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Abstract. Recently, Wright proposed a stabilized sequential quadratic programming algorithm for inequality
constrained optimization. Assuming the Mangasarian-Fromovitz constraint qualification and the existence of a
strictly positive multiplier (but possibly dependent constraint gradients), he proved a local quadratic convergence
result. In this paper, we establish quadratic convergence in cases where both strict complementarity and the
Mangasarian-Fromovitz constraint qualification do not hold. The constraints on the stabilization parameter are

relaxed, and linear convergence is demonstrated when the parameter is kept fixed. We show that the analysis of
this method can be carried out using recent results for the stability of variational problems.
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1. Introduction

Let us consider the following inequality constrained optimization problem:
minimize f(2) subjectto c(z) <0, zeR", Q)

wheref is real-valued and : R" — R™. Giveni € R™, the LagrangiarL is defined by
L(z, ) = f(2)+1Tc(2).

Let (z, Ax) denote the current approximation to a local minimizerand an associated
multiplier A, for (1). In the sequential quadratic programming (SQP) algorithm, the new
approximatiorgy 1 to z, is given byz, 1 = zx + AzwhereAzis a local minimizer of the
following quadratic problem:

i 1 o2
minimize Vf(z)Az+ EAZ Vi L(z, M)Az @)
subjectto c(z) + Ve(z\)Az <0
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There are various ways to specify the new multiplier. Oftgny is a multiplier associated
with the constraint in the quadratic problem (2).
The typical convergence theorem for (2) (for example, see Robinson’s paper [16]) states
that for(zo, 1) in @ neighborhood of a solution/multiplier pd,, A,) associated with (1),
the iteration is quadratically convergent when the following conditions hold:

(R1) The gradients of the active constraints are linearly independent.
(R2) The multipliers associated with the active constraints are strictly positive.
(R3) There exists a scalar> 0 such that

wTV2L(z,, hw > afw]? )

for eachw satisfyingVc; (z.)w = 0 for everyi such that;(z,) = 0.

When the constraint gradients are linearly dependent, quadratic convergence in the SQP
algorithm is lost in even the simplest cases. For example, consider the problem

minimize z2  subjectto z2 <O. (4)

The unique solution ig, = 0 while A, can be any nonnegative number. If the multiplier
approximationy is held fixed at. > 0 and ifzg > 0, then for 0< A < 1, the iteration
reduces t@y 1 = Az /(1 + A), while for A > 1, the iteration reduces @y 1 = z/2. In
either case, the convergence is linear.

Wright's stabilized sequential quadratic programming algorithm [19] is obtained by ap-
plying Rockafellar's augmented Lagrangian [18] to the quadratic program (2).50 is
the penalty parameter at iteratiknthen(z. 1, Ak,1) is a local minimax for the problem

min max (z — 2)'VT(z)+ %(z — 20 V2L (z, M) (Z — Z)
1
+2T(e(@0 + Ve@)@ - 2)) — Sl = M. (5)

Wright shows that this method is locally quadratically convergent if the following conditions
hold:

(W1) The Mangasarian-Fromovitz [15] constraint qualification (MFCQ) holds. In the con-
text of the inequality constrained problem (1), this means that there gdsish that
c(z,) + Vc(zy)y < 0.

(W2) There exists a multiplier vector whose components associated with the active con-
straints are strictly positive.

(W3) Forsomefixed > 0, the coercivity condition (3) holds for all choicesgfsatisfying
the following first-order conditions:

VZ‘C(Z*s )\*) = 07 Ay = 07 C(Z*)T)\* =0. (6)

(W4) The parametesy, tends to zero proportional to the error(izx, Ak).
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Notice that (W1) is weaker than (R1) since there may exsiich that
c(z,) +Ve(z)y < 0

even when the constraint gradients are linearly dependent. On the other hand, the MFCQ
does not hold for the example (4), or in cases where an equality constraint is written as a
pair of inequalities.

Let us consider the stabilized iteration (5) for the example (4) wjitearz, = 0. There
are two cases to consider, depending on the choigg ef A. If A is sufficiently large (for
example) > z2/(p« + z2)), then at the solution of (5), the maximizirgis positive and
the successive iterates are given by

3
Z

S S— 7
A+ Moy + 22 @

21

Hence, ifox = zx — z, = z (the error at stef), then we have

2
%

Zy1 = ——F
T 1A+ 22

which implies local quadratic convergence to the solutipa- 0.
The second case corresponds to the situation where the maximizinp) vanishes.
For this to happen, we must hake< z2/(px + z2), and the new iterate is expressed:

A

Z = —.
k+1 1A

Again, if px = zx — z, = %, then

L=z (o +Z) = 2/ (1 + z), (8)
and we have
Zh z2
Zi1 e < k 9

T1ta s A+nd+zo

In each of these cases, the convergence to the solztien0 is locally quadratic.

Also notice in this example that choosipg much smaller than the error at stegan
slow the convergence. In particularpif = 0 and the max is changed to sup in (5), then the
scheme (5) reduces to the usual SQP iteration (2) for which the convergence in the example
(4)islinear. On the other hand, we still obtain fast convergence evenmliemuch larger
than the error at stelp For example, ifox > 0 is fixed, then (7) gives cubic convergence.
Likewise, the initial inequality in (8) implies that < z2/px, which combines with (9) to
give z11 < Z2/pk. In either case, whep, > 0 is fixed, we obtain cubic convergence near
the solutionz, = 0. Hence, from an implementational viewpoint, a largés safer than a
small one.
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In this example, quadratic convergence is preserved with the stabilized SQP scheme
even though strict complementarity and the MFCQ are violated. In fact, wher® and
strict complementarity is violated, we have convergence in one step. In this paper, we
show in general that Wright's stabilized scheme is locally, quadratically convergent even
though both the MFCQ and strict complementarity are violated. In contrast to Wright’s
assumption (W3) that the second-order condition holds for all multipliers, we give in this
paper a local analysis where a second-order condition is required to hold only at a given
solution/multiplier painz,, A.). When strict complementarity is violated, our second-order
condition is slightly stronger than the usual second-order condition in that we assume

wV2L(Ze, k)w > af|w]? (10)

for all w satisfying V¢ (z,)w =0 for everyi such thatc (z,) =0 and (1,); > 0. This
strengthened form of the second-order sufficient condition first appears in Robinson’s study
[17] of Lipschitz stability of optimization problems. Dontchev and Rockafellar [7] show
that this condition along with linear independence of the active constraint gradients are
necessary and sufficient for Lipschitz stability of the solution and multipliers under canonical
perturbations of the problem constraints and cost function.

The strong second-order sufficient condition is stable in the sense that it holds when
szﬁ(z*, Ay) and V¢ (z,) are replaced by nearby matrices, while the usual second-order
condition is unstable under problem perturbations. The usual second-order sufficient con-
dition imposes orw in (10) the additional constraintc; (z,)w < 0 for everyi such that
G (z,) = 0= (A,)i. Thatis, (10) must hold for atb in the set

{fweR":Ve(z)w=0VieA,, VGz)w=<0Vied,
where
Ay ={i: ()i >0 and Ag={i:c(z)=0= i}

If the usual second-order condition holds for some gair .), then we can perturb the
constraintc(z) < 0toc(z) +& < O0whereg < 0if (1) =0 =c¢(z,),andg§ =0
otherwise. For this perturbed probleiz,, 1.) again satisfies the first-order conditions,
however, the active constraints for the perturbed problem are precisely the constraints in the
unperturbed problem with positive multipliers. Therefore, even though the usual second-
order sufficient condition holds &t., A..), small perturbations in the constraints can yield

a problem whose stationary point does not satisfy this condition.

Our analysis of (5) is based on the application of tools from stability analysis. That is,
we introduce parameters in the iteration map and we study how the map depends on the
parameters using a stability result established in [6, Lemma 2.1]. Once we understand how
the iteration map depends on the parameters, we can write down a convergence theorem.
Other applications of stability theory to the convergence of algorithms and to the analysis of
discretizations appear in [3—6], and [11]. Our analysis of (5) also leads to a new expression
for the error in each iterate. In particular, we show that linear convergence is achieved when
pk is fixed, but small. This paper is a revised version of the report [12].
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Another approach for dealing with degeneracy in nonlinear programming is developed
by Fischer in [9]. In his approach, the original quadratic program (2) is retained, however,
the multiplier estimate is gotten by solving a separate quadratic program. Fischer obtains
quadratic convergence assuming the MFCQ, the second-order sufficient optimality condi-
tion, a constant rank condition for the active constraint gradients in a neighborhapd of
and a condition concerning the representation of the cost function gradient in terms of the
constraint gradients. Although these assumptions seem more stringent than those used in
our analysis of Wright’s method, there are no parametersdikia Fischer's method that
must be specified in each iteration.

2. Convergence theory

Let z, denote a local minimizer for (1) and lef be an associated multiplier satisfying the
first-order conditions (6). To state our assumptions, we partitiand A into (g, h) and
(u, ) where the components bfcorrespond to components ofssociated with strictly
positive components, of A.., while the components af are the remaining components of
¢ for which the associated componenptsof A, could be zero. LetM denote the set of all
multipliers associated with a local minimizer for (1):

reM ifandonlyif V,L(z,,A) =0, A>0, and A'c(z,) =0.

Letting B5;(2) denote the ball with centerand radiuss, our main result is the following:

Theorem 1. Suppose that f and c are twice Lipschitz continuously differentiable in a
neighborhood of a local minimizet, of (1), thati, = (u., 7,) is an associated multiplier
in M with 7, > 0, and that

wV2L(Ze, h)w > af|w]? (11)

for eachw suchthatvh(z,)w = 0. Then for any choice of the constamtsufficiently large
there exist constants;, §, and 8 with the property thabos < o1 and for each starting
guesszg, Ag) € Bs(z,, 1), there are iteratesz, L) contained inBs(z,, A.), where each
Zx+1 IS a strict local minimizer in the stabilized problei®), Ak, 1 is the unique maximizer
in (5) associated with z z., 1, and p is any scalar that satisfies the condition

oollzc — Zll = px < o1. (12)
Moreover the following estimate holds

1Zk1 = Zell + s — Meall < BUIZk — 2o 2+ Ik — Akll® + pxllAk — A, (13)
where ), and Ay 1 are the closest elements.®f to A, and .1 respectively.

By Theorem 1, lettingy go to zero proportional to the total error

Izk — Zoll + 1Ak — Akl
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leads to local quadratic convergence. Techniques for estimating the error in the current
iterate can be found in [13, 19]. Since Theorem 1 is a local convergence result, we assume
(without loss of generality), that(z,) = 0. That is, if some constraint is inactive At

we simply discard this constraint and apply Theorem 1 to the reduced problem, obtaining
a neighborhood where the iterations converge and (13) holds. When this constraint is in-
cluded inc, it can be shown that faizy, Ax) near(z,, 1), the associated component of the
maximizing multiplier in (5) vanishes. Hence, the iterates obtained either with or without
this inactive constraint included mare identical.

Although an equality constraint does not appear explicitly in (1), we can include the
equality constraingé(z) = 0 by writing it as a pair of inequalities(z) < 0 and—e(z) < 0.

One of these constraint functions should be includegl@md the other ith. There are an
infinite number of multipliers associated with this pair of constraint functions with linearly
dependent gradients, and it can always be arranged so that the associated compgnent in
is strictly positive.

Throughout this papef; || denotes the Euclidean norm afidlenotes a generic positive
constant that has different values in different equations, and which can be bounded in terms
of the derivatives through second order fofandc in a neighborhood ofz,, A,) and in
terms of fixed constants like in (11). In order to prove Theorem 1, we recast (5) in the
form of a perturbed variational inequality. L&tbe the function defined by

(14)

V2L(Z 1) + VZL(Z 1) (Z— 2)
T(Z7 )"7 Zv Alv AZ) = 5

€2 +Ve@(Z—-2 — p(r = 1p)

wherep andp = (z, A,, 1,) are regarded parameters. Since we laterimpose a constraint on
p interms ofp, as in (12), we do not makean explicit argument of . We study properties
of solutions to the following inclusion relative to the parameters: Fmd) such that

0
T(z, A, p) € (N()»)>’ A >0, (15)

whereN is the usual normal cone: Af> 0, theny e N(»)ifandonlyify < Oandy™x = 0.
By analyzing how the solutions to (15) dependmrwe will establish Theorem 1.
If (zxs1, Aks1) is @ local solution to (5), then fop = px = (z«, Ak, Ak), (Z, A) = (Zks1,
Ak+1) IS @ solution to (15), and in this case, (15) represents the first-order optimality condi-
tions associated with (5). More explicitly, (15) implies that

Vo L(Zk, Aks1) + VEL(Zk, M) (Zir1 — 2) = 0, (16)
C(Z) + VC(2) (21 — z) — p(Akgr — ) < 0, Aqr = 0, (17)
M1 (C(Z) + VE(Zk) (Zurt — 2) — p(Ak1 — M) = 0. (18)

Conditions (17) and (18) are equivalent to saying that achieves the maximum in (5)
corresponding ta = z, 1. By the standard rules for differentiating under a maximization
(see [2]), the derivative of the extremand in (5) with respeai®obtained by computing
the partial derivative with respect tband evaluating the resulting expression at that
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where the extremand is maximized. Hence, (16) is equivalent to saying the derivative of
the extremand with respect tovanishes at = z, ;.

Observe that whep = (z,, A, 1), wherex is an arbitrary element of4, then(z, ») =
(z., ») isasolutionto (15). Inthis section, we apply the following stability result, describing
how the solution to (15) changes aschanges, to obtain Theorem 1. The proof of this
stability result is given in the next section.

Lemma 1. Under the hypotheses of Theordmfor any choice of the constanat suffi-
ciently large and for any; > 0, there exist constant8 andé$ such thaiopd < o7 and for
each p= (z, A4, A,) € Bs(p.) and for eachp satisfying

A(p) < p <01 WhereA(p) = oollz -z, (19)
(15) has a unique solutiofz, A) = (z(p), A(p)) € N (p) where

N(p) ={z 2 12—z + pllr — 1]l < p}.

Moreovet for every p and p € Bs(p.), and p satisfying(19) for p = p; and p= p,, if
(z1, A1) and (2o, A,) are the associated solutions (b5), then we have

lz1 — z2ll + pllAz — A2ll < BIIT (21, A1, P1) — T(Z1, A1, P2 (20)

There are three parts to the proof of Theorem 1. Initially, we show that the estimate (13)
holds for eachiz, Ax) near(z,, A.), where(zc 1, Aks1) is a solution to (15) associated with
P = px = (Z, Ak, k). Next, we show that fofzy, Ao) sufficiently close taz,, 1,), we can
construct a sequendge, A1), (22, A2), ..., contained in a fixed ball centered @, 1),
where(zi, 1, Ak,1) is the unigue solution iV (pk) to (15) for p = (z, Ak, Ak). Finally, we
show that for this unique solutiofy1, Ak+1) t0 (15), 1 is a local minimizer of (5).

Part 1 (Error estimate). Leto; > 0 be any fixed scalar (independentlgfand letog
andé be chosen in accordance with Lemma 1. By Lemma 1, there exists #4iall)
with the property that for eachy = (z, Ak, Ax) € Bs(ps), (15) has a unique solution
(2, ) = (Zvs1, Aky1) IN N (p) wherep is any scalar that satisfies the condition

oollzx — z < p < 01. (21)

We apply Lemma 1 taking

PL=(Ze b M), (21 0) = (2o A0,
p2 = (Zkv )\'ka )"k)v (225 )"2) = (Zk+la )"k+1)'

If Ay is nearh,, then i is neari, sincel|ix — Al < Ak — Al and

Ik = Aall < Ak = Akl + 1Ak = Al < 2lAk = Al
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Suppose thap, = px € B;(p.) is close enough t, thatp, = (z,, A+, M) € Bs(p,) and
(21, A1) = (Z., Ax) € N(p). Note that (19) holds fop = p; sinceA(p1) = 0. Assuming
thatp is chosen so that (19) holds for= px = (z, Ak, Ak), it follows from (20) that

IZkr1 — Zoll + pllakes — Axll < BEk, (22)
where
V,L(Zk, M) + V2L(Z, M) (Zy —
E, — L(Z, Ak) 7L(Z k)(:k Z) ' (23)
C(z) + Ve(zw)(ze — zx) — p(Ak — Ak)
ExpandingEy in a Taylor series arounz. gives
Ex < Ex = U1z« — Z1? + Ik — Aklllizk — zll + pllAk — k) (24)
< BUlZ« =zl + Ak — AllZ + pllak — Akl (25)

whereg is a generic positive constant. The second inequality (25) is obtained using the
relationab < (a?+b?)/2. Combining (22), (23), and (25) establishes the estimatzfar
in Theorem 1.

Dividing (24) by p gives

Ex/p < Bz — 2l + I — Ml Nz — Zell /o + Ak — Al
Utilizing the lower boundy > ogl|zx — z.||, it follows that

Ex/p < BUIZc — 2.l + Ik — Akl (26)
Hence, dividing (22) by and referring to (26), we deduce that

M — Al < BUIZ =zl + A — ). (27)

By the triangle inequality, we have

Iz = el = I — Aill + 1 Ak = Al + 2 — Al

and combining this with (27) gives

s = Aull < o = Al + BUIZe = 2ol + 1 — Al
= Ak = Al + Bz — Zell + 1Ak = AslD- (28)

This shows thaky, 1 is neari, when(z, Ay) is near(z,, A,).
We now show that

IV2L(Ze, M) || < BEx. (29)
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In order to establish this, we exploit the Lipschitz continuitygfZ, the bound (22), and
our observation thaty . ; is neara, to obtain

V2L(Zi, Mkt1) — V2L(Zer1, k) | < BllZkrr — Zill < BEk. (30)
ExpandingV,L(z. 1, Ak+1) in @ Taylor series arounzk and substituting from (16) gives
IV2L(Zikr 1, Aer) |l
< | V2L(@c, M) + VL@ Merd) @t — 20| + Bllzes — zll?
= [ (VZL @, 1) = VL@ 1)) Zerr = 20 | + Bllzes — ZlI?
< BUlz+r — Zull + 1 Aksa — AkID 1 Zier — Zcll

< BUlzce1 — 2l + I hra — ). (31)

By the triangle inequality, we have

Zit1 — Zcll < 12k — Zell + 12k — Zoll = BEx + 12 — Zil.
Squaring this gives

IZke1 — 2l < BE + 2z — 2.1 < BEx. (32)
If it can be shown that

s = cll < BUIZ — Zell + M — Al (33)
then by squaring, we have

Ihices = Mcll? < Bz« = Zell? + 1w — Acll?) < BEx. (34)
Combining (31) with (32) and (34) gives

IV2L(Zc1, M) | < BEx,
and combining this with (30) yields

IV2L(Z, M) < 1V2L(Zkg1, Aer) |l
+ [IV2L(Zs, A1) — V2L(Zier1, M) | < BEx,

which completes the proof of (29).
To prove (33), we focus on the individual components.gf; — A« and establish the
relation

|Gucrr — 2i| < BUIZk — Zoll + 1Ak — Akl (35)

for eachi. There are three cases to consider:

(C1) (Ak+1)i = 0= (Ag)i. For these components, (35) is a triviality.
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(C2) (Ak11)i > 0. By complementary slackness (18), we have
(C(z) + VC(Z) (Zus1 — Z))i = p(Aks1 — Ak)i- (36)

Expandingc(zy) in a Taylor expansion aroursy, 1, utilizing (32), and taking absolute
values yields

[(c(z) + VE(z) Zers — 20)i| <16 (Zks )| + Bllzk — 2|2

=1Gi (Zut1) — G (2Z)| + Bllzker — Zll? < Bllzcss — Zll + BEk < BEk.  (37)

Dividing (36) by p and utilizing (37) and (26) gives (35).
(C3) (Ak+2)i = 0and(rk); > 0. By (17), we have

0 < p(M)i = —p (ks — Mi = [(C(Z) + VE(Z) (Zurs — Z))il-
Dividing this by p and again utilizing (37) and (26) gives (35).

This completes the proof of both (33) and (29).
Consider the following system of linear equations and inequalitias in

V,L(z,,2) =0, A>0. (38)

This system is feasible since anye M is a solution. By (29) and a result of Hoffman
[14], the closest solution 1 of (38) toA1 satisfies

Akt — Akrall < BEk. (39)

That is, Hoffman’s result states that if a linear system of inequalities is feasible, then the
distance from any given point to the set of feasible points is bounded by a constant times
the norm of the constraint violation at the given point. By (29), the norm of the constraint
violation is at mosBEy at A1, from which it follows that the distance from, 1 to the
closest solution of (38) is bounded by a constant tifigsSincec(z,) = 0, this solution

of (38) is contained i and it is the closest element @ff to A«,1. Relations (25) and

(39) combine to complete the proof of (13).

Part 2 (Containment). Collecting results, we have shown that if
P =Pk = (Z Ak, Ak)

is sufficiently close tg, = (z,, A+, A+),then (15) has aunique soluti@. 1, Axy1) € N(p)
wherep is any scalar satisfying (21), whezg, ; andiy 1 satisfy (13), and wherk 1 also
satisfies (28). Ag; ord§ in Lemma 1 decreases, the constérih (20) can be kept fixed
since the set op and p that satisfies the constraints of the lemma becomes smaller. That
is, if (20) holds for one set gb and p values, then it holds for all subsets. Lgtbe the
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constant appearing in (13) that we estimated in Part 1 using Lemma 1. Given any positive
€ < 1, let us choose; ands of Lemma 1 small enough that

Bz — Z 1?4 Ik — Akll® + okliik — Akll) < e(llzx — zll + 2 — Akl

for all px € Bs(p.) andpx < o1. From the analysis of Part 1, both (13) and (28), there
exists, for allpx € Bs(p,) andpy satisfying

oollzk — Z|l < px < o1, (40)
a unique solutionizy, 1, Ak+1) € N (px) to (15), and we have

1Zirs = Zell + s — Aicrall < €z — Zell + 1 — Al (41)
and

It = Asll < 1k = Asll + Bolllz — Zell + 1 — el (42)

wherepfy denotes the specific constghappearing in (28).

We now show in an inductive fashion that f@, Ao) sufficiently close tqz,, ), there
exists a sequenagy, Ax), k=0, 1,..., where(z.1, Akr1) is the unique solution to (15)
in MV (pk) corresponding tg = (z, Ak, Ax), and topk satisfying (40). In particular, lety
be chosen small enough that

r1::2r0<1+ Po )55/2.
1—¢

Starting from any(zg, Ao) € By, (z., 1), we proceed by induction and suppose {lzgt o),
(21, A1), ..., (zj, 1)) are all contained iB8,, (z., A.). Sincer; < §/2, there exists a unique
solution (zj41, Aj+1) € N(pj) to (15) for p = (zj, Aj, Aj). By (41), it follows that for
O<k<j+1,

2k — Z|l 4 Ak — Akl < €120 — Zo]l + A0 — Aol))
< *(lzo — Zll + 1ho — Aull) <To <T1/2. (43)

By (42) and (43), we have

2 = Aell < 1) = 2all + Boe’ (10 — Zill + 120 — Aol

J
< IR0 = Asll + BolllZo = Z.ll + 120 — Aol) Y _ €¥
k=0

< o = Aull + 72— (120 = 221 + o — )
Bo
< o = hall + 72 (120 = 221 + o = A1)
r
<ro+ 1/30 © <2 (44)
— €
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Combining (43) and (44) yields
1Zj+1 — Zell + 1A j41 — Al S T2/24T2/2 =17,

Hence,(zj11, Aj11) € B, (z:, A+) and the induction is complete.

Part 3 (Local minimizer). Finally, we show thak, is a local minimizer for (5). Since
A = (W4, ) With 7, > 0, it follows that by taking sufficiently small, ., > O for
all k. By complementary slackness (18), we have

k1 = 7k + (h(Zk) + Vh(z0) (zk1 — 20) /p-
As noted after (18), ifz, A) = (11, Aks1) IS @ solution of (15), theRk, 1 = (ukr1, Tre1)
achieves the maximum in (5) far= z. ;. Since the maximizing in (5) is a continuous
function of z (see [3, Lemma 4]), we conclude that fonearz, 1, the maximizingh =
(i, ) hasmt > 0; hence, by complementary slackness and fogarzy, 1, the maximizing
7 is given by

7 = mk + (h(z) + Vh(z)(z — %)) /p.

After making this substitution in (5), the cost function of the minimax problem can be
decomposed into the sum of a convex functiorz:of

1
max 1 (9(20) + V(@) (2 = 20) = Skl — )

and a strongly convex part

1
(z—2z)"V @)+ 52— 20 "VZL(Ze, M) (Z — Zk)

1
+ (h(z) + Vh(z)(z — z) " <ﬂk + Z_pk(h(zk) + Vh(z)(z - Zk))> .

The first part is convex since the extremand is a linear functionamfd the max of a sum
is less than or equal to the sum of the maxs. The second part is strongly convex since the
Hessian matrix

1
V2L(Zk, M) + p—vmzk)TVh(zk)
k

is positive definite forpk andrg sufficiently small by Lemma 3 in the Appendix. Hence,
the cost function of (5) is a strongly convex functionzofh a neighborhood ofy. 1, and
since the derivative vanisheszt ; by (16),z.1 is a local minimum. This completes the
proof of Theorem 1. O
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3. Stability for the linearized system

The proof of Lemma 1 is based on the following result, which is a variation of Lemma 2.1
in [6].

Lemma 2. Let X be a subset &®" and let|-||, denote the norm on X. Given, € X
andr > 0, define

W={xecl X:|Ix—wdll, <t}

In other words W is the intersection of the closure of X and the ball with centeand

radiust. Suppose that F maps W to the subseR®Bfand T: W x P — R™, where P

is a set. Let pe P with T(w,, ps) € F(w,), let L be an mx n matrix and letz, n, €,

andy denote any positive numbers for whigh < 1, T > ny/(1—€y), and the following

properties hold

(Pl) IT (W, Pe) — T(ws, P <71 for all peP.

(P2) IT (w2, p) — T(w1, p) — L(wz — w)| < €llwz — wsl, for all w1, w, € W and
peP.

(P3) For some setV’ O {T(w, p) — Lw : w € W, p € P}, the following problem has a
unique solution for eacly € N :

Find x € X such that Lxt+ ¢ € F(x) (45)
and if x() denotes the solution correspondingy#owe have

IX(W2) = X(Wllp = vz — Yl (46)
for eachyry, ¥ € V.
Then for each g P, there exists a unique € W such that Tw, p) € F(w). Moreover
forevery p e P,i =1, 2, if w; denotes thew associated with jp then we have

14
1-—ye

lwz —wall, = IT (w1, p2) — T (w1, poIl- (47)

Proof: Fix p € P and forw € W, let ®(w) denote the solution to (45) corresponding to
Y = T(w, p) — Lw. Thatis,®(w) = X[T (w, p) — Lw]. Forw; € W,i =1, 2, define
Yi = T(wj, p) — Lw;. Observe that
[P (w1) — P(w2)ll, = X(Y1) — X(P2)ll, = ¥l — Y2l
=yIT(wg, p) — T(wz, p) — L(w1 — w2) |l

< yellwr — w2,

for eachw;, wy € W. Sinceye < 1, @ is a contraction oV with contraction constante.
From the assumptiom (w,, ps) € F(w,), it follows that

wy = X[ T (wy, Ps) — Lw,].



266 HAGER

Givenw € W, we have

[®w) —will, = IX[T(w, p) — Lw] — X[T (ws, p«) — Lw]ll,
< 71T, p) — T(ws, Ps) — L(w —wy)|
<yUTw, p) = T(ws, p) — L(w —w)l
H T (ws, P) = T (Wi, PID
<yElw—wd,+mn <ylr+n =<t

since|lw — w.|, < v forallw e Wandr > yn/(1 — ye). Thus® mapsW into

itself. By the Banach contraction mapping principle, there exists a uniqaéV such that
w = ®(w). Sincew = ®(w) is equivalent tal' (w, p) € F(w) forw € Wandp € P, we
conclude that for eacp € P, there is a uniquav € W such thafTl (w, p) € F(w). For
p=p € P,i =1, 2, letw = w; denote the associated solutionsTtow, p) € F(w).

We have

w1 — wall, = [IX[T (w1, p1) — Lwi] — X[T (w2, p2) — Lwa]ll,
< 7T (w1, p1) — T(wz, P2) — L(w1 — wy)||
< 7T (w1, p1) — T(w1, P2
+yIIT (w1, P2) — T(wz, P2) — L(w1 — w2)||
< yIIT (w1, p1) — T(wy, Pl + yellws — wafl,.

Rearranging this inequality, the proof is complete. O

Proof of Lemma 1: In order to apply Lemma 2 td defined in (14), we identifyw or x
with the pair(z, 1), we identify p with the triple(z, A,, 1,), and we choose

Fw)=F(z 1) = (N(A))’
and
X={zZMNeR"xXR": A= (u,m), >0, = > 0}.

The setP, chosen later, is a neighborhood@f, 1., 1.). In presenting the linearization
L of Lemma 2, we partition both the constraint functioand the multiplien. into their
componentgg, h) and (u, ) respectively. The linearizatioh of T (-, p,) aroundw, is
given by

z Qz+ATu+B™x
Llul|= AZ—pu ,
T Bz— pm
where

Q= VZL(Z. ), A=VQ(z)., B=Vh(z).
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In order to apply Lemma 2 to the functidnin (14), we need to establish the Lipschitz
property (46). This leads us to consider the problem: Eirel X such thatl (x) + ¢ €
F(x). SincelL has three components, we partitipn= (¢, r, s), and the linearized problem
takes the form: Findz, i, 7) € X such that

Qz+ATu+B'nr +¢ =0, (48)
u=>0, Az—pu+r e N(w), (49)
Bz— pm +5=0, (50)

where in the last equation (50), we exploit the fact that 0 for all (z, u, ) € X.
In order to analyze the linearization (48)—(50), we introduce the following auxiliary
problem:

. 1 1
min max z'g + =2'Qz+ — | Bz+ sl + uT(Az+ 1) — 2|2 (51)
z u>0 2 2,0 2

By (11) and Lemma 3 in the Appendix, the matx+ BTB/p is positive definite with
smallest eigenvalue at least2 for p sufficiently small, where appearsin (11). Hence, the
extremand in (51) is strongly convexarand strongly concave in. By [8, Proposition 2.2,
p. 173], the max and the min can be interchanged. For fixgtie min in (51) is attained
by the solutiore of the following linear equation:

1
<Q+;BTB>Z+<p+ATu+ B's/p = 0. (52)

After substituting thisz in (51), we obtain arequivalentstrongly concave maximization
problemin the variablg and the parameteys r, ands appear linearly in the cost function.
Since strongly concave maximization problems are Lipschitz continuous functions of linear
parameters in the cost (for example, see [3, Lemma 4]), the maximjizisga Lipschitz
continuous function of the paramet¢r and by (52), the minimizing is also a Lipschitz
continuous function off.

Since (48)—(50) are the first-order conditions for a solution of (51), and since the first-order
conditions are necessary and sufficient for optimality in this convex/concave setting, we
conclude that (48)—(50) have a unique solutiafy), A(v)) depending Lipschitz continu-
ously on the parametegsr, ands. We now apply [10, Theorem 2.1] in order to determine
more precisely how the Lipschitz constant(afy ), A(y)) depends ow. Defining the set

c(y) ={i : (AZY) — pu(¥) +1)i =0}, (53)
wherei(y¥) = (u(y), 7)), it follows from [10, Theorem 2.1], that if; andy, satisfy

1z(Wr2) — 2D < yallde — d2ll,  1A(2) — AWD < vallz — ¥l

wheneveic(y;) = c(v2), then these same Lipschitz constants work fogaland .
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After substituting foru in (52), using the relatiofAz(y) — pu(y) +r); = 0 for
i € c(y), we see that = z(y) satisfies

1
(Q + ;CTC> z+¢+C't/p =0, (54)

whereC andt are gotten by augmenting ands by the rows ofA and the components
of r associated with € c(y). Let UR denote an orthogonal decomposition@fwhere
Ris right triangular (that isR; = 0if i > j) with linearly independent rows and has
orthonormal columns. After substitutirigy = URin (54), we obtain the equivalent system

Q R z —¢

R —pol J\x/) \-uTt/)’
The second equatiop = (Rz+ U t)/p in this system is the definition of and the first
equation in this system is (54). Since the coefficient matrix is nonsingulardofficiently

small (see [1, Lemma 1.27]), botityr) andx (1) are Lipschitz continuous functions ¢f,
where the Lipschitz constant is independenp dbr p sufficiently small:

12(¥2) — (Y|l + lIx (Y2) = x (Yl < Bllvrs — 2l (55)

Let V have orthonormal columns chosen so that the matlixV) is orthogonal. The
vector () satisfies (50) and the componemts(vyr) of w(y) associated with € c(yr)
satisfy an analogous relation in (53). Hence, we have

(uo(w

=(Cz(y)+v)/p.
n(¢)> v /p

Multiplying by (U | V)T yields:
Wi () — wvyTcaw) + /e
7(P)
1(UTCz +D) [ xW)
P VTt \VTt/p

Multiplying again by(U | V) gives

(Mo(llf)

=Ux) +VVTt/p. 56
n(¢)> x (¥ /p (56)

Sincey () is a Lipschitz continuous function af, it follows from (56) thatue(y) and
7 () are Lipschitz continuous functions gf, while the remaining components afy)
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vanish. Therefore, whet(yr;) = c(v2), (55) and (56) give us the estimates

I z(¥2) — z(Dl < BllYr2 — Yl (57)
IA(W2) = AW < Bllvz — Yl + lld2 — qull /o, (58)

whereq = (r, s) andp is independent ob for p sufficiently small. By [10, Theorem 2.1],
this estimate is valid for arbitrary choices of the parameters.

Given afixed positive scalat, we assume thatis always< o1. Hence, after multiplying
(58) by p and adding to (57), we conclude that

lw(W) —wW2ll, < ylvs—el. wi) = @W), A(¥)), (59)

for some constant independent op, where
lwll, =1 M, = 1zl + pliAll.
For the choicel = vy, = (¢, I, S) = T (wy, pPs) — L(w,) Where
¢ =—Qz — AT, — B'm,, r.=—AzZ +pu., S =-Bz +pm,

(48)—(50) have the solution= z, andx = 1, = (u4, 7). Defining the parameter

A= 1 min (77,)i, (60)
2y i

it follows from (59) that for ally € B,A (1) and for all j,

(T () = )il <l (¥) — 7|
=l @) =7 @Il = (r/p)IY = Yull = Min ()i /2.

Hence,z (y) > 0O for all v € B, (), from which it follows that(z(y), A(¥)) € X for
all ¥ € B,a (). Combining this with (59), we conclude that (45) has a unigue solution
and (46) holds for ally € B,a ().

Given an arbitrary scalar; > 0, and positive scalarg ands, chosen shortly, we define

P ={(z A, Xy) € Bs(ps) s o0llz— |l < p}, (61)

where p, = (z,, A4, ). By choosingoy sufficiently large and sufficiently small, we
will satisfy the conditiorey < 1 of Lemma 2, and by choosirfigsmaller if necessary, the
remaining conditions of Lemma 2 will be satisfied.
(P1) Observe thal (w,, p.) = 0 wherew, = (z,, A,). Definingp = (z, 1,, A,), we
have
2
T by — T, p) — ( VoL(Z ) + VEL(Z 1) (2 — D) )

C(Z) + VC(Z)(Z* - Z) - )0()»* - &2)
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Expanding in a Taylor series aroumpd gives

T (w,, p.) — T (wy, P
< BUZ— 2z + kg — MellliZ— 2]l + pllAy — Al (62)

for all p € P. Since the right side of (62) is bounded By, the constani in (P1) can be
made arbitrarily small by taking small.

(P2) Let € be any positive number small enough that < 1 wherey appears in (59).
Observe that

T(wy, p) — T(wz, p) — L(wy — wp)
_ (V2L(z, 1y) — V2L(Z4, M) (22 — 21) + (VC(2) — VE(Z)) T (A — A1)
a (Ve(2) — Ve(z)) (22 — 1) ’

wherew = (21, A1) andw, = (22, A»). By the assumed Lipschitz continuity of the deriva-
tives, and by (61), we have, for gil € P and for any choice ofv; andw,

IT (w1, p) — T(wz, P) — L(wy — wy) ||

< BlIZ = Zlllws — wall + BllAy — Az — 22|l

Bp
< —llwy — w2 + Béllzs — 22|

(¢fo]

B
< U_O(P”Zl — 22|l + pllAr — A2ll) + Bdllz1 — z2||

B
< G_(Gl||w1 —w2ll, + lwy — wallp) + Bdllwr — wall,

0

(14 01)

=/3(T+5 lwy — wall,- (63)

Chooserg large enough anélsmall enough that the factor multiplyinigu; — ws||, in (63)
is <e. This establishes (P2) amgh < 1.
(P3) Choosingr = p, the setwW of Lemma 2 is

W={w=(Z»eR"xXR": A= (u,m), =0, 7 >0, [w—wdl,=<p}
By (62) and (63), we have for all € W andp € P,

IT(w, p) = L(w) = (T(w,, p) = Lw.)l
<T@, p) = Tw.. p) = Lw — w) | + 1T w.. p) = T (ws, p)
< ellw = wally + BUZ= 2P + 129 = AullZ= 2.l + P2z = Aul)
< ple + o) (64)
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sincelw — will, <7 = p, 12—zl < p/oo, and(z, A4, A,) € Bs(ps). Chooses and$
smaller if necessary so that

€+ B5 <A,

whereA is defined in (60). Hence, by (64), we have
IT(w, p) — L(w) = (T(ws, ps) — Lw )l < Ap

forallw € Wandp € P. Sincey, = T (wy, ps) — L(w,), it follows that
T(w, p)— L(w) € Bya ()

forallw € W andp € P. This completes the proof of (P3) since we already showed that
(45) has a unique solution satisfying (46) for @lle B,a (.).
Finally, let us consider the condition

T>yn/(1—ey) (65)

of Lemma 2, whergy = sup{||T (w,, ps) — T (ws, p)|l : p € P}. Recalling thatt = p,
and utilizing (62), we see that (65) is satisfied if

p = BUZ—Z%+ 1k — AallllZ— 2l + pllAs — AulD) (66)

for each(z, A, A,) € P; here the factoy /(1 — ey) of (65) is absorbed intg. Assuming
8 is small enough thag||1, — A.|| < 1, we rearrange (66) to obtain the equivalent relation

o BUz =zl + 1124 — AdDlIZ — Zl

> 67
1—Bl2, — Al (©7)
By the definition ofP, p > oyllz — z,|| for all p = (z, 14, A,) € P. Hence, if
— S A _)‘-*
_ BUIZ= 2] + N2y — Al (68)

0= s
1= Bl = Al

(67) will be satisfied. Choosing§small enough that (68) is satisfied, it follows that (67)
holds, which implies in turn (65). Since all the assumptions of Lemma 2 are satisfied,
Lemma 1 follows almost directly. The neighborhad@ ) of Lemma 1 coincides withV

of Lemma 2, while the balB; of Lemma 1 is the same ball appearing in the definition of

P in (61). The constant of Lemma 1 is the expressigry (1 — y¢) of (47). O

Appendix: A matrix bound

Lemma 3. Given matrices Qand B. where Q is symmetricsuppose that

w'Q,w > «f|w||?> whenever Bw =0, weR". (69)
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Then given any > 0, there existsr > 0 and neighborhood# of B, and Q of Q, such
that

1
v’ (Q+ —BTB) v = (a—9lv]?
o)
forallve R, 0<p <0, BeB,and Qe Q.
Proof: If w lies in the null space oB,, then

w'(Q, + B/ B,/p)w > aflw|?

by (69). There exists a scalar> 0 such that|B,u| > t|u]| for all u in the row space of
B.. Hence, fom in the row space oB,, we have

uT(Q. + BIB./p)u = u"Q.u+ [IB.ull?/p = (?/p — [ Q.IDIull®.

An arbitrary vector irv € R" has the orthogonal decomposition= u + w whereu is in
the row space oB, andw is in the null space oB,. SinceB,w = 0, it follows that

v (Qs + BIB,/p)v = (U+ w)(Q, + B B,/p)(U + w)
= w'Q.w +U"(Q. + B]B./p)u+2u"Q.w
> allw|® + (T; — IIQ*I|> lull® = 2fullfw Qxll. (70)
Utilizing the inequality
ab < ea® + b?/4e,
with a = ||l andb = 2||ul|[|Q.| gives

2JulllwllQ.ll < ellwll® + 11Q.IZ[ul?/e.

Inserting this in (70), we have

€

T T 2 2 ||Q*||2 2
v (Qi+ B, Bi/p)v = (@ —€)wl” + ;—IIQ*II— [[ull®.
Let us choose small enough that

2 2
T
112
€

— = 1Q«ll —
o
Since||wl|? = ||ul|? + ||v]|?, it follows that

v (Qs + B/ B./p)v > (@ — €)||v]1?

for all v and for all 0< p < o. Since the expressioQ + BTB/s is a continuous function
of B andQ, there exists neighborhoodsof Q. andB of B, such that

v (Q+ B™B/o)v > (a — 26)[v|?
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for all v and for allQ € Q@ andB € B. When O< p < o, we have

v (Q+B™B/p)v > v (Q+ BTB/o)v > (a — 2¢)||v]|%

Takings = 2e¢, the proof is complete. O
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