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Abstract. We develop theory and algorithms for the design of coatings which either eliminate
or enhance reflection of waves from surfaces. For steady-state harmonic waves with continuous
frequency spectrum that covers an arbitrarily prescribed frequency band, coatings are designed that
essentially eliminate reflections of all frequencies within the band. Although we focus on acoustic
waves in elastic media, the methods developed here can be adapted to electromagnetism or other
phenomena governed by variants of the linear wave equation.

To create a nonreflective coating which is to operate in a frequency band [Ω0,Ω1], we select n
frequencies, uniformly distributed in the band, and design an n-layer coating of given thickness that
completely eliminates reflections of waves at these frequencies. We show that if n is large, then the
reflectivity of the coating designed by our method is small for all frequencies in the band. More
precisely, the reflectivity at an arbitrary frequency ω ∈ (Ω0,Ω1) is O(1/n) if Ω0 = 0, while it is
O(αn) if Ω0 > 0, where 0 < α < 1. Furthermore, extensive numerical studies show that when this
discrete n-layer coating is smoothed out by spline interpolation, the reflectivities remain small not
only for frequencies in the original band but also for all larger frequencies.

We also describe a procedure for designing coatings that maximizes reflectivity (or, equivalently,
minimizes transmissivity). We show that through a proper layering technique, it is possible to obtain
transmissivity of O(αn), 0 < α < 1, in an n-layer design.

Key words. optimal design, absorbing coating, nonreflective coating, reflective coating, ane-
choic coating, stratified coating, layered coating
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1. Introduction. This paper deals with the design and analysis of coatings
which either eliminate or enhance the reflection of waves from surfaces. Coatings that
are either reflective or absorptive have applications in diverse fields of science and
technology including acoustics (concert halls and antireflective lids for acoustic trans-
ducers), optics (filters, mirrors, and coatings on binoculars and on glass-based tele-
scopes), electromagnetics (antireflective radomes for radar antennas and antisurveil-
lance technology), and seismology (insulation of buildings from tremors). Although
we concentrate on sound waves propagating in elastic media, the methods developed
here can be adapted to electromagnetism or other phenomena governed by variants of
the linear wave equation. We restrict our study to steady-state time-harmonic waves;
however, by use of a Fourier expansion, our results are applicable to more general
waves.

For an interface between two homogeneous half-spaces, a single-layer homoge-
neous coating can be designed, whose impedance is the geometric mean of the
impedances of the surrounding media, that totally eliminates the reflection of an
incident plane longitudinal wave of a given frequency. The density and elastic modu-
lus of this coating depend on the width of the layer and the frequency of the incident
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wave. One of the main objectives of this paper is to construct multiple coating layers
that eliminate reflections of waves within an arbitrarily prescribed frequency band,
even when the half-space impedances on either side of the coating are mismatched.
Our approach, which we call the wave annihilation technique, is the following: Given
a frequency band [Ω0,Ω1] and an overall coating thickness T , we show that for any
number n, we can find a coating material consisting of n distinct homogeneous lay-
ers of combined thickness T , such that reflections from the composite coating are
completely eliminated for waves of uniformly distributed frequencies ω1, ω2, . . . , ωn

within this band. We show that as the number of layers increases, the reflectivity of
the composite coating at any frequency ω in the specified band (Ω0,Ω1) is O(1/n) if
Ω0 = 0, while it is O(αn) if Ω0 > 0, where 0 < α < 1. As Ω0 approaches 0, with
Ω1 fixed, α tends to 1. As Ω0 approaches Ω1, α tends to 0. The exponential decay
of reflectivity when Ω0 > 0 indicates that a small number of layers should suffice to
build an essentially nonreflective coating.

In the limit, as the number of layers increases, we obtain a continuously vary-
ing coating which eliminates reflections for all frequencies inside the frequency band
[Ω0,Ω1]. Although the layered coating has small reflectivity within the design band,
the frequency response can have large values at Ω0+Ω1 and at all integer multiples of
this frequency. On the other hand, we observe numerically that if this layered coating
is replaced by a smoothly varying coating obtained by spline interpolation, then the
reflectivity is small both in the design frequency band and at all frequencies ω > Ω1

as well. Thus for the design of nonreflective coatings according to our scheme, it is
sufficient to concentrate the effort in the low frequency range. For the frequency band
[0,Ω1], the frequency response of the coating for large ω was relatively insensitive to
the method of smoothing since linear and cubic splines produced a similar frequency
response, while for the frequency band [Ω0,Ω1] with Ω0 > 0, cubic spline smoothing
yielded a much smaller frequency response than linear spline smoothing.

It is observed numerically (for example, see [21, pp. 214–215]) that the effective-
ness of a nonreflective coating can degrade as the incident angle of the incoming wave
increases. Moreover, the initial angle where the effectiveness degrades decreases as the
number of layers increases. In this paper, we restrict our analysis to normal incidence
and do not consider the effect of the incident angle on the design of nonreflective
coatings.

Our wave propagation model is nondissipative, and the mechanical energy is con-
served. Hence, the reduction or elimination of the reflected waves is accomplished by
channeling an incoming wave downstream rather than by dissipating its energy. From
the viewpoint of an observer on the upstream side, a nonreflective coating appears to
“absorb” the incident wave. For this reason, we refer to the effect achieved by a non-
reflective coating as absorption. We emphasize that no energy conversion is implied
by our use of the term.

A key observation in carrying out the steps of the procedure outlined above is a
reciprocity relationship proved in Lemma 4.3 for the impedances of the n optimally
designed layers which constitute the nonreflective coating: The product of impedances
of pairs of layers symmetrically situated about the midpoint of the coating is constant.
We fully exploit this reciprocity in our numerical scheme for computing the nonreflec-
tive coating. It is interesting to note that Konstanty and Santosa [27] have observed
this reciprocity emerge from their numerical study of optimal coatings when the inci-
dent wave is a pulse of small width (see [27, Remark 5, p. 304]). For a given incident
wave of finite duration and energy, Anderson and Lundberg [4] prove an analogue
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of the reciprocity property, which they call antisymmetry. It is important to take
into account the structure derived in Lemma 4.3 when computing the material that
absorbs the given frequencies. If one simply tries to vary the material parameters to
minimize the reflectivity for the given frequencies, the iterates invariably converge to
a local minimum where the reflectivity does not vanish. Moreover, since there are
many values for the material parameters in an n-layer coating that make the reflec-
tivity vanish at n given frequencies, the process of choosing frequencies and adjusting
the coating layers to absorb these frequencies may not converge unless the optimal
coating’s structure is taken into account.

The mathematical framework for the formulation of wave propagation phenomena
in layered materials can be found in many treatises on wave propagation. Closest to
the spirit of our treatment are the books of Achenbach [1], Auld [5], Brekhovskikh [9],
Brekhovskikh and Goncharov [10], and Hudson [24]. For expositions on applications
of wave propagation in layered media, see Ben-Menahem and Singh [8], Burdic [11],
Kennett [25], Kinsler and Frey [26], and Stumpf [30]. The systematic mathematical
study of the design of nonreflective coatings seems to have begun in the field of optics
in the 1940s. Mooney [28] presents a brief overview of the work before the 1940s
and then proceeds to obtain a formula for the reflectivity of an optical coating with
one or two layers. The formula for the reflectivity of a two-layer coating is rather
complicated, and he suggests that in order to minimize reflectivity, one can take
partial derivatives with respect to design parameters and set them to zero. Weinstein
[33] extends Mooney’s work to any number of layers, giving a procedure for computing
the reflectivity and transmissivity of a stack of homogeneous layers, allowing for both
oblique incidence and dissipation. He remarks, “It is obvious that the expressions
for the reflected and transmitted amplitudes . . . become very complicated when more
than two or three layers are considered.” Brekhovskikh in his classic work [9] presents
expressions for the reflection coefficients associated with one-, two-, and three-layered
coatings. He notes that with more than one layer, there is more flexibility in how the
material parameters can be chosen in order to absorb any given wave. In particular,
for a two layer coating, he obtains a two-parameter family of materials that absorb a
given wave. Chen and Bridges [13] formulate the problem of absorbing a given wave in
terms of geometric optics, treating both plane and spherical wave fronts. In contrast
to the single frequency works described above, our paper designs n-layer coatings
that absorb n frequencies, obtaining for large n a material that absorbs essentially
any wave.

Both this paper and the literature cited above deal almost exclusively with waves
in the frequency domain. Anderson and Lundberg [4], Konstanty and Santosa [27],
Hellberg [22], and Hellberg and Karlsson [23], on the other hand, look at the coating
design problem in the time domain. Anderson and Lundberg show that for any
given wave of finite duration and energy, there exists an antisymmetric impedance
that minimizes reflectivity. Hellberg and Karlsson formulate the optimal coating
problem in terms of Green’s function. The general nature of the incident wave profile
requires the imposition of a special boundary condition at the far end of the coating
to eliminate the reflections. Konstanty and Santosa perform a detailed numerical
study of the coating design problem. The optimization problem they arrive at is
computationally delicate and ill-posed in general. They introduce a regularization
scheme which increases the convexity of the cost function with a penalty term and
stabilizes the computation. In any case, the optimal coating depends on the incident
wave profile, as expected.
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For the most part, the current work relies on the general formulation of wave
propagation in elastic media in our previous work [20], although we have strived to
make this paper self-contained to the extent possible. There are many other ap-
proaches to the study of wave propagation in layered media. The formulation in [20]
is particularly suited for the purpose of the design of optimal coatings. See also the
works by Eremin and Sveshnikov [17]; Bendali and Lemrabet [7]; Tenenbaum and
Zindeluk [31], [32]; Babe and Gusev [6]; and Caviglia and Morro [12]. For practical
applications to geophysics, see Aminzadeh and Mendel [2] and [3]. For applications to
electromagnetism see Moses and Prosser [29]. Chopra [14, Chapter 7] has an extensive
discussion and computational data for multilayered optical systems.

Although this introduction has focused on minimizing reflection, we also con-
sider in this paper the problem of minimizing transmission. For normal incidence,
conservation of energy yields the relation

(1) |r|2 + Γ−
Γ+

|τ |2 = 1,

where r is the coating reflectivity, τ is the coating transmissivity, and Γ+ and Γ− are
the impedances of the half-spaces surrounding the coating. Hence, minimum reflectiv-
ity corresponds to the maximum transmissivity, and the anechoic coating that we have
designed in effect allows incident waves to be entirely transmitted without reflection.
At the opposite extreme, a coating that minimizes transmissivity maximizes reflec-
tivity. Thus a coating that achieves small transmissivity essentially reflects incident
waves totally. Since transmissivity never vanishes, the problem of minimizing trans-
missivity must be approached differently from the problem of minimizing reflectivity;
that is, we cannot make the transmissivity vanish at a discrete set of frequencies in
the same way that we make the reflectivity vanish. On the other hand, we show that
transmissivity can be made arbitrarily small for waves on a frequency band [Ω0,Ω1]
with Ω0 > 0 by a coating whose impedance oscillates between large and small values
in successive layers. Using the same theory developed for the design and analysis
of anechoic coatings, we show that the transmissivity of our design approaches zero
exponentially fast in the number of layers of the coating.

An outline of the paper follows. In section 2 we consider the classic case of a single
wave reflecting from a single homogeneous layer. There are two countable families
of materials that absorb the given wave. In section 3, we consider inhomogeneous
coatings and we develop a new formula for the reflection coefficient associated with
a layered material. In section 4, we explore qualitative properties of materials that
absorb frequencies distributed symmetrically about a central frequency, deriving the
reciprocity relation mentioned earlier. In section 5, we consider the minimization of
reflectivity over the frequency band [0,Ω1], while in section 6 we analyze the band
[Ω0,Ω1] with Ω0 > 0. Section 7 examines the transmissivity of a coating and its min-
imization. Finally, section 8 provides numerical illustrations for the theory developed
in the paper.

2. A homogeneous layer. In this section we consider a single harmonic wave
of frequency ω and a homogeneous, isotropic elastic coating. The equation of motion
for a one-dimensional elastic material with density ρ and stiffness κ is

(2) ρ(x)
∂2v

∂t2
=

∂

∂x

(
κ(x)

∂v

∂x

)
,
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where v = v(x, t) is the displacement at position x and at time t. Assuming harmonic
time dependence and a unit amplitude for the incident wave, the general solution of
the equation of motion has the form v(x, t) = u(x)eiωt, where ω is the wave frequency,
and where

u(x) = eiωs+(x−T ) + re−iωs+(x−T ) for x > T,

u(x) = τ−eiωsx + τ+e−iωsx for 0 ≤ x ≤ T,

u(x) = τeiωs−x for x < 0.

Here the slowness parameters (reciprocal of wave speed) s+, s, and s− are defined by

s+ =
√
ρ+/κ+, s =

√
ρ/κ, and s− =

√
ρ−/κ−.

Thus τ+ corresponds to a right propagating wave and τ− corresponds to a left prop-
agating wave, while s+ is the slowness of the right half-space and s− is the slowness
of the left half-space.

The amplitudes r, τ , τ−, and τ+ can be determined from the continuity of dis-
placement v and stress κ∂v/∂x at the interfaces x = 0 and x = T . Altogether, there
are four equations of continuity:

(3)




τ = τ− + τ+,

1 + r = τ−eiωsT + τ+e−iωsT ,

s−κ−τ = κs(τ− − τ+),

s+κ+(1− r) = κs(τ−eiωsT − τ+e−iωsT ).

Solving these equations for r and setting r = 0 yields the relation

(4)
γ+ − γ

γ+ + γ
=

γ− − γ

γ− + γ
e−2iωsT ,

where the impedances are defined by

γ+ =
√
κ+ρ+, γ =

√
κρ, and γ− =

√
κ−ρ−.

Since the mechanical parameters are all real, equation (4) only holds when the expo-
nential term is +1 or −1. Hence, there are two cases to consider.

Case 1. e−2iωsT = −1.
In this case, the exponent 2ωsT is an odd multiple of π. In other words, ωsT =

(m+ 1
2 )π for some integer m, or, equivalently,

(5) ωT
√
ρ/κ =

(
m+

1

2

)
π.

Substituting −1 for the exponential term in (4) gives γ2 = γ−γ+, or, equivalently,

(6) κρ =
√
κ−ρ−

√
κ+ρ+.

Thus the impedance
√
κρ of the coating is the geometric mean of the impedances of

the surrounding half-spaces. Together, equations (5) and (6) determine the ratio ρ/κ
and the product ρκ. Therefore, they determine a unique ρ and κ for each choice of
the integer m in (5). This family of coatings is often called the “quarter wavelength”
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family in the literature (for example, see [9, p. 136]). The generalization of (6) to
multilayer coatings appears in Theorem 4.3.

Case 2. e−2iωsT = +1.
In this case, the exponent 2ωsT is an even multiple of π, which implies that

(7) ωsT = ωT
√
ρ/κ = mπ

for some integer m. Again, this equation restricts the slowness to a countable set of
discrete values. However, when we substitute +1 for the exponential term in (4), we
see that γ− = γ+. That is, this case can occur only when the materials in the two
half-spaces have the same impedance. When this happens, there is a one-parameter
family (for each integer m) of coating materials, with slowness given by (7), that
totally absorbs the incoming wave. We call this family of coatings degenerate since
they are only applicable in the special case where the materials on either side of the
coating have the same impedance.

3. Reflection from multilayered coatings. Let us consider a harmonic wave
with frequency ω propagating along the x-axis, perpendicular to an elastic coating
that occupies the regions 0 ≤ x ≤ T . We assume that all media are nondissipative,
isotropic elastic materials, and the half-spaces x < 0 and x > T are homogeneous.
Let κ(x) and ρ(x) denote the stiffness and density in the region 0 ≤ x ≤ T , and
let (κ+, ρ+) and (κ−, ρ−) denote the corresponding mechanical parameters in the
half-spaces x > T and x < 0, respectively. By the theory developed in [19], the
reflectivity r (the ratio of the amplitudes of the reflected and the incident waves) can
be expressed1 as

(8) r =
Γ+ −G(T )

Γ+ +G(T )
, Γ+ =

√
κ+ρ+,

where G is the solution to the differential equation

(9) G′ = i
ω

κ
(γ2 −G2), G(0) = Γ− =

√
κ−ρ−, and γ =

√
κρ.

In section 2 we saw that for any given frequency ω, there exist infinitely many
choices for a homogeneous absorbent coating. In order to absorb waves of more than
one frequency, we must employ an inhomogeneous coating. It is impossible to absorb
waves of all frequencies since the reflectivity corresponding to ω = 0 is (Γ+−Γ−)/(Γ++
Γ−), which does not vanish except for the trivial case Γ+ = Γ−. Nonetheless, we will
see that the reflectivity can be made arbitrarily small for frequencies in an interval
[Ω0,∞) by an appropriate choice of the elastic parameters in the coating.

To begin, we derive a new formula for the reflection coefficient associated with
homogeneous layers.

Proposition 3.1. Suppose that the coating 0 ≤ x ≤ T is composed of n homo-
geneous layers, each layer of thickness ∆x = T/n. If κj and ρj are the stiffness and
density in the jth layer (j − 1)∆x ≤ x ≤ j∆x, and γj =

√
κjρj is the associated

impedance, then the reflectivity of the coating can be expressed as

(10) r =
[Γ− γ1]

∏n
j=1 Aj

(−1
1

)
[Γ− γ1]

∏n
j=1 Aj

(
1
1

) ,

1In [19] “impedance” is the reciprocal of the impedance used in this paper. Hence, the formulas
in [19] and in this paper are related by appropriate inversions.
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where [Γ− γ1] is a 2-component row vector,
∏n

j=1 Aj = A1A2 · · ·An,

(11) Aj =

(
γje

+
j γj+1e

−
j

γje
−
j γj+1e

+
j

)
, γn+1 = Γ+, and e±j = exp

(
2γj∆xωi

κj

)
± 1.

Proof. For a fixed given frequency ω, let Gj denote the solution to the differential
equation (9) evaluated at x = j∆x. We make repeated application of the following
formula (see [19, equation (16)]) for the solution of (9) across a homogeneous layer:

(12) Gk = γk
Gk−1e

+
k + γke

−
k

Gk−1e
−
k + γke

+
k

.

In particular, substituting the k = 1 case of (12) into the k = 2 case of (12) we get

G2 = γ2
γ1(G0e

+
1 + γ1e

−
1 )e

+
2 + γ2e

−
2 (G0e

−
1 + γ1e

+
1 )

γ1(G0e
+
1 + γ1e

−
1 )e

−
2 + γ2e

+
2 (G0e

−
1 + γ1e

+
1 )

.

Referring to the definition of A1, we see that G2 can be expressed as

(13) G2 =

γ2[G0 γ1]A1

(
e+
2

e−2

)

[G0 γ1]A1

(
e−2
e+
2

) .

In (13) we relate the value of G2 to the value of G0 and to the material properties in
the region 0 ≤ x ≤ x2. Of course, there is an analogous formula relating Gk to Gk−2

and to the material in the region xk−2 ≤ x ≤ xk. Hence, the following formula holds
for j = k − 2:

(14) Gk =

γk[Gj γj+1]
∏k−1

l=j+1 Al

(
e+
k

e−k

)

[Gj γj+1]
∏k−1

l=j+1 Al

(
e−k
e+
k

) .

Proceeding by induction, suppose that for some ∆ ≥ 2, (14) holds for all k and j such
that k −∆ ≤ j ≤ k − 2. From (12) it follows that(

Gj

γj+1

)
=

1

Gj−1e
−
j + γje

+
j

(
γj(Gj−1e

+
j + γje

−
j )

γj+1(Gj−1e
−
j + γje

+
j )

)

=
1

Gj−1e
−
j + γje

+
j

AT
j

(
Gj−1

γj

)
.

With this substitution in (14), we have

Gk =

γk[Gj−1 γj ]
∏k−1

l=j Al

(
e+
k

e−k

)

[Gj−1 γj ]
∏k−1

l=j Al

(
e−k
e+
k

) .



THE DESIGN OF HIGH PERFORMANCE COATINGS 1395

Since (14) holds with j decreased by 1, the induction step is complete, and (14) holds
for all j ≤ k − 2.

Putting j = 0 in (14), we have that

Gn =

γn[G0 γ1]
∏n−1

j=1 Aj

(
e+
n

e−n

)

[G0 γ1]
∏n−1

j=1 Aj

(
e−n
e+
n

) .

Since G0 = Γ−, the reflectivity can be expressed

r =
Γ+ −Gn

Γ+ +Gn
=

[Γ− γ1]
∏n−1

j=1 Aj

[
Γ+

(
e−n
e+
n

)
− γn

(
e+
n

e−n

)]

[Γ− γ1]
∏n−1

j=1 Aj

[
Γ+

(
e−n
e+
n

)
+ γn

(
e+
n

e−n

)] .

Since Γ+ = γn+1 by (11), this expression for the reflectivity reduces to (10).
Remark 3.2. When the layers do not have uniform thickness, simply replace ∆x

in (11) with the thickness of layer j.

4. A family of absorbers. Recall that our approach to the total absorption
problem is to make the reflectivity vanish at a fixed collection of frequencies, and then
to let the number of frequencies tend to infinity. To simplify the analysis, we assume
that the frequencies are symmetrically distributed about a point. That is, we assume
that

(15)
ωj + ωn+1−j

2
= ω

for j = 1, 2, . . . , n, where ω > 0 is some fixed frequency. When the frequencies are
chosen in this way, they are symmetrically distributed about ω for both even and
odd values of n. In particular, when n is odd, the middle frequency is precisely
ω. As mentioned earlier, there are typically many different choices of the material
parameters that annihilate waves of the n given frequencies. And, in particular, we
saw already that for a single homogeneous layer, there are a countable number of
choices for the material parameters that totally absorb an incident wave of any given
frequency. We will focus on a specific family of materials for which the stiffness and
impedance in each layer satisfy the following condition:

(16) κj =
2γj∆xω

π
.

In the single layer/single frequency case, this corresponds to Case 1 of section 2 and
m = 0. That is, for a single layer, ∆x = T and (16) implies that

γjTω

κj
=
√
ρj/κjTω =

π

2
,

which is (5) with m = 0. Note that the family of materials that we focus on excludes
the degenerate materials of Case 2.
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When κj is chosen in accordance with (16), the quantity e±j of (11) reduces to

(17) e±j = exp

(
πωi

ω

)
± 1,

which is independent of j. By Proposition 3.1, the reflectivity vanishes at the given
frequencies if and only if

(18) [Γ− γ1]

n∏
j=1

Aj(z)

(
−1
1

)
= 0 for z = exp

(
πωki

ω

)
, k = 1, 2, . . . , n,

where

(19) Aj(z) = z

(
γj γj+1

γj γj+1

)
+

(
γj −γj+1

−γj γj+1

)
.

Observe that the two terms forming Aj(z) have the form

zβj

(
γj (−1)βj+1γj+1

(−1)βj+1γj γj+1

)
,

where βj = 1 and βj = 0 correspond to the first and second terms, respectively, in
(19). Hence, the product in (18) has the following equivalent representation:

(20)

n∏
j=1

Aj(z) =
∑
|β|≤n

z|β|
n∏

j=1

(
γj (−1)βj+1γj+1

(−1)βj+1γj γj+1

)
,

where β is an n component binary vector (each component either 0 or 1) and

|β| = β1 + β2 + · · ·+ βn.

After grouping together the terms for which the exponents of z are the same, (18)
takes the form

(21)

n∑
j=0

cjz
j = 0 for z = exp

(
πωki

ω

)
, k = 1, 2, . . . , n,

where

(22) cj =
∑
|β|=j

[Γ− γ1]

n∏
k=1

(
γk (−1)βk+1γk+1

(−1)βk+1γk γk+1

)(
−1
1

)
.

In summary, we have Lemma 4.1.
Lemma 4.1. If the stiffness κj and the impedance γj in each layer satisfy (16),

then the reflectivity vanishes for incident waves of frequencies ω1, ω2, . . . , ωn if and
only if the polynomial (21) with coefficients given by (22) vanishes at

z = exp

(
πωki

ω

)
, k = 1, 2, . . . , n.
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Moreover, cj can be expressed as

(23) cj =
∑
|β|=j

−
n∏

k=0

(γk + (−1)βk+βk+1γk+1),

where γ0 = Γ−, γn+1 = Γ+, β0 = 1, βn+1 = 0 and βk, 1 ≤ k ≤ n, is binary.
Proof. The only part of the lemma that remains to be verified is the formula (23).

The following identity holds for any integer choices of βk and βk+1:

(24)

(
γk (−1)1+βkγk+1

(−1)βk+1γk γk+1

)(
1

(−1)1+βk+1

)

= (γk + (−1)βk+βk+1γk+1)

(
1

(−1)1+βk

)
.

Also, by the definition of βn+1, we have

(25)

(
1

−1

)
=

(
1

(−1)1+βn+1

)
.

Combining (24) and (25) yields

(26)

[
n∏

k=1

(
γk (−1)1+βkγk+1

(−1)βk+1γk γk+1

)](
1

(−1)1+βn+1

)

=

(
1

(−1)1+β1

)
n∏

k=1

(γk + (−1)βk+βk+1γk+1).

By the definition of γ0 and β0, we have

(27) [Γ− γ1]

(
1

(−1)1+β1

)
= [γ0 γ1]

(
1

(−1)β0+β1

)
= γ0 + γ1(−1)β0+β1 .

When we combine (22), (26), and (27), the proof is complete.
Observe that the coefficients cj in (22) are real functions of the impedances

γ1 . . . , γn. On the surface, (21) represents an overdetermined system of equations
since there are n real unknowns, the impedances, and n complex equations, or 2n real
equations, that must be satisfied. In other words, there are twice as many equations
as unknowns.

We now observe that if (21) holds for 1 ≤ k ≤ n/2, then it holds automatically
for n/2 < k ≤ n. Consequently, (21) represents exactly the same number of equations
as unknowns. Let z(ω) be defined by

(28) z(ω) = exp

(
πωi

ω

)
.

By (15), we have

(29) z(ωn+1−k) = exp

(
2πi− πωki

ω

)
= exp

(−πωki

ω

)
= z(−ωk).
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Suppose that (21) is satisfied for z = z(ωk). Taking the conjugate of (21) gives

n∑
j=0

cjz(−ωk)
j = 0,

since the coefficients are real. And combining this with (29), we have

(30)
n∑

j=0

cjz(ωn+1−k)
j = 0.

Hence, when n is even, we only need to impose (21) at k = 1, 2, . . . , n/2 since it
automatically holds for n/2 < k ≤ n by (30).

When n is odd, it follows from (15) that the middle frequency is ω, and by (28),

z(ω) = −1.
Thus at the middle frequency, (21) reduces to the real equation

n∑
j=0

cj(−1)j = 0.

Since the complex part of this equation is trivially zero, there are again n equations
in the n unknowns γ1, γ2, . . . , γn—the last (n − 1)/2 complex equations hold when
the first (n− 1)/2 equations hold while the middle equation is real.

Under the assumption that a solution to (21) exists, we now develop some of its
properties. By the definition of z(ω) in (28), z(ωn+1−k) = z(ωk)

−1. Consequently
both z(ωk) and its reciprocal are zeros of the polynomial in (21). This leads us to the
following observation about polynomials whose zeros occur in reciprocal pairs.

Lemma 4.2. Let p(z) be a polynomial of degree n:

p(z) =
n∑

j=0

cjz
j .

Suppose that p satisfies the following conditions: p(1) 	= 0 and all the zeros of p occur
in reciprocal pairs. That is, the zeros of p consist of either −1 or a collection of pairs
of zeros of the form (w, 1/w), w 	= 0, 1, −1. Then we have

cj = cn−j for j = 0, 1, . . . , n.

Proof. For n = 1 or 2, the result is obvious. Proceeding by induction, suppose
the proposition holds for all n ≤ m where m ≥ 2. If p is any polynomial of degree
m+1 that satisfies the hypotheses of the proposition, then either we can write p(z) =
q(z)(z+1) where q has degree m, or p(z) = q(z)(z+w)(z+w−1) where q has degree
m− 1 and w 	= 0, 1. The polynomial q can be written

q(z) =

d∑
j=1

ajz
j ,

where d is the degree (either m or m − 1) of q and the coefficients aj satisfy the
condition aj = ad−j by the induction hypothesis. Defining aj = 0 for j < 0 or
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for j > d, the condition aj = ad−j holds for all choices of j. In the case that
p(z) = (z + 1)q(z) and d = m, we have

cj = aj + aj−1,

which implies that

cm+1−j = am+1−j + am−j = aj−1 + aj = cj .

In the case that p(z) = (z + w)(z + w−1)q(z), we have

cj = aj + (w + w−1)aj−1 + aj−2,

which implies that

cm+1−j = am+1−j + (w + w−1)am−j + am−j−1 = aj−2 + (w + w−1)aj−1 + aj = cj .

This completes the induction step.
Lemma 4.2 is the basis for the following result.
Theorem 4.3. Suppose that impedances γ1, γ2, . . . , γn, n ≥ 1, can be found

satisfying (21) and (22), where the frequencies ωj satisfy the following conditions for
some ω > 0:

(31)

ωj + ωn+1−j

2
= ω, 0 < ωj < 2ω for j = 1, 2, . . . , n,

ωi 	= ωj for all i 	= j.

If the stiffness and impedance in each layer satisfy (16), then the impedances satisfy
the following additional relation:

(32) γjγn+1−j = Γ+Γ−, j = 1, 2, . . . , n,

where Γ+ and Γ− are the impedances of the half-spaces x ≥ T and x ≤ 0, respectively.
Proof. By (31) the zeros of the polynomial in (21) occur in reciprocal pairs and

z = 1 is not a zero. By Lemma 4.2, we know that cj = cn−j for each j. By (23), cj
is expressed as

(33) cj =
∑
|β|=j

β0=1,βn+1=0

−
n∏

k=0

(γk + (−1)βk+βk+1γk+1).

Separating out the factors containing β0 and βn+1 in (33), we obtain

(34) cj =
∑
|β|=j

((−1)β1γ1 − Γ−)(γn + (−1)βnΓ+)

n−1∏
k=1

(γk + (−1)βk+βk+1γk+1).

When j = 0 or n, the sum in (33) contains precisely one term; that is, if |β| = 0, then
βk = 0 for 1 ≤ k ≤ n, which implies that

c0 = (γ1 − Γ−)(γn + Γ+)

n−1∏
k=1

(γk + γk+1).
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If |β| = n, then βk = 1 for 1 ≤ k ≤ n, which implies that

cn = (Γ− + γ1)(Γ+ − γn)

n−1∏
k=1

(γk + γk+1).

Equating c0 and cn gives

(γ1 − Γ−)(γn + Γ+) = (Γ− + γ1)(Γ+ − γn),

which implies that

γ1γn = Γ+Γ−.

Proceeding by induction, suppose that

(35) γ1γn = γ2γn−1 = · · · = γjγn+1−j = Γ−Γ+.

To complete the induction step, we need to show that γj+1γn−j = Γ−Γ+. Replacing
j by n− j in (34) gives

(36) cn−j =
∑

|β|=n−j

((−1)β1γ1 − Γ−)(γn + (−1)βnΓ+)

n−1∏
k=1

(γk + (−1)βk+βk+1γk+1).

The substitution βk = 1−βk converts the binary vector β into a binary vector β where
each 0 and 1 in β is replaced by a 1 and 0 in β, respectively. Hence, |β| = n − |β|,
and we have

(37) cn−j =
∑
|β|=j

(Γ− + (−1)β1γ1)((−1)βnΓ+ − γn)

n−1∏
k=1

(γk + (−1)βk+βk+1γk+1).

Replacing the dummy index β in (37) by β, we obtain

(38) cn−j =
∑
|β|=j

(Γ− + (−1)β1γ1)((−1)βnΓ+ − γn)

n−1∏
k=1

(γk + (−1)βk+βk+1γk+1).

Subtracting (38) from (34) and utilizing the identity γ1γn = Γ−Γ+ already estab-
lished, we obtain

(39) 0 = cj − cn−j = 2(Γ−Γ+)
∑
|β|=j

((−1)β1 − (−1)βn)

n−1∏
k=1

(γk + (−1)βk+βk+1γk+1).

This shows that the following relation holds in the case m = 1:

(40)
∑

|α|=j+1−m

((−1)αm − (−1)αl)

n−m∏
k=m

(γk + (−1)αk+αk+1γk+1) = 0,

where l = n+ 1−m and α = [αm, αm+1, . . . , αl] is a binary vector.
Proceeding by induction, suppose that (40) holds for m = 1, 2, . . . ,M , where

1 ≤ M ≤ j − 1, and define L = n + 1 − M . Observe that (−1)αL − (−1)αM = 0 if
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either αL = αM = 0 or αL = αM = 1. Hence, when we sum over α in (40), we can
restrict the summation to those L such that

(41) (αM = 0, αL = 1) or (αM = 1, αL = 0).

With these restrictions on α, (40) implies that
(42) ∑

|α|=j+1−M
αM=1,αL=0

n−M∏
k=M

(γk + (−1)αk+αk+1γk+1) =
∑

|α|=j+1−M
αM=0,αL=1

n−M∏
k=M

(γk + (−1)αk+αk+1γk+1).

Let α be the vector obtained from α by deleting the first and last components. If
|α| = j +1−M and (41) holds, then |α| = j −M . Hence, the left side of (42) can be
written
(43)∑
|α|=j−M

(γM − (−1)αM+1γM+1)(γL−1 + (−1)αL−1γL)

n−M−1∏
k=M+1

(γk + (−1)αk+αk+1γk+1).

Similarly, the right side of (42) takes the form
(44)∑
|α|=j−M

(γM + (−1)αM+1γM+1)(γL−1 − (−1)αL−1γL)

n−M−1∏
k=M+1

(γk + (−1)αk+αk+1γk+1).

By the induction assumption (35) and the fact that M ≤ j − 1, we have

(45) Γ−Γ+ = γMγL = γM+1γL−1.

Substituting (43) and (44) in (42), utilizing (45), and rearranging, we have

(46) 0 = 2(Γ−Γ+)
∑

|α|=j−M

((−1)αM+1 − (−1)αL−1)

n−M−1∏
k=M+1

(γk + (−1)αkαk+1γk+1).

This shows that (40) holds for m = M + 1 provided M ≤ j − 1. This completes the
induction step on m, and (40) holds for all m such that 1 ≤ m ≤ j.

Substituting m = j in (40), we obtain the relation

(47)
∑
|α|=1

((−1)αj − (−1)αl)

n−j∏
k=j

(γk + (−1)αk+αk+1γk+1) = 0,

where l = n + 1 − j. Once again, (47) vanishes when aj = αl = 0. But in the case
that αj = 1 and αl = 0, or αj = 0 and αl = 1, the remaining components of α must
vanish since |α| = 1. Hence, after substituting for αj and αl in (47), we obtain the
relation

(γj−γj+1)(γn−j+γn−j+1)

n−j−1∏
k=j+1

(γk+γk+1) = (γj+γj+1)(γn−j−γn−j+1)

n−j−1∏
k=j+1

(γk+γk+1).

This simplifies to

(48) γjγn+1−j = γj+1γn−j .

By (35), γjγn+1−j = Γ−Γ+. Consequently, (48) implies that γj+1γn−j = Γ−Γ+. This
completes the induction step on j, and the proof is complete.
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5. Limiting coating structure for frequency band [0,Ω1]. In this section,
we study the structure of coatings that are constructed to make the reflectivity vanish
at a discrete set of frequencies on the interval [0,Ω1], where Ω1 = 2ω with ω defined
in (15). We focus in particular on the limiting behavior as the number of layers in
the coating increases. Observe that when ω = 0 in (9), the reflectivity in (8) is

Γ+ − Γ−
Γ+ + Γ−

,

which does not vanish except for the special case Γ+ = Γ−. Hence, it is generally
not possible to absorb waves of all frequencies since the reflectivity is near (Γ+ −
Γ−)/(Γ+ +Γ−) when ω is near 0. In addition, for the family of coatings of section 4,
we have the following periodicity property.

Lemma 5.1. Let r(ω) denote the reflectivity (8) associated with the incident wave
frequency ω. For a coating composed of homogeneous layers where for some ω > 0
the elastic constant of layer j satisfies (16) for each j, we have r(ω) = r(ω + 2ω) for
each choice of ω.

Proof. When (16) holds, the exponential terms of (11) have the form

e±j = exp

(
πωi

ω

)
± 1 = exp

(
π(ω + 2ω)i

ω

)
± 1.

Since the Aj factors of r in (10) are periodic with period 2ω, r is periodic with period
2ω.

As a consequence of Lemma 5.1,

(49) r(2jω) = r(0) = (Γ+ − Γ−)/(Γ+ + Γ−)

for any integer j. Hence, even though r(ωk) = 0 for k = 1, 2, . . . , n, the reflectivity
cannot approach zero everywhere, as the number of layers increases, since r is a
fixed constant at integer multiples of 2ω. Nonetheless, using the smoothing technique
described later, we will design coatings that absorb waves both in the design frequency
band and at larger frequencies.

Let p and q denote the numerator and denominator of r in (10). In other words,

(50) p = [Γ− γ1]

n∏
j=1

Aj

(
−1
1

)
and q = [Γ− γ1]

n∏
j=1

Aj

(
1

1

)
.

Both p and q are functions of ω, as can be seen from the formula (11) for Aj , which
are denoted p(ω) and q(ω), respectively. We begin with a result concerning the
denominator q.

Lemma 5.2. For any choice of ω, we have

|q(ω)|2 ≥ 22n+2Γ+Γ−
n∏

j=1

γ2
i .

Furthermore, if |r(ω)|2 ≤ ε < 1, then

|q(ω)|2 ≤ 22n+2Γ+Γ−
1− ε

n∏
j=1

γ2
i .



THE DESIGN OF HIGH PERFORMANCE COATINGS 1403

Proof. From the definition of Aj in (11), we have

e−αjAj = 2Bj , where Bj =

(
γj cosαj iγj+1 sinαj

iγj sinαj γj+1 cosαj

)
, αj =

γj∆xωi

κj
.

Hence, we have

p = 2n[Γ− γ1]

n∏
j=1

(eαjBj)

(
−1
1

)
and q = 2n[Γ− γ1]

n∏
j=1

(eαjBj)

(
1

1

)
,

and r can be expressed

(51) r =
p

q
=

[Γ− γ1]

n∏
j=1

Bj

(
−1
1

)

[Γ− γ1]

n∏
j=1

Bj

(
1

1

) .

Observe that for any real numbers aij and bij , i = 1 or 2, j = 1 or 2, we have[
a11 ia12

ia21 a22

][
b11 ib12

ib21 b22

]
=

[
a11b11 − a12b21 i(a11b12 + a12b22)

i(a21b11 + a22b21) a22b22 − a21b12

]
.

It follows that the matrix product appearing in (51) has the form

n∏
j=1

Bj =

n∏
j=1

(
γj cosαj iγj+1 sinαj

iγj sinαj γj+1 cosαj

)
=

(
a ib

ic d

)
,

where a, b, c, and d are all real. Hence.

r =
γ1d− Γ−a+ i(Γ−b− γ1c)

Γ−a+ γ1d+ i(γ1c+ Γ−b)
.

Consequently, the square magnitude of r can be written

(52) |r|2 = C −D

C +D
, where

C = (Γ−a)2 + (γ1d)
2 + (γ1c)

2 + (Γ−b)2 and D = 2γ1Γ−(ad+ bc).

Note that C − D represents the square magnitude of the numerator in (51), while
C +D represents the square magnitude of the denominator in (51). Observe that

ad+ bc = det

(
a ib

ic d

)
= det

n∏
i=1

(
γj cosαj iγj+1 sinαj

iγj sinαj γj+1 cosαj

)
=

n∏
j=1

(γjγj+1).

After substituting in the definition of D, we have

(53) D = 2Γ−Γ+

n∏
j=1

γ2
j ≥ 0.
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Since |r|2 ≥ 0, we conclude that C ≥ D, and C + D ≥ 2D. Since q is 2n times the
denominator of r in (51), we have

2−2n|q(ω)|2 = C +D ≥ 2D = 4Γ−Γ+

n∏
j=1

γ2
j .

If |r| ≤ ε, then after rearranging (52),

C ≤ 1 + ε

1− ε
D.

Hence, we have

2−2n|q(ω)|2 = C +D ≤
(
1 + ε

1− ε

)
D +D =

2D

1− ε
.

Finally, substituting for D using (53), the proof is complete.
Remark 5.3. Since C ≥ 0 and D ≥ 0, (52) implies that |r| ≤ 1. This unit bound

for the reflectivity can be obtained from energy conservation as well (see Lemma 7.3).
In the case where the stiffness of layer j is chosen to satisfy (16), the matrices Aj

can be expressed

Aj = z

(
γj γj+1

γj γj+1

)
+

(
γj −γj+1

−γj γj+1

)
, z = exp

(
πωi

ω

)
.

Thus there exist polynomials P and Q of degree at most n with the property that

(54) p(ω) = P (z(ω)) and q(ω) = Q(z(ω)), where z(ω) = exp

(
πωi

ω

)
.

Let us consider the case where the coating is designed so that

(55) r(ωk) = 0 for ωk =
2kω

n+ 1
, k = 1, 2, . . . , n.

In this case, the design frequencies lie in the interior of the interval [0,Ω1] where
Ω1 = 2ω. It follows that P vanishes at

(56) z = exp

(
πωki

ω

)
= exp

(
2kπi

n+ 1

)
, k = 1, 2, . . . , n.

These zeros are precisely those of the polynomial 1−zn+1 with the zero z = 1 removed.
Therefore, P (z) is a multiple of the polynomial

(57)
1− zn+1

1− z
.

By the definition of P in (54), we see that P (z = 1) = p(ω = 0). Putting ω = 0 in
(11) and substituting for Aj in (50), we see that

(58) P (1) = 2n(Γ+ − Γ−)
n∏

j=1

γj .
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Since (57) has the limit n+ 1 at z = 1, we conclude that

P (z) =
2n(Γ+ − Γ−)

∏n
j=1 γj

n+ 1

(
1− zn+1

1− z

)
.

Combining this representation for P with Lemma 5.2 yields Theorem 5.4.

Theorem 5.4. For a coating composed of n homogeneous layers where for some
ω > 0, the elastic constant of layer j satisfies (16) for each j and the reflectivity
vanishes in accordance with (55), we have for any choice of ω 	= 2kω, k an integer,
(59)

|r(ω)|2 = |p(ω)|2
|q(ω)|2 ≤ (Γ+ − Γ−)2

4Γ+Γ−(n+ 1)2

( |1− z(ω)n+1|2
|1− z(ω)|2

)
, z(ω) = exp

(
πωi

ω

)
.

Moreover, if |r(ω)|2 ≤ ε ≤ 1, then

(60) |r(ω)|2 ≥ (1− ε)(Γ+ − Γ−)2

4Γ+Γ−(n+ 1)2

( |1− z(ω)n+1|2
|1− z(ω)|2

)
.

Theorem 5.4 provides very precise information concerning the reflectivity of a
coating that absorbs the n frequencies in (55). In particular, we make the following
observations:

(O1) The upper bound (59) and the lower bound (60) only differ by the factor
1 − ε. If the upper bound is 1

2 (for example), the lower bound is 1
2 times the upper

bound. When the upper bound is small, then the lower bound is essentially equal to
the upper bound.

(O2) The reflectivity only vanishes at the n given frequencies ωk, k = 1, 2, . . . , n,
nowhere else on the interval (0, 2ω].

(O3) Since |1− zn+1| ≤ 2 when z has unit magnitude, we have

(61) |r(ω)|2 ≤ (Γ+ − Γ−)2

Γ+Γ−(n+ 1)2
1∣∣1− exp
(
πωi
ω

)∣∣2 =
(Γ+ − Γ−)2

4Γ+Γ−(n+ 1)2 sin2
(
πω
2ω

) .
(O4) Focusing on small ω, note that

1

sin2 θ
= 1 + cot2 θ ≤ 1 +

1

θ2
, 0 < θ ≤ π

2
.

Applying this estimate to (61) with θ = πω/(2ω), we have

(62) |r(ω)|2 ≤ (Γ+ − Γ−)2

4Γ+Γ−(n+ 1)2

(
1 +

(
2ω

πω

)2
)
.

Combining (49), (O3), and (O4), we obtain a bound for the reflection magnitude that
starts from |Γ+ − Γ−|/(Γ+ + Γ−) at ω = 0 and drops to

(63)
|Γ+ − Γ−|

2(n+ 1)
√
Γ+Γ−

as ω approaches ω, where the denominator in (61) is largest.



1406 W. W. HAGER, R. ROSTAMIAN, AND D. WANG

6. Limiting coating structure for frequency band [Ω0,Ω1]. Suppose that
we wish to make the reflectivity small over a given frequency band [Ω0,Ω1], where
Ω0 > 0, by making the reflectivity vanish at the following evenly spaced frequencies
between Ω0 and Ω1:

(64) ωk = Ω0 +

(
k − 1

n− 1

)
(Ω1 − Ω0), k = 1, 2, . . . , n.

For this choice of the frequencies, the parameter ω of section 4 is given by ω =
(Ω1 + Ω0)/2. The main difference between these coatings and those investigated in
section 5 is that it is possible to make the reflectivity approach zero in the design
interval [Ω0,Ω1] exponentially fast in the number of layers, while for the coating of
section 5, the reflectivity magnitude approaches zero like 1/n (see (61)) in the interior
of the frequency band [0,Ω0 + Ω1]. As a result, when Ω0 > 0, we can achieve small
reflectivity over the frequency band using a small number of layers in the coating.

Our method for analyzing the uniformly distributed frequencies (64) on [Ω0,Ω1]
is analogous to the method developed in section 5 to analyze the frequencies (55)
on [0,Ω1]. Again, the reflectivity is expressed r(ω) = p(ω)/q(ω) where p and q are
defined in (50) and q has the upper and lower bounds given in Lemma 5.2. However,
the numerator p now has a different form. Assuming the stiffness of layer j is chosen
to satisfy (16) we express

p(ω) = P (z(ω)), where z(ω) = exp

(
πωi

ω

)
,

where P is the polynomial of degree n that vanishes at the points z(ωk), with ωk

given by (64), and which satisfies the normalization condition (58). In particular, we
have

P (z) = 2n(Γ+ − Γ−)
n∏

j=1

γj
(z − eiθj )

(1− eiθj )
, θj = πωj/ω.

Based on the estimates for q in Lemma 5.2, we have Lemma 6.1.
Lemma 6.1. For a coating composed of n homogeneous layers where the reflec-

tivity vanishes at each of the frequencies (64) and where the elastic constant of layer
j satisfies (16) for each j with ω = (Ω0 +Ω1)/2, we have for any choice of ω

(65) |r(ω)|2 ≤ (Γ+ − Γ−)2

4Γ+Γ−

n∏
j=1

|eiθ(ω) − eiθj |2
|1− eiθj |2 , θ(ω) = πω/ω.

Moreover, if |r(ω)|2 ≤ ε ≤ 1, then

|r(ω)|2 ≥ (1− ε)(Γ+ − Γ−)2

4Γ+Γ−

n∏
j=1

|eiθ(ω) − eiθj |2
|1− eiθj |2 .

As ω increases from Ω0 to Ω1, z(ω) travels around the unit circle from the angle
θ1 to the angle θn. Based on (65), an upper bound for the reflectivity on the interval
[Ω0,Ω1] can be expressed as a product between a constant (involving Γ+ and Γ−) and
the quantity

(66) max
θ1≤θ≤θn

n∏
j=1

|eiθ − eiθj |
|1− eiθj | .
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In the numerator of (66), we compute the product of the distances between a given
point eiθ on the unit circle and each of the points eiθj on the unit circle. Since the eiθj

are uniformly spaced on the unit circle, the maximum in (66) is attained at a value
of θ between θ1 and θ2. Hence, we have the following upper bound:

(67) max
θ1≤θ≤θn

n∏
j=1

|eiθ − eiθj | ≤ |eiθ1 − eiθ2 |
n∏

j=2

|eiθ1 − eiθj |.

We consider the following three cases.
Case 1. θ1 ≥ 2π/3. Since θ1 ≤ θj ≤ θn = 2π − θ1 for all j, we have

(68)

n∏
j=1

|1− eiθj | ≥
n∏

j=1

|1− eiθ1 | = 2n sinn(θ1/2),

where θ1 = πω1/ω = 2πΩ0/(Ω0 + Ω1). For the factors in (67), we note that the
distance between two points on the unit circle is bounded by the angle between them:

(69)
|eiθ1 − eiθj | ≤ |θ1 − θj | = (j − 1)∆θ,

where ∆θ = (θn − θ1)/(n− 1) = 2(π − θ1)/(n− 1)

since θn = 2π − θ1. Combining (69) with (67) and (68) gives

(70) max
θ1≤θ≤θn

n∏
j=1

|eiθ − eiθj |
|1− eiθj | ≤ (n− 1)!(∆θ)n

2n sinn θ1/2
= (n− 1)!

(
π − θ1

(n− 1) sin θ1/2

)n

.

Recall Stirling’s upper bound for a factorial:

n! ≤
√
2πn(n/e)n

(
1 +

1

12n− 1

)
.

After using this expression to estimate (n−1)! in (70) and after rearranging the result,
we obtain

max
θ1≤θ≤θn

n∏
j=1

|eiθ − eiθj |
|1− eiθj | ≤ e

√
2π

n− 1

(
1 +

1

12n− 13

)(
π − θ1

e sin θ1/2

)n

.

Noting that

π − θ1

e sin θ1/2
≤ π/3

e
√
3/2

=
2π

3
√
3e

≤ .44484 when π ≥ θ1 ≥ 2π/3,

we conclude that the maximum reflectivity magnitude for ω on the interval [Ω0,Ω1]
approaches zero at least as fast as .44484n when

θ1 =
2πΩ0

Ω0 +Ω1
≥ 2π/3 or, equivalently, Ω1 ≤ 2Ω0.

Moreover, as θ1 approaches π, we have

lim
θ1→π

π − θ1

e sin θ1/2
= 0.
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Hence, the reflectivity magnitude on [Ω0,Ω1] approaches zero like εn where ε tends
to zero as Ω0 approaches Ω1.

Case 2. π/2 ≤ θ1 < 2π/3. The factors in the product (67) are the distance
between the points eiθ1 and eiθj on the unit circle, while the factors in the denominator
of (66) are the distance between the point 1+0i in the complex plane and each of the
points eiθj on the unit circle. Thinking geometrically, we can pair together a factor
in the denominator of (66) with a slightly smaller factor in the product (67) in such
a way that the ratio of these paired terms is less than 1. In particular, if k is the first
integer ≤ θ1/∆θ (often denoted 
θ1/∆θ�), then we have

|eiθk+1 − eiθ1 | = |ei(θ1+k∆θ) − eiθ1 | = |eik∆θ − 1| ≤ |1− eiθ1 |.

In general, if j > 0 with j + k ≤ n, then

(71)
|eiθj+k − eiθ1 | = |ei[θ1+(j+k−1)∆θ] − eiθ1 | = |ei(j+k−1)∆θ − 1|

≤ |ei[θ1+(j−1)∆θ] − 1| = |1− eiθj |.

Hence, the ratio |eiθj+k − eiθ1 |/|1− eiθj | is at most one for j ≥ 1. Combining (66) and
(67), and removing these paired factors, we obtain the following upper bound:

(72) max
θ1≤θ≤θn

n∏
j=1

|eiθ − eiθj |
|1− eiθj | ≤ |eiθ2 − eiθ1 |∏k

j=2 |eiθ1 − eiθj |∏k
j=1 |1− eiθj |

.

(To obtain this bound, we make use of the relation θn+1−j = 2π − θj to simplify the
denominator.) Estimating the denominator as in (68) and the numerator as in (69),
we have the following analogue of (70):

(73) max
θ1≤θ≤θn

n∏
j=1

|eiθ − eiθj |
|1− eiθj | ≤ (k − 1)!(∆θ)k

2k sink θ1/2
=

k!

k

(
π − θ1

(n− 1) sin θ1/2

)k

.

Again, utilizing Stirling’s bound yields

(74) max
θ1≤θ≤θn

n∏
j=1

|eiθ − eiθj |
|1− eiθj | ≤

√
2π

k

(
1 +

1

12n− 1

)(
k(π − θ1)

(n− 1)e sin θ1/2

)k

.

Since

(75) k ≤ θ1

∆θ
=

θ1(n− 1)

θn − θ1
=

θ1(n− 1)

2(π − θ1)
,

(74) implies that

(76) max
θ1≤θ≤θn

n∏
j=1

|eiθ − eiθj |
|1− eiθj | ≤

√
2π

k

(
1 +

1

12n− 1

)(
θ1

2e sin θ1/2

)k

.

Since k differs from its upper bound (75) by at most 1, we conclude that the maximum
in (76) approaches zero like α(θ1)

n, where

(77) α(θ1) =

(
θ1

2e sin θ1/2

)θ1/2(π−θ1)

.
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For θ1 between 2π/3 and π/2, the maximum value for α(θ1) is attained at θ1 = π/2
and

α(π/2) =

(
π

2e
√
2

)1/2

< .63923.

Case 3. 0 < θ1 < π/2. This case can be treated using the strategy of Case 2. The
only difference is that (71) does not hold when θj > π. On the other hand, examining
the geometry of points on the unit circle, we see that when θj > π, the following
holds:

|eiθj+k+1 − eiθ1 | ≤ |1− eiθj |.

This leads to the following adjustment in (72):

max
θ1≤θ≤θn

n∏
j=1

|eiθ − eiθj |
1− eiθj | ≤ 2|eiθ2 − eiθ1 |∏k

j=2 |eiθ1 − eiθj |∏k+1
j=1 |1− eiθj |

.

The 2 in the numerator corresponds to the uncanceled numerator factor for which
θj − θ1 ≈ π, while k in the denominator of (72) is changed to k + 1 since one fewer
pair of factors is removed. Continuing the analysis as in Case 2, using the estimate
|1− eiθj | ≥ 2 sin θ1/2 in the denominator and the estimate |eiθ1 − eiθj | ≤ (j − 1)∆θ in
the numerator, yields

max
θ1≤θ≤θn

n∏
j=1

|eiθ − eiθj |
|1− eiθj | ≤ 2(k − 1)!(∆θ)k

2k+1 sink+1 θ1/2
=

(
k!

k sin θ1/2

)(
π − θ1

(n− 1) sin θ1/2

)k

.

Since the right side above only differs from the right side of (73) by the factor sin θ1/2
in the denominator, we can simply divide the upper bound (76) by sin θ1/2 to obtain
the corresponding estimate for Case 3.

The quantity that is exponentiated in (76) satisfies

θ1

2e sin θ1/2
≤ π/2

2e sinπ/4
< .40862 for 0 < θ1 ≤ π

2
.

Hence, reflectivity is approaching zero exponentially fast on the frequency band
[Ω0,Ω1], but the decay factor α(θ1), defined in (77), approaches one as θ1 approaches
zero, and although the convergence is exponentially fast, the actual convergence could
be slow when θ1 is near zero. Note that letting θ1 tend to zero is analogous to letting
Ω0 tend to zero with Ω1 fixed. The case Ω0 = 0, analyzed in section 5, gave conver-
gence of the form 1/n, rather than exponential convergence. In summary, our results
on exponential decay of the reflectivity are shown in Theorem 6.2.

Theorem 6.2. For a coating composed of n homogeneous layers where the re-
flectivity vanishes at each of the frequencies (64) on the interval [Ω0,Ω1], Ω0 > 0, and
where the elastic constant of layer j satisfies (16) for each j with ω = (Ω0+Ω1)/2, the
maximum magnitude of the reflectivity on the interval [Ω0,Ω1], denoted rmax, has the
following upper bounds, depending on the ratio of Ω1 to Ω0, on θ1 = 2πΩ0/(Ω0 +Ω1),
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and on k = 
θ1(n− 1)/2(π − θ1)�:

Ω0 < Ω1 ≤ 2Ω0 : rmax ≤ e

√
π|Γ+ − Γ−|2
2Γ+Γ−(n− 1)

(
1 +

1

12n− 13

)(
π − θ1

e sin θ1/2

)n

,

2Ω0 < Ω1 ≤ 3Ω0 : rmax ≤
√

π|Γ+ − Γ−|2
2kΓ+Γ−

(
1 +

1

12n− 1

)(
θ1

2e sin θ1/2

)k

,

3Ω0 < Ω1 : rmax ≤ 1

sin θ1/2

√
π|Γ+ − Γ−|2
2kΓ+Γ−

(
1 +

1

12n− 1

)(
θ1

2e sin θ1/2

)k

.

7. Transmission in multilayered coatings. In this section, we consider the
minimization of transmission. This minimization must be approached in a completely
different way from the reflection problem since transmissivity does not vanish. That is,
for the single homogeneous layer of section 2, τ = 0 implies by (3) that τ−+τ+ = 0 and
τ−− τ+ = 0. Hence, τ− = τ+ = 0. But by (3) this also forces 1+ r = 0 and 1− r = 0.
Since this is impossible, the transmission coefficient can never vanish. Our approach
to the minimum reflection problem was to make the reflection coefficient vanish at a
discrete set of frequencies. This same approach does not work with the transmission
problem since transmissivity never vanishes. Nonetheless, the transmission coefficient
can be made arbitrarily small. We begin by deriving a formula for the transmissivity
analogous to (10).

Proposition 7.1. Suppose that the coating 0 ≤ x ≤ T is composed of n ho-
mogeneous layers, each layer of thickness ∆x = T/n. If κj and γj are the stiffness
and impedance of the jth layer (j − 1)∆x ≤ x ≤ j∆x, then the transmissivity of the
coating can be expressed as

(78) τ =
2Γ+

∏n
j=1 γj

[Γ− γ1]
∏n

j=1 Bj

(
1

1

) ,

where

Bj =

(
γj cosαj iγj+1 sinαj

iγj sinαj γj+1 cosαj

)
, αj =

γj∆xω

κj
.

Proof. The general solution of the equation of motion (2), assuming harmonic
time dependence, is v(x, t) = u(x)eiωt where u in layer j can be expressed

u(x) = τ−j eiωsj(x−xj−1) + τ+
j e−iωsj(x−xj−1), sj = γj/κj , and xj = j∆x.

Since the displacement and stress are continuous at the interfaces x = xj for each j,
we have

(79)
τ−j+1 + τ+

j+1 = τ−j eiωsj∆x + τ+
j e−iωsj∆x,

γj+1(τ
−
j+1 − τ+

j+1) = γj(τ
−
j eiωsj∆x − τ+

j e−iωsj∆x).

Letting τj denote the vector [τ+
j τ−j ]T , we solve the linear system (79) to obtain

τj = Cjτj+1, where Cj =
1

2γj

(
(γj + γj+1)e

iαj (γj − γj+1)e
iαj

(γj − γj+1)e
−iαj (γj + γj+1)e

−iαj

)
.
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By (3), the transmission coefficient τ is given by τ = τ−1 + τ+
1 , while to the right of

x = T we have τ−n+1 = 1 and τ+
n+1 = r, where r is the reflection coefficient given in

(10). Hence, we have

τ = [1 1]τ1 = [1 1]

n∏
j=1

Cj

(
r

1

)
.

Letting p and q denote the numerator and denominator of r defined in (50),

(80) τ =
1

q
[1 1]

n∏
j=1

Cj

(
p

q

)
.

Since p and q are scalars,

p = [Γ− γ1]

n∏
j=1

Aj

(
−1
1

)
= [−1 1]

n∏
j=1

AT
n−j+1

(
Γ−
γ1

)
,

and

(81) q = [Γ− γ1]

n∏
j=1

Aj

(
1

1

)
= [1 1]

n∏
j=1

AT
n−j+1

(
Γ−
γ1

)
.

It follows that the numerator of τ can be written

[1 1]
n∏

j=1

Cj

(
p

q

)
= [1 1]C1C2 · · ·Cn

(
−1 1

1 1

)
AT

n · · ·AT
2 A

T
1

(
Γ−
γ1

)
.

Observe that

Cj

(
−1 1

1 1

)
AT

j =
1

2γj

(
(γj + γj+1)e

iαj (γj − γj+1)e
iαj

(γj − γj+1)e
−iαj (γj + γj+1)e

−iαj

)(
−1 1

1 1

)
(

γj(e
2iαj + 1) γj(e

2iαj − 1)

(γj+1(e
2iαj − 1) γj+1(e

2iαj + 1)

)

= 1
γj

(
−γj+1e

iαj γje
iαj

γj+1e
−iαj γje

−iαj

)(
γj(e

2iαj + 1) γj(e
2iαj − 1)

γj+1(e
2iαj − 1) γj+1(e

2iαj + 1)

)

= 2γj+1e
iαj

(
−1 1

1 1

)
.

Hence, the numerator of τ reduces to the following:
(82)

[1 1]
n∏

j=1

Cj

(
p

q

)
= 2n[1 1]

(
−1 1

1 1

)(
Γ−
γ1

)
n∏

j=1

γj+1e
iαj = 2n+1Γ+

n∏
j=1

γje
iαj .

Combining (80), (81), and (82), along with the observation that e−iαjAj = 2Bj , the
proof is complete.
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Remark 7.2. From the form of the transmissivity in Proposition 7.1, it is clear
that it never vanishes.

We now give the relation between reflectivity and transmissivity.

Lemma 7.3. For a coating composed of homogeneous layers, transmissivity and
reflectivity satisfy the following relation:

(83) |r|2 + Γ−
Γ+

|τ |2 = 1.

Minimizing reflectivity is equivalent to maximizing transmissivity, and minimizing
transmissivity is equivalent to maximizing reflectivity. Moreover, the maximum mag-
nitude for the transmissivity is

√
Γ+/Γ−, and the maximum is attained if and only if

the reflectivity vanishes. For any coating, the magnitude of the reflectivity is strictly
less than 1.

Proof. Using the notation from the proof of Lemma 5.2, we have

(84) |r|2 = C −D

C +D
.

Also referring to the notation of Lemma 5.2 and to the expression for τ in (78), we
have

(85) |τ |2 = 2D(Γ+/Γ−)
C +D

.

Combining (84) and (85) yields (83). The remaining part of the lemma follows from
(83) and the fact that |τ | > 0.

Remark 7.4. An alternative derivation of (83) is obtained from the principle of
energy conservation, and with this approach it is not necessary to consider a coating
composed of homogeneous layers. Alternatively, Lemma 7.3 can be extended to a
coating whose impedance and stiffness are piecewise continuous by approximating the
material parameters by a sequence of materials composed of homogeneous layers and
taking limits.

Although the transmissivity never vanishes, it can be made arbitrarily small using
a coating whose impedance oscillates between large and small values.

Theorem 7.5. Given a frequency band [Ω0,Ω1] where Ω0 > 0, and given a
(small) scalar ε > 0, let us consider a coating composed of n homogeneous layers
where

(86) γj = ε for j even, γj = 1/ε for j odd , and κj =
(Ω0 +Ω1)γj∆x

π
.

Then for all ω ∈ [Ω0,Ω1] we have

(87) |τ | =




2Γ+ε

(
ε

sinα(ω)

)n

+O(εn+2) for n even,

2Γ+

(
ε

sinα(ω)

)n

+O(εn+1) for n odd ,

where α(ω) = πω/(Ω0 +Ω1). For all ω ∈ [Ω0,Ω1], sinα(ω) ≥ sinπΩ0/(Ω0 +Ω1).

Proof. For γj chosen according to (86), the numerator of τ in (78) is
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(88) 2Γ+

n∏
j=1

γj =

{
2Γ+ if n is even,

2Γ+/ε if n is odd.

The denominator of τ is

(89)

[Γ− γ1]

n∏
j=1

Bj

(
1

1

)

= ε−(n+1)[εΓ− 1]

(
cosα(ω) iε2 sinα(ω)

i sinα(ω) ε2 cosα(ω)

)(
ε2 cosα(ω) i sinα(ω)

iε2 sinα(ω) cosα(ω)

)

×
(

cosα(ω) iε2 sinα(ω)

i sinα(ω) ε2 cosα(ω)

)
· · ·
(

1

1

)
.

The factor multiplying ε−(n+1) in (89) is a polynomial of degree n + 1 in ε whose
lowest degree (constant) term can be evaluated by putting ε = 0. In particular, the
term of lowest degree is
(90)

[0 1]

(
cosα(ω) 0

i sinα(ω) 0

)(
0 i sinα(ω)

0 cosα(ω)

)(
cosα(ω) 0

i sinα(ω) 0

)
· · ·
(

1

1

)
= in sinn α(ω).

Combining (88), (89), and (90) gives (87). For ω between Ω0 and Ω1, α(ω) lies
between 0 and π. Since α(Ω0) = π − α(Ω1), it follows that

sinα(ω) ≥ sinα(Ω0) = sinπΩ0/(Ω0 +Ω1)

for Ω0 ≤ ω ≤ Ω1. This completes the proof.

8. Numerical illustrations. Now we provide numerical illustrations for the
theorems of the previous sections. In the first set of illustrations, we consider the
nonreflective coatings discussed in section 5 using [0, 1] for the frequency band. Ac-
cording to (55), an n-layer coating should be designed such that the reflectivities
vanish at

ωk = k/(n+ 1) for k = 1, 2, . . . , n.

For the impedances of the two half-spaces, we take Γ− = 28.14776 and Γ+ = 1. The
ration Γ−/Γ+ corresponds to the ratio between the impedances of steel and water. In
the absence of a coating, the reflectivity of a water/steel interface is (Γ−−Γ+)/(Γ−+
Γ+) = 0.93138. To obtain a sense of the effectiveness of our optimal coatings, we
should compare this value with that of the coated surface.

We use Newton’s method with the Armijo step rule described in [18, p. 179] to
solve the system of equations

r(ωk) = 0, k = 1, 2, . . . , n,

with n as large as 2000. A brute-force approach to solving this system is not practical.
It has infinitely many solutions for each n, and without additional guidance, a solution
obtained for one n may not be related to a solution corresponding to another n. To
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Fig. 1. Impedance as a function of depth for 500-, 1000-, and 2000-layer coatings designed to
absorb the frequency band [0, 1].

guide our computations, we take the stiffness of the special form (16), and we constrain
the impedance to satisfying the relation (32) of Theorem 4.3.

The computed impedances of nonreflective coatings for n = 500, 1000, and 2000
layers are shown in Figure 1. The reason that the figure shows only one curve is that
the coating impedances for the three choices did not differ by much more than the
width of a line on a 600 dpi printer, indicating that further refinements of the layer
structure is not necessary. Although the curve appears to be continuous, it is actually
piecewise constant with between 500 and 2000 fine steps.

Figure 2 depicts the frequency response of the 500-layer coating. By construction,
the response vanishes at exactly 500 points in the frequency interval (0, 1). Between
two consecutive zeros, the graph has a local maximum which is bounded above and
below by the estimates in (59) and (60). This fine structure for the graph is not visible
in Figure 2 since we have squeezed the 500 zeros on the horizontal axis. What we
see in Figure 2 is the envelope of the local maxima. In [21, Figs. 7.3, 7.5] two- and
three-layer coatings are shown which absorb waves of two and three frequencies and
which have a saddle-like shape similar to that of our Figure 2.

Observe that the reflectivity near ω = 0 is large, its value being 0.93138. As the
frequency approaches zero, the wavelength grows large, and relative to the scale of
the wavelength, the thickness of the coating is insignificant. In the limit as ω tends
to zero, the coating loses its effect entirely, and the reflectivity approaches that of
the uncoated interface. Also observe that the reflectivity at ω = 1 is large as well.
In fact, by Lemma 5.1 the frequency response is periodic with period 1. Hence, the
peak value 0.93138 of the reflectivity must recur at frequencies ω = 1, 2, 3, . . . . The
full frequency response for the 500 layer coating is obtained by periodically extending
the graph of Figure 2 to [0,∞).

In Figure 3 we plot the frequency responses for the 500-, 1000-, and 2000-layer
coatings together for comparison, magnifying the region near the origin. In accordance
with our optimal design procedure, between two consecutive zeros of the frequency
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Fig. 2. Frequency response (reflectivity versus frequency) on [0, 1] for 500-layer coating.
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Fig. 3. Frequency response near zero for 500-, 1000-, and 2000-layer coatings.

response corresponding to the 500-layer coating, there is one zero of the frequency
response for the 1000-layer coating and three zeros of the frequency response for the
2000-layer coating. At any fixed value of ω, the reflectivity is bounded by a constant
over n by (61), and the envelopes of the peaks fall off like 1/ω2 in accordance with
(62). Figure 4 shows the same frequency response graphs in a region near ω = 0.5.
The decay in the peaks of the graphs proportional to 1/n is quite apparent.

The three coatings discussed so far are designed strictly according to the pro-
cedures described in the previous sections of this paper; each coating consists of a
number of homogeneous layers sandwiched together. Because of the large number
of layers, the impedance of the assembly is very nearly continuous throughout the
coating, as seen in Figure 1. When this nearly continuous impedance function is
replaced by a spline interpolant, we find that this almost imperceptible change dras-
tically alters the coating’s frequency response at larger frequencies. Figure 5 shows
the frequency response on the interval [0, 2] of the coating obtained by a linear spline
interpolation of the 500-layer coating impedance. Comparing this with the frequency
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Fig. 4. Frequency response near .5 for 500-, 1000-, and 2000-layer coatings.
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Fig. 5. Frequency response on [0, 2] for 500-layer coating and linear spline smoothing.

response of the original layered coating shown in Figure 2, we see that the peak near
ω = 1 has disappeared. Since the frequency response values near ω = 0 dwarf the
values for larger ω, Figure 6 restricts the graph to the interval [1, 2]. Observe that
the reflectivity oscillates between values near 0 and near 2× 10−3 on this interval. In
Figure 7, we expand the frequency response plot to the band [1, 10].

For comparison, Figure 8 gives the frequency response on the interval [1, 10] for
a coating obtained by cubic spline interpolation of the 500-layer impedance. Observe
that there are fewer wiggles in the profile of the frequency response, but the overall
effect remains the same: Unlike the layered optimal coating for which the frequency re-
sponse diagram is periodic and peak reflectivities of 0.93138 recur at all integer-valued
frequencies, the smooth coating’s frequency response remains small (and decreasing)
outside the design interval.

For the layered coatings, the smallest frequency response occurs near ω = .5,
and in Figure 4 we see that its maximum value for the 500-layer coating is around
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Fig. 6. Frequency response on [1, 2] for 500-layer coating and linear spline smoothing.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5
x 10

3

ω

|r|

Fig. 7. Frequency response on [1, 10] for 500-layer coating and linear spline smoothing.

5 × 10−3. In Figures 7 and 8, we see that the maximum reflectivity of the smooth
coatings for ω > 1 is less than the best maximal values for the layered coating. The
implications are significant for practical applications: An optimally designed smooth
coating eliminates reflections not only within the design frequency band but also at all
higher frequencies. The same effect described for the 500-layer coating occurs when
smoothing the 1000- and 2000-layer coating designs.

For obtaining the graphs in this paper, the spline interpolants pass through the
midpoints of the vertical impedance jumps in each layer, and at the end points the
splines match the impedances of the adjoining half-spaces. For cubic spline interpo-
lation, we employed de Boor’s routines cubspl and ppvalu, obtained through Netlib
[16] and described in [15]. The final two degrees of freedom in the cubic spline inter-
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Fig. 8. Frequency response on [1, 10] for 500-layer coating and cubic spline smoothing.
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Fig. 9. Impedance as a function of depth for 10-, 20-, 40-, and 80-layer coatings designed to
absorb the band [1, 10].

polant were specified using the not-a-knot condition. That is, the jump in the third
derivative at the ends of the first and the last interval was set to zero.

In the next set of illustrations, we consider the nonreflective coatings discussed in
section 6 where the design frequency band is bounded away from zero. We chose the
frequency band [1, 10] for this set of illustrations. According to the theory developed
in section 6, we expect the reflectivity of such coatings to be exponentially small as a
function of the number of layers. Therefore, we consider designs with n = 10, 20, 40,
and 80 layers only.

For each choice of n, the design frequencies in the interval [1, 10] are given by the
expression in (64). The impedances of the resulting optimal coatings are shown in
Figure 9. Unlike the previous cases, the number of layers is small enough that the
piecewise constant structure of the coatings is readily apparent. Figure 10 shows the
frequency responses of these four coatings for the interval [0, 11] along the ω-axis. By
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Fig. 10. Frequency response on [0, 11] for 10-, 20-, 40-, and 80-layer coatings.
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Fig. 11. Frequency response on [0, 1] for 10-, 20-, 40-, and 80-layer coatings.

Lemma 5.1 the frequency responses on [0,∞) are obtained by periodic extension of
the plots shown in Figure 10.

The reflectivities associated with the 40- and 80-layer coatings are so vanishingly
small that they coincide with the ω-axis in Figure 10. Figure 11 shows the details
of these graphs on the interval [0, 1] where we can clearly see how the frequency
response approaches zero as we approach the leading edge of the design frequency
band at ω = 1. Figure 12 shows further details of the frequency response for the
80-layer case on the design interval [1, 10] along the ω-axis. Except for small spikes of
magnitude 3 × 10−6 near the end points of the interval, the reflectivity is extremely
small, with magnitude less than 10−9 on the interior interval [2, 9].
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Fig. 12. Frequency response on [1, 10] for 80-layer coating.
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Fig. 13. Frequency response on [1, 50] for 40-layer coating with linear spline smoothing.

As with the previous set of illustrations, smoothing the piecewise homogeneous
optimally designed coatings has the effect of reducing the reflectivities for frequencies
outside the design interval. Figure 13 shows the frequency response of the 40-layer
coating in the frequency interval [1, 50] for linear spline interpolation of the impedance.
Observe that the peaks of amplitude 0.93138 at ω = 11, 22, 33, . . . are gone; however,
some new but smaller peaks emerge at all the integer values of the frequency. When
the coating is smoothed using cubic spline interpolation, we obtain the frequency
response on [1, 5] shown in Figure 14(a) and on [6, 50] shown in Figure 14(b). Since
the vertical axis on the graph of Figure 14(b) is multiplied by 10−6, the frequency
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Fig. 14. (a) Frequency response on [1, 5] for 40-layer coating with cubic spline smoothing.
(b) Frequency response on [5, 50] for 40-layer coating with cubic spline smoothing.

response is now small everywhere and the peaks at the integers in Figure 13 have been
eliminated. The reflectivity for the 40-layer coating is on the order of 10−7 for much of
the interval [1, 10], and it rises to 0.93138 near ω = 0 or 11. For the coating obtained
by cubic spline interpolation, the reflectivity is on the order of 10−6 or smaller for
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Fig. 15. Transmissivity for 2-, 4-, and 8-layer coatings designed to reflect waves on the band
[1, 10].
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Fig. 16. Transmissivity for 2-, 4-, and 8-layer coatings designed to reflect waves on the band
[1, 10].

ω > 5. Hence, the frequency response of the smooth coating is not quite as small on
the design interval as that of the layered coating; however, the periodic large frequency
response values associated with the layered coating have been eliminated.

Now we consider the coatings of Theorem 7.5 that lead to small transmissivity
for the frequency band [1, 10]. Taking ε = .1, we consider coatings for which the
impedance in successive layers oscillates between .1 and 10 and for which the stiffness
is given by (86). In Figure 15 we plot the transmissivity on [0, 11] for coatings with
2, 4, and 8 layers. The transmissivity on [0,∞) is obtained by periodic extension of
these plots. Observe that with a small number of layers, the transmissivity is quite
small on the design interval [1, 10]. In Figure 16, we magnify the part of Figure 15
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associated with the frequency band [0, 1], and we see that after a few oscillations the
transmissivity for the 8-layer coating becomes very small as the frequency approaches
the design interval. On the interval [1, 10], the transmissivity for the 8-layer coating
lies between 1.2× 10−4 and 2× 10−8.

REFERENCES

[1] J. D. Achenbach, Wave Propagation in Elastic Solids, North–Holland, Amsterdam, 1973.
[2] F. Aminzadeh and J. Mendel, Normal incidence layered system state-space models which

include absorption effects, Geophysics, 48 (1983), pp. 259–271.
[3] F. Aminzadeh and J. M. Mendel, Non-normal incidence state-space model and line source

reflection synthetic seismogram, Geophys. Prospecting, 30 (1982), pp. 541–568.
[4] L.-E. Anderson and B. Lundberg, Some fundamental transmission properties of impedance

transitions, Wave Motion, 6 (1984), pp. 389–406.
[5] B. A. Auld, Acoustic Fields and Waves in Solids, Vol. I and II, John Wiley, New York, 1973.
[6] G. D. Babe and E. L. Gusev, Optimization of multilayer structures during the passage of

waves, Dokl. Akad. Nauk SSSR, 268 (1983), pp. 1354–1358 (in Russian).
[7] A. Bendali and K. Lemrabet, The effect of a thin coating on the scattering of a time-

harmonic wave for the Helmholtz equation, SIAM J. Appl. Math., 56 (1996), pp. 1664–
1693.

[8] A. Ben-Menahem and S. J. Singh, Seismic Waves and Sources, Springer-Verlag, New York,
1981.

[9] L. M. Brekhovskikh, Waves in Layered Media, R. T. Beyer, trans., Academic Press, New
York, 1980.

[10] L. Brekhovskikh and V. Goncharov,Mechanics of Continua and Wave Dynamics, Springer-
Verlag, Berlin, 1985.

[11] W. S. Burdic, Underwater Acoustics Systems Analysis, 2nd ed., Prentice-Hall, Englewood
Cliffs, NJ, 1991.

[12] G. Caviglia and A. Morro, Wave propagation in a dissipative stratified layer, Wave Motion,
19 (1994), pp. 51–66.

[13] G. Chen and T. J. Bridges, Optimal boundary impedance for the minimization of reflection,
I, Asymptotic solutions by the geometrical optics method, Optimal Control Appl. Methods,
6 (1985), pp. 141–149.

[14] K. L. Chopra, Thin Film Phenomena, McGraw-Hill, New York, 1969.
[15] C. de Boor, A Practical Guide to Splines, Springer-Verlag, New York, 1978.
[16] J. J. Dongarra and E. Grosse, Distribution of mathematical software via electronic mail,

Comm. Assoc. Comput. Mach., 30 (1987), pp. 403–407.
[17] Y. A. Eremin and A. G. Sveshnikov, Electromagnetic diffraction of waves by bodies with

coatings, Sov. Phys. Dokl., 28 (1983), pp. 140–142.
[18] W. W. Hager, Applied Numerical Linear Algebra, Prentice–Hall, Englewood Cliffs, NJ, 1988.
[19] W. W. Hager and R. Rostamian, Optimal coatings, bang-bang controls, and gradient tech-

niques, Optimal Control Appl. Methods, 8 (1987), pp. 1–20.
[20] W. W. Hager and R. Rostamian, Reflection and refraction of elastic waves for stratified

materials, Wave Motion, 10 (1988), pp. 333–348.
[21] O. S. Heavens, Optical Properties of Thin Solid Films, Academic Press, New York, 1955.
[22] R. Hellberg, Design of reflectionless slabs for obliquely incident transient electromagnetic

waves, Inverse Problems, 13 (1997), pp. 97–112.
[23] R. Hellberg and A. Karlsson, Design of reflectionless media for transient electromagnetic

waves, Inverse Problems, 11 (1995), pp. 147–164.
[24] J. A. Hudson, The Excitation and Propagation of Elastic Waves, Cambridge University Press,

Cambridge, UK, 1980.
[25] B. L. N. Kennett, Seismic Wave Propagation in Strategied Media, Cambridge University

Press, Cambridge, UK, 1985.
[26] L. E. Kinsler and A. R. Frey, Fundamentals of Acoustics, New York, Wiley, 1962.
[27] H. Konstanty and F. Santosa, Optimal design of minimally reflective coatings, Wave Motion,

21 (1995), pp. 291–309.
[28] R. L. Mooney, An exact theoretical treatment of reflection-reducing optical coatings, J. Opt.

Soc. Amer., 35 (1945), pp. 574–583.
[29] H. E. Moses and R. T. Prosser, Propagation of an electromagnetic field through a planar

slab, SIAM Rev., 35 (1993), pp. 610–620.



1424 W. W. HAGER, R. ROSTAMIAN, AND D. WANG

[30] F. B. Stumpf, Analytical Acoustics, Ann Arbor Science, Michigan, 1980.
[31] R. A. Tenenbaum and M. Zindeluk, An exact solution for the one-dimensional elastic wave

equation in layered media, J. Acoust. Soc. Amer., 92 (1992), pp. 3364–3370.
[32] R. A. Tenenbaum and M. Zindeluk, A fast algorithm to solve the inverse scattering problem

in layered media with arbitrary input, J. Acoust. Soc. Amer., 92 (1992), pp. 3371–3378.
[33] W. Weinstein, The reflectivity and transmissivity of multiple thin coatings, J. Opt. Soc. Amer.,

37 (1947), pp. 576–581.


