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Abstract. A new method, the sequential subspace method (SSM), is developed for the problem
of minimizing a quadratic over a sphere. In our scheme, the quadratic is minimized over a subspace
which is adjusted in successive iterations to ensure convergence to an optimum. When a sequen-
tial quadratic programming iterate is included in the subspace, convergence is locally quadratic.
Numerical comparisons with other recent methods are given.
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1. Introduction. In this paper we consider the following problem of minimizing
a quadratic over a sphere:

minimize xTAx− 2bTx subject to ‖x‖ ≤ r,(1.1)

where A is a symmetric n × n matrix, b ∈ Rn, T denotes transpose, and ‖ · ‖
is the Euclidean norm. This minimization problem is often called the trust region
subproblem since it must be solved in each step of a trust region algorithm [1, 2, 3,
15, 19]. Problems of this form arise in many other applications including regularization
methods for ill-posed problems [14, 26] and graph partitioning problems [10].

Although the solution to (1.1) can be expressed in terms of a diagonalization of
A, this representation is practical only when n is small. In this paper, we focus on
the large-scale case. One approach to the large-scale case, developed by Golub and
von Matt in [5] (also see [4]), is to (partially) tridiagonalize A using the Lanczos
process and then solve tridiagonal problems to obtain an approximate solution to
(1.1). For further developments of this approach, including preconditioning and a
Fortran 90 implementation HSL VF05 in the Harwell subroutine library, see Gould
et al. [7]. For the method developed in this paper, we use an approach in the spirit
of the Golub/von Matt/Gould et al. scheme to obtain a starting guess.

Parametric eigenvalue approaches to the sphere constrained problem (1.1) are de-
veloped by Sorensen [24] and by Rendl and Wolkowicz [20]. The relationship between
these two approaches is discussed in detail in [20]. Roughly, Sorensen’s approach
involves constructing an approximation to the solution of (1.1) from the solution to
a related eigenvalue problem. Since this approximation may not satisfy the bound
on the norm of the solution, a series of eigenvalue problems are solved, and in the
limit, the bound on the norm of the solution is fulfilled. In the approach of Rendl
and Wolkowicz, the same eigenvalue problem is solved in each iteration; however, the
bound on the norm of the solution is satisfied by maximizing a related dual func-
tion. The eigenvalue problems arising in either approach can be solved using Arnoldi
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techniques such as those developed in [13]. In the “hard case” (see [16]), where b is
orthogonal to the eigenvectors associated with the smallest eigenvalue ofA, Sorensen’s
approach needs to be modified. An efficient algorithm for the hard case is developed
by Rojas in her thesis [21]. She also uses this algorithm to solve some difficult ill-
posed problems of Hansen [11, 12]. The approach of Rendl and Wolkowicz does not
need modification in the hard case; however, the convergence of algorithms for the
eigenvalue problem may be slower when the computed eigenvalue is not simple.

The approach in this paper, which we call the sequential subspace method (SSM),
involves solving (1.1) with the additional constraint that x is contained in a subspace.
We show that convergence is locally quadratic (locally cubic when b = 0) if the
subspace contains the iterate generated by one step of the sequential quadratic pro-
gramming (SQP) algorithm applied to (1.1). The convergence is quadratic even when
the original problem is degenerate with multiple solutions and with a singular Jaco-
bian for the first-order optimality system. Descent of the cost at a nonoptimal point
can be ensured by including in the subspace either the cost gradient or an eigenvector
associated with the smallest eigenvalue of A. We observe in numerical experiments
that appropriate small dimensional subspaces are generated by preconditioned Krylov
space and minimum residual techniques. Comparisons with the algorithms of Sorensen
[24], Rendl and Wolkowicz [20], and Gould et al. [7] are given in section 5.

A solution of the problem

minimize xTAx subject to ‖x‖ = r(1.2)

is any eigenvector associated with the smallest eigenvalue ofA. In comparing the SSM
approach to algorithms for solving the eigenproblem, it follows from the discussion of
Sleijpen and Van der Vorst in [22] that an SQP iterate for (1.2) is closely connected
to the Rayleigh quotient iteration [18, p. 70], which is cubically convergent [18, p.
73]. In [22] approximate solutions to the SQP system are used to build up subspaces
containing the approximation to the eigenvector. In this paper, we solve the SQP
system relatively precisely, and we form a small dimensional subspace containing the
SQP iterate. After computing the new approximation in the subspace, the previous
information is discarded; hence, the computer memory requirements are relatively
small.

2. Complete diagonalization. If there exists a solution y of (1.1) with
‖y‖ < r, then A is positive semidefinite and y is the global minimizer of the quadratic
xTAx−2bTx. Thus, when a minimizer of (1.1) lies in the interior of the constraining
sphere, the constraint can be ignored and the optimization problem can be approached
using techniques for unconstrained optimization. Consequently, we restrict our atten-
tion to the following equality constrained problem:

minimize xTAx− 2bTx subject to ‖x‖ = r.(2.1)

The solutions to (2.1) are characterized by the following result (see [23, Lemmas 2.4
and 2.8]).
Lemma 2.1. The vector x is a solution of (2.1) if and only if ‖x‖ = r and there

exists µ such that A+ µI is positive semidefinite and (A+ µI)x = b.
The solution to (2.1) can be expressed in terms of the eigenpairs of A. Let

A = ΦΛΦT be a diagonalization of A, where Λ is a diagonal matrix with diagonal
elements λ1 ≤ λ2 ≤ · · · ≤ λn and Φ is the matrix whose columns φ1, φ2, . . . , φn

are orthonormal eigenvectors of A. Defining βi = bTφi, E1 = {i : λi = λ1}, and
E+ = {i : λi > λ1}, Lemma 2.1 yields the following.
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Lemma 2.2. The vector φ =
∑n

i=1 ciφi is a solution of (2.1) if and only if c is
chosen in the following way:

(a) Degenerate case: If βi = 0 for all i ∈ E1 and

∑
i∈E+

β2
i

(λi − λ1)2
≤ r2,(2.2)

then µ = −λ1 in Lemma 2.1 and ci = βi/(λi − λ1) for i ∈ E+; the ci for
i ∈ E1 are arbitrary scalars satisfying the condition

∑
i∈E1

c2i = r2 −
∑
i∈E+

β2
i

(λi − λ1)2
.

(b) Nondegenerate case: If (a) does not hold, then ci = βi/(λi + µ), 1 ≤ i ≤ n,
where µ > −λ1 is chosen so that

n∑
i=1

β2
i

(λi + µ)2
= r2.(2.3)

Proof. Simply check that the sufficient optimality conditions of Lemma 2.1 are
satisfied. The degenerate case, where the Jacobian of the first-order optimality system
may be singular, coincides with the “hard case” of Moré and Sorensen [16], where b
is orthogonal to the eigenspace associated with the smallest eigenvalue of A and the
multiplier µ is equal to −λ1. In the nondegenerate case, the multiplier µ is chosen so
that A+ µI is positive definite and the solution x = x(µ) to (A+ µI)x = b satisfies
the constraint xTx = r2.

In the nondegenerate case, (2.3) leads to upper and lower bounds for the multiplier
µ. Since λi + µ ≥ λ1 + µ > 0, 1 ≤ i ≤ n, we have

r2 =

n∑
i=1

β2
i

(λi + µ)2
≤

n∑
i=1

β2
i

(λ1 + µ)2
=

‖b‖2
(λ1 + µ)2

.

Since λ1 + µ > 0, it follows that

µ ≤ ‖b‖
r
− λ1 := µu.(2.4)

To obtain a lower bound, observe that

r2 =

n∑
i=1

β2
i

(λi + µ)2
≥ 1

(λ1 + µ)2

∑
i∈E1

β2
i ,

which yields the relation

µ ≥ −λ1 +
1

r

(∑
i∈E1

β2
i

)1/2

:= µl.(2.5)

Utilizing the upper and lower bounds µu and µl and the strict convexity of the left
side of (2.3) on the interval (µl, µu], it is easy to devise efficient algorithms to compute
a solution µ of (2.3).
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3. Incomplete diagonalization; local convergence. At iteration k in the
SSM for (2.1), we impose the additional constraint that x lies in a subspace Sk of Rn.
Hence, the new iterate xk+1 is a solution of the problem

minimize xTAx− 2bTx subject to ‖x‖ = r, x ∈ Sk.(3.1)

We show that the convergence is locally quadratic, even when the original problem
(2.1) is degenerate, if we include an SQP iterate associated with xk in Sk.

If V is an n × l matrix with orthonormal columns that span Sk, then (3.1) is
equivalent to the problem

minimize xTAx− 2bTx subject to ‖x‖ = r, x = Vy.(3.2)

After substituting for x, (3.2) reduces to the following problem in Rl:

minimize yTBy − 2cTy subject to ‖y‖ = r,(3.3)

where B = VTAV and c = VTb. If l is small, then (3.3) can be solved by complete
diagonalization as in section 2 or, if B has a sparse factorization, then (3.3) can be
solved quickly using the Newton approach developed in [16].

In theory, a tridiagonalB is generated using the Lanczos process [6]. In particular,
if v1 is a unit vector and vi is the ith column of V, then the Lanczos process can be
expressed as follows.

Algorithm 1 (Lanczos).
u0 = 0
for j = 1 : l − 1

s← Avj

dj ← sTvj

s← s− djvj − uj−1vj−1

uj ← ‖s‖
vj+1 ← s/uj

end
end Algorithm 1

Here d is the diagonal and u is the superdiagonal of the tridiagonal matrix B. If
uj = 0 for some j, then the Lanczos process is terminated and the column spaces of
V and AV coincide.

It is well known that the columns of V generated by this process may deviate
significantly from orthogonality due to the propagation of rounding errors. When this
happens, (3.2) is no longer equivalent to (3.3). Nonetheless, Gould et al. observe in [7]
that the solution to (3.3) often provides a good approximation to the solution of (3.2)
despite the loss of orthogonality. The Lanczos process can be repaired, in order to
restore orthogonality, by using a Householder process to generate the columns of V.
This process, however, requires products between a vector and each of the previously
computed columns of V. Thus, the overhead needed to maintain orthogonality grows
as nl2 in the number of flops and as nl in storage. This overhead can be significant
when n or l is large. On the other hand, to compute a high accuracy solution, we
need to maintain orthogonality in order to obtain an equivalent problem (3.3). This
leads us to focus on approaches that involve subspaces where l is much smaller than
n. In particular, for an implementation (Algorithm 4) of the SSM proposed later, l is
either 4 or 5.
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Since SQP techniques often converge rapidly, with a good starting guess, we
always include the SQP approximation in the subspace Sk. The SQP method is
equivalent to Newton’s method applied to the nonlinear system

(A+ µI)x− b = 0,
1

2
xTx− 1

2
r2 = 0.(3.4)

If xk is the current iterate, which we assume satisfies the constraint ‖x‖ = r, and
µk is the current approximation to the multiplier associated with the constraint,
then the Newton iterate can be expressed in the following way: xSQP = z + xk and
µSQP = µk + ν, where z and ν are solutions of the linear system

(A+ µkI)z+ xkν = b− (A+ µkI)xk,(3.5)

xT
kz = 0.(3.6)

When the coefficient matrix in (3.5)–(3.6) is singular, we let (z, ν) be the minimum
residual/minimum norm solution; that is, (z, ν) is obtained (in theory) by multiplying
the right side by the pseudoinverse of the coefficient matrix (see [8]).

A solution xk+1 to the subspace problem (3.1) is an approximation to the solution
of (2.1). To obtain an estimate for the multiplier of Lemma 2.1, we minimize the
Euclidean norm of the residual b−Axk+1−µxk+1 over the scalar µ. This works out
to give

µk+1 = ρ(xk+1), where ρ(x) =
(b−Ax)Tx

‖x‖2 .(3.7)

This is the standard least squares approximation to the solution of the overdetermined
linear system µxk+1 = b−Axk+1.

We now examine the local convergence of a solution xk+1 of (3.1) and the mul-
tiplier estimate (3.7) under the assumption that Sk contains xSQP = z + xk, where
(z, ν) is a solution to (3.5). Let S∗ denote the set of minimizers of (2.1), and let µ∗ be
the multiplier given by Lemma 2.1. In the nondegenerate setting, where A + µ∗I is
positive definite, we show that the iteration is locally, quadratically convergent to the
unique solution of (2.1). In the degenerate case µ∗ = −λ1, where S∗ has more than
one element, we obtain local quadratic convergence to S∗, where distance is measured
in the usual way:

dist(x,S∗) = inf{‖x− x∗‖ : x∗ ∈ S∗}.
In the nondegenerate-degenerate case, where µ∗ = −λ1 but S∗ contains a single
element, we obtain local quadratic convergence for a “safe-guarded” choice of µk.
Our convergence result in the special nondegenerate-degenerate case is given later in
Lemma 3.4, while our local convergence result in either the nondegenerate case or the
degenerate case with multiple solutions is as follows.
Theorem 3.1. Let µ∗ be the multiplier of Lemma 2.1 associated with the set of

solutions S∗ of (2.1), and suppose that either A+µ∗I is positive definite or µ∗ = −λ1

with (2.2) a strict inequality. Then there exist positive constants η and C with the
property that for any (xk, µk) such that

|µk − µ∗|+ dist(xk,S∗) ≤ η, ‖xk‖ = r,

and for any subspace Sk that contains the SQP iterate xSQP associated with (3.5)–
(3.6), any solution xk+1 of (3.1) and associated multiplier µk+1 given by (3.7) satisfy
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the estimate

dist(xk+1,S∗) + |µk+1 − µ∗| ≤ C(dist(xk,S∗)2 + |µk − µ∗|2).
The eigenvalue problem (1.2), corresponding to b = 0, is always degenerate (with

multiple solution) and the error has the special form

dist(xk+1,S∗) ≤ C|µk + λ1|dist(xk,S∗).
When the multiplier is estimated using (3.7), it can be shown, when b = 0, that the
error in the multiplier is bounded by a constant times the error in the solution vector
squared (see the remark at the end of section 3.1). It follows that for some constant
C,

dist(xk+1,S∗) ≤ Cdist(xk,S∗)3 and |µk+1 + λ1| ≤ Cdist(xk,S∗)6,(3.8)

which is the same as the convergence result for the Rayleigh quotient iteration.

3.1. Nondegenerate problems. We begin the derivation of Theorem 3.1 with
the nondegenerate case.
Lemma 3.2. If (2.1) has a solution x∗ and an associated multiplier µ∗ with

µ∗ > −λ1, then there exist a neighborhood N of (x∗, µ∗) and a constant C with the
property that for any (xk, µk) ∈ N with ‖xk‖ = r, and for any subspace Sk that
contains the SQP iterate xSQP associated with (3.5)–(3.6), any solution xk+1 of (3.1)
and associated multiplier µk+1 given by (3.7) satisfy the estimate

‖xk+1 − x∗‖+ |µk+1 − µ∗| ≤ C(‖xk − x∗‖2 + |µk − µ∗|2).
Proof. Since µ∗ > −λ1, the matrix A+ µ∗I is positive definite, and the Jacobian

of the nonlinear system (3.4) is nonsingular at (x∗, µ∗). By the standard convergence
theorem for Newton’s method applied to a smooth system of equations, there exist a
neighborhood N of (xk, µk) and a constant c such that

‖xSQP − x∗‖+ |µSQP − µ∗| ≤ c(‖xk − x∗‖2 + |µk − µ∗|2)
whenever (xk, µk) ∈ N .

Let α and β be positive scalars chosen so that

α‖x‖2 ≤ xT(A+ µ∗I)x ≤ β‖x‖2(3.9)

for all x ∈ Rn, let f be the cost function in (2.1), f(x) = xTAx − 2bTx, and let L
be the Lagrangian defined by

L(x, µ) = f(x) + µ(xTx− r2).

A Taylor expansion around x∗ yields the relation

f(x) = L(x, µ∗) = f(x∗) + (x− x∗)T(A+ µ∗I)(x− x∗)

for any x ∈ Br = {x ∈ Rn : ‖x‖ = r}. Combining this with (3.9) gives

α‖x− x∗‖2 ≤ f(x)− f(x∗) ≤ β‖x− x∗‖2(3.10)

for any x ∈ Br.
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If p is the projection of xSQP onto Br, then

‖xSQP − p‖ ≤ ‖xSQP − x∗‖ ≤ c(‖xk − x∗‖2 + |µk − µ∗|2).(3.11)

Hence, we have

‖p− x∗‖ ≤ ‖p− xSQP‖+ ‖xSQP − x∗‖ ≤ 2c(‖xk − x∗‖2 + |µk − µ∗|2).

Since p = γxSQP for some γ, it follows that p ∈ Sk and f(xk+1) ≤ f(p). Combining
this inequality with (3.10) and (3.11) gives

α‖xk+1 − x∗‖2 ≤ f(xk+1)− f(x∗)
≤ f(p)− f(x∗)
≤ β‖p− x∗‖2
≤ 4c2β(‖xk − x∗‖2 + |µk − µ∗|2)2,

which implies that

‖xk+1 − x∗‖ ≤ 2c
√
β/α(‖xk − x∗‖2 + |µk − µ∗|2).(3.12)

Since b = (A+ µ∗I)x∗, we have, for any x ∈ Br,

r2ρ(x) = (b−Ax)Tx = ((A+ µ∗I)x∗ −Ax)Tx

= xT(A+ µ∗I)(x∗ − x) + µ∗r2.(3.13)

Making this substitution gives

|µk+1 − µ∗| = |ρ(xk+1)− µ∗| ≤ λn + µ∗

r
‖xk+1 − x∗‖.(3.14)

Combining (3.14) with (3.12), the proof is complete.
Remark. For the eigenvalue problem (1.2), we have x∗ = rφ1, µ

∗ = −λ1, and
φT

1 (A− λ1I) = 0. In this case, (3.13) yields

r2ρ(x) = (x− x∗)T(A− λ1I)(x
∗ − x)− λ1r

2,

and (3.14) becomes

|µk+1 − µ∗| ≤ λn − λ1

r2
‖xk+1 − x∗‖2.

3.2. Degenerate problems. Now consider local convergence in the degenerate
case where µ∗ = −λ1. Referring to Lemma 2.2, the degenerate case can happen only
when βi = bTφi = 0 for all i ∈ E1. Any solution to (2.1) in the degenerate case can
be expressed as x∗ = Φ1 +Φ+, where

Φ+ =
∑
i∈E+

ciφi, ci = βi/(λi − λ1),(3.15)

and Φ1 is any linear combination of the vectors φi, i ∈ E1, satisfying the relation

‖Φ1‖2 + ‖Φ+‖2 = r2.
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Initially, we suppose that ‖Φ1‖ = δ > 0, in which case the projection of S∗ on the
eigenspace associated with E1 contains a sphere of radius δ. Our convergence result
is the following.

Lemma 3.3. Suppose that the multiplier µ∗ of Lemma 2.1 associated with the set
of solutions S∗ of (2.1) is given by µ∗ = −λ1 and that ‖Φ1‖ = δ > 0, where Φ1 is the
component of an element of S∗ in the eigenspace associated with E1. Then there exist
positive constants η and C with the property that for any (xk, µk) such that

|µk + λ1|+ dist(xk,S∗) ≤ η, ‖xk‖ = r,

and for any subspace Sk that contains the SQP iterate xSQP associated with (3.5)–
(3.6), any solution xk+1 of (3.1) and associated multiplier µk+1 given by (3.7) satisfy
the estimate

dist(xk+1,S∗) + |µk+1 + λ1| ≤ C(dist(xk,S∗)2 + |µk + λ1|2).
Proof. Initially, let us assume that µk is near −λ1, but µk �= −λ1. In this case,

the linear system (3.5)–(3.6) is nonsingular, and there exists a unique solution (z, ν).
We expand z and xk in terms of the eigenvectors of A writing z =

∑n
i=1 ζiφi and

xk =
∑n

i=1 χiφi. Utilizing (3.5), we obtain

ζi =
−χiν

λi + µk
+

βi − (λi + µk)χi

λi + µk
.(3.16)

Substituting this in (3.6) gives

ν =

∑n
i=1 χi(βi − (λi + µk)χi)/(λi + µk)∑n

i=1 χ
2
i /(λi + µk)

.(3.17)

Let us define R = b− (A+ µkI)xk and ρi = RTφi. For i ∈ E1, βi = 0 and

ν =
−(λ1 + µk)

(∑
i∈E1

χ2
i +

∑
i∈E+

χiρi

λi+µk

)
∑

i∈E1
χ2
i + (λ1 + µk)

∑
i∈E+

χ2
i

λi+µk

.(3.18)

If x∗ ∈ S∗, then since b = (A− λ1I)x
∗ and ‖xk‖ = r, we have

‖R‖ = ‖b− (A+ µkI)xk‖ ≤ r|λ1 + µk|+ ‖A− λ1I‖‖xk − x∗‖
≤ max{r, ‖A− λ1I‖}(|λ1 + µk|+ ‖xk − x∗‖).(3.19)

Let εk be the error at step k defined by

εk = |λ1 + µk|+ dist(xk,S∗).
By (3.19), we have ‖R‖ = O(εk), while (3.18) gives

ν = −(λ1 + µk)(1 +O(εk))(3.20)

= −(λ1 + µk) +O(ε2k)(3.21)

since
∑

i∈E1
χ2
i is near δ2 > 0 when xk is near S∗. From (3.16), we have

ζi + χi =
βi − χiν

λi + µk
.(3.22)
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Since βi = 0 and λi = λ1 for i ∈ E1, (3.20) and (3.22) give

ζi + χi = χi +O(εk) for i ∈ E1.(3.23)

Let x∗ be the closest element of S∗ to xk and define χ∗
i = φTx∗. Then we have

|χi − χ∗
i | = |(xk − x∗)Tφi| ≤ ‖xk − x∗‖ ≤ εk.(3.24)

By (3.23) the φi component of xSQP = z+xk for i ∈ E1 is in error by O(εk) since χi,
the φi component of xk, is in error by O(εk) by (3.24).

Lemma 2.2 implies that βi = χ∗
i (λi − λ1) for i ∈ E+. Combining this with (3.21)

and (3.22) gives

ζi + χi =
βi − χiν

λi + µk
=

βi + χi(λ1 + µk)

λi + µk
+O(ε2k)

=
χ∗
i (λi − λ1) + χi(λ1 + µk)

λi + µk
+O(ε2k)

=
χ∗
i (λi − λ1) + χ∗

i (λ1 + µk)

λi + µk
+O(ε2k) = χ∗

i +O(ε2k).(3.25)

Hence, for i ∈ E+ the φi component of xSQP is in error by O(ε2k).
Let ‖ · ‖+ be the seminorm associated with projection into the eigenspace associ-

ated with E+:

‖x‖2+ =
∑
i∈E+

(xTφi)
2.

Then we have

(λ+ − λ1)‖x‖2+ ≤ xT(A− λ1I)x ≤ (λn − λ1)‖x‖2+(3.26)

for all x ∈ Rn, where λ+ = min{λi : λi > λ1, 1 ≤ i ≤ n}. Proceeding as we did
earlier, but replacing norms with seminorms,

α‖xk+1 − x∗‖2+ ≤ f(xk+1)− f(x∗)
≤ f(p)− f(x∗)
≤ β‖p− x∗‖2+,(3.27)

where p is the projection of xSQP onto the ball Br, and p = γxSQP for some γ ≥ 0.
Since ‖z‖ = O(εk) by (3.23) and (3.25), and z is perpendicular to xk by (3.6), we
have

‖xSQP‖2 = ‖z+ xk‖2 = ‖z‖2 + ‖xk‖2 = r2 +O(ε2k).

This implies that ‖xSQP‖ = r +O(ε2k), and γ = 1 +O(ε2k). For i ∈ E+,

pTφi = γxT
SQPφi = (1 +O(ε2k))(ζi + χi) = (1 +O(ε2k))(χ

∗
i +O(ε2k)) = χ∗

i +O(ε2k).

Consequently, ‖p− x∗‖+ = O(ε2k), which combines with (3.27) to give

‖xk+1 − x∗‖+ = O(ε2k).(3.28)
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By the triangle inequality,

‖x∗‖+ −O(ε2k) ≤ ‖xk+1‖+ ≤ ‖x∗‖+ +O(ε2k).

Let ‖ · ‖1 be the seminorm defined by

‖x‖21 =
∑
i∈E1

(xTφi)
2,(3.29)

and recall that ‖x∗‖1 = δ for any x∗ ∈ S∗. By the Pythagorean theorem and the fact
that xk+1 has length r, we have

‖xk+1‖21 = r2 − ‖xk+1‖2+ = r2 − ‖x∗‖2+ +O(ε2k) = ‖x∗‖21 +O(ε2k) = δ2 +O(ε2k),

which implies that

‖xk+1‖1 = δ +O(ε2k).(3.30)

The distance from xk+1 to S∗ is given by

dist(xk+1,S∗)2 = ‖xk+1 − x∗‖2+ + (δ − ‖xk+1‖1)2,(3.31)

where x∗ is any element of S∗. Relations (3.28)–(3.31) yield dist(xk+1,S∗) = O(ε2k),
while (3.14) gives |µk+1 − µ∗| = O(ε2k). Combining these estimates, we have εk+1 =
O(ε2k).

This analysis was given under the assumption that µk �= −λ1. In the special
case µk = −λ1, we now show how the analysis should be modified. With the change
of variables z =

∑n
i=1 ζiφi and the substitution xk =

∑n
i=1 χiφi, the SQP system

(3.5)–(3.6) is equivalent, by orthogonal transformation, to[
D χ
χT 0

] [
ζ
ν

]
=

[
β −Dχ

0

]
,(3.32)

whereD is a diagonal matrix with diagonal elements dii = λi−λ1. If E1 has s elements,
then the first s diagonal elements of D and the first s components of β−Dχ vanish.
Hence, the first s equations in (3.32) imply that ν = 0. The next n− s equations give

ζi = −χi + βi/(λi − λ1) = −χi + χ∗
i , i ∈ E+,(3.33)

while the last equation in (3.32) gives∑
i∈E1

χiζi = −
∑
i∈E+

χiζi.

The minimum norm solution to this last equation is

ζi = −
(∑

i∈E+
ζiχi∑

i∈E1
χ2
i

)
χi for i ∈ E1.(3.34)

By (3.33), ζi + χi = χ∗
i and |ζi| ≤ εk for i ∈ E+. By (3.34), |ζi| = O(εk) for i ∈ E1.

Combining these bounds, we have ‖z‖ = O(εk). With these relations, all the analysis
from (3.26) onward can be applied, leading us to the estimate εk+1 = O(ε2k).

Lemmas 3.2 and 3.3 yield Theorem 3.1.
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3.3. Nondegenerate-degenerate problems. Finally, let us consider the
nondegenerate-degenerate case, where µ∗ = −λ1, x

∗ = Φ1 + Φ+, and the Φ1 com-
ponent of x∗ in the eigenspace associated with the smallest eigenvalue of A vanishes.
Our convergence result is the following.
Lemma 3.4. If (2.1) has a solution x∗ = Φ+, where Φ+ is given by (3.15), then

there exist a neighborhood N of (x∗,−λ1) and a constant C with the property that for
any (xk, µk) ∈ N with

µk ≥ −λ1 + ‖b− (A+ ρ(xk)I)xk‖, ‖xk‖ = r,(3.35)

and for any subspace Sk that contains the SQP iterate xSQP associated with (3.5)–
(3.6), the solution xk+1 of (3.1) and associated multiplier µk+1 given by (3.7) satisfy
the estimate

‖xk+1 − x∗‖+ |µk+1 − µ∗| ≤ C(‖xk − x∗‖2 + |µk − µ∗|2).
In the case that µk = −λ1 + ‖b− (A+ ρ(xk)I)xk‖, C can be chosen so that

‖xk+1 − x∗‖+ |µk+1 − µ∗| ≤ C‖xk − x∗‖2.
Proof. Focusing on the numerator in (3.17), and substituting βi = (λi − λ1)χ

∗
i ,

we have
n∑

i=1

χi(βi − (λi + µk)χi)

λi + µk

=

n∑
i=1

χi((λi − λ1)(χ
∗
i − χi + χi)− (λi + µk)χi)

λi + µk

= −(λ1 + µk)

n∑
i=1

χ2
i

λi + µk
+
∑
i∈E+

χi(λi − λ1)(χ
∗
i − χi)

λi + µk

= −(λ1 + µk)

n∑
i=1

χ2
i

λi + µk
+
∑
i∈E+

χi(χ
∗
i − χi)− (λ1 + µk)

∑
i∈E+

χi(χ
∗
i − χi)

λi + µk
.

With this substitution for the numerator of ν in (3.17), we obtain

ν = −(λ1 + µk) +

∑
i∈E+

χi(χ
∗
i − χi)∑n

i=1 χ
2
i /(λi + µk)

−
(λ1 + µk)

∑
i∈E+

χi(χ
∗
i −χi)

λi+µk∑n
i=1 χ

2
i /(λi + µk)

.(3.36)

Since µk > −λ1, the denominator terms in (3.36) have the lower bound

n∑
i=1

χ2
i

λi + µk
≥

n∑
i=1

χ2
i

λn + µk
=

r2

λn + µk
.(3.37)

Another lower bound is gotten by neglecting terms corresponding to indices i ∈ E+:
n∑

i=1

χ2
i

λi + µk
≥
∑
i∈E1

χ2
i

λi + µk
=
‖xk‖21
λ1 + µk

,(3.38)

where the seminorm ‖ · ‖1 is defined in (3.29). Combining (3.36)–(3.38) yields

ν = −(λ1 + µk)(1 +O(‖xk − x∗‖+)) + O(‖x∗ − xk‖+)
max{1, ‖xk‖21/(λ1 + µk)} .(3.39)



MINIMIZING A QUADRATIC OVER A SPHERE 199

Returning to our previous analysis of the degenerate case, it follows from (3.22)
and (3.39) that for i ∈ E1, we have

ζi + χi =
βi − χiν

λi + µk
=
−χiν

λ1 + µk

= χi +O(εk)

(
1 +

‖xk − x∗‖+
max{λ1 + µk, ‖xk‖21}

)
.(3.40)

Here we exploit the fact that for i ∈ E1, |χi| ≤ ‖xk‖1 ≤ εk. In order to analyze (3.40),
we consider two separate cases: (i) ‖xk‖21 ≥ σ‖xk−x∗‖+ and (ii) ‖xk‖21 < σ‖xk−x∗‖+,
where σ is any fixed constant satisfying

0 < σ <
r(λ+ − λ1)

λn − λ1
, λ+ = min{λi : λi > λ1, 1 ≤ i ≤ n}.(3.41)

In case (i),

‖xk − x∗‖+
max{λ1 + µk, ‖xk‖21}

≤ ‖xk − x∗‖+
max{λ1 + µk, σ‖xk − x∗‖+} ≤

1

σ
.(3.42)

We now derive a similar bound for the left side of (3.42) in case (ii). In this case,
it follows from (3.35) that

‖xk − x∗‖+
max{λ1 + µk, ‖xk‖21}

≤ ‖x∗ − xk‖+
‖b− (A+ ρ(xk)I)xk‖ .

Since b = (A− λ1I)x
∗, we have

b− (A+ ρ(x)I)x = (A− λ1I)x
∗ − (A+ ρ(x)I)x

= (A− λ1I)(x
∗ − x)− (ρ(x) + λ1)x

= (A− λ1I)(x
∗ − x)+ − (ρ(x) + λ1)x

for any x ∈ Rn, where a + subscript on a vector is used to denote its projection on
the eigenspace associated with E+. After substituting for ρ using (3.13), we obtain

b− (A+ ρ(x)I)x = (A− λ1I)(x
∗ − x)− r−2(xT(A− λ1I)(x

∗ − x)+)x(3.43)

for any x ∈ Br. Assuming xk �= x∗, it follows that

‖x∗ − xk‖+
‖b− (A+ ρ(xk)I)xk‖ =

1

‖(A− λ1I)y − r−2(xT
k (A− λ1I)y)xk‖

,(3.44)

where y = (x∗ − xk)+/‖x∗ − xk‖+ is a unit vector (note that when ‖xk‖ = r,
‖x∗ − xk‖+ = 0 if and only if xk = x∗ since ‖x∗‖1 = 0).

We will establish a uniform bound for the expression (3.44) when xk is near x∗,
‖xk‖21 ≤ σ‖xk − x∗‖+, and ‖xk‖ = r. To facilitate this analysis, we first consider
whether the equation

(A− λ1I)y = r−2(yT(A− λ1I)x
∗)x∗(3.45)

has a solution of the form y = (x∗ − x)+/‖x∗ − x‖+ with x near x∗, ‖x‖ = r, and
‖x‖21 ≤ σ‖x− x∗‖+. Since ‖y‖ = 1 for y of this form, the Schwarz inequality gives

|yT(A− λ1I)x
∗| ≤ (λn − λ1)‖y‖‖x∗‖ = r(λn − λ1).(3.46)
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Since the unit vector y is orthogonal to the eigenspace associated with λ1,

yT(A− λ1I)y ≥ λ+ − λ1.(3.47)

Multiplying (3.45) by yT and using both (3.46) and (3.47) gives

|yTx∗| ≥ r(λ+ − λ1)

λn − λ1
> σ.(3.48)

For any x ∈ Br, we have
r2 = ‖x‖2 = r2 + 2(x− x∗)Tx∗ + ‖x− x∗‖2

= r2 − 2‖x∗ − x‖+yTx∗ + ‖x− x∗‖2,
which implies that

yTx∗ =
‖x− x∗‖2
2‖x− x∗‖+ =

‖x− x∗‖2+ + ‖x− x∗‖21
2‖x− x∗‖+

=
1

2

(
‖x− x∗‖+ +

‖x‖21
‖x− x∗‖+

)
(3.49)

since ‖x− x∗‖1 = ‖x‖1. If ‖x‖21 ≤ σ‖x− x∗‖+, then (3.49) yields the relation

0 ≤ yTx∗ ≤ 1

2
(‖x− x∗‖+ + σ).(3.50)

Referring to (3.48), we have a contradiction when ‖x− x∗‖+ ≤ σ.
In summary, (3.45) has no solution over the set Y consisting of those y that satisfy

the conditions y = (x∗−x)+/‖x∗−x‖+, x �= x∗, ‖x‖21 ≤ σ‖x−x∗‖+, ‖x−x∗‖+ ≤ σ,
and ‖x‖ = r. If y lies in the closure of Y, then by (3.50), yTx∗ ≤ σ; since any solution
of (3.45) satisfies (3.48), y cannot be a solution of (3.45). Since (3.45) has no solution
over the closure of Y, the following constant δ is strictly positive:

δ = min
y∈Y
‖(A− λ1I)y − r−2(yT(A− λ1I)x

∗)x∗‖.

Since

lim
xk→x∗ min

y∈Y
‖(A− λ1I)y − r−2(yT(A− λ1I)xk)xk‖ = δ,

(3.44) is bounded uniformly over all xk near x∗ with ‖xk‖ = r and ‖xk‖21 < σ‖xk −
x∗‖+. Thus in either case (i) or (ii), the left side of (3.42) is bounded and, by (3.40),
we have

ζi + χi = χi +O(εk) for i ∈ E1,
which is the same as relation (3.23) in the degenerate case.

To establish the analogue of (3.25) for indices i ∈ E+, we need a different bound
for the next to last term in (3.36). From the identity

∑n
i=1 χ

2
i =

∑n
i=1 χ

∗
i
2 = r2, we

obtain

n∑
i=1

(χ∗
i + χi)(χ

∗
i − χi) = 0.(3.51)



MINIMIZING A QUADRATIC OVER A SPHERE 201

Hence, we have

−
n∑

i=1

χi(χ
∗
i − χi) = −

n∑
i=1

χi(χ
∗
i − χi) +

1

2
(χ∗

i + χi)(χ
∗
i − χi)

=
1

2

n∑
i=1

(χ∗
i − χi)

2.(3.52)

Since χ∗
i = 0 for i ∈ E1, (3.52) implies that

−
∑
i∈E+

χi(χ
∗
i − χi) =

1

2

∑
i∈E+

(χ∗
i − χi)

2 − 1

2

∑
i∈E1

χ2
i

=
1

2

∑
i∈E+

(χ∗
i − χi)

2 − 1

2

∑
i∈E1

(χ∗
i − χi)

2.

It follows that ∣∣∣∣∣∣
∑
i∈E+

χi(χ
∗
i − χi)

∣∣∣∣∣∣ ≤ ‖x∗ − xk‖2.

This estimate, along with the lower bound (3.37) for the denominator in (3.36), yields
the relation

ν = −(λ1 + µk) +O(ε2k).

The remainder of the analysis is identical to that given for the degenerate case (Lemma
3.3), starting with (3.25). Since S∗ = {x∗}, it follows from the analysis of Lemma 3.3
that

‖xk+1 − x∗‖+ |µk+1 + λ1| ≤ C(‖xk − x∗‖2 + |µk + λ1|2).(3.53)

In the special case µk = −λ1 + ‖b− (A+ ρ(xk)I)xk‖, (3.43) gives
|µk + λ1| = ‖b− (A+ ρ(xk)I)xk‖ = O(‖xk − x∗‖).

Hence, the |µk + λ1|2 term in (3.53) can be absorbed in the ‖xk − x∗‖2 term. This
completes the proof.

4. Implementation. In our experimentation with the SSM, we put the follow-
ing four vectors in Sk in each iteration: xSQP, xk, b − Axk, and an estimate for
an eigenvector of A associated with the smallest eigenvalue. By including xk in Sk,
the value of the cost function can only decrease in consecutive iterations. The multi-
ple b −Axk of the cost function gradient ensures descent if the current iterate does
not satisfy the first-order optimality conditions. The eigenvector associated with the
smallest eigenvalue will dislodge the iterates from a nonoptimal stationary point. We
also use this vector in a “safe-guard” strategy designed to keep A + µkI positive
definite.

4.1. The SQP system. Now consider the SQP system (3.5)–(3.6). According
to (3.6), z is orthogonal to the prior iterate xk. Let P be the matrix that projects a
vector into the space perpendicular to xk:

P = I− xkx
T
k

xT
kxk

.
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Fig. 4.1. Convergence of the tridiagonalization approach (solid) and SSM (dashed) for the
second test problem from [24].

Multiplying (3.5) by P yields

P(A+ µkI)z = P(b−Axk).

Since Pz = z, according to (3.6), we have

P(A+ µkI)Pz = P(b−Axk).(4.1)

We have found that preconditioned Krylov space methods, such as the Gauss–
Seidel scheme in [9], converge very quickly when applied to (4.1). As a small illustra-
tion, let us consider the second test problem from [24] with r = 100 and A = Q∆Q,
where ∆ is a 1000× 1000 diagonal matrix with diagonal elements selected randomly
from a uniform distribution on (−.5, .5) and Q = I − 2qqT, where q is obtained by
first generating random numbers on (−.5, .5) and then scaling the resulting vector
to have unit length. The vector b is generated in the same way as q. The solid
curve in Figure 4.1 gives the convergence when a Lanczos type process (Algorithm 1,
with starting vector v1 = Pb) is used to generate the matrix V used in (3.2). The
Lanczos process was modified to ensure orthogonality of the columns of V. For each
value of l in Algorithm 1, we solve the l × l tridiagonal problem (3.3) to obtain an
approximate solution x and associated multiplier µ = ρ(x) for the original problem
(2.1). In the solid curve of Figure 4.1, we plot the base 10 logarithm of the norm of
the residual ‖b − (A + µI)x‖. According to Lemma 2.1, the residual vanishes at an
optimal solution.

The dashed curve of Figure 4.1, based on the SSM approach, is obtained in the
following way: Taking l = 40 in Algorithm 1, we generate a V with 40 orthonormal
columns. Solving (3.3), we obtain a starting guess of x0. In iteration k of the SSM
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phase, we start with the vector v1 = P(b−Axk) and we use the Gauss–Seidel/Krylov
space approach of [9] to generate a matrixV, with orthonormal columns, that approx-
imately contains a solution of (4.1) in its range. Using the V generated in this way,
we solve (3.2) to obtain the next iterate xk+1. The associated multiplier is estimated
using (3.7). Each kink in the dashed curve of Figure 4.1 corresponds to the num-
ber of iterations needed to obtain an approximate solution of (4.1). In this example,
roughly 15 multiplications by the elements of the matrix A are used to solve (4.1).
The quadratic convergence of SSM is reflected in the rapid decay of the residual norm.

This approach for generating V, using a nonsymmetric Gauss–Seidel matrix,
Krylov spaces, and orthogonalization, can become expensive when n is really large
since each of the columns of V should be stored in memory. Hence, in the remainder
of this paper, we focus on low-storage symmetric techniques for solving (4.1), which
we compare to other approaches.

We solve (4.1) using a preconditioned version of Paige and Saunders’ MINRES
algorithm [17]. More precisely, we use Algorithms 3 and 3a in [9] and three dif-
ferent choices for the symmetrizing preconditioner W in that paper: (i) W = I,
corresponding to unconditioned iterations; (ii) W = D1/2, where D is the diagonal
matrix whose diagonal matches that of C = P(A + µkI)P (Jacobi symmetrization);
(iii) W = D−1/2(L+D), where L is the strictly lower triangular matrix whose lower
triangle matches that of C (SSOR symmetrization). The implementations of SSM
associated with the latter two preconditioners are denoted SSMd and SSMl, respec-
tively.

Typically, the L matrix associated with C = P(A+µkI)P is dense, even when A
is sparse, since P is often dense. Nonetheless, linear systems of the form (L+D)y = g
can be solved in time proportional to the number of nonzero elements in the lower
triangle of A, due to the special structure of C. In terms of the vectors w, q, and p
defined by

w = xk/‖xk‖, q = (A+ µkI)w, and p = q− (qTw)w,

the diagonal d of C can be expressed

di = aii + µk − (pi + qi)wi,

while the off-diagonal elements of C are

cij = aij − wiqj − piwj , i �= j.

Exploiting this structure, it can be shown that the solution to (L+D)y = g can
be computed in the following way.

Algorithm 2 (y = (L+D)−1g, L+D+ LT = P(A+ µkI)P, P = I−wwT).
y = g, s = 0, t = 0
for i = 1 : n− 1

yi = (yi + swi + tpi)/di
s = s+ qiyi
t = t+ wiyi
yi+1:n = yi+1:n − yiai+1:n,i

end
yn = (yn + swn + tpn)/dn
end Algorithm 2
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The statement yi+1:n = yi+1:n−yiai+1:n,i of Algorithm 2 requires only the nonzero
elements in column i of A beneath the diagonal. Hence, the number of floating point
operations for Algorithm 2 is O(n) plus the number of nonzero elements in the lower
triangle of A.

The analogous procedure for the transposed system is the following.
Algorithm 3 (y = (L+D)−Tg, L+D+ LT = P(A+ µkI)P, P = I−wwT).
y = g, s = 0, t = 0
for i = n : −1 : 2

yi = (yi + swi + tqi)/di
s = s+ piyi
t = t+ wiyi
y1:i−1 = y1:i−1 − yia1:i−1,i

end
y1 = (y1 + sw1 + tq1)/d1

end Algorithm 3

4.2. Positive definiteness. In theory, the MINRES algorithm we use to solve
(4.1) can be applied to any symmetric matrix. In practice, convergence can be ex-
tremely slow when C is indefinite. For this reason, we try to choose µk so thatA+µkI
is positive definite. If e is an eigenvector of the matrix B in (3.3) associated with
the smallest eigenvalue σ, then the pair (v, σ), where v = Ve/‖Ve‖, approximates
an eigenpair of A corresponding to the smallest eigenvalue. The error in σ can be
estimated in the following way: If σ is closer to λ1 than the other eigenvalues of A,
then after substituting

v =
n∑

i=1

νiφi, νi = vTφi,

in the residual r = Av − σv, we have

‖r‖2 =
n∑

i=1

|σ − λi|2ν2
i ≥

n∑
i=1

|σ − λ1|2ν2
i = |σ − λ1|2,

since
∑n

i=1 ν
2
i = 1. Thus |σ − λ1| ≤ ‖r‖, which implies that

λ1 ≥ σ − ‖r‖.

With this insight, we replace the least squares estimate (3.7) by the safe-guarded
estimate

µk = max{‖r‖ − σ, ρ(xk)}.(4.2)

This choice for µk helps to ensure that A + µkI is positive definite, often leading to
faster convergence of iterative methods applied to (4.1).

When the approximate eigenpair (v, σ) is not very accurate, then the safe-guarded
step (4.2) is a safe, but poor, approximation to µ∗. Hence, whenever µk = ‖r‖ − σ,
we apply one iteration of SSM to the quadratic eigenvalue problem (1.2) in order to
compute a more accurate eigenpair. Due to the third- and sixth-order estimates in
(3.8), simply one iteration of SSM for the eigenproblem often yields a highly accurate
eigenpair.



MINIMIZING A QUADRATIC OVER A SPHERE 205

4.3. The algorithm. We now collect our observations and present the algorithm
that was used to generate the numerical results of the next section. To simplify the
presentation, we introduce the following subroutines:

• V = Lanczos(A,v1, l): This routine applies Algorithm 1 to the matrix A,
starting from the vector v1, to generate a matrix V with columns
v1, v2, . . . , vl.

• (x, µ,v, σ) = SSM(A,b,Sk): This routine solves the problem (3.1), gener-
ating a solution denoted x and an associated multiplier µ = ρ(x). If V is
a matrix whose columns are an orthonormal basis for Sk, then an estimate
(v, σ) for the smallest eigenvalue of A and an associated eigenvector is ob-
tained by computing the smallest eigenvalue σ and an associated eigenvector
e for B = VTAV and setting v = Ve.

• z = SQP(A, µ,b,x): This routine computes a (minimum residual, minimum
norm) solution (z, ν) of the linear system[

A+ µI x
xT 0

] [
z
ν

]
=

[
b− (A+ µI)x

0

]
.

Our implementation of the sequential subspace method combines these three
routines and the safe-guarded step (4.2).
Algorithm 4 (safe-guarded SSM with Lanczos startup).
it = ν = µ = 0, v = x = 0, c = rand(n, 1)− .5
u = c/(100‖c‖) + b/(r‖A‖)
while ( ν == µ & it = it+ 1 ≤ īt )

V = Lanczos(A,u, l)
(x, µ,v, σ) = SSM(A,b, span(x,v,v1, . . . ,vl))
ν = ‖(A− σI)v‖ − σ
if (ν > µ) µ = ν
u = b− (A+ µI)x

end
while ( ‖b− (A+ µI)x‖ > tol )

z = SQP(A, µ,b,x)
S = span(x, z,v,b−Ax)
(x, µ,v, σ) = SSM(A,b,S)
ν = ‖(A− σI)v‖ − σ
ε = ‖b− (A+ µI)x‖
if (ν > µ & ν + σ > ε/r)

z = SQP(A, ν,0,v)
(x, µ,v, σ) = SSM(A,b, span(S, z))
ν = ‖(A− σI)v‖ − σ

end
if (ν > µ) µ = ν

end
end Algorithm 4
For the computational results reported in the next section, we took īt = 3 and

l = max{10, .01n}. The “rand” function appearing at the start of Algorithm 4 gener-
ates a vector with components uniformly distributed on [0, 1].

5. Computational results. In this section we compare the performance of SSM
to the performance of the algorithms in [7, 20, 24], denoted GLRT, RW, and S,
respectively, using the three test problems presented in [24]. The results that we
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Table 5.1
Problem 1, average number of matrix-vector products versus tolerance.

Tolerance S RW GLRT SSM SSMd SSMl

10−4 249.0 (04.2) 383.6 (3) 51.0 78.0 51.2 44.2
10−6 824.0 (08.4) 460.7 (4) 65.7 107.1 65.5 54.3
10−8 1633.4 (12.3) 465.7 (4) 86.7 124.3 86.7 70.7

Table 5.2
Problem 2, average number of matrix-vector products versus radius.

Radius S RW GLRT SSM SSMd SSMl

10 240 (08) 1437.9 (5.5) 27.0 88.3 42.3 54.1
100 579 (13) 2567.7 (7.8) 188.8 353.7 88.4 136.2

report for S were extracted from [24], while the results reported for GLRT and RW
were obtained using codes provided by the authors. Each of these codes used different
stopping criteria. GLRT stopped when ‖b− (A+µI)x‖/‖b‖ was bounded by a given
tolerance, while RW stopped when the gap between the value of the primal and dual
problem, and hence the error in the primal cost function, was smaller than a given
tolerance. In order to ensure that each code computed a solution with the same
accuracy, we adjusted the error tolerance parameter of each code until the value of
‖b−(A+µI)x‖ for the computed solution was smaller than a given tolerance (specified
below).

In the first test problem of [24], A = A0 − 5I, where A0 is the standard 2-D
discrete Laplacian on the unit square based on a 5-point stencil with equally spaced
mesh points. Taking n = 322 = 1024 and r = 100, a series of 20 problems was gen-
erated, where b was a vector with elements uniformly distributed on [0, 1]. Each of
these problems was solved using three different tolerances, 10−4, 10−6, and 10−8. In
Table 5.1 we give the average number of matrix-vector products involving A for each
algorithm. Each iteration of the preconditioned MINRES algorithm with lower trian-
gular preconditioner involves roughly twice as many flops as an iteration of either the
identity or the diagonal preconditioned schemes. Hence, in doing the bookkeeping,
we charged for two matrix-vector products in each iteration of the triangular precon-
ditioned scheme. As seen in Table 5.1, SSMl converges more than twice as fast as
the identity and diagonal preconditioned schemes and, overall, SSMl uses the smallest
number of matrix-vector products for this test problem. Since the parametric eigen-
value algorithms S and RW compute an extreme eigenvalue for a series of matrices,
we also list in parentheses in Table 5.1 the number of these eigenproblems that are
solved. Hence, RW is very economical in terms of the number of these eigenproblems
that are solved.

The second suite of test problems in [24] utilizes the matrix described earlier in
section 3. In these problems, the radius of the sphere is varied and the number of
matrix-vector products is tabulated. For radii of one or smaller, solutions can be
computed extremely quickly, so we focused on r = 10 and r = 100 and an error
tolerance of 10−7. In Table 5.2 we see that for r = 100, SSMd had the fewest matrix-
vector products, while GLRT had the fewest for r = 10.

The final problem of [24] again employed the discrete Laplacian matrix, but with
n = 162 and r = 100. The vector b was designed to make the problem degenerate;
first a random b was generated, then its φ1 component was removed. Table 5.3 gives
the results for the various algorithms.
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Table 5.3
Problem 3, average number of matrix-vector products.

S RW GLRT SSM SSMd SSMl

291 (11) 441.0 (5.4) 134.0∗ 179.3 179.2 161.5

We placed an asterisk by the result in Table 5.3 for GLRT since this routine re-
duced the error to 10−4, not the 10−7 tolerance used by the other routines. Among
the routines that achieved the error tolerance, SSMl performed the best relative to
the number of matrix-vector products. Note that the number of matrix-vector prod-
ucts given in Table 5.3 for S was taken from [24] while Rojas, in her recent thesis
[21], developed a more efficient implementation of Sorensen’s approach for degenerate
problems.

In summary, a Lanczos type process seems to be very effective when the problem
is very nondegenerate (µ∗ >> −λ1). As the problem becomes more degenerate,
preconditioned schemes such as SSMd or SSMl appear more effective. The number of
times that RW computes an extreme eigenpair is often around 5. For the numerical
experiments reported in this paper, Matlab’s eigs routine was used to compute this
extreme eigenpair. If this routine for computing an extreme eigenpair could be sped
up, possibly using the Jacobi type methods of Sleijpen and Van der Vorst [22] or
the truncated RQ iteration of Sorensen and Yang [25], the number of matrix-vector
operations used in the parametric eigenvalue approach would be reduced.
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