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Abstract. Recently, Wright proposed a stabilized sequential quadratic programming algorithm for inequality
constrained optimization. Assuming the Mangasarian-Fromovitz constraint qualification and the existence of a
strictly positive multiplier (but possibly dependent constraint gradients), he proved a local quadratic convergence
result. In this paper, we establish quadratic convergence in cases where both strict complementarity and the
Mangasarian-Fromovitz constraint qualification do not hold. The constraints on the stabilization parameter are
relaxed, and linear convergence is demonstrated when the parameter is kept fixed. We show that the analysis of
this method can be carried out using recent results for the stability of variational problems.
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1. Introduction

Let us consider the following inequality constrained optimization problem:

minimize f (z) subject to c(z) ≤ 0, z ∈ Rn, (1)

where f is real-valued andc : Rn→ Rm. Givenλ ∈ Rm, the LagrangianL is defined by

L(z, λ) = f (z)+ λTc(z).

Let (zk, λk) denote the current approximation to a local minimizerz∗ and an associated
multiplier λ∗ for (1). In the sequential quadratic programming (SQP) algorithm, the new
approximationzk+1 to z∗ is given byzk+1 = zk +1z where1z is a local minimizer of the
following quadratic problem:

minimize ∇ f (zk)1z+ 1

2
1zT∇2

zL(zk, λk)1z

subject to c(zk)+∇c(zk)1z≤ 0
(2)
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There are various ways to specify the new multiplier. Oftenλk+1 is a multiplier associated
with the constraint in the quadratic problem (2).

The typical convergence theorem for (2) (for example, see Robinson’s paper [16]) states
that for(z0, λ0) in a neighborhood of a solution/multiplier pair(z∗, λ∗) associated with (1),
the iteration is quadratically convergent when the following conditions hold:

(R1) The gradients of the active constraints are linearly independent.
(R2) The multipliers associated with the active constraints are strictly positive.
(R3) There exists a scalarα > 0 such that

wT∇2
zL(z∗, λ∗)w ≥ α‖w‖2 (3)

for eachw satisfying∇ci (z∗)w = 0 for everyi such thatci (z∗) = 0.

When the constraint gradients are linearly dependent, quadratic convergence in the SQP
algorithm is lost in even the simplest cases. For example, consider the problem

minimize z2 subject to z2 ≤ 0. (4)

The unique solution isz∗ = 0 while λ∗ can be any nonnegative number. If the multiplier
approximationλk is held fixed atλ ≥ 0 and if z0 > 0, then for 0≤ λ ≤ 1, the iteration
reduces tozk+1 = λzk/(1+ λ), while for λ > 1, the iteration reduces tozk+1 = zk/2. In
either case, the convergence is linear.

Wright’s stabilized sequential quadratic programming algorithm [19] is obtained by ap-
plying Rockafellar’s augmented Lagrangian [18] to the quadratic program (2). Ifρk > 0 is
the penalty parameter at iterationk, then(zk+1, λk+1) is a local minimax for the problem

min
z

max
λ≥0

(z− zk)
T∇ f (zk)+ 1

2
(z− zk)

T∇2
zL(zk, λk)(z− zk)

+ λT(c(zk)+∇c(zk)(z− zk))− 1

2
ρk‖λ− λk‖2. (5)

Wright shows that this method is locally quadratically convergent if the following conditions
hold:

(W1) The Mangasarian-Fromovitz [15] constraint qualification (MFCQ) holds. In the con-
text of the inequality constrained problem (1), this means that there existsy such that
c(z∗)+∇c(z∗)y < 0.

(W2) There exists a multiplier vector whose components associated with the active con-
straints are strictly positive.

(W3) For some fixedα > 0, the coercivity condition (3) holds for all choices ofλ∗ satisfying
the following first-order conditions:

∇zL(z∗, λ∗) = 0, λ∗ ≥ 0, c(z∗)Tλ∗ = 0. (6)

(W4) The parameterρk tends to zero proportional to the error in(zk, λk).
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Notice that (W1) is weaker than (R1) since there may existy such that

c(z∗)+∇c(z∗)y < 0

even when the constraint gradients are linearly dependent. On the other hand, the MFCQ
does not hold for the example (4), or in cases where an equality constraint is written as a
pair of inequalities.

Let us consider the stabilized iteration (5) for the example (4) withz0 nearz∗ = 0. There
are two cases to consider, depending on the choice ofλk = λ. If λ is sufficiently large (for
example,λ ≥ z2

k/(ρk + z2
k)), then at the solution of (5), the maximizingλ is positive and

the successive iterates are given by

zk+1 = z3
k

(1+ λ)ρk + 2z2
k

. (7)

Hence, ifρk = zk − z∗ = zk (the error at stepk), then we have

zk+1 = z2
k

1+ λ+ 2zk
,

which implies local quadratic convergence to the solutionz∗ = 0.
The second case corresponds to the situation where the maximizingλ in (5) vanishes.

For this to happen, we must haveλ ≤ z2
k/(ρk + z2

k), and the new iterate is expressed:

zk+1 = zkλ

1+ λ.

Again, if ρk = zk − z∗ = zk, then

λ ≤ z2
k

/(
ρk + z2

k

) = zk/(1+ zk), (8)

and we have

zk+1 = zkλ

1+ λ ≤
z2

k

(1+ λ)(1+ zk)
. (9)

In each of these cases, the convergence to the solutionz∗ = 0 is locally quadratic.
Also notice in this example that choosingρk much smaller than the error at stepk can

slow the convergence. In particular, ifρk = 0 and the max is changed to sup in (5), then the
scheme (5) reduces to the usual SQP iteration (2) for which the convergence in the example
(4) is linear. On the other hand, we still obtain fast convergence even whenρk is much larger
than the error at stepk. For example, ifρk > 0 is fixed, then (7) gives cubic convergence.
Likewise, the initial inequality in (8) implies thatλ ≤ z2

k/ρk, which combines with (9) to
give zk+1 ≤ z3

k/ρk. In either case, whenρk > 0 is fixed, we obtain cubic convergence near
the solutionz∗ = 0. Hence, from an implementational viewpoint, a largeρk is safer than a
small one.
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In this example, quadratic convergence is preserved with the stabilized SQP scheme
even though strict complementarity and the MFCQ are violated. In fact, whenλ = 0 and
strict complementarity is violated, we have convergence in one step. In this paper, we
show in general that Wright’s stabilized scheme is locally, quadratically convergent even
though both the MFCQ and strict complementarity are violated. In contrast to Wright’s
assumption (W3) that the second-order condition holds for all multipliers, we give in this
paper a local analysis where a second-order condition is required to hold only at a given
solution/multiplier pair(z∗, λ∗). When strict complementarity is violated, our second-order
condition is slightly stronger than the usual second-order condition in that we assume

wT∇2
zL(z∗, λ∗)w ≥ α‖w‖2 (10)

for all w satisfying∇ci (z∗)w= 0 for every i such thatci (z∗)= 0 and (λ∗)i > 0. This
strengthened form of the second-order sufficient condition first appears in Robinson’s study
[17] of Lipschitz stability of optimization problems. Dontchev and Rockafellar [7] show
that this condition along with linear independence of the active constraint gradients are
necessary and sufficient for Lipschitz stability of the solution and multipliers under canonical
perturbations of the problem constraints and cost function.

The strong second-order sufficient condition is stable in the sense that it holds when
∇2

zL(z∗, λ∗) and∇ci (z∗) are replaced by nearby matrices, while the usual second-order
condition is unstable under problem perturbations. The usual second-order sufficient con-
dition imposes onw in (10) the additional constraint∇ci (z∗)w ≤ 0 for everyi such that
ci (z∗) = 0= (λ∗)i . That is, (10) must hold for allw in the set

{w ∈ Rn : ∇ci (z∗)w = 0 ∀i ∈ A+, ∇ci (z∗)w ≤ 0 ∀i ∈ A0},

where

A+ = {i : (λ∗)i > 0} and A0 = {i : ci (z∗) = 0= (λ∗)i }.

If the usual second-order condition holds for some pair(z∗, λ∗), then we can perturb the
constraintc(z) ≤ 0 to c(z) + ξ ≤ 0 whereξi < 0 if (λ∗)i = 0 = ci (z∗), andξi = 0
otherwise. For this perturbed problem,(z∗, λ∗) again satisfies the first-order conditions,
however, the active constraints for the perturbed problem are precisely the constraints in the
unperturbed problem with positive multipliers. Therefore, even though the usual second-
order sufficient condition holds at(z∗, λ∗), small perturbations in the constraints can yield
a problem whose stationary point does not satisfy this condition.

Our analysis of (5) is based on the application of tools from stability analysis. That is,
we introduce parameters in the iteration map and we study how the map depends on the
parameters using a stability result established in [6, Lemma 2.1]. Once we understand how
the iteration map depends on the parameters, we can write down a convergence theorem.
Other applications of stability theory to the convergence of algorithms and to the analysis of
discretizations appear in [3–6], and [11]. Our analysis of (5) also leads to a new expression
for the error in each iterate. In particular, we show that linear convergence is achieved when
ρk is fixed, but small. This paper is a revised version of the report [12].
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Another approach for dealing with degeneracy in nonlinear programming is developed
by Fischer in [9]. In his approach, the original quadratic program (2) is retained, however,
the multiplier estimate is gotten by solving a separate quadratic program. Fischer obtains
quadratic convergence assuming the MFCQ, the second-order sufficient optimality condi-
tion, a constant rank condition for the active constraint gradients in a neighborhood ofz∗,
and a condition concerning the representation of the cost function gradient in terms of the
constraint gradients. Although these assumptions seem more stringent than those used in
our analysis of Wright’s method, there are no parameters likeρk in Fischer’s method that
must be specified in each iteration.

2. Convergence theory

Let z∗ denote a local minimizer for (1) and letλ∗ be an associated multiplier satisfying the
first-order conditions (6). To state our assumptions, we partitionc andλ into (g, h) and
(µ, π) where the components ofh correspond to components ofc associated with strictly
positive componentsπ∗ of λ∗, while the components ofg are the remaining components of
c for which the associated componentsµ∗ of λ∗ could be zero. LetM denote the set of all
multipliers associated with a local minimizerz∗ for (1):

λ ∈M if and only if ∇zL(z∗, λ) = 0, λ ≥ 0, and λTc(z∗) = 0.

LettingBδ(z) denote the ball with centerz and radiusδ, our main result is the following:

Theorem 1. Suppose that f and c are twice Lipschitz continuously differentiable in a
neighborhood of a local minimizer z∗ of (1), thatλ∗ = (µ∗, π∗) is an associated multiplier
inM with π∗ > 0, and that

wT∇2
zL(z∗, λ∗)w ≥ α‖w‖2 (11)

for eachw such that∇h(z∗)w = 0. Then for any choice of the constantσ0 sufficiently large,
there exist constantsσ1, δ, and β̄ with the property thatσ0δ ≤ σ1 and for each starting
guess(z0, λ0) ∈ Bδ(z∗, λ∗), there are iterates(zk, λk) contained inBδ(z∗, λ∗), where each
zk+1 is a strict local minimizer in the stabilized problem(5), λk+1 is the unique maximizer
in (5) associated with z= zk+1, andρk is any scalar that satisfies the condition

σ0‖zk − z∗‖ ≤ ρk ≤ σ1. (12)

Moreover, the following estimate holds:

‖zk+1− z∗‖+‖λk+1− λ̂k+1‖ ≤ β̄(‖zk− z∗‖2+‖λk− λ̂k‖2+ ρk‖λk− λ̂k‖), (13)

where λ̂k and λ̂k+1 are the closest elements ofM to λk andλk+1 respectively.

By Theorem 1, lettingρk go to zero proportional to the total error

‖zk − z∗‖ + ‖λk − λ̂k‖
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leads to local quadratic convergence. Techniques for estimating the error in the current
iterate can be found in [13, 19]. Since Theorem 1 is a local convergence result, we assume
(without loss of generality), thatc(z∗) = 0. That is, if some constraint is inactive atz∗,
we simply discard this constraint and apply Theorem 1 to the reduced problem, obtaining
a neighborhood where the iterations converge and (13) holds. When this constraint is in-
cluded inc, it can be shown that for(zk, λk) near(z∗, λ∗), the associated component of the
maximizing multiplier in (5) vanishes. Hence, the iterates obtained either with or without
this inactive constraint included inc are identical.

Although an equality constraint does not appear explicitly in (1), we can include the
equality constrainte(z) = 0 by writing it as a pair of inequalities:e(z) ≤ 0 and−e(z) ≤ 0.
One of these constraint functions should be included ing and the other inh. There are an
infinite number of multipliers associated with this pair of constraint functions with linearly
dependent gradients, and it can always be arranged so that the associated component inπ∗
is strictly positive.

Throughout this paper,‖·‖ denotes the Euclidean norm andβ denotes a generic positive
constant that has different values in different equations, and which can be bounded in terms
of the derivatives through second order off andc in a neighborhood of(z∗, λ∗) and in
terms of fixed constants likeα in (11). In order to prove Theorem 1, we recast (5) in the
form of a perturbed variational inequality. LetT be the function defined by

T(z, λ, z, λ1, λ2) =
( ∇zL(z, λ)+∇2

zL(z, λ1)(z− z)

c(z)+∇c(z)(z− z)− ρ(λ− λ2)

)
, (14)

whereρ andp = (z, λ1, λ2) are regarded parameters. Since we later impose a constraint on
ρ in terms ofp, as in (12), we do not makeρ an explicit argument ofT . We study properties
of solutions to the following inclusion relative to the parameters: Find(z, λ) such that

T(z, λ, p) ∈
(

0

N(λ)

)
, λ ≥ 0, (15)

whereN is the usual normal cone: Ifλ ≥ 0, theny ∈ N(λ) if and only if y ≤ 0 andyTλ = 0.
By analyzing how the solutions to (15) depend onp, we will establish Theorem 1.

If (zk+1, λk+1) is a local solution to (5), then forp= pk= (zk, λk, λk), (z, λ)= (zk+1,

λk+1) is a solution to (15), and in this case, (15) represents the first-order optimality condi-
tions associated with (5). More explicitly, (15) implies that

∇zL(zk, λk+1)+∇2
zL(zk, λk)(zk+1− zk) = 0, (16)

c(zk)+∇c(zk)(zk+1− zk)− ρ(λk+1− λk) ≤ 0, λk+1 ≥ 0, (17)

λT
k+1(c(zk)+∇c(zk)(zk+1− zk)− ρ(λk+1− λk)) = 0. (18)

Conditions (17) and (18) are equivalent to saying thatλk+1 achieves the maximum in (5)
corresponding toz= zk+1. By the standard rules for differentiating under a maximization
(see [2]), the derivative of the extremand in (5) with respect toz is obtained by computing
the partial derivative with respect toz and evaluating the resulting expression at thatλ
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where the extremand is maximized. Hence, (16) is equivalent to saying the derivative of
the extremand with respect toz vanishes atz= zk+1.

Observe that whenp = (z∗, λ∗, λ̃), whereλ̃ is an arbitrary element ofM, then(z, λ) =
(z∗, λ̃) is a solution to (15). In this section, we apply the following stability result, describing
how the solution to (15) changes asp changes, to obtain Theorem 1. The proof of this
stability result is given in the next section.

Lemma 1. Under the hypotheses of Theorem1, for any choice of the constantσ0 suffi-
ciently large and for anyσ1 > 0, there exist constantsβ andδ such thatσ0δ ≤ σ1 and for
each p= (z, λ1, λ2) ∈ Bδ(p∗) and for eachρ satisfying

3(p) ≤ ρ ≤ σ1 where3(p) = σ0‖z− z∗‖, (19)

(15) has a unique solution(z, λ) = (z(p), λ(p)) ∈ N (ρ) where

N (ρ) = {(z, λ) : ‖z− z∗‖ + ρ‖λ− λ∗‖ ≤ ρ}.

Moreover, for every p1 and p2 ∈ Bδ(p∗), andρ satisfying(19) for p = p1 and p= p2, if
(z1, λ1) and(z2, λ2) are the associated solutions to(15), then we have

‖z1− z2‖ + ρ‖λ1− λ2‖ ≤ β‖T(z1, λ1, p1)− T(z1, λ1, p2)‖. (20)

There are three parts to the proof of Theorem 1. Initially, we show that the estimate (13)
holds for each(zk, λk) near(z∗, λ∗), where(zk+1, λk+1) is a solution to (15) associated with
p = pk = (zk, λk, λk). Next, we show that for(z0, λ0) sufficiently close to(z∗, λ∗), we can
construct a sequence(z1, λ1), (z2, λ2), . . . , contained in a fixed ball centered at(z∗, λ∗),
where(zk+1, λk+1) is the unique solution inN (ρk) to (15) for p = (zk, λk, λk). Finally, we
show that for this unique solution(zk+1, λk+1) to (15),zk+1 is a local minimizer of (5).

Part 1 (Error estimate). Let σ1 > 0 be any fixed scalar (independent ofk) and letσ0

andδ be chosen in accordance with Lemma 1. By Lemma 1, there exists a ballBδ(p∗)
with the property that for eachpk= (zk, λk, λk) ∈ Bδ(p∗), (15) has a unique solution
(z, λ) = (zk+1, λk+1) in N (ρ) whereρ is any scalar that satisfies the condition

σ0‖zk − z∗‖ ≤ ρ ≤ σ1. (21)

We apply Lemma 1 taking

p1 = (z∗, λ∗, λ̂k), (z1, λ1) = (z∗, λ̂k),

p2 = (zk, λk, λk), (z2, λ2) = (zk+1, λk+1).

If λk is nearλ∗, then λ̂k is nearλ∗ since‖λk − λ̂k‖ ≤ ‖λk − λ∗‖ and

‖ λ̂k − λ∗‖ ≤ ‖ λ̂k − λk‖ + ‖λk − λ∗‖ ≤ 2‖λk − λ∗‖.
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Suppose thatp2 = pk ∈ Bδ(p∗) is close enough top∗ that p1 = (z∗, λ∗, λ̂k) ∈ Bδ(p∗) and
(z1, λ1) = (z∗, λ̂k) ∈ N (ρ). Note that (19) holds forp = p1 since3(p1) = 0. Assuming
thatρ is chosen so that (19) holds forp = pk = (zk, λk, λk), it follows from (20) that

‖zk+1− z∗‖ + ρ‖λk+1− λ̂k‖ ≤ βEk, (22)

where

Ek =
∥∥∥∥∥
(
∇zL(zk, λ̂k)+∇2

zL(zk, λk)(z∗ − zk)

c(zk)+∇c(zk)(z∗ − zk)− ρ( λ̂k − λk)

)∥∥∥∥∥ . (23)

ExpandingEk in a Taylor series aroundz∗ gives

Ek ≤ Ēk := β(‖zk − z∗‖2+ ‖λk − λ̂k‖‖zk − z∗‖ + ρ‖λk − λ̂k‖) (24)

≤ β(‖zk − z∗‖2+ ‖λk − λ̂k‖2+ ρ‖λk − λ̂k‖), (25)

whereβ is a generic positive constant. The second inequality (25) is obtained using the
relationab≤ (a2+b2)/2. Combining (22), (23), and (25) establishes the estimate forzk+1

in Theorem 1.
Dividing (24) byρ gives

Ēk/ρ ≤ β((‖zk − z∗‖ + ‖λk − λ̂k‖)‖zk − z∗‖/ρ + ‖λk − λ̂k‖).

Utilizing the lower boundρ ≥ σ0‖zk − z∗‖, it follows that

Ēk/ρ ≤ β(‖zk − z∗‖ + ‖λk − λ̂k‖). (26)

Hence, dividing (22) byρ and referring to (26), we deduce that

‖λk+1− λ̂k‖ ≤ β(‖zk − z∗‖ + ‖λk − λ̂k‖). (27)

By the triangle inequality, we have

‖λk+1− λ∗‖ ≤ ‖λk+1− λ̂k‖ + ‖ λ̂k − λk‖ + ‖λk − λ∗‖,

and combining this with (27) gives

‖λk+1− λ∗‖ ≤ ‖λk − λ∗‖ + β(‖zk − z∗‖ + ‖λk − λ̂k‖)
≤ ‖λk − λ∗‖ + β(‖zk − z∗‖ + ‖λk − λ∗‖). (28)

This shows thatλk+1 is nearλ∗ when(zk, λk) is near(z∗, λ∗).
We now show that

‖∇zL(z∗, λk+1)‖ ≤ βĒk. (29)
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In order to establish this, we exploit the Lipschitz continuity of∇zL, the bound (22), and
our observation thatλk+1 is nearλ∗ to obtain

‖∇zL(z∗, λk+1)−∇zL(zk+1, λk+1)‖ ≤ β‖zk+1− z∗‖ ≤ βEk. (30)

Expanding∇zL(zk+1, λk+1) in a Taylor series aroundzk and substituting from (16) gives

‖∇zL(zk+1, λk+1)‖
≤ ∥∥∇zL(zk, λk+1)+∇2

zL(zk, λk+1)(zk+1− zk)
∥∥+ β‖zk+1− zk‖2

= ∥∥(∇2
zL(zk, λk+1)−∇2

zL(zk, λk)
)
(zk+1− zk)

∥∥+ β‖zk+1− zk‖2

≤ β(‖zk+1− zk‖ + ‖λk+1− λk‖)‖zk+1− zk‖
≤ β(‖zk+1− zk‖2+ ‖λk+1− λk‖2). (31)

By the triangle inequality, we have

‖zk+1− zk‖ ≤ ‖zk+1− z∗‖ + ‖zk − z∗‖ ≤ βEk + ‖zk − z∗‖.
Squaring this gives

‖zk+1− zk‖2 ≤ βE2
k + 2‖zk − z∗‖2 ≤ β Ēk. (32)

If it can be shown that

‖λk+1− λk‖ ≤ β(‖zk − z∗‖ + ‖λk − λ̂k‖), (33)

then by squaring, we have

‖λk+1− λk‖2 ≤ β(‖zk − z∗‖2+ ‖λk − λ̂k‖2) ≤ β Ēk. (34)

Combining (31) with (32) and (34) gives

‖∇zL(zk+1, λk+1)‖ ≤ β Ēk,

and combining this with (30) yields

‖∇zL(z∗, λk+1)‖ ≤ ‖∇zL(zk+1, λk+1)‖
+ ‖∇zL(z∗, λk+1)−∇zL(zk+1, λk+1)‖ ≤ β Ēk,

which completes the proof of (29).
To prove (33), we focus on the individual components ofλk+1 − λk and establish the

relation

|(λk+1− λk)i | ≤ β(‖zk − z∗‖ + ‖λk − λ̂k‖) (35)

for eachi . There are three cases to consider:

(C1) (λk+1)i = 0= (λk)i . For these components, (35) is a triviality.
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(C2) (λk+1)i > 0. By complementary slackness (18), we have

(c(zk)+∇c(zk)(zk+1− zk))i = ρ(λk+1− λk)i . (36)

Expandingc(zk) in a Taylor expansion aroundzk+1, utilizing (32), and taking absolute
values yields

|(c(zk)+∇c(zk)(zk+1− zk))i | ≤ |ci (zk+1)| + β‖zk+1− zk‖2

= |ci (zk+1)− ci (z∗)| + β‖zk+1− zk‖2≤β‖zk+1− z∗‖ + β Ēk ≤ β Ēk. (37)

Dividing (36) byρ and utilizing (37) and (26) gives (35).
(C3) (λk+1)i = 0 and(λk)i > 0. By (17), we have

0< ρ(λk)i = −ρ(λk+1− λk)i ≤ |(c(zk)+∇c(zk)(zk+1− zk))i |.

Dividing this byρ and again utilizing (37) and (26) gives (35).

This completes the proof of both (33) and (29).
Consider the following system of linear equations and inequalities inλ:

∇zL(z∗, λ) = 0, λ ≥ 0. (38)

This system is feasible since anyλ ∈ M is a solution. By (29) and a result of Hoffman
[14], the closest solution̂λk+1 of (38) toλk+1 satisfies

‖λk+1− λ̂k+1‖ ≤ β Ēk. (39)

That is, Hoffman’s result states that if a linear system of inequalities is feasible, then the
distance from any given point to the set of feasible points is bounded by a constant times
the norm of the constraint violation at the given point. By (29), the norm of the constraint
violation is at mostβ Ēk at λk+1, from which it follows that the distance fromλk+1 to the
closest solution of (38) is bounded by a constant timesĒk. Sincec(z∗) = 0, this solution
of (38) is contained inM and it is the closest element ofM to λk+1. Relations (25) and
(39) combine to complete the proof of (13).

Part 2 (Containment). Collecting results, we have shown that if

p = pk = (zk, λk, λk)

is sufficiently close top∗ = (z∗, λ∗, λ∗), then (15) has a unique solution(zk+1, λk+1) ∈ N (ρ)
whereρ is any scalar satisfying (21), wherezk+1 andλk+1 satisfy (13), and whereλk+1 also
satisfies (28). Asσ1 or δ in Lemma 1 decreases, the constantβ in (20) can be kept fixed
since the set ofρ and p that satisfies the constraints of the lemma becomes smaller. That
is, if (20) holds for one set ofρ and p values, then it holds for all subsets. Letβ̄ be the
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constant appearing in (13) that we estimated in Part 1 using Lemma 1. Given any positive
ε < 1, let us chooseσ1 andδ of Lemma 1 small enough that

β̄(‖zk − z∗‖2+ ‖λk − λ̂k‖2+ ρk‖λk − λ̂k‖) ≤ ε(‖zk − z∗‖ + ‖λk − λ̂k‖)

for all pk ∈ Bδ(p∗) andρk ≤ σ1. From the analysis of Part 1, both (13) and (28), there
exists, for allpk ∈ Bδ(p∗) andρk satisfying

σ0‖zk − z∗‖ ≤ ρk ≤ σ1, (40)

a unique solution(zk+1, λk+1) ∈ N (ρk) to (15), and we have

‖zk+1− z∗‖ + ‖λk+1− λ̂k+1‖ ≤ ε(‖zk − z∗‖ + ‖λk − λ̂k‖), (41)

and

‖λk+1− λ∗‖ ≤ ‖λk − λ∗‖ + β0(‖zk − z∗‖ + ‖λk − λ̂k‖), (42)

whereβ0 denotes the specific constantβ appearing in (28).
We now show in an inductive fashion that for(z0, λ0) sufficiently close to(z∗, λ∗), there

exists a sequence(zk, λk), k = 0, 1, . . . , where(zk+1, λk+1) is the unique solution to (15)
in N (ρk) corresponding top = (zk, λk, λk), and toρk satisfying (40). In particular, letr0

be chosen small enough that

r1 := 2r0

(
1+ β0

1− ε
)
≤ δ/2.

Starting from any(z0, λ0) ∈ Br0(z∗, λ∗), we proceed by induction and suppose that(z0, λ0),
(z1, λ1), . . . , (zj , λ j ) are all contained inBr1(z∗, λ∗). Sincer1 ≤ δ/2, there exists a unique
solution(zj+1, λ j+1) ∈ N (ρ j ) to (15) for p = (zj , λ j , λ j ). By (41), it follows that for
0≤ k ≤ j + 1,

‖zk − z∗‖ + ‖λk − λ̂k‖ ≤ εk(‖z0− z∗‖ + ‖λ0− λ̂0‖)
≤ εk(‖z0− z∗‖ + ‖λ0− λ∗‖) ≤ r0 ≤ r1/2. (43)

By (42) and (43), we have

‖λ j+1− λ∗‖ ≤ ‖λ j − λ∗‖ + β0ε
j (‖z0− z∗‖ + ‖λ0− λ̂0‖)

≤ ‖λ0− λ∗‖ + β0(‖z0− z∗‖ + ‖λ0− λ̂0‖)
j∑

k=0

εk

≤ ‖λ0− λ∗‖ + β0

1− ε (‖z0− z∗‖ + ‖λ0− λ̂0‖)

≤ ‖λ0− λ∗‖ + β0

1− ε (‖z0− z∗‖ + ‖λ0− λ∗‖)

≤ r0+ β0r0

1− ε ≤ r1/2. (44)
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Combining (43) and (44) yields

‖zj+1− z∗‖ + ‖λ j+1− λ∗‖ ≤ r1/2+ r1/2= r1.

Hence,(zj+1, λ j+1) ∈ Br1(z∗, λ∗) and the induction is complete.

Part 3 (Local minimizer). Finally, we show thatzk+1 is a local minimizer for (5). Since
λ∗ = (µ∗, π∗) with π∗ > 0, it follows that by takingr0 sufficiently small,πk+1 > 0 for
all k. By complementary slackness (18), we have

πk+1 = πk + (h(zk)+∇h(zk)(zk+1− zk))/ρ.

As noted after (18), if(z, λ) = (zk+1, λk+1) is a solution of (15), thenλk+1 = (µk+1, πk+1)

achieves the maximum in (5) forz = zk+1. Since the maximizingλ in (5) is a continuous
function of z (see [3, Lemma 4]), we conclude that forz nearzk+1, the maximizingλ =
(µ, π) hasπ > 0; hence, by complementary slackness and forz nearzk+1, the maximizing
π is given by

π = πk + (h(zk)+∇h(zk)(z− zk))/ρ.

After making this substitution in (5), the cost function of the minimax problem can be
decomposed into the sum of a convex function ofz:

max
µ≥0

µT(g(zk)+∇g(zk)(z− zk))− 1

2
ρk‖µ− µk‖2,

and a strongly convex part

(z− zk)
T∇ f (zk)+ 1

2
(z− zk)

T∇2
zL(zk, λk)(z− zk)

+ (h(zk)+∇h(zk)(z− zk))
T
(
πk + 1

2ρk
(h(zk)+∇h(zk)(z− zk))

)
.

The first part is convex since the extremand is a linear function ofz and the max of a sum
is less than or equal to the sum of the maxs. The second part is strongly convex since the
Hessian matrix

∇2
zL(zk, λk)+ 1

ρk
∇h(zk)

T∇h(zk)

is positive definite forρk andr0 sufficiently small by Lemma 3 in the Appendix. Hence,
the cost function of (5) is a strongly convex function ofz in a neighborhood ofzk+1, and
since the derivative vanishes atzk+1 by (16),zk+1 is a local minimum. This completes the
proof of Theorem 1. 2
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3. Stability for the linearized system

The proof of Lemma 1 is based on the following result, which is a variation of Lemma 2.1
in [6].

Lemma 2. Let X be a subset ofRn and let‖·‖ρ denote the norm on X. Givenw∗ ∈ X
andτ > 0, define

W = {x ∈ cl X : ‖x − w∗‖ρ ≤ τ }.
In other words, W is the intersection of the closure of X and the ball with centerw∗ and
radiusτ . Suppose that F maps W to the subsets ofRm, and T : W × P→ Rm, where P
is a set. Let p∗ ∈ P with T(w∗, p∗) ∈ F(w∗), let L be an m× n matrix, and letτ, η, ε,
andγ denote any positive numbers for whichεγ < 1, τ ≥ ηγ/(1− εγ ), and the following
properties hold:
(P1) ‖T(w∗, p∗)− T(w∗, p)‖ ≤ η for all p ∈ P.
(P2) ‖T(w2, p) − T(w1, p) − L(w2 − w1)‖ ≤ ε‖w2 − w1‖ρ for all w1, w2 ∈ W and

p ∈ P.
(P3) For some setN ⊃ {T(w, p) − Lw : w ∈ W, p ∈ P}, the following problem has a

unique solution for eachψ ∈ N :

Find x ∈ X such that Lx+ ψ ∈ F(x) (45)

and if x(ψ) denotes the solution corresponding toψ, we have

‖x(ψ2)− x(ψ1)‖ρ ≤ γ ‖ψ2− ψ1‖ (46)

for eachψ1, ψ2 ∈ N .

Then for each p∈ P, there exists a uniquew ∈ W such that T(w, p) ∈ F(w). Moreover,
for every pi ∈ P, i = 1, 2, if wi denotes thew associated with pi , then we have

‖w2− w1‖ρ ≤ γ

1− γ ε ‖T(w1, p2)− T(w1, p1)‖. (47)

Proof: Fix p ∈ P and forw ∈ W, let8(w) denote the solution to (45) corresponding to
ψ = T(w, p) − Lw. That is,8(w) = x[T(w, p) − Lw]. Forwi ∈ W, i = 1, 2, define
ψi = T(wi , p)− Lwi . Observe that

‖8(w1)−8(w2)‖ρ = ‖x(ψ1)− x(ψ2)‖ρ ≤ γ ‖ψ1− ψ2‖
= γ ‖T(w1, p)− T(w2, p)− L(w1− w2)‖
≤ γ ε‖w1− w2‖ρ

for eachw1, w2 ∈ W. Sinceγ ε < 1,8 is a contraction onW with contraction constantγ ε.
From the assumptionT(w∗, p∗) ∈ F(w∗), it follows that

w∗ = x[T(w∗, p∗)− Lw∗].
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Givenw ∈ W, we have

‖8(w)− w∗‖ρ = ‖x[T(w, p)− Lw] − x[T(w∗, p∗)− Lw∗]‖ρ
≤ γ ‖T(w, p)− T(w∗, p∗)− L(w − w∗)‖
≤ γ (‖T(w, p)− T(w∗, p)− L(w − w∗)‖
+‖T(w∗, p)− T(w∗, p∗)‖)

≤ γ (ε‖w − w∗‖ρ + η) ≤ γ (ετ + η) ≤ τ

since‖w − w∗‖ρ ≤ τ for all w ∈ W and τ ≥ γ η/(1 − γ ε). Thus8 mapsW into
itself. By the Banach contraction mapping principle, there exists a uniquew ∈ W such that
w = 8(w). Sincew = 8(w) is equivalent toT(w, p) ∈ F(w) for w ∈ W andp ∈ P, we
conclude that for eachp ∈ P, there is a uniquew ∈ W such thatT(w, p) ∈ F(w). For
p = pi ∈ P, i = 1, 2, letw = wi denote the associated solutions toT(w, p) ∈ F(w).
We have

‖w1− w2‖ρ = ‖x[T(w1, p1)− Lw1] − x[T(w2, p2)− Lw2]‖ρ
≤ γ ‖T(w1, p1)− T(w2, p2)− L(w1− w2)‖
≤ γ ‖T(w1, p1)− T(w1, p2)‖
+ γ ‖T(w1, p2)− T(w2, p2)− L(w1− w2)‖

≤ γ ‖T(w1, p1)− T(w1, p2)‖ + γ ε‖w1− w2‖ρ.

Rearranging this inequality, the proof is complete. 2

Proof of Lemma 1: In order to apply Lemma 2 toT defined in (14), we identifyw or x
with the pair(z, λ), we identify p with the triple(z, λ1, λ2), and we choose

F(w) = F(z, λ) =
(

0

N(λ)

)
,

and

X = {(z, λ) ∈ Rn × Rm : λ = (µ, π), µ ≥ 0, π > 0}.
The setP, chosen later, is a neighborhood of(z∗, λ∗, λ∗). In presenting the linearization
L of Lemma 2, we partition both the constraint functionc and the multiplierλ into their
components(g, h) and(µ, π) respectively. The linearizationL of T(·, p∗) aroundw∗ is
given by

L

 z

µ

π

 =
Qz+ ATµ+ BTπ

Az− ρµ
Bz− ρπ

 ,
where

Q = ∇2
zL(z∗, µ∗, π∗), A = ∇g(z∗), B = ∇h(z∗).
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In order to apply Lemma 2 to the functionT in (14), we need to establish the Lipschitz
property (46). This leads us to consider the problem: Findx ∈ X such thatL(x)+ψ ∈
F(x). SinceL has three components, we partitionψ = (ϕ, r, s), and the linearized problem
takes the form: Find(z, µ, π) ∈ X such that

Qz+ ATµ+ BTπ + ϕ = 0, (48)

µ ≥ 0, Az− ρµ+ r ∈ N(µ), (49)

Bz− ρπ + s= 0, (50)

where in the last equation (50), we exploit the fact thatπ > 0 for all (z, µ, π) ∈ X.
In order to analyze the linearization (48)–(50), we introduce the following auxiliary

problem:

min
z

max
µ≥0

zTϕ + 1

2
zT Qz+ 1

2ρ
‖Bz+ s‖2+ µT(Az+ r )− ρ

2
‖µ‖2. (51)

By (11) and Lemma 3 in the Appendix, the matrixQ + BT B/ρ is positive definite with
smallest eigenvalue at leastα/2 forρ sufficiently small, whereα appears in (11). Hence, the
extremand in (51) is strongly convex inzand strongly concave inµ. By [8, Proposition 2.2,
p. 173], the max and the min can be interchanged. For fixedµ, the min in (51) is attained
by the solutionz of the following linear equation:(

Q+ 1

ρ
BT B

)
z+ ϕ + ATµ+ BTs/ρ = 0. (52)

After substituting thisz in (51), we obtain anequivalentstrongly concave maximization
problem in the variableµ and the parametersϕ, r , ands appear linearly in the cost function.
Since strongly concave maximization problems are Lipschitz continuous functions of linear
parameters in the cost (for example, see [3, Lemma 4]), the maximizingµ is a Lipschitz
continuous function of the parameterψ , and by (52), the minimizingz is also a Lipschitz
continuous function ofψ .

Since (48)–(50) are the first-order conditions for a solution of (51), and since the first-order
conditions are necessary and sufficient for optimality in this convex/concave setting, we
conclude that (48)–(50) have a unique solution(z(ψ), λ(ψ)) depending Lipschitz continu-
ously on the parametersϕ, r , ands. We now apply [10, Theorem 2.1] in order to determine
more precisely how the Lipschitz constant of(z(ψ), λ(ψ)) depends onρ. Defining the set

c(ψ) = {i : (Az(ψ)− ρµ(ψ)+ r )i = 0}, (53)

whereλ(ψ) = (µ(ψ), π(ψ)), it follows from [10, Theorem 2.1], that ifγ1 andγ2 satisfy

‖z(ψ2)− z(ψ1)‖ ≤ γ1‖ψ1− ψ2‖, ‖λ(ψ2)− λ(ψ1)‖ ≤ γ2‖ψ2− ψ1‖,

wheneverc(ψ1) = c(ψ2), then these same Lipschitz constants work for allψ1 andψ2.
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After substituting forµ in (52), using the relation(Az(ψ) − ρµ(ψ) + r )i = 0 for
i ∈ c(ψ), we see thatz= z(ψ) satisfies(

Q+ 1

ρ
CTC

)
z+ ϕ + CTt/ρ = 0, (54)

whereC and t are gotten by augmentingB ands by the rows ofA and the components
of r associated withi ∈ c(ψ). Let UR denote an orthogonal decomposition ofC where
R is right triangular (that is,Ri j = 0 if i > j ) with linearly independent rows andU has
orthonormal columns. After substitutingC = UR in (54), we obtain the equivalent system(

Q RT

R −ρ I

)(
z

χ

)
=
( −ϕ
−UTt

)
.

The second equationχ = (Rz+ UTt)/ρ in this system is the definition ofχ and the first
equation in this system is (54). Since the coefficient matrix is nonsingular forρ sufficiently
small (see [1, Lemma 1.27]), bothz(ψ) andχ(ψ) are Lipschitz continuous functions ofψ ,
where the Lipschitz constant is independent ofρ for ρ sufficiently small:

‖z(ψ2)− z(ψ1)‖ + ‖χ(ψ2)− χ(ψ1)‖ ≤ β‖ψ1− ψ2‖ (55)

Let V have orthonormal columns chosen so that the matrix(U |V) is orthogonal. The
vectorπ(ψ) satisfies (50) and the componentsµ0(ψ) of µ(ψ) associated withi ∈ c(ψ)
satisfy an analogous relation in (53). Hence, we have(

µ0(ψ)

π(ψ)

)
= (Cz(ψ)+ t)/ρ.

Multiplying by (U |V)T yields:

(U |V)T
(
µ0(ψ)

π(ψ)

)
= (U |V)T(Cz(ψ)+ t)/ρ

= 1

ρ

(
UT(Cz(ψ)+ t)

VTt

)
=
(
χ(ψ)

VTt/ρ

)

Multiplying again by(U |V) gives(
µ0(ψ)

π(ψ)

)
= Uχ(ψ)+ V VTt/ρ. (56)

Sinceχ(ψ) is a Lipschitz continuous function ofψ , it follows from (56) thatµ0(ψ) and
π(ψ) are Lipschitz continuous functions ofψ , while the remaining components ofµ(ψ)
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vanish. Therefore, whenc(ψ1) = c(ψ2), (55) and (56) give us the estimates

‖ z(ψ2)− z(ψ1)‖ ≤ β‖ψ2− ψ1‖, (57)

‖λ(ψ2)− λ(ψ1)‖ ≤ β‖ψ2− ψ1‖ + ‖q2− q1‖/ρ, (58)

whereq = (r, s) andβ is independent ofρ for ρ sufficiently small. By [10, Theorem 2.1],
this estimate is valid for arbitrary choices of the parameters.

Given a fixed positive scalarσ1, we assume thatρ is always≤ σ1. Hence, after multiplying
(58) byρ and adding to (57), we conclude that

‖w(ψ1)− w(ψ2)‖ρ ≤ γ ‖ψ1− ψ2‖, w(ψ) = (z(ψ), λ(ψ)), (59)

for some constantγ independent ofρ, where

‖w‖ρ = ‖(z, λ)‖ρ = ‖z‖ + ρ‖λ‖.

For the choiceψ = ψ∗ = (ϕ∗, r∗, s∗) = T(w∗, p∗)− L(w∗) where

ϕ∗ = −Qz∗ − ATµ∗ − BTπ∗, r∗ = −Az∗ + ρµ∗, s∗ = −Bz∗ + ρπ∗,

(48)–(50) have the solutionz= z∗ andλ = λ∗ = (µ∗, π∗). Defining the parameter

1 = 1

2γ
min

i
(π∗)i , (60)

it follows from (59) that for allψ ∈ Bρ1(ψ∗) and for all j ,

|(π(ψ)− π∗) j | ≤ ‖π(ψ)− π∗‖
= ‖π(ψ)− π(ψ∗)‖ ≤ (γ /ρ)‖ψ − ψ∗‖ ≤ min

i
(π∗)i /2.

Hence,π(ψ) > 0 for all ψ ∈ Bρ1(ψ∗), from which it follows that(z(ψ), λ(ψ)) ∈ X for
all ψ ∈ Bρ1(ψ∗). Combining this with (59), we conclude that (45) has a unique solution
and (46) holds for allψ ∈ Bρ1(ψ∗).

Given an arbitrary scalarσ1 > 0, and positive scalarsσ0 andδ, chosen shortly, we define

P = {(z, λ1, λ2) ∈ Bδ(p∗) : σ0‖z− z∗‖ ≤ ρ}, (61)

where p∗ = (z∗, λ∗, λ∗). By choosingσ0 sufficiently large andδ sufficiently small, we
will satisfy the conditionεγ < 1 of Lemma 2, and by choosingδ smaller if necessary, the
remaining conditions of Lemma 2 will be satisfied.

(P1) Observe thatT(w∗, p∗) = 0 wherew∗ = (z∗, λ∗). Defining p = (z, λ1, λ2), we
have

T(w∗, p∗)− T(w∗, p) =
(
∇zL(z, λ∗)+∇2

zL(z, λ1)(z∗ − z)

c(z)+∇c(z)(z∗ − z)− ρ(λ∗ − λ2)

)
.
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Expanding in a Taylor series aroundp∗ gives

‖T(w∗, p∗)− T(w∗, p)‖
≤ β(‖z− z∗‖2+ ‖λ1− λ∗‖‖z− z∗‖ + ρ‖λ2− λ∗‖) (62)

for all p ∈ P. Since the right side of (62) is bounded byβδ, the constantη in (P1) can be
made arbitrarily small by takingδ small.

(P2) Let ε be any positive number small enough thatεγ < 1 whereγ appears in (59).
Observe that

T(w1, p)− T(w2, p)− L(w1− w2)

=
((∇2

zL(z, λ1)−∇2
zL(z∗, λ∗)

)
(z2− z1)+ (∇c(z)−∇c(z∗))T(λ2− λ1)

(∇c(z)−∇c(z∗))(z2− z1)

)
,

wherew1= (z1, λ1) andw2= (z2, λ2). By the assumed Lipschitz continuity of the deriva-
tives, and by (61), we have, for allp ∈ P and for any choice ofw1 andw2,

‖T(w1, p)− T(w2, p)− L(w1− w2)‖
≤ β‖z− z∗‖‖w1− w2‖ + β‖λ1− λ∗‖‖z1− z2‖
≤ βρ
σ0
‖w1− w2‖ + βδ‖z1− z2‖

≤ β

σ0
(ρ‖z1− z2‖ + ρ‖λ1− λ2‖)+ βδ‖z1− z2‖

≤ β

σ0
(σ1‖w1− w2‖ρ + ‖w1− w2‖ρ)+ βδ‖w1− w2‖ρ

= β
(
(1+ σ1)

σ0
+ δ

)
‖w1− w2‖ρ. (63)

Chooseσ0 large enough andδ small enough that the factor multiplying‖w1−w2‖ρ in (63)
is ≤ε. This establishes (P2) andεγ < 1.

(P3)Choosingτ = ρ, the setW of Lemma 2 is

W = {w = (z, λ) ∈ Rn × Rm : λ = (µ, π), µ ≥ 0, π > 0, ‖w − w∗‖ρ ≤ ρ}.

By (62) and (63), we have for allw ∈ W and p ∈ P,

‖T(w, p)− L(w)− (T(w∗, p∗)− L(w∗))‖
≤ ‖(T(w, p)− T(w∗, p))− L(w − w∗)‖ + ‖T(w∗, p)− T(w∗, p∗)‖
≤ ε‖w − w∗‖ρ + β(‖z− z∗‖2+ ‖λ1− λ∗‖‖z− z∗‖ + ρ‖λ2− λ∗‖)
≤ ρ(ε + βδ) (64)
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since‖w − w∗‖ρ ≤ τ = ρ, ‖z− z∗‖ ≤ ρ/σ0, and(z, λ1, λ2) ∈ Bδ(p∗). Chooseε andδ
smaller if necessary so that

ε + βδ ≤ 1,

where1 is defined in (60). Hence, by (64), we have

‖T(w, p)− L(w)− (T(w∗, p∗)− L(w∗))‖ ≤ 1ρ
for all w ∈ W and p ∈ P. Sinceψ∗ = T(w∗, p∗)− L(w∗), it follows that

T(w, p)− L(w) ∈ Bρ1(ψ∗)
for all w ∈ W and p ∈ P. This completes the proof of (P3) since we already showed that
(45) has a unique solution satisfying (46) for allψ ∈ Bρ1(ψ∗).

Finally, let us consider the condition

τ ≥ γ η/(1− εγ ) (65)

of Lemma 2, whereη = sup{‖T(w∗, p∗) − T(w∗, p)‖ : p ∈ P}. Recalling thatτ = ρ,
and utilizing (62), we see that (65) is satisfied if

ρ ≥ β(‖z− z∗‖2+ ‖λ1− λ∗‖‖z− z∗‖ + ρ‖λ2− λ∗‖) (66)

for each(z, λ1, λ2) ∈ P; here the factorγ /(1− εγ ) of (65) is absorbed intoβ. Assuming
δ is small enough thatβ‖λ2− λ∗‖ < 1, we rearrange (66) to obtain the equivalent relation

ρ ≥ β(‖z− z∗‖ + ‖λ1− λ∗‖)‖z− z∗‖
1− β‖λ2− λ∗‖

. (67)

By the definition ofP, ρ ≥ σ0‖z− z∗‖ for all p = (z, λ1, λ2) ∈ P. Hence, if

σ0 ≥ β(‖z− z∗‖ + ‖λ1− λ∗‖)
1− β‖λ2− λ∗‖

, (68)

(67) will be satisfied. Choosingδ small enough that (68) is satisfied, it follows that (67)
holds, which implies in turn (65). Since all the assumptions of Lemma 2 are satisfied,
Lemma 1 follows almost directly. The neighborhoodN (ρ) of Lemma 1 coincides withW
of Lemma 2, while the ballBδ of Lemma 1 is the same ball appearing in the definition of
P in (61). The constantβ of Lemma 1 is the expressionγ /(1− γ ε) of (47). 2

Appendix: A matrix bound

Lemma 3. Given matrices Q∗ and B∗ where Q∗ is symmetric, suppose that

wT Q∗w ≥ α‖w‖2 whenever B∗w = 0, w ∈ Rn. (69)
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Then given anyδ > 0, there existsσ > 0 and neighborhoodsB of B∗ andQ of Q∗ such
that

vT
(

Q+ 1

ρ
BT B

)
v ≥ (α − δ)‖v‖2

for all v ∈ Rn, 0< ρ ≤ σ, B ∈ B, and Q∈ Q.

Proof: If w lies in the null space ofB∗, then

wT(Q∗ + BT
∗ B∗/ρ)w ≥ α‖w‖2

by (69). There exists a scalarτ > 0 such that‖B∗u‖ ≥ τ‖u‖ for all u in the row space of
B∗. Hence, foru in the row space ofB∗, we have

uT(Q∗ + BT
∗ B∗/ρ)u = uT Q∗u+ ‖B∗u‖2/ρ ≥ (τ 2/ρ − ‖Q∗‖)‖u‖2.

An arbitrary vector inv ∈ Rn has the orthogonal decompositionv = u+ w whereu is in
the row space ofB∗ andw is in the null space ofB∗. SinceB∗w = 0, it follows that

vT(Q∗ + BT
∗ B∗/ρ)v = (u+ w)T(Q∗ + BT

∗ B∗/ρ)(u+ w)
= wT Q∗w + uT(Q∗ + BT

∗ B∗/ρ)u+ 2uT Q∗w

≥ α‖w‖2+
(
τ 2

ρ
− ‖Q∗‖

)
‖u‖2− 2‖u‖‖w‖‖Q∗‖. (70)

Utilizing the inequality

ab≤ εa2+ b2/4ε,

with a = ‖w‖ andb = 2‖u‖‖Q∗‖ gives

2‖u‖‖w‖‖Q∗‖ ≤ ε‖w‖2+ ‖Q∗‖2‖u‖2/ε.
Inserting this in (70), we have

vT(Q∗ + BT
∗ B∗/ρ)v ≥ (α − ε)‖w‖2+

(
τ 2

ρ
− ‖Q∗‖ − ‖Q∗‖

2

ε

)
‖u‖2.

Let us chooseσ small enough that

τ 2

σ
− ‖Q∗‖ − ‖Q∗‖

2

ε
≥ α − ε.

Since‖w‖2 = ‖u‖2+ ‖v‖2, it follows that

vT(Q∗ + BT
∗ B∗/ρ)v ≥ (α − ε)‖v‖2

for all v and for all 0< ρ ≤ σ . Since the expressionQ+ BT B/σ is a continuous function
of B andQ, there exists neighborhoodsQ of Q∗ andB of B∗ such that

vT(Q+ BT B/σ)v ≥ (α − 2ε)‖v‖2
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for all v and for allQ ∈ Q andB ∈ B. When 0< ρ ≤ σ , we have

vT(Q+ BT B/ρ)v ≥ vT(Q+ BT B/σ)v ≥ (α − 2ε)‖v‖2.
Takingδ = 2ε, the proof is complete. 2
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