and off.

The Hamiltonian for this problem is

H(a, b, u, p1, p2) =
\bigl[ 
(p2  - p1)(k1a - k2b) + p2k3b]u - p2k3b.

The switching function, which corresponds to the coefficient of u, is given by

\scrS (t) = (p2(t) - p1(t))(k1a(t) - k2b(t)) + k3p2(t)b(t),(6.2)

where p is the solution of the system

\.p1(t) =  - (p2(t) - p1(t))k1u(t), p1(T ) = 1,

\.p2(t) = (p2(t) - p1(t))k2u(t) + k3(1 - u(t))p2(t), p2(T ) = 1.

When \scrS (t) < 0, u(t) = 1; when \scrS (t) > 0, u(t) = 0; and when \scrS (t) = 0, u is
singular. In the singular region, both \scrS and its derivatives vanish. Differentiating the
switch function, we have

\.\scrS (t) = k3
\bigl[ 
k1a(t)p2(t) - k2b(t)p1(t)

\bigr] 
,

\"\scrS (t) = k3

\Bigl\{ 
u(t)p1(t)[k2b(t)(k2  - k3  - k1) - 2k1k2a(t)]

+u(t)p2(t)[k1a(t)(k2  - k3  - k1) + 2k1k2b(t)]

+k3
\bigl[ 
k1p2(t)a(t) + k2p1(t)b(t)

\bigr] \Bigr\} 
.

Although the control is missing from \.\scrS , it appears in \"\scrS . Hence, we use the equation
\"\scrS (t) = 0 to solve for the control in the singular region. In the following equation, the
``(t)"" arguments for the state and costate are omitted:

using =
 - k3(k1ap2 + k2bp1)

p1[k2b(k2  - k3  - k1) - 2k1k2a] + p2[k1a(k2  - k3  - k1) + 2k1k2b]
.(6.3)

With further analysis, it can be shown that the singular control is constant. Jack-
son [29] derives the following expression for the singular control, where the numeric
value given below corresponds to the parameter values k1 = k3 = 1 and k2 = 10 which
are used throughout the literature:

using =
\alpha (1 + \alpha )

\beta + (1 + \alpha )2
\approx 0.227142082708498,(6.4)

where \alpha =
\sqrt{} 

k3/k2 and \beta = k1/k2.
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2586 MAHYA AGHAEE AND WILLIAM W. HAGER

There are two switch points for the catalyst mixing problem. Analytic formulas
for the switching times, presented by Jackson, are

s1 =

\biggl( 
1

k2(1 + \beta )

\biggr) 
log

\biggl( 
1 + \alpha + \beta 

\alpha 

\biggr) 
\approx 0.136299034594555,

s2 = T  - k - 1
3 log(1 + \alpha ) \approx T  - 0.274769892408345.

The optimal control is

u(t) =

\left\{   1 if 0 \leq t < s1,
using if s1 \leq t < s2,
0 if s2 \leq t \leq T.

An analytic formula is given for the optimal objective value in [31]; the numeric
values for the optimal objectives are

 - 0.048055685860877 (T = 1),
 - 0.191814356325161 (T = 4),
 - 0.477712020050041 (T = 12).

We solve the test problem using both the Case 1 representation in (6.4), where
the exact form of the singular control is exploited, and the Case 2 representation for
the singular control given in (6.3) where the algorithm computes the control in the
singular region. The versions of the switch point algorithm corresponding to these two
representation of the singular control are denoted SPA1 (Case 1) and SPA2 (Case 2).

In Table 6.1 we compare the performance of SPA1 and SPA2 to results from
the literature for the problem (6.1) with reactor lengths T = 1, 4, and 12. The
accuracy tolerances used for PASA and ODE45 were 10 - 8. The starting guesses for the

Table 6.1
Performance and absolute errors for the catalyst mixing problem.

Method T CPU (s) C error s1 error s2 error

SPA1 1 0.10 1.6\times 10 - 10 3.1\times 10 - 09 1.2\times 10 - 11

SPA2 1 0.30 9.6\times 10 - 12 1.9\times 10 - 10 6.2\times 10 - 11

[7] 1 40 - 100 5.7\times 10 - 06  -  - 
[8] 1 9.74 2.4\times 10 - 05  -  - 
[16] 1  - 5.7\times 10 - 06  -  - 
[22] 1  - 6.3\times 10 - 09 3.0\times 10 - 09 1.1\times 10 - 12

[28] 1  - 5.7\times 10 - 06  -  - 
[31] 1  - 5.9\times 10 - 09 1.5\times 10 - 08 6.8\times 10 - 08

[34] 1 17.90 1.4\times 10 - 08  -  - 
IDE [35] 1  - 2.3\times 10 - 05 8.3\times 10 - 03 7.8\times 10 - 03

[47] 1 90.00 1.4\times 10 - 05  -  - 
[48] 1 38.10 1.4\times 10 - 08 2.1\times 10 - 05 4.9\times 10 - 04

SPA1 4 0.12 1.1\times 10 - 10 4.5\times 10 - 09 1.5\times 10 - 09

SPA2 4 0.68 1.4\times 10 - 10 2.4\times 10 - 10 1.5\times 10 - 11

[4] 4 0.90  - 4.6\times 10 - 09 7.6\times 10 - 09

[5] 4 0.33  - 3.3\times 10 - 03 4.8\times 10 - 03

[14] 4 1.35  - 8.4\times 10 - 08 3.2\times 10 - 07

[15] 4 0.90  - 5.0\times 10 - 07 8.3\times 10 - 06

SPA1 12 0.19 1.7\times 10 - 10 3.7\times 10 - 10 4.4\times 10 - 08

SPA2 12 0.98 2.0\times 10 - 11 1.6\times 10 - 09 3.6\times 10 - 14

[16] 12 595.00 7.7\times 10 - 04  -  - 
[31] 12  - 5.0\times 10 - 11 1.1\times 10 - 07 4.0\times 10 - 07

[34] 12 17.79 7.7\times 10 - 04  -  - 
[41] 12  - 2.7\times 10 - 04  -  - 
[43] 12 0.24 1.6\times 10 - 03  -  - 
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SWITCH POINT ALGORITHM 2587

switching times and the initial costate were accurate to roughly one significant digit.
For example, with T = 1 the starting guesses were s1 = 0.1, s2 = 0.7, p1(0) = 0.9,
and p2(0) = 0.8. As seen in Table 6.1, the accuracy was improved from the initial one
significant digit to between 9 and 11 significant digits when using 10 - 8 tolerances for
both PASA and ODE45.

Note that many of the algorithms in Table 6.1 exploit the known form of the
singular control; the computing times for SPA1 where the known form of the singular
control is exploited are significantly smaller than the time for SPA2 where the singular
control is computed. It is difficult to compare the computing times in Table 6.1 since
the computers used to solve the test problem vary widely in speed. Moreover, it should
be possible to significantly lower the computing time for the switch point algorithm by
developing an implementation in a compiled language instead of MATLAB. And with
an ODE integrator tailored to the structure of the control problem, the computing
time could be reduced further. Observe that the accuracy of the solution computed
by switch point algorithm was relatively high when using a modest 10 - 8 accuracy
tolerance for both the optimizer and the ODE integrator.

6.2. Jacobson's problem [30]. The test problem is given by

min
1

2

\int 5

0

x2
1(t) + x2

2(t) dt

s.t. \.x1(t) = x2(t), \.x2(t) = u(t),

x1(0) = 0, x2(0) = 1,  - 1 \leq u(t) \leq 1.

This problem as well as the next can be reformulated in form (1.1) by adding a new
state variable whose dynamics is the integrand of the objective. After this reformu-
lation, one finds that the costate associated with the new variable is p0 := 1, so the
Hamiltonian simplifies to

H(x, u,p) =
1

2
(x2

1 + x2
2) + p1x2 + p2u.

The switching function is \scrS (t) = p2(t), where p is the solution of the system

\.p1(t) =  - x1(t), p1(5) = 0,
\.p2(t) =  - p1(t) - x2(t), p2(5) = 0.

The first two derivatives of the switching function are \.\scrS (t) =  - p1(t)  - x2(t) and
\"\scrS (t) = x1(t)  - u(t). In the singular region, \"\scrS = 0, which implies that u(t) = x1(t).
The optimal control has one switching point whose first few digits are

s1 \approx 1.41376408763006415924,

which is the root of the equation

1 - s2/2 = e2s - 10( - 1 + 2s - s2/2).

The optimal control is

u(t) =

\Biggl\{ 
 - 1 if 0 \leq t < s1,

x1(t) if s1 < t \leq 5,

where [s1, 5] is the singular interval.
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Fig. 6.1. Derivative of the objective versus switch point (zeros marked by stars).

Table 6.2
Performance and absolute errors for Jacobson's problem.

Method CPU (s) s1 error

SPA1 0.15 5.0\times 10 - 11

[4] 2.34 6.8\times 10 - 08

[5] 0.39 3.8\times 10 - 03

[14] 132.03 7.4\times 10 - 06

[15] 0.33 3.2\times 10 - 07

Since this problem has only one switch point, we will compute it by using the
secant method to find a zero of the objective derivative with respect to s1. The
left panel of Figure 6.1 plots the derivative of the objective function with respect
to the switch point. Notice that the derivative vanishes twice, once on the interval
[1.41, 1.42] (corresponding to the optimal control) and once on the interval [1.45, 1.46]
(corresponding to a local maximum). Thus to compute the correct switching point
using the secant method, we should start to the left of the local maximum in Figure 6.1.
The results in Table 6.2 correspond to the starting iterates 1.42 and 1.41, which
bracket the switch point of the optimal control. In five iterations of the secant method,
we obtain roughly 11 digit accuracy. The solution time of the switch point algorithm
is basically the time of the MATLAB ODE45 integrator. In Figure 6.1 it appears
that by choosing the switch point to the right of the local maximum, it may be
possible to achieve a smaller value for the cost function. However, for the switch point
corresponding to the local maximum in Figure 6.1, the singular control u(t) = x1(t)
is  - 1 at t = 5, and as the switching point moves further to the right, the singular
control becomes infeasible with u(5) <  - 1.

6.3. Bressan's problem [11]. The test problem is

min

\int T

0

x2
1(t) - x2(t) dt

s.t. \.x1(t) = u(t), \.x2(t) =  - x1(t),

x1(0) = 0, x2(0) = 0, x3(0) = 0,  - 1 \leq u(t) \leq 1,

where T = 10 in [5, 14]. The Hamiltonian is

H(x, u,p) = x2
1  - x2 + p1u - p2x1.
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The switching function is \scrS (t) = p1(t) where p is the solution of the system

\.p1(t) = p2(t) - 2x1(t), p1(T ) = 0,
\.p2(t) = 1, p2(T ) = 0.

The first two derivatives of the switching function are \.\scrS (t) = p2(t)  - 2x1(t) and
\"\scrS (t) = 1 - 2u(t). In the singular region, \"\scrS = 0, which implies that u(t) = 1/2. It can
be shown [11] that there is one switching point s1 = T/3. The optimal control is

u(t) =

\Biggl\{ 
 - 1 if 0 \leq t < s1,

1/2 if s1 < t \leq T.

Unlike Jacobson's problem, the plot of the objective derivative versus the switch
point (right panel of Figure 6.1) is nearly linear in a wide interval around the switch
point 10/3 when T = 10. Starting from the initial iterates 3.0 and 4.0, the secant
method converges to 15 digit accuracy in five iterations.

6.4. Goddard's problem [23]. A classic problem with a free terminal time
is Goddard's rocket problem. It is difficult to compare to other algorithms in the
literature since there are many variations of Goddard's problem [9, 10, 12, 21, 20, 36,
37, 44, 50], and different algorithms are tested using different versions of the problem.
The formulation of the Goddard problem that we use is based on parameters and
constraints from both [9, p. 213] and [44, Ex. 3]:

min  - h(T )

s.t. \.h(t) = v(t), h(0) = 0,

\.v(t) = 1
m

\bigl[ 
u(t) - \sigma v2e - h(t)/h0  - g

\bigr] 
, v(0) = 0,

\.m(t) =  - u(t)/c, m(0) = 3,

m(t) \geq 1, 0 \leq u(t) \leq umax, t \in [0, T ],

where umax = 193, g = 32.174, \sigma = 5.4915 \times 10 - 5, c = 1580.9425, and h0 = 23800.
In this problem, h is the height of a rocket, v is its velocity, m is the mass, c is the
exhaust velocity of the propellant, g is the gravitational acceleration, h0 is the density
scale height, u is the thrust, and the terminal time is free. The goal is to choose T and
the thrust u so as to achieve the greatest possible terminal height for the rocket. The
mass has a lower bound (the weight of the rocket minus the weight of the propellant)
which is taken to be one.

To solve the Goddard rocket problem with the switch point algorithm, we will
convert the state constraint m \geq 1 into an additional cost term in the objective.
Observe that the mass is a monotone decreasing function of time since u \geq 0. Since
the goal is to achieve the greatest possible height, all the fuel will be consumed and
m(T ) = 1. Consequently, the state constraint is satisfied when the terminal constraint
m(T ) = 1 is fulfilled. By adding a term of the form \beta (m(t) - 1) to the objective, where
\beta corresponds to the optimal costate evaluated at the terminal time, the solution of
the Goddard problem becomes a stationary point of the problem with the modified
objective and with the state constraint omitted. To achieve an objective where the
solution to the Goddard problem is a local minimizer, we need to incorporate a penalty
term in the objective:

 - h(T ) + \beta (m(T ) - 1) +
\rho 

2
(m(T ) - 1)2(6.5)
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Table 6.3
Performance and absolute errors for Bressan's problem.

Method CPU (s) s1 error

SPA1 0.09 1.8\times 10 - 15

[5] 0.29 3.3\times 10 - 03

[14] 24.80 5.9\times 10 - 07

with \rho > 0 and \beta \approx  - 2.31774080357308\times 104. Our Goddard test problem corresponds
to the original Goddard problem, but with the state constraint dropped and with the
objective replaced by (6.5).

The optimal solution of the Goddard rocket problem has two switch points and
the optimal control is

u(t) =

\left\{   umax, 0 \leq t \leq s1 \approx 13.75532627577406,
using(t), s1 < t \leq s2 \approx 21.98890645593362,
0, s2 < t \leq T \approx 42.88910958027504,

(6.6)

where the control in the singular region, gotten from the second derivative of the
switching function, is

using(t) = \sigma v2(t)eh(t)/h0 +mg +
mg

1 + 4\kappa (t) + 2\kappa 2(t)

\biggl[ 
c2

h0g
(1 + \kappa  - 1(t)) - 1 - 2\kappa (t)

\biggr] 
,

where \kappa (t) = c/v(t). The switching points in (6.6) were estimated by integrating
forward the dynamics utilizing the known structure for the optimal solution.

We solve the Goddard test problem using \rho = 105, the starting guess s1 = 13,
s2 = 21, and T = 42, and the optimizer PASA with the MATLAB integrator ODE45
and computing tolerances 10 - 8. The solution time was 1.21 s, and the absolute errors
in s1, s2, and T were 1.3 \times 10 - 8, 6.0 \times 10 - 8, and 9.4 \times 10 - 8, respectively. PASA
achieved the convergence tolerance in 11 iterations, and essentially all the computing
time is associated with ODE45.

7. Conclusions. A new approach, the switch point algorithm, was introduced
for solving nonsmooth optimal control problems whose solutions are bang-bang, singu-
lar, or both bang-bang and singular. For problems where the optimal control has the
form u(t) = \bfitphi j(x(t), t) (Case 1) or u(t) = \bfitphi j(x(t),p(t), t) (Case 2) for t \in (sj , sj+1),
0 \leq j \leq k, with u(t) feasible for s in a neighborhood of the optimal switching points
and for the initial costate p(0) in a neighborhood of the associated optimal costate, the
solution of the optimal control problem reduces to an optimization over the switching
points and the choice of the initial costate p(0). Formulas were obtained for the deriv-
atives of the objective with respect to the switch points, the initial costate p(0), and
the terminal time T . All these derivatives can be computed simultaneously with just
one integration of the state or generalized state dynamics, followed by one integration
of the costate or generalized costate dynamics. A series of test problems were solved
by either optimizing over the switching points (and over p(0) in Case 2) or computing
a point where the derivative of the objective with respect to a switch point vanishes.
Accurate solutions were obtained relatively quickly as seen in the comparisons given
in Tables 6.1--6.3.
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