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Abstract

Two matrix optimization problems are analyzed. These problems arise in signal processing and commu-
nication. In the first problem, the trace of the mean square error matrix is minimized, subject to a power
constraint. The solution is the training sequence, which yields the best estimate of a communication channel.
The solution is expressed in terms of the eigenvalues and eigenvectors of correlation and covariance matrices
describing the communication, and an unknown permutation. Our analysis exhibits the optimal permutation
when the power is either very large or very small. Based on the structure of the optimal permutation in
these limiting cases, we propose a small class of permutations to focus on when computing the optimal
permutation for arbitrary power. In numerical experiments, with randomly generated matrices, the optimal
solution is contained in the proposed permutation class with high probability.

The second problem is connected with the optimization of the sum capacity of a communication channel.
The second problem, which is obtained from the first by replacing the trace operator in the objective function
by the determinant, minimizes the product of eigenvalues, while the first problem minimizes the sum of
eigenvalues. For small values of the power, both problems have the same solution. As the power increases,
the solutions are different, since the permutation matrix appearing in the solution of the trace problem is not
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present in the solution of the determinant problem. For large power, the ordering of the eigenvectors in the
solution of the trace problem is the opposite of the ordering in the determinant problem.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we analyze two matrix optimization problems, which arise in signal processing
and wireless communication. In the first problem, we minimize the trace, denoted “tr”, of a matrix:

min
S

tr(DS∗QSD + I)−1 (1.1)

subject to tr(S∗S) � P, S ∈ Cm×n.

Here Q and D are nonzero Hermitian, positive semidefinite matrices, and the positive scalar P is
the power constraint associated with the signal S. The inverse matrix

C = (DS∗QSD + I)−1

appearing in the cost function is the mean square error (MSE) matrix; it is the covariance of
the best estimate of the matrix representing a communication channel. Application areas include
joint linear transmitter–receiver design [15,17], training sequence design for channel estimation
in multiple antenna communication systems [25], and spreading sequence optimization for code
division multiple access (CDMA) communication systems [22].

The solution in the special case D = I, found for example in [17,25], can be expressed in terms
of the eigenvalues and eigenvectors of Q and a Lagrange multiplier associated with the power
constraint. In the applications introduced in this paper, D /= I and minimizing the trace of the
mean square error is more difficult. We will show that (1.1) has a solution which can be expressed
S = U�V∗ where U and V are orthonormal matrices of eigenvectors for Q and D, respectively,
and � is diagonal. Solving (1.1) involves computing diagonalizations of Q and D, and finding an
ordering for the columns of U and V. We are able to evaluate the optimal ordering when either P is
large or P is small. However, for intermediate values of P , the problem (1.1) has a combinatorial
nature, unlike the special case D = I.

In the second matrix optimization problem, we maximize the determinant, denoted “det”, of a
matrix:

max
S

det(DS∗QSD + I) (1.2)

subject to tr(S∗S) � P, S ∈ Cm×n.

The cost function is related to the sum capacity of a CDMA communication channel. Since the
determinant of the inverse of a matrix is the reciprocal of the determinant of the matrix, it follows
that problem (1.2) is equivalent to replacing trace by determinant in (1.1). Hence, in the original
problem (1.1), we minimize the sum of the eigenvalues of the MSE matrix C, while in the second
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problem (1.2), we minimize the product of the eigenvalues of C. In either case, we try to make
the eigenvalues of C small, but with different metrics.

In the special case D = I, the solution of (1.2) can be found for example in [19], while for the
special case Q = I, the solution of (1.2) can be found in [26]. For the more general problem (1.2),
we again show that the solution can be expressed S = U�V∗, where U and V are orthonormal
matrices of eigenvectors for Q and D, respectively, and � is diagonal. Unlike the trace problem
(1.1), the ordering of the columns of U and V does not depend on the power P —the columns of
U and V should be ordered so that the associated eigenvalues of Q and D are in decreasing order.
Also note that in the paper [2], the authors consider essentially the same optimization problem
in the context of a space-time spreading scheme for correlated fading channels in the presence
of interference. Based on the previous known result for the special case Q = I [26], the authors
propose to optimize S over the set of matrices of the form S = U��V∗; they do not show that
the optimal S has this structure. Here we prove that the optimal solution does indeed have this
structure.

The paper is organized as follows: In Section 2, we present some applications which lead to
the optimization problems (1.1) and (1.2). In Section 3, we show that (1.1) has a solution of the
form S = U�V∗ where the columns of U and V are eigenvectors of Q and D, respectively, and �
is diagonal. In Section 4, we obtain the optimal � assuming the optimal ordering of the columns
of U and V is known. In Section 5, the optimal ordering of the columns is determined when P is
either large or small. In Section 6, majorization theory is used to derive the optimal solution of the
determinant problem (1.2). Finally, in Section 7, we compare the solutions of the trace problem
and the determinant problem. Also, we propose a class of permutations in which to search for
the optimal solution of the trace problem (1.1). Numerical experiments indicate that with high
probability, the optimal permutation is contained in this class.

2. Applications

In this section we briefly describe a few of the many applications which lead to optimization
problems of the form (1.1) and (1.2).

2.1. Channel estimation for multiple antenna communication systems

The first application arises when the channel matrix in a multiple antenna communication
system is estimated. Let us consider the communication from the base station to the mobile unit
of a cellular system (the downlink of the cellular system). It is assumed that the base station has
multiple transmit antennas, while the mobile unit has a single antenna due to the space limit of the
handset. At the beginning of each data packet, a training sequence is inserted to aid the channel
estimation at the receiver. During the training period, the received baseband signal at the mobile
unit satisfies

y = Sh + e, (2.1)

where y is an Nr × 1 vector containing the Nr received symbols, h is a t × 1 vector containing the
t channel gains from the transmit antennas to the receiver, S is the Nr × t training symbol matrix
associated with the tNr training symbols, the ith column of S is the training signal transmitted
by the ith antenna, and e represents additive Gaussian noise with zero mean and covariance E
which models the co-channel interference from other cells. Usually, Nr is much larger than t . It
is assumed that S is known by the receiver.
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We adopt the one-ring correlated channel model [18] which models the channel gain vector h
as follows:

h = R1/2hw, (2.2)

where R is the correlation between the transmit antennas and hw is a t × 1 vector whose ele-
ments are independent, identically distributed, zero-mean, complex circular-symmetric Gaussian
random variables with unit variance. After substituting (2.2) in (2.1), the baseband signal received
at the mobile unit can be expressed as

y = SR1/2hw + e.

By the Bayesian Gauss–Markov Theorem [11], the minimum mean square error estimator
(MMSE) for hw is

ĥw = (R1/2S∗E−1SR1/2 + I)−1R1/2S∗E−1y.

The performance of the estimator is measured by the error ε = hw − ĥw with mean zero and
covariance

Cε = (R1/2S∗E−1SR1/2 + I)−1.

The diagonal elements of the error covariance matrix Cε yield the minimum MSE for the estima-
tion of the corresponding parameters of hw. Observe that Cε depends on the choice of the training
symbol matrix S. In the following optimization problem, we search for the training sequences,
which achieve the best estimation performance under a transmission power constraint:

min
S

tr(R1/2S∗E−1SR1/2 + I)−1 (2.3)

subject to tr(S∗S) � P, S ∈ Cm×n.

This optimization problem has the same form as (1.1) with D = R1/2 and Q = E−1.

2.2. Spreading sequence optimization for CDMA systems

The trace problem (1.1) also arises in spreading sequence optimization for code division
multiple access (CDMA) systems. In cellular communication systems, multiple access schemes
allow many users to share simultaneously a finite amount of radio resources. CDMA is one of
the main access techniques. It is adopted in the IS-95 system and will be used in next generation
cellular communication systems [23]. In a CDMA system, different users are assigned different
spreading sequences so that the users can share the communication channel. We consider the
uplink (communication from the mobile units to the base station) of a CDMA system where the
users within a base station are symbol synchronous. The co-channel interference from the users
in the neighboring cells are modeled by additive, colored Gaussian noise. The received signal at
the base station is

y =
K∑

i=1

hisixi + e,

where K is the number of signals received by the base station, xi is the symbol transmitted from
the ith user, Si ∈ CNr is the spreading sequence assigned to the ith user, hi is the channel gain
from the ith user to the base station, and e ∈ CNr is the additive, colored Gaussian noise with
zero mean and covariance E. Usually the size of K and Nr are comparable. It is assumed that
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the symbols xi are independent with zero mean and unit variance. The received signal can be
expressed as

y = SHx + e, (2.4)

where S, the spreading sequence matrix, has j th column sj , and H is a diagonal matrix with
ith diagonal element hi . Again, by the Bayesian Gauss–Markov Theorem [11,13], the MMSE
estimator of x is

x̂ = (H∗S∗E−1SH + I)−1H∗S∗E−1y.

The corresponding covariance matrix of the estimation error is

Cε = (H∗S∗E−1SH + I)−1.

The optimal spreading sequences for all the users which minimizes the co-channel interference
to other cells, subject to a power constraint, corresponds to (1.1) with Q = E−1 and D = H, a
diagonal matrix.

2.3. Channel capacity for CDMA systems

For CDMA systems, a different performance measure, which arises in information theory, is
the sum capacity of the channel. The sum capacity is a performance measure for coded systems.
It represents the maximum sum of the rates at which users can transmit information reliably. The
sum capacity of the synchronous multiple access channel (2.4) is

Csum = max I (x1, . . . , xK ; y),

where I represents the mutual information [3] between the inputs xi and the output vector y. The
maximization is over the independent random inputs xi . For the Gaussian channel in (2.4), the
maximum is achieved when all the random inputs are Gaussian [3]. In this case, the sum capacity
[21,22] becomes

Csum = 1

2Nr

log det(H∗S∗E−1SH + I).

Since log is a monotone increasing function, the maximization of the sum capacity, subject to a
power constraint, corresponds to the optimization problem (1.2) with Q = E−1 and D = H.

3. Solution structure for the trace problem

We begin by analyzing the structure of an optimal solution to (1.1). Let U�U∗ and V�V∗ be
diagonalizations of Q and D, respectively (the columns of U and V are orthonormal eigenvectors).
Let λj , 1 � j � m, and δi , 1 � i � n, denote the diagonal elements of � and �, respectively. We
assume that the eigenvalues are arranged in decreasing order:

λ1 � λ2 � · · · � λm and δ1 � δ2 � · · · � δn. (3.1)

Let us define

T = U∗SV. (3.2)

Making the substitution S = UTV∗ in (1.1) yields the following equivalent problem:

min tr(�T∗�T� + I)−1 (3.3)

subject to tr(T∗T) � P, T ∈ Cm×n.

We now show that (3.3) has a solution with at most one nonzero element in each row and column.
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Theorem 3.1. There exists a solution of (3.3) of the form T = �1��2 where �1 and �2 are
permutation matrices and σij = 0 for all i /= j .

Proof. We establish the theorem under the following nondegeneracy assumption:

δi /= δj > 0 and λi /= λj > 0 for all i /= j. (3.4)

Later we show that since any � � 0 and � � 0 can be approximated arbitrarily closely by vectors
� and � satisfying (3.4), the theorem holds for arbitrary � � 0 and � � 0.

There exists an optimal solution of (3.3) since the feasible set is compact and the cost function
is a continuous function of T. Since the eigenvalues of �T∗�T� are nonnegative, it follows that
for any choice of T,

tr(�T∗�T� + I)−1 � n,

with equality if and only if T = 0. Hence, there exists a nonzero optimal solution of (3.3), which
is denoted T̄. Since the gradient of the constraint in (3.3) does not vanish at T̄, the first-order
necessary optimality conditions imply that there exists a scalar γ � 0 such that the derivative of
the Lagrangian vanishes:

d

dT
tr
(
(�T∗�T� + I)−1 + γ T∗T

)
T=T̄ = 0. (3.5)

For any invertible matrix M, we have

dM−1

dT
= −M−1

(
dM
dT

)
M−1.

Equating to zero the derivative of the Lagrangian at T̄ in the direction �T ∈ Cm×n, we obtain:

tr
(
γ [T̄∗�T + �T∗T̄] − M−1�[T̄∗��T + �T∗�T̄]�M−1) = 0, (3.6)

where

M = �T̄∗�T̄� + I. (3.7)

Let Real(z) denote the real part of z ∈ C. Since tr(A + A∗) = 2(Real[tr(A)]) and tr(AB) =
tr(BA), it follows that

Real
[
tr(γ T̄∗�T − �M−2�T̄∗��T)

] = 0.

By taking �T either pure real or pure imaginary, we conclude that

tr
([γ T̄∗ − �M−2�T̄∗�]�T

) = 0

for all �T. Choosing �T = ([γ T̄∗ − �M−2�T̄∗�]�T
)∗, we deduce that

γ T̄∗ − �M−2�T̄∗� = 0. (3.8)

If γ = 0, then T̄ = 0 since both � and � are invertible. Consequently, γ > 0.
By the matrix modification formula [5], we have

M−1 = (I + �T̄∗�T̄�)−1 = (
I + [�T̄∗�1/2][�1/2T̄�])−1

= I − �T̄∗�1/2(I + �1/2T̄�2T̄∗�1/2)−1�1/2T̄�. (3.9)
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Hence,

M−1�T̄∗�1/2 = �T̄∗�1/2(I + �1/2T̄�2T̄∗�1/2)−1.

It follows that

M−2�T̄∗�1/2 = �T̄∗�1/2(I + �1/2T̄�2T̄∗�1/2)−2.

Making this substitution in (3.8) gives

γ T̄∗ − �2T̄∗�1/2(I + �1/2T̄�2T̄∗�1/2)−2�1/2 = 0.

Multiplying on the right by T̄ yields

T̄∗T̄ = 1

γ
�2T̄∗�1/2(I + �1/2T̄�2T̄∗�1/2)−2�1/2T̄.

This equation has the form

T̄∗T̄ = �2A, A = 1

γ
T̄∗�1/2(I + �1/2T̄�2T̄∗�1/2)−2�1/2T̄.

Since A is Hermitian and no two diagonal elements of � are equal (see the nondegeneracy
condition (3.4)), we conclude that both T̄∗T̄ and A are diagonal.

Let us define

R = �T̄∗�T̄�. (3.10)

By (3.7) and (3.10), M = R + I. Hence, (3.8) can be written:

γ�−1T̄∗ = (R + I)−2�T̄∗�.

Multiply on the right by T̄� to obtain:

γ�−1T̄∗T̄� = (R + I)−2R = (I + R)−1 − (I + R)−2. (3.11)

The eigenvectors of (I + R)−1 − (I + R)−2 coincide with the eigenvectors of R. Since T̄∗T̄ and
� are both diagonal, the eigenvectors of γ�−1T̄∗T̄� coincide with the columns of the identity
matrix. Hence, R is diagonalized by the identity matrix, which implies that R is diagonal.

Since R is diagonal, both M = R + I and M−1 are diagonal, and the factor �M−2� in (3.8)
is diagonal with real diagonal elements denoted by ej , 1 � j � n. By (3.8), we have

γ t̄ij = λiej t̄ij . (3.12)

If t̄ij /= 0, then (3.12) implies that

λiej = γ /= 0.

By the nondegeneracy condition (3.4), no two diagonal elements of � are equal. If for any fixed
j , t̄ij /= 0 for i = i1 and i2, then the identity λiej = γ yields a contradiction since γ /= 0 and
λi1 /= λi2 . Hence, each column of T̄ has at most one nonzero. Since T̄∗T̄ is diagonal, two different
columns cannot have their single nonzero in the same row. This shows that each column and each
row of T have at most one nonzero. A suitable permutation of the rows and columns of T̄ yields
a diagonal matrix �.

So far, we have established Theorem 3.1 under the assumption that � and � satisfy the non-
degeneracy condition (3.4). Now, consider arbitrary �̂ ∈ Rn and �̂ ∈ Rm with �̂ � 0 and �̂ � 0.
Let �k and �k for k � 0 denote sequences which satisfy the nondegeneracy condition (3.4), and
which converge to �̂ and �̂, respectively. Let �k and �k be diagonal matrices with �k and �k on
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their respective diagonals. By our previous analysis, problem (3.3) with � = �k and � = �k has
a solution Tk of the form Tk = �k

1�k�k
2, where �k

1 and �k
2 are permutation matrices and �k is

diagonal. Since the set of permutation matrices for any fixed dimension is finite and since the �k

sequence lies in a compact set corresponding to the trace constraint in (3.3), there exists a diagonal
matrix �̂, fixed permutations �1 and �2, and a subsequence, also indexed by k for convenience,
with the property that �k converges to �̂ and (�k

1, �
k
2) = (�1, �2), independent of k.

By the definition of Tk , we have

tr(�kT∗�kT�k + I)−1 � tr(�kT∗
k�kTk�k + I)−1, (3.13)

whenever T satisfies the constraint tr(T∗T) � P . We let k tend to infinity in (3.13). By continuity,
it follows that

tr(�̂T∗�̂T�̂ + I)−1 � tr(�̂ T̂∗�̂ T̂� + I)−1.

Hence, T̂ = �1�̂�2 is a solution of (3.3) associated with � = �̂ and � = �̂. �

Combining the relationship (3.2) between T and S and Theorem 3.1, we conclude that problem
(1.1) has a solution of the form S = U�1��2V∗, where �1 and �2 are permutation matrices.
We will now show that one of these two permutation matrices can be deleted if the eigenvalues
of D and Q are arranged in decreasing order.

Let N denote the minimum of m and n. Making the substitution S = U�1��2V∗ in (1.1), we
obtain the equivalent problem:

min
�,�1,�2

tr
(
(�2��∗

2)�
∗(�∗

1��1)�(�2��∗
2) + I

)−1 (3.14)

subject to
N∑

i=1

σ 2
i � P.

Here the minimization is over diagonal matrices � with � on the diagonal, and permutation
matrices �1 and �2.

The symmetric permutations �∗
1��1 and �2��∗

2 essentially interchange diagonal elements
of � and �. Hence, (3.14) is equivalent to

min
�,π1,π2

N∑
i=1

1

(δπ2(i)σi)2λπ1(i) + 1
(3.15)

subject to
N∑

i=1

σ 2
i � P, π1 ∈ Pm, π2 ∈ Pn,

where Pm is the set of bijections of {1, 2, . . . , m} onto itself.
We first show that we can restrict our attention to the largest diagonal elements of D and Q.

Lemma 3.2. Let U�U∗ and V�V∗ be diagonalizations of Q and D, respectively, where the
columns of U and V are orthonormal eigenvectors. Let �, π1, and π2 denote an optimal solution
of (3.15) and define the sets

N = {i : σi > 0}, Q = {λπ1(i) : i ∈ N}, and D = {δπ2(i) : i ∈ N},
If N has l elements, then the elements of the set D and Q are all nonzero, and they constitute the
l largest eigenvalues of D and Q, respectively.
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Proof. Define the set

P = {i : λπ1(i)σiδπ2(i) > 0}.
If δπ2(i) = 0 for some i ∈ N, then the cost function in (3.15) is decreased by setting σi = 0 and
by increasing σj for some j ∈ P. This violates the optimality of �, π1 and π2; consequently,
δπ2(i) > 0. By the same reasoning, λπ(i) > 0 for all i ∈ N. Suppose k /∈ N and δπ2(k) > δπ2(i)

for some i ∈ N. Interchanging the values of π2(i) and π2(k), the new ith term is smaller than the
previous ith term, which again violates the optimality of � and �. Hence, δπ2(k) � δπ2(i). Finally,
suppose that k /∈ N and λπ1(k) > λπ1(i). Interchanging the values of π1(i) and π1(k), the new ith
term is smaller than the previous ith term. Hence, λπ1(k) � λπ1(i). �

Using Lemma 3.2, we now eliminate one of the permutations in (3.15).

Theorem 3.3. Let U�U∗ and V�V∗ be diagonalizations of Q and D, respectively, where the
columns of U and V are orthonormal eigenvectors, and the eigenvalues of Q and D are arranged
in decreasing order as in (3.1). If K is the minimum of the rank of D and Q, then (3.15) is
equivalent to

min
�,π

K∑
i=1

1

(δiσi)2λπ(i) + 1
(3.16)

subject to
K∑

i=1

σ 2
i � P, π ∈ PK,

where σi = 0 for i > K .

Proof. Since at most K eigenvalues of either D or Q are nonzero, it follows from Lemma 3.2
that the set N has at most K elements. Since the associated eigenvalue sets Q and D are the
largest eigenvalues of Q and D, respectively, we can assume, without loss of generality, that
π1(i) ∈ [1, K] and π2(i) ∈ [1, K] for each i ∈ N. Hence, we restrict the sum in (3.15) to those
indices i ∈ S where

S = {π−1
2 (j) : 1 � j � K}.

Let us define σ ′
j = σ

π−1
2 (j)

and π(j) = π1(π
−1
2 (j)). Since π(j) ∈ [1, K] for j ∈ [1, K], it follows

that π ∈ PK . In (3.15) we restrict the summation to i ∈ S and we replace i by π−1
2 (j) to obtain

∑
i∈S

1

(δπ2(i)σi)2λπ1(i) + 1
=

K∑
j=1

1

(δjσ
′
j )

2λπ(j) + 1
, where

K∑
i=1

(σ ′
j )

2 � P.

This completes the proof of (3.16). �

Corollary 3.4. Problem (1.1) has a solution of the form S = U��V∗ where the columns of U
and V are orthonormal eigenvectors of Q and D, respectively, with the associated eigenvalues
arranged in decreasing order, � is a permutation matrix, and � is diagonal.

Proof. Let � and π be a solution of (3.16). For i > K , define π(i) = i and σi = 0. If � is the
permutation matrix corresponding to π , then substituting S = U��V∗ in the cost function of
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(1.1), we obtain the cost function in (3.16). Since (3.15) and (3.16) are equivalent by Theorem
3.3, S is optimal in (1.1). �

4. The optimal �

Assuming the permutation π in (3.16) is given, let us now consider the problem of optimizing
over �. To simplify the indexing, let ρi denote λπ(i). Hence, for fixed π , (3.16) is equivalent to
the following optimization problem:

min
�

K∑
i=1

1

(δiσi)2ρi + 1
(4.1)

subject to
K∑

i=1

σ 2
i � P.

The solution of (4.1) can be expressed in terms of a Lagrange multiplier associated with the con-
straint (this solution technique is often called “water filling” [3] in the communication literature).

Theorem 4.1. The optimal solution of (4.1) is given by

σi = max

{√
1

δ2
i ρiµ

− 1

δ2
i ρi

, 0

}1/2

, (4.2)

where the parameter µ is chosen so that
K∑

i=1

σ 2
i = P. (4.3)

Proof. Since the minimization in (4.1) takes place over a closed, bounded set, there exists a
solution. The inequality constraint is active at a solution (otherwise, S can be multiplied by a
scalar larger than 1 to reduce to the value of the cost function). Defining si = σ 2

i and pi = δ2
i λi ,

the reduced problem (4.1) is equivalent to

min
s

K∑
i=1

1

pisi + 1
(4.4)

subject to
K∑

i=1

si = P, s � 0.

Due to the strict convexity of the cost function and the convexity of the constraints, (4.4) has a
unique solution.

The first-order optimality conditions (KKT conditions) for an optimal solution of (4.4) are the
following: There exists a scalar µ � 0 and a vector � ∈ RK such that

− pi

(pisi + 1)2
+ µ − νi = 0, νi � 0, si � 0, νisi = 0, 1 � i � K. (4.5)

Due to the convexity of the cost and the constraints, any solution of these conditions is the unique
optimal solution of (4.4).
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A solution to (4.5) is obtained as follows: Define the function

si(µ) =
(√

1

piµ
− p−1

i

)+
. (4.6)

Here x+ = max{x, 0}. This particular value for si is obtained by setting νi = 0 in (4.5) and
solving for si ; when the solution is <0, we set si(µ) = 0 (this corresponds to the + operator
(4.6)). Observe that si(µ) is a decreasing function of µ which approaches +∞ as µ approaches
0 and which approaches 0 as µ tends to +∞. Hence, the equation

K∑
i=1

si(µ) = P (4.7)

has a unique positive solution. Since si(pi) = 0, we have si(µ) = 0 for µ � pi , which implies
that

− pi

(pisi(µ) + 1)2
+ µ = −pi + µ > 0 for µ > pi.

It follows that the KKT conditions are satisfied when µ is the positive solution of (4.7). �

5. Optimal eigenvector ordering for large or small power

To solve (1.1), we need to find an optimal ordering for the eigenvalues of D and Q. In Theorems
5.1 and 5.2, we determine the optimal ordering when the power P is either large or small.

Theorem 5.1. If the eigenvalues {λi} and {δi} of Q and D, respectively, are arranged in decreas-
ing order, then for P sufficiently large, an optimal permutation in (3.16) is

π(i) = K + 1 − i, 1 � i � K, π(i) = i, i > K. (5.1)

Proof. By Theorem 4.1, as P tends to infinity, µ tends to zero and the optimal σi tend to infinity.
Choose P large enough so that the following two conditions hold for an optimal � and π in (3.16):

(a)

√
1

δ2
i ρiµ

> (δ2
i ρi)

−1,

(b) σ 2
i + σ 2

j >
2

δiδj
√

ρiρj

, when 1 � i < j � K.

Here ρi = λπ(i) is the reordered eigenvalue of Q. We will show that ρ1 � ρ2 � · · · � ρK . By (a),
the max in (4.2) is attained by the first term, which corresponds to the solution of (4.5) associated
with νi = 0.

Suppose that there exist indices i and j such that i < j and ρi > ρj . Since � yields an optimal
solution of (3.16), it follows that a solution of the following problem is t1 = σ 2

i and t2 = σ 2
j :

min
t1,t2

1

p1t1 + 1
+ 1

p2t2 + 1
(5.2)

subject to t1 + t2 = P̄ , t1 � 0, t2 � 0,
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where P̄ = σ 2
i + σ 2

j , p1 = δ2
i ρi , and p2 = δ2

j ρj . By Theorem 4.1, the ti can be expressed:

ti (µ) =
√

1

piµ
− p−1

i , (5.3)

where µ is obtained from the condition t1 + t2 = P̄ :

√
µ = r1 + r2

P̄ + r2
1 + r2

2

, ri = 1/
√

pi. (5.4)

Let C denote the cost function for (5.2). Combining (5.3) and (5.4) gives

C = 1

p1t1 + 1
+ 1

p2t2 + 1
= (r1 + r2)

2

P̄ + r2
1 + r2

2

.

Define the following quantities:

a1 = 1/
√

ρi, a2 = 1/
√

ρj , b1 = 1/δi, and b2 = 1/δj .

With these definitions, ri = aibi for i = 1, 2, and C becomes

C = (a1b1 + a2b2)
2

P̄ + (a1b1)2 + (a2b2)2
. (5.5)

Since the eigenvalues of D are arranged in decreasing order, i < j , and ρi > ρj , we have

b1 � b2 and a1 < a2. (5.6)

Now, suppose that we interchange the values of π(i) and π(j). This interchange has the effect
of interchanging the values ρi and ρj , or equivalently, interchanging a1 and a2. Let C+ denote
the cost value associated with the interchange:

C+ = (a2b1 + a1b2)
2

P̄ + (a2b1)2 + (a1b2)2
.

After cross-multiplying the inequality C+ � C, we find (after considerable algebra) that C+ � C

if and only if

(a1 − a2)(a1 + a2)(b1 − b2)(b1 + b2)(2r1r2 − P̄ ) � 0. (5.7)

By (b), 2r1r2 − P̄ < 0. Since a1 < a2 and b1 � b2, the expression (5.7) is � 0. If (5.7) is
<0, then we contradict the optimality of � and π . Hence, the expression (5.7) is zero, and by
interchanging ρi and ρj , the cost function in (3.16) does not change. In summary, for each i

and j with i < j and ρi > ρj , we can interchange the values of π(i) and π(j) to obtain a new
permutation with the same value for the cost function. After the interchange, we have ρi < ρj .
In this way, the ρi are arranged in increasing order. Since the λi are arranged in decreasing order,
we conclude that the associated optimal permutation π is (5.1).

One technical point must now be checked: We should verify that if ρi > ρj with i < j , and
if we exchange ρi and ρj , then the corresponding optimal solution of (5.2) remains positive (the
formula (5.5) is based on the assumption that the optimal solution is positive). Since the original
solution, before the exchange, is positive, it follows from (5.3) and (5.4) that

P̄ + r2
1 > r1r2 and P̄ + r2

2 > r1r2. (5.8)

After the exchange, the analogous inequalities that must be satisfied to preserve nonnegativity are

P̄ + a2
2b2

1 � r1r2 and P̄ + a2
1b2

2 � r1r2.
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These are equivalent to

P̄ + r2
1 (a2/a1)

2 � r1r2 and P̄ + (b2/b1)
2r2

1 � r1r2.

These follow from the first inequality in (5.8) and the fact that a1 < a2 and b1 � b2. �

Theorem 5.2. Suppose the eigenvalues {λi} and {δi} of Q and D, respectively, are arranged in
decreasing order, and let L be the minimum of the multiplicities of δ1 and λ1. For P sufficiently
small, an optimal solution of (1.1) is

S =
√

P

L

L∑
i=1

uiv∗
i , (5.9)

where ui and vi are the orthonormalized eigenvectors of Q and D associated with λ1 and δ1,

respectively.

Proof. By Lemma 3.2, (1.1) is equivalent to (3.16). Let π and � denote an optimal solution to
(3.16), and let N denote the indices of the nonzero σi defined in Lemma 3.2. Again, to simplify
the indexing, we define ρi = λπ(i). Let ε be a (positive) separation parameter defined by

ε = min

{∣∣∣∣∣ 1

δi

√
λj

− 1

δk

√
λl

∣∣∣∣∣ : δ2
i λj /= δ2

kλl, i, k ∈ [1, n], j, l ∈ [1, m]
}

.

Consider any value of P small enough that

ε > Pδ1

√
λ1. (5.10)

We will show that if P satisfies (5.10), then δ2
i ρi = δ2

j ρj for all i and j ∈ N.

Suppose that i and j ∈ N and δ2
i ρi /= δ2

j ρj . As in the proof of Theorem 5.1, let us consider the

restricted problem (5.2) whose solution is t1 = σ 2
i and t2 = σ 2

j . Later, in the proof of Theorem 5.1,
we point out that positivity of σi and σj is equivalent to the pair of inequalities (5.8). Combining
these inequalities, we obtain:

P̄

r2
+ r2 > r1 > r2 − P̄

r1
.

It follows that∣∣∣∣∣ 1

δi
√

ρi

− 1

δj
√

ρj

∣∣∣∣∣ = |r1 − r2| � P̄ max{r−1
1 , r−1

2 } � Pδ1

√
λ1 (5.11)

since P � P̄ ,

1/r1 = δi
√

ρi � δ1

√
λ1 and 1/r2 = δj

√
ρj � δ1

√
λ1.

Since δ2
i ρi /= δ2

j ρj , the definition of ε implies that

0 < ε �
∣∣∣∣∣ 1

δi
√

ρi

− 1

δj
√

ρj

∣∣∣∣∣ . (5.12)

Eqs. (5.10)–(5.12) are inconsistent. Hence, δ2
i ρi = δ2

j ρj for all i, j ∈ N.

Let α denote the product δ2
i ρi for any i ∈ N. Suppose that i and j ∈ N and again, let us

consider the restricted problem (5.2), whose solution is t1 = σ 2
i and t2 = σ 2

j . Since α = p1 =
p2, it follows from (5.3) that t1 = t2 = σ 2

i = σ 2
j . From the constraint of (5.2), we deduce that

t1 = t2 = P̄ /2. Hence, the cost function in (5.2) has the value
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C = 2

1 + .5αP̄
.

Now, suppose that δi > δj . Since the product δ2
i ρi is independent of i ∈ N, it follows that

ρi < ρj . Let us interchange the indices in π(i) and π(j), and focus on the associated 2-variable
problems:

min
t1,t2

1

β1t1 + 1
+ 1

β2t2 + 1

subject to t1 + t2 = P̄ , t1 � 0, t2 � 0,

where β1 = δ2
i ρj and β2 = δ2

j ρi . Since δi > δj and ρj > ρi , it follows that β1 > α > β2. The

choice t1 = P̄ and t2 = 0 is feasible, and the associated cost is

C+ = 1 + 1

β1P̄ + 1
, where β1 > α.

We show that C+ < C. After cross-multiplication, this inequality is equivalent to

2 > 1 + .5αP̄ + 1 + .5αP̄

1 + β1P̄

= 2 + P̄ (α − β1(1 − .5αP̄ ))

1 + β1P̄
. (5.13)

Since β1 > α, it follows that for P sufficiently small, α − β1(1 − .5αP̄ ) < 0. In this case, the
inequality (5.13) is satisfied, which is equivalent to C+ < C. This violates the optimality of �

and π . Hence, δi = δj for all i and j ∈ N. In a similar fashion, ρi = ρj for all i and j ∈ N.
In particular, it follows from Lemma 3.2 that δi = δ1 and ρi = λ1 for all i ∈ N. With these
substitutions, the problem (3.16) reduces to

min
�,π

L∑
i=1

1

λ1δ
2
1σ 2

i + 1

subject to
L∑

i=1

σ 2
i � P.

By Eqs. (4.2) and (4.3) in Theorem 4.1, σ 2
i = P/L for 1 � i � L, which yields the

solution (5.9). �

6. Solution of the determinant problem

The solution to the determinant problem (1.2) can be expressed as follows:

Theorem 6.1. Let U�U∗ and V�V∗ be the diagonalizations of Q and D, respectively, where
the columns of U and V are orthonormal eigenvectors and the corresponding eigenvalues {λi}
and {δi} are arranged in decreasing order. If K is the minimum of the rank of Q and D, then the
optimal solution of (1.2) is given by

S = U�V∗, (6.1)
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where � is diagonal with diagonal elements given by

σi = max

{
1

µ
− 1

λiδ
2
i

, 0

}1/2

for 1 � i � K, (6.2)

and σi = 0 for i > K, where the parameter µ is chosen so that

K∑
i=1

σ 2
i = P.

Proof. Initially, let us assume that both D and Q are nonsingular—later we remove this restriction.
Insert T = Q1/2S in (1.2) and multiply the objection function on the left and right by det(D−1)

to obtain the following equivalent formulation:

max
T

det(T∗T + D−2) (6.3)

subject to tr(TT∗Q−1) � P, T ∈ Cm×n.

Let ωi , 1 � i � n, denote the eigenvalues of T∗T arranged in decreasing order. By a theorem of
Fiedler [4] (also see [14, Chap. 9, G.4]), the determinant of a sum T∗T + D−2 of Hermitian matri-
ces is bounded by the product of the sum of the respective eigenvalues (assuming the eigenvalues
of T∗T and D are in decreasing order):

det(T∗T + D−2) �
n∏

i=1

(ωi + δ−2
i ). (6.4)

Also, by a theorem of Ruhe [16] (also see [14, Chap. 9, H2]), the trace of a product (TT∗)Q−1 of
Hermitian matrices is bounded from below by the sum of the product of respective eigenvalues
(assuming the eigenvalues of TT∗ and Q are in decreasing order):

tr(TT∗Q−1) �
N∑

i=1

ωiλ
−1
i , N = min{m, n}, (6.5)

since at most N eigenvalues of T∗T and TT∗ are nonzero.
We replace the cost function in (1.2) by the upper bound (6.4) and we replace the constraint in

(1.2) by the lower bound (6.5) to obtain the problem:

max
�

 n∏
i=N+1

δ−2
i

 N∏
i=1

(ωi + δ−2
i ) (6.6)

subject to
N∑

i=1

ωiλ
−1
i � P, ωi � ωi+1 � 0 for i < N.

If T is feasible in (6.3), then the first N eigenvalues ωi , 1 � i � N , of T∗T are feasible in (6.6) by
(6.5). And by (6.4), the value of the cost function in (6.6) is greater than or equal to the associated
value (6.3). Since the feasible set for (6.6) is closed and bounded, and since the cost function is
continuous, there exists a maximizing �, and the maximum value of the cost function (6.6) is
greater than or equal to the maximum value in (6.3).
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Consider the matrix T = U�1/2V∗ where � is a diagonal matrix containing the maximizing
� on the diagonal. For this choice of T, the inequalities (6.4) and (6.5) are both equalities. Hence,
this choice for T attains the maximum in (6.3). The corresponding optimal solution of (1.2) is

S = Q−1/2T = U�−1/2U∗U�1/2V∗ = U�−1/2�1/2V∗. (6.7)

To complete the proof of the theorem, we need to explain how to compute the optimal � in (6.6).
At the optimal solution of (6.6), the power constraint must be an equality (otherwise, we could

multiply � by a positive scalar and increase the cost). Let us ignore the monotonicity constraint
ωi � ωi+1 (we will show that the maximizer satisfies this constraint automatically). After taking
the log of the cost function, we obtain the following simplified version of (6.6):

max
�

N∑
i=1

log(ωi + δ−2
i ) (6.8)

subject to
N∑

i=1

ωiλ
−1
i = P, � � 0.

Since the cost function is strictly concave, the maximizer of (6.8) is unique.
The first-order optimality conditions (KKT conditions) for an optimal solution of (6.8) are the

following: There exists a scalar µ � 0 and a vector ν ∈ Rn such that

− 1

ωi + δ−2
i

+ µ

λi

− νi = 0, νi � 0, ωi � 0, νiωi = 0, 1 � i � N. (6.9)

Analogous to the proof of Theorem 4.1, we define the function

ωi(µ) =
(

λi

µ
− δ−2

i

)+
. (6.10)

This particular value for ωi is obtained by setting νi = 0 in (6.9), solving for ωi ; when the solution
is < 0, we set ωi(µ) = 0 (this corresponds to the + operator (6.10)). Observe that ωi(µ) in (6.10)
is a decreasing function of µ which approaches +∞ as µ approaches 0 and which approaches 0
as µ tends to +∞. Hence, the equation

n∑
i=1

ωi(µ)λ−1
i = P (6.11)

has a unique positive solution. We have ωi = 0 for µ � λiδ
2
i , which implies that

νi = − 1

ωi(µ) + δ−2
i

+ µ

λi

= − 1

δ−2
i

+ µ

λi

� −δ2
i + δ2

i = 0, when µ � λiδ
2
i .

It follows that the KKT conditions are satisfied when µ is the positive solution of (6.11). Since
the λi and δi are both arranged in decreasing order, it follows that for any choice µ � 0, the ωi

given by (6.10) are in decreasing order. Hence, the constraint ωi+1 � ωi in (6.6) is satisfied by the
solution of (6.8). Combining the formula (6.10) for the solution of (6.8) with the expression (6.7)
for the solution of (1.2), we obtain the solution S given in (6.1) and (6.2) where � = �−1/2�1/2.

Now suppose that either D or Q is singular. Let us consider a perturbed problem where we
replace Q by Qε = U�εU∗ and D by Dε = V�εV∗:
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max
S

det(DεS∗QεSDε + I) (6.12)

subject to tr(S∗S) � P, S ∈ Cm×n.

Here �ε and �ε are obtained from � and � by setting δi = ε = λj for i or j > K . Since Qε and
Dε are nonsingular, it follows from our previous analysis that the perturbed problem (6.12) has a
solution of the form Sε = U�εV∗ where the diagonal elements of �ε are given by

σε
i =


max

{
1

µ
− 1

λiδ
2
i

, 0

}1/2

for 1 � i � K,

max

{
1

µ
− 1

ε3
, 0

}1/2

for i > K.

(6.13)

Let µ be chosen so that

K∑
i=1

(σ ε
i )2 = P.

Observe that when ε3 < µ, we have σ ε
i = 0 for i > K and

N∑
i=1

(σ ε
i )2 = P.

Hence, for each ε > 0 with ε3 < µ, the optimal solution of the perturbed problem does not depend
on ε and the trailing diagonal elements σ ε

i for i > K vanish.
Let S0 denote the matrix Sε for any value of ε satisfying 0 < ε3 < µ, and let Dk and Qk denote

the sequence of matrices corresponding to Dε and Qε with ε = 2−k . By the optimality of S0, we
have

det(DkT∗QkTDk + I) � det(DkS∗
0QkS0Dk + I), (6.14)

whenever T satisfies the constraint tr(T∗T) � P and k is sufficiently large. We let k tend to infinity
in (6.14). By continuity, it follows that

det(DT∗QTD + I) � det(DS∗
0QS0D + I).

Consequently, the solution (6.1)–(6.2) is valid, even when either Q or D is singular. �

We note that the solution to the determinant optimization problem described in Theorem 6.1
has a standard water-filling interpretation [3]. The idea of upper bounding the cost function as
in (6.4), lower bounding the constraint as in (6.5), and showing that the bounds are tight, is also
used in a different context in [24,25].

7. Solution comparison and computation

Referring to Corollary 3.4, the solution to the trace problem (1.1) has the form S = U��V∗
where the columns of U and V are orthonormal eigenvectors of Q and D, respectively, whose
associated eigenvalues are in decreasing order, and � is a permutation matrix. By Theorem 6.1,
the solution to the determinant problem (1.2) has the form S = U�V∗. When the power P is small,
the solution of the trace problem is given by (5.9), which implies that � is the identity when P
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is small. Hence, the solution of the trace problem coincides with the solution to the determinant
problem for small P .

The equivalence of the two solutions is based on the fact that the diagonal elements σi of �
all vanish, except for those elements associated with dominant eigenvalues of Q and D, for small
P . The power threshold where the solutions first depend on nondominant eigenvalues is different
for the two problems. As P increases, the solution to the two problems become more different.
In particular, by Theorem 5.1, the optimal permutation � reverses the ordering of the first K

columns of U for P sufficiently large, where K is the minimum rank of Q and D.
The determinant problem is much easier to solve than the trace problem since there is no

permutation to compute. In this paper, we do not propose an algorithm for computing the optimal
permutation π in the trace problem; however, based on Theorems 5.1 and 5.2, and on Lemma
3.2, we propose the following strategy to approximate the optimal permutation: Let K denote the
minimum of the ranks of Q and D. In (3.16) we replace the set Pm of m! permutations by a set
P̄ of K permutations:

P̄ = {π1, π2, . . . , πK},
where

πj (i) = j + 1 − i for 1 � i � j and πj (i) = i for i > j.

The motivation for focusing on the set P̄ is the following: As the power increases, the number
of nonzero components of � in the optimal solution to (3.16) increases; and when the power is
large, the optimal permutation is given by the reverse ordering (5.1). According to Lemma 3.2,
the nonzero components of an optimal � are associated with the largest eigenvalues of Q and D.
Hence, we focus on permutations that reverse the ordering of the first j indices, 1 � j � K .

To investigate the quality of the approximations obtained by replacing Pm by P̄ in (3.16), we
performed the following numerical experiment: 5 choices for the power were considered: P = 1,
10, 100, 1000, 10,000. For each choice of P , we randomly generate 100 sets of eigenvalues δi

and λi on the interval [0, 1]. We computed, using Matlab, both the exact solution of (3.16) and the
approximation corresponding to the special set P̄ of permutations. To compute the exact solution
of (3.16), the complete set of permutations PK can be enumerated efficiently by the algorithms
of Johnson [10] and Trotter [20] (see the clear exposition of Brualdi [1]). In Table 7.1, we give
the results corresponding to m = n = 5.

Table 7.1 shows both the number of times when the exact solution of (3.16) was given by a
permutation π in P̄; in those cases where the exact solution to (3.16) was outside P̄, we computed
the average relative error in the approximation obtained by using P̄ in place of Pm in (3.16). The
relative error is obtained by subtracting the exact optimal cost from the approximation and dividing
by the exact optimal cost. Since there were only a few cases where the exact solution of (3.16) was
not contained in P̄, the average relative error reported in Table 7.1 is a very rough approximation
to the true average. In Table 7.2, we give the results corresponding to m = n = 10.

Table 7.1
P̄ versus Pm for m = n = 5

P Exact cases (out of 100) Relative error (inexact cases)

1 100 .000000
10 96 .000064
100 93 .000740
1000 99 .000649
10,000 100 .000000
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Table 7.2
P̄ versus Pm for m = n = 10

P Exact cases (out of 100) Relative error (inexact cases)

1 100 .000000
10 82 .000007
100 92 .000416
1000 94 .000287
10,000 100 .000000

The data in Tables 7.1 and 7.2 indicates that with high probability, we can solve (3.16) by
restricting our attention to permutations in P̄. Moreover, in the few cases where the exact solution
is not obtained using P̄, the approximate cost agrees with the exact cost to within 3 or more digits,
on average. The time to solve (4.1) is at most O(K2). Hence, the time to solve (3.16), with Pm

replaced by P̄, is O(K3). In contrast, the time to solve the general problem (3.16) by considering
all possible permutations is K!O(K2).

8. Conclusions

We analyze two matrix optimization problems. The trace problem (1.1) arises in the design of
multiple-input multiple-output (MIMO) systems. The solution is the training sequence which gives
the best estimate for the matrix representing the communication channel. The solution is expressed
in the form S = U��V∗ where the columns of U and V are orthonormal eigenvectors of Q and
D, respectively, with associated eigenvalues arranged in decreasing order, � is a permutation
matrix, and � is diagonal. When the power constraint P is sufficiently small, all the diagonal
elements of � are zero except for those associated with the dominant eigenvalues. The solution
(5.9) is expressed in terms of the dominant eigenvectors of Q and D. When P is sufficiently large,
the optimal permutation (5.1) reverses the ordering of the first K columns of U, where K is the
minimum of the ranks of Q and D. This column reversal result was the basis for a technique to
approximate the solution to the trace problem; the complete set of permutations Pm is replaced by
a reduced set of K permutations denoted P̄. In numerical experiments, the optimal permutation
for the trace problem (1.1) was an element of P̄ with high probability.

The second matrix optimization problem is obtained by replacing the trace operation in the
first problem by the determinant. The optimal solution maximizes the sum capacity of a commu-
nication channel. For small P , the solutions of the trace and determinant problems are the same.
But for large P , the two solutions are different—there is no permutation in the solution to the
determinant problem. The solution of the determinant problem is obtained using majorization
theory, as developed in [14].

For additional optimization problems connected with the design of MIMO systems, see [6–9].
Recently in [12], we consider the following variation of the trace optimization problem (1.1):

min
S

tr(S∗QS + D)−1

subject to tr(S∗S) � P, S ∈ Cm×n,

where Q and D are Hermitian, positive definite matrices. Using techniques similar to those
developed in this paper, it is shown that for any choice of the power P , the optimal solution has
the structure given in Theorem 5.1. That is, S = U�V∗, where U and V are orthonormal matrices
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of eigenvectors for Q and D, respectively, with the eigenvalues of Q arranged in increasing order
and the eigenvalues of D arranged in decreasing order.
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