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Abstract

In this paper, we study the problem of estimating correlatedmultiple-input multiple-output (MIMO)

channels in the presence of colored interference. The linear minimum mean square error (MMSE) channel

estimator is derived and the optimal training sequences aredesigned based on the MSE of channel

estimation. We propose an algorithm to estimate the long-term channel statistics in the construction of

the optimal training sequences. We also design an efficient scheme to feed back the required information

to the transmitter where we can approximately construct theoptimal sequences. Numerical results show

that the optimal training sequences provide substantial performance gain for channel estimation when

compared with other training sequences.
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I. INTRODUCTION

Many multiple antenna communication systems are designed to perform coherent detection that requires

channel state information (CSI) in the demodulation process. For practical wireless communication

systems, it is common that the channel parameters are estimated by sending known training symbols

to the receiver. The performance of this training-based channel estimation scheme depends on the design

of training signals which has been extensively investigated in the literature [1]-[9].

It is well known that imperfect knowledge of the channel has adetrimental effect on the achievable

rate it can sustain [10]. Training sequences can be designedbased on information theoretic metrics such

as the ergodic capacity and outage capacity of a MIMO channel[1] [2] [3]. The mean square error (MSE)

is another commonly used performance measure for channel estimation. Many works [4]-[9] have been

carried out to investigate the training sequence design problem based on MSE for MIMO fading channels.

In [5], the authors study the problem of training sequence design for multiple-antenna systems over flat

fading MIMO channels in the presence of colored interference. The MIMO channels are assumed to be

spatially white, i.e., there is no correlation among the transmit and receive antennas. The optimal training

sequences are designed to minimize the channel estimation MSE under a total transmit power constraint.

The optimal training sequence design result implied that weshould intentionally assign transmit power

to the subspace with less interference. In [6], the problem of transmit signal design is investigated for

the estimation of spatial correlated MIMO Rayleigh flat fading channels. The optimal training signal is

designed to optimize two criteria: the minimization of the channel estimation MSE and the maximization

of the conditional mutual information (CMI) between the channel and the received signal. The authors

adopted the virtual channel representation model [11] for MIMO correlated channels. It is shown that

the optimal training signal should be transmitted along thestrong directions in which more scatters are

present. The power transmitted along these directions is determined by the water-filling solutions based

on the minimum MSE and maximum CMI criteria.

In the present work, we investigate the problem of estimating correlated MIMO channels with colored

interference. We adopt the correlated MIMO channel model from [12] [13] which expresses the channel

matrix as a product of the receive correlation matrix, a white “channel” matrix with identically and

independent distributed (i.i.d.) entries, and the transmit correlation matrix. This model implies that transmit

and receive correlation can be separated. This fact has beenverified by field measurements. The colored

interference model used here is more suitable than the whitenoise model when jamming signals and/or

co-channel interference are present in the wireless communication system. We consider an interference
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limited wireless communication system, i.e., we ignore thethermal noise which is insignificant compared

to the interference. Then we show that the covariance matrixof the interference has a Kronecker product

form which implies that the temporal and spatial correlations of the interference are separable. The

channel estimation MSE is used as a performance metric for the design of training sequences. The

optimization problem formulated here minimizes the channel estimation MSE under a power constraint.

This is a generalization of two previous optimization problems which are encountered widely in the

signal processing area [5], [8], [9], [14].

In [7], the authors encounter essentially the same optimization problem in a different form. According

to previous optimization results for the special case in [8], the authors choose to optimize the training

sequence matrix in a particular set of matrices which have the same solution structure and eigenvector

ordering as our solution. Here we rigorously prove that thisparticular solution structure and eigenvector

ordering result are optimal for arbitrary matrices under the power constraint. The optimal training sequence

design assigns more power to the transmission direction constructed by the eigen-direction with larger

channel gains and the interference subspace with less interference. In order to implement the channel

estimator and construct the optimal training sequences, wepropose an algorithm to estimate long-term

channel statistics and design an efficient feedback scheme so that we can approximately construct the

optimal sequences at the transmitter. Numerical results show that with the optimal training sequences,

the channel estimation MSE can be reduced substantially when compared with the use of other training

sequences.

II. SYSTEM MODEL

We consider a single user link with multiple interferers. The desired user hasnt transmit antennas and

nr receive antennas. We assume that there areMI interfering signals and theith interferer hasni transmit

antennas. The MIMO channel is assumed to be quasi-static (block fading) in that it varies slowly enough

to be considered invariant over a block. However, the channel changes to independent values from block

to block. We assume that the users employ a frame-based transmission protocol which comprises training

and payload data. The received baseband signals at the receive antennas during the training period are

given in matrix form by

Y = HST +

MI∑

i=1

HiS
T
i

︸ ︷︷ ︸
E

, (1)

where T denotes the transpose of a matrix. Thenr × nt matrix H and thenr × ni matrix Hi are

the channel gain matrices from the transmitter and theith interferer to the receiver, respectively.S is
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theN × nt training symbol matrix known to the receiver for estimatingthe channel gain matrixH of

the desired user during the training period.N is the number of training symbols from each transmit

antenna andN is usually much larger thannt. Si is theN × ni interference symbol matrix from the

ith interferer. We assume that the elements inSi are identically distributed zero-mean complex random

variables, correlated across both space and time. The interference processes are assumed to be wide-sense

stationary in time. We consider an interference limited wireless communication system. Hence we ignore

the effect of the thermal noise [15].

We adopt the correlated MIMO channel model [12], [13] which models the channel gain matrixH as

H = R
1/2
r HwR

1/2
t , whereRt models the correlation between the transmit antennas andRr models the

correlation between the receive antennas, respectively. We assume that bothRr andRt are of full rank.

The notation(·)1/2 stands for the Hermitian square root of a matrix.Hw is a matrix whose elements are

independent and identical distributed zero-mean circular-symmetric complex Gaussian random variables

with unit variance. Lethw = vec(Hw), wherevec(X) is the vector obtained by stacking the columns of

X on top of each other, then we haveh = vec(H) = (R
1/2
t ⊗R

1/2
r )hw, with h ∼ CN (0,Rt⊗Rr) where

CN denotes complex Gaussian distribution,⊗ denotes the Kronecker product, and∼ means “distributed

as”. Similarly, the channel gain matrix from theith interferer to the receiver isHi = R
1/2
r HwiR

1/2
ti and

hi = vec(Hi) = (R
1/2
ti ⊗ R

1/2
r )hwi. Using thevec operator, we can write the received signal in (1) in

vector form as

y = vec(Y) = (S ⊗ Inr
)h + e, (2)

whereInr
denotes thenr × nr identity matrix ande = vec(E).

To derive the linear MMSE channel estimator, we need the following lemma.

Lemma 2.1: E(e) = 0 and the covariance matrix ofe is

E(eeH) =

MI∑

i=1

QNi ⊗ Rr = QN ⊗ Rr

where

QNi =





∑ni

k=1R
i
k,k(0) . . .

∑ni

k=1R
i
k,k(N − 1)

...
. . .

...
∑ni

k=1R
i
k,k(N − 1) . . .

∑ni

k=1R
i
k,k(0)




,

QN =
∑MI

i=1 QNi, Ŝi = SiR
1/2
ti which is called the transformed interference symbol matrix, Ri

k,k(τ) =

E
[
[Ŝi]m,k[Ŝi]m+τ,k

]
represents the correlation between[Ŝi]m,k and [Ŝi]m+τ,k, and H denotes the

conjugate transpose of a matrix.
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Proof: See Appendix A.

We note thatQN captures the temporal correlation of the interference andRr represents the spatial

correlation. The covariance matrix of the interference hasthe Kronecker product form which implies that

the temporal and spatial correlations of the interference are separable.

Since (2) is a linear model, based on the Bayesian Gauss-Markov Theorem [16], the linear minimum

mean square error estimator (LMMSE) forh is given as:

ĥ = [(SH ⊗ Inr
)(QN ⊗ Rr)

−1(S ⊗ Inr
) + (Rt ⊗ Rr)

−1]−1(SH ⊗ Inr
)(QN ⊗ Rr)

−1y

= [(SHQ−1
N S + R−1

t )−1SHQ−1
N ⊗ Inr

]y.

Using the equalityvec(AYB) = (BT ⊗ A)vec(Y), we can rewrite the channel estimator in the more

compact matrix form as

Ĥ = Y
[
(SHQ−1

N S + R−1
t )−1SHQ−1

N

]T
.

Hence the channel estimator does not depend on the receive channel correlation matrixRr.

The performance of the channel estimator is measured by the estimation errorǫ = h− ĥ whose mean

is zero and whose covariance matrix is

Cǫ = E[(h − ĥ)(h − ĥ)H ]

= [(SH ⊗ Inr
)(QN ⊗ Rr)

−1(S ⊗ Inr
) + (Rt ⊗ Rr)

−1]−1

= (SHQ−1
N S + R−1

t )−1 ⊗ Rr.

The diagonal elements of the error covariance matrixCǫ yields the minimum Bayesian MSE and their

sum is usually referred to as the total MSE. The total MSE is a commonly used performance measure

for MIMO channel estimation. By using the fact that tr(A⊗B) = trAtrB where tr denotes the trace of

a matrix, we have

tr(Cǫ) = tr((SHQ−1
N S + R−1

t )−1 ⊗ Rr) = tr((SHQ−1
N S + R−1

t )−1)tr(Rr).

Thus the minimization of the total MSE over training sequences does not depend on the receive channel

correlation matrix. Only the temporal interference correlation matrixQN and the transmit correlation

matrix Rt need to be considered in obtaining the optimal training sequences.

III. O PTIMAL TRAINING SEQUENCEDESIGN

In the section, we investigate the problem of designing optimal training sequence for the channel

estimation approach considered in the previous section. With the total MSE as the performance measure,
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the optimization of training sequences can be formulated asfollows

min
S

tr(SHQ−1
N S + R−1

t )−1

subject to tr{SHS} ≤ P (3)

where tr{SHS} ≤ P specifies the power constraint.

Some special cases of this optimization problem (with either QN or Rt equal to the identity matrix)

have been encountered in joint linear transmitter-receiver design [8], [14], [17] and training sequence

design for channel estimation in MIMO systems [5], [9]. The solution in the special caseRt = I,

found for example in [5] and [14], can be expressed in terms ofthe eigenvalues and eigenvectors of

QN and a Lagrange multiplier associated with the power constraint. Similarly, the solution in the special

caseQN = I, found for example in [6], [8] and [9], can be expressed in terms of the eigenvalues and

eigenvectors ofRt and a Lagrange multiplier associated with the power constraint. The optimization

of the MSE problem introduced here is more difficult. We will show that (3) has a solution that can

be expressed asS = UΣVH whereU and V are unitary matrices of eigenvectors forQN and Rt

respectively, andΣ is diagonal. Solving (3) involves computing diagonalizations of QN and Rt, and

finding an ordering for the columns ofU andV.

The optimal training sequences should be designed according to the following theorem which

summarizes the solution to the optimization problem (3).

Theorem 3.1: Suppose thatQN andRt are Hermitian positive definite matrices, and letUΛUH and

V∆VH be the associated diagonalizations where the columns ofU andV are orthonormal eigenvectors,

the corresponding eigenvalues{λi} of QN are arranged in an increasing order, and the corresponding

eigenvalues{δi} of Rt are arranged in a decreasing order. Then the optimal solution of (3) is given by

S = UΣVH , (4)

whereΣ specifies the power allocation, which is a diagonal matrix with diagonal elements given by

σi = max

{√
λi

µ
− λi

δi
, 0

}1/2

for 1 ≤ i ≤M
△
= min{nt,N}, (5)

with the parameterµ chosen so that
∑M

i=1 σ
2
i = P .

Proof: See Appendix B.

With the optimal training sequences, the channel estimatorsimplifies toĤ = YU∗
MΓVT

M , whereΓ =

diag{γ1, . . . , γM} with γi = σiδi

σ2

i δi+λi
, the columns ofUM are the eigenvectors ofQN corresponding to
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its M smallest eigenvalues, and the columns ofVM are the eigenvectors ofRt corresponding to itsM

largest eigenvalues.

The design of the optimal training sequences summarized in the above theorem has a clear physical

interpretation. Each eigenvector of the transmit correlation matrixRt represents a transmit direction and

the associated eigenvalue indicates the channel gain in that direction. More power should be assigned to the

signals transmitted along the directions with larger channel gains. On the other hand, each eigenvector of

the interference temporal correlation matrixQN represents an interference subspace and the corresponding

eigenvalue indicates the amount of interference in that subspace. Hence, we should choose the subspaces

with the least amount of interference for transmission. Thepower assignment is determined by the water-

filling argument under a finite power constraint.

To facilitate the understanding of the water-filling interpretation for the power assignment, we can

rewrite the optimal power assignment solution in an alternative way as:

σ̃i = max

{
µ̃−

√
λi

δi
, 0

}1/2

for 1 ≤ i ≤M,

with µ̃ = 1/
√
µ, σ̃i = σi/λ

1

4

i , and µ̃ chosen so that
∑M

i=1

√
λiσ̃

2
i = P , where µ̃ represents the water

level, {√λi/δi} specifies the depth profile which can be visualized as the surface over which the water

is poured, and the volume of each subchannel is weighted by
√
λi for the calculation of the total water

volume.

A simple algorithm [18], which terminates in at mostN steps, can be used to calculate the optimal

power assignment solution:

Input: set of pairs{(λi, δi)} and the power constraintP .

Output: the water level̃µ and{σ̃i}.

1. Chooseµ̃ as the maximum of{
√

λi

δi
} and setLnew = M + 1.

2. SetLold = Lnew. Let I be the set of indices with̃µ−
√

λi

δi
≥ 0 andLnew be the cardinal number of

the setI. Computeµ̃ = (P +
∑

i∈I
λi

δi
)/

∑
i∈I

√
λi.

3. If Lnew < Lold, go to step2.

4. Computeσ̃i = max
{
µ̃−

√
λi

δi
, 0

}1/2
, and output̃µ and{σ̃i}.

IV. ESTIMATION OF CHANNEL STATISTICS AND FEEDBACK DESIGN

To implement the channel estimator and construct the optimal training sequences, we need knowledge of

the transmit antenna correlation matrixRt and the interference covariance matrixQN at both the receiver

and transmitter. Since these two matrices are long-term channel characteristics, they can be estimated by
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using the observed training signals at the receiver and thenfed back to the transmitter for the construction

of the optimal training sequences. In this section, we propose an algorithm to estimate these long-term

channel characteristics and design an efficient feedback scheme so that we can approximately construct

the optimal training sequences at the transmitter.

Let us assume that the training signal matrixS is sent over a sequence ofK packets. During the

transmission of each packet, the channel is assumed to be invariant. Then the received training signals

for the nth packet are given as

y(n) = (S ⊗ Inr
)h(n) + e(n)

= (SR
1/2
t ⊗ R1/2

r )hw(n) + e(n).

We note that the correlation matrix of the received signal also has the Kronecker product form:

R = E[y(n)y(n)H ]

= (SR
1/2
t ⊗ R1/2

r )E(hw(n)hw(n)H)(R
1/2
t SH ⊗ R1/2

r ) + E(e(n)e(n)H )

= Rq ⊗ Rr,

whereRq = SRtS
H + QN . We calculate the sample average correlation matrix of the received signal

from the previousK packets:

R̂ =
1

K

K∑

n=1

y(n)y(n)H .

If e(n) is Gaussian,̂R is a sufficient statistic for the estimation of the correlation matrixR.

If R = Rq ⊗ Rr, thenR = αRq ⊗ 1
αRr for any α 6= 0. Hence,Rq and Rr can not be uniquely

identified from observingy(n). Fortunately, the channel estimator and the design of optimal sequences

are invariant to scaling of the estimates ofRt andQN because

Ĥ
′

(n) = Y(n)
[
(SH(αQN )−1S + (αRt)

−1)−1SH(αQN )−1
]T

= Ĥ(n)

and

tr((SH(αQN )−1S + (αRt)
−1)−1 = αtr((SHQ−1

N S + R−1
t )−1).

For the estimation ofRq andRr, we need to impose an additional constraint onRr. Here we force

tr(Rr) = nr. Then an iterative flip-flop algorithm [19] [20] [21] can be used to estimateRq and Rr.

If the received interference signale(n) is Gaussian distributed, the flip-flop algorithm, when converges,

provides the maximum likelihood estimates (MLEs) ofRq andRr [19]. Whene(n) is not Gaussian, the
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algorithm gives the estimates ofRq andRr in the least square sense. For fixedR̂r(j − 1), the MLE of

Rq is obtained as

R̂q(j) =
1

nr

nr∑

u=1

nr∑

v=1

σr
uv

{ 1

K

K∑

n=1

YT
u (n)Y∗

v(n)
}

(6)

whereσr
uv is the(u, v)th element ofR̂−1

r (j − 1) andYu(n) is theuth row vector of the received signal

matrix Y(n). Similarly, for fixedR̂q(j), the MLE of Rr is obtained as

R̂r(j) =
1

N

N∑

u=1

N∑

v=1

σq
uv

{ 1

K

K∑

n=1

Wu(n)WH
v (n)

}
(7)

whereσq
uv is the(u, v)th element ofR̂−1

q (j) andWu(n) is theuth column vector of the received signal

Y(n). Then to get uniquely identifiableRq andRr, we need to scalêRr(j) to make tr(R̂r(j)) = nr.

We note that the terms inside the braces in (6) and (7) can be computed before the running of the

iterative estimation algorithm to reduce computational complexity. To start the iterative algorithm, an

initial value of eitherR̂q or R̂r should be assigned. A natural choice is to initially makeR̂r(0) = Inr
.

Then the iterative algorithm alternates between the calculations ofR̂q andR̂r until convergence. While

it is difficult to analytically prove that the algorithm converges to the MLE, extensive data experiments

in statistics [19] show that it always converges to the MLE for situations of practical sample sizes. The

convergence in our case is also verified by the numerical results in Section V.

Then we need to estimateRt andQN based onR̂q. Before doing so, letR denote the range space

of a matrix,R⊥ denote the orthogonal complementary subspace of the range of a matrix, and consider

the following lemma:

Lemma 4.1: Let L be the linear map defined byL(Rt,QN ) = SRtS
H + QN whereRt andQN are

Hermitian positive semi-definite matrices andS is of full rank. Let D be defined byD = {(Rt,QN ) :

R(QN ) ⊂ R⊥(S)}. ThenL : D → C
N×N is one-to-one. Moreover, given any(Rt,QN ) and Rq =

L(Rt,QN ), there exists(R
′

t,Q
′

N ) 6= (Rt,QN ) such thatL(R
′

t,Q
′

N ) = Rq.

Proof: See Appendix C.

Based on the above lemma, we see that estimatingQN andRt simultaneously fromR̂q is not possible.

We can only uniquely determineQN up to R⊥(S) from Rq. Fortunately, this is not much a limitation

whenN is large as shown in Lemma 4.2 below. Let|QN |w be the weak norm ofQN which is defined

by |QN |w =
√

tr(QH
NQN )/N .

Lemma 4.2: With the assumption thatQN is an absolutely summable Hermitian Toeplitz matrix, the

difference between the two sequences of matricesQN andP⊥
S
QNP⊥

S
approaches zero in weak norm as

N increases, i.e.,limN→∞ |QN − P⊥
S
QNP⊥

S
|w = 0.
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Proof: See Appendix D.

SinceP⊥
S
RqP

⊥
S

= P⊥
S
QNP⊥

S
, we can estimateP⊥

S
QNP⊥

S
from P⊥

S
R̂qP

⊥
S

. For notational simplicity,

let A denoteP⊥
S
R̂qP

⊥
S

. Since the interference signals are wide-sense stationaryin time, QN has the

form of a Topelitz matrix which can be represented by a sequence {qk; k = 0,±1, . . . ± (N − 1)}
with [QN ]k,j = qk−j. Then the(i, j)th element ofP⊥

S
QNP⊥

S
is given by

∑
l

∑
k pilql−kpkj with pij

denoting the(i, j)th element ofP⊥
S

. Equating the(i, j)th element ofP⊥
S
QNP⊥

S
with aij , we have a

set of linear equations in{qk}. Noticing the Hermitian nature ofP⊥
S
QNP⊥

S
andA and separating the

real and imaginary parts ofqk andaij , we haveN2 linear equations with2N − 1 unknowns inqr =

[q0,Re(q1), Im(q1), . . . ,Re(qN−1), Im(qN−1)]
T . This set of linear equations can be solved by employing

the least square approach. Then an estimate ofQN which is denoted aŝQN can be constructed based

on qr. Although thisQ̂N is only unique up toR⊥(S), Lemma 4.2 tells us that this is not too severe

a deficiency whenN is large. In addition, whenN is large,QN can be approximated by the circulant

matrix [22] with fixed eigenvectors as:

Q̃N = FNΨNFH
N , (8)

whereFN is theN ×N FFT matrix andΨN is a diagonal matrix containing eigenvalues{ψi} of Q̃N .

Note that we only require thent smallest eigenvalues ofQN and their corresponding eigenvectors in

constructing the optimal training sequences. With the circulant matrix approximation (8), it is equivalent

to estimating thent smallest eigenvaluesψi and identifying the corresponding columns ofFN . If we

arrange the eigenvalues{ψi} of Q̃N and the eigenvalues{λi} of QN in increasing orders, we have [23]

limN→∞ |ψi − λi| = 0. Thus thent smallest eigenvalues of̂QN can be used as the estimates of the

nt smallestψi’s, and the corresponding columns ofFN are chosen as those closest (in terms of the

Euclidean norm) to the eigenvectors associated with thent smallest eigenvalues of̂QN .

The estimates of thent smallestψi’s and thent indices of the chosen columns ofFN are then fed

back to the transmitter for the optimal training sequence construction. We notice that it is bandwidth

efficient to just feed back these indices ofFN instead of the whole eigenvectors of̂QN because the

number of training symbolsN during the training period is usually large.

To derive an estimator ofRt, we need to use Lemma 4.2 again. WhenN is large,Rq ≈ SRtS
H +

P⊥
S
QNP⊥

S
, and hencePSRqPS ≈ PSSRtS

HPS + PSP
⊥
S
QNP⊥

S
PS = SRtS

H . Then with a full rank

S, we can estimate the transmit channel correlation matrixRt using

R̂t = (SHS)−1SHR̂qS(SHS)−1.
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V. NUMERICAL RESULTS

In this section, we present some numerical results to show the performance gain achieved by the optimal

training sequences. We consider a MIMO system with3 transmit antennas and3 receive antennas. The

antennas form uniform linear arrays at both the transmitterand receiver. For a small angle spread, the

correlation coefficient between theith and thejth transmit antenna [12] can be approximated as:

[Rt]i,j ≈
1

2π

∫ 2π

0
exp{−j2π|i − j| sin ∆

dt

λ
sin θ}dθ = J0(2π|i − j| sin ∆

dt

λ
),

whereJ0(x) is the zeroth-order Bessel function of the first kind,∆ is the angle spread,dt is the antenna

spacing andλ is the wavelength of the narrow-band signal. We setdt = 0.5λ. In the simulations, we

consider two channels with different transmit channel correlations: a high spatial correlation channel

with ∆ = 5◦ and a low spatial correlation channel with∆ = 25◦. The receive correlation matrixRr

is calculated similarly as the transmit correlation matrixwith ∆ = 25◦. We have assumed that the

channel characteristics are estimated based on the observed training signals from50 previous packets,

i.e.,K = 50.

We consider two kinds of interference: co-channel interference from other users in the same wireless

system and jamming signals which are usually modeled by autoregressive (AR) random processes. We

compare the channel estimation performance in terms of the total MSE for systems using different sets of

training sequences. The following training sequence sets are considered for comparison: 1) the optimal

training sequences described in Section III; 2) the approximate optimal training sequence constructed

based on the channel and interference statistics obtained by using the proposed estimation algorithm in

Section IV; 3) the temporally optimal training sequences for which the transmit channel correlation matrix

is assumed to be an identity matrix and only temporal interference correlation is considered in designing

the optimal training sequences (we also consider the approximate temporally optimal sequences which

are constructed based on the channel statistics obtained byusing the proposed algorithm); 4) the spatially

optimal training sequences for which the interference is assumed to be temporally white and only transmit

correlation is considered in designing the optimal training sequences (we also consider the approximate

spatially optimal sequences which are constructed based onthe channel statistics obtained by using the

proposed algorithm); 5) binary orthogonal sequences whichare generated by using the firstnt columns

of the Hadamard matrix; and 6) random sequences where the training symbols are i.i.d. binary random

variables with zero mean and unit variance.
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A. Co-channel Interference

In a cellular wireless communication system, co-channel interference (CCI) from other cells exists due

to frequency reuse. Hence, the interfering signals have thesame signal format as that of the desired user.

We can express the interfering signal transmitted from theith transmit antenna of themth interferer as

s
(m)
i (t) =

√
Pm

niN

∞∑

l=−∞
b
(m)
i,l ψ(t− lT − τm),

wherePm is the transmit power of themth interferer, and{b(m)
i,l } are data symbols transmitted from

the ith transmit antenna of themth interferer. The data symbols are assumed to be i.i.d. binary random

variables with zero mean and unit variance. In addition,ψ(t) is the symbol waveform andT is the symbol

duration. It is assumed that the receiver is synchronized tothe desired user but not necessarily to the

interfering signals andτm is the symbol timing difference between themth interferer and the desired

user signal. Without loss of generality, we assume0 ≤ τm < T . The elements of the interference symbol

matrix Si are samples at the matched filter output at the receiver at time indexjT . The (j, i)th element

of Si is

s
(m)
j,i =

√
Pm

niN

∞∑

l=−∞
bmi,lψ̂((j − l)T − τm),

whereψ̂(t) =
∫ ∞
−∞ ψ(t− s)ψ∗(s)ds is the autocorrelation of the symbol waveform. For the co-channel

interference, the temporal interference correlation is due to the intersymbol interference in the sampled

interfering signals.

In the simulations, it is assumed that there are two interfering signals with two transmit antennas in the

system and the signal-to-interference ratio (P/
∑
Pm) is set to be0dB. The ISI-free symbol waveform

with raised cosine spectrum [24] is chosen as the symbol waveform. For this case, we have

ψ(t) = sinc(πt/T )
cos(πβt/T )

1 − 4β2t2/T 2
.

We set the roll-off factorβ = 0.5, τ1 = 0.2T andτ2 = 0.5T .

In Figs. 1 and 2, we show the total channel estimation MSEs forthe high spatial correlation channel

and low spatial correlation channel, respectively. For both cases, the optimal sequences outperform the

orthogonal sequences and random sequences significantly. For the high spatial correlation channel, the

optimal sequences provide a substantial performance gain over both the spatially optimal sequences and

the temporally optimal sequences. The approximate optimalsequences achieve most of the performance

gain obtained by the optimal sequences. For the low spatial correlation channel, the temporally optimal

sequences achieve an estimation performance similar to that achieved by the optimal sequences. These
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two optimal sequences provide significant performance gains over the spatially optimal sequences. In

this case, the temporal correlation has a stronger impact onchannel estimation than the spatial channel

correlation due to the fact that the length of training sequencesN is much larger than the number of

transmit antennasnt. The MSE performance of the approximate optimal sequences is a little worse than

that of the temporally optimal seqeunces because of the errors in estimatingQN andRt. Note that the

approximate temporally optimal sequences give performance that is in turn slightly worse than that given

by the approximate optimal sequences.

B. Jamming Signals

We assume that there are two jammers, each with one transmit antenna, in the system. The jamming

signals are modeled as two first-order AR processes driven bytemporally white Gaussian processes{ui,t},

i.e.,

si,t = αisi,t−1 + ui,t

wheresi,t represents the jamming signal transmitted by theith jammer at thetth time index,αi is the

temporal correlation coefficient, andui,t has zero mean with varianceσ2
u,i which decides the transmit

power of theith jammer. The signal-to-interference ratio is set to be 0 dB. We chooseα1 = 0.4 and

α2 = 0.5. In Figs. 3 and 4, we show the total channel estimation MSEs for the high spatial correlation

channel and low spatial correlation channel, respectively. For the AR jammers, similar conclusions on the

estimation performance achieved by different training sequences can be made as in the case of co-channel

interference.

APPENDICES

A. Proof of Lemma 2.1

Let E =
∑MI

i=1 Ei =
∑MI

i=1 HiS
T
i andei = vec(Ei). Sincehwi ∼ CN (0, Inrnt

), E(ei) = 0. Then we

have E(e) = 0. The received signal from theith interferer can be written as

Ei = HiS
T
i = R1/2

r Hwi R
1/2
ti ST

i︸ ︷︷ ︸
ŜT

i

= R1/2
r HwiŜ

T
i .

SinceSi is wide-sense stationary in time,Ŝi is also wide-sense stationary in time. Using thevec operator,

we can rewrite the interfering signal from theith interferer as

ei = vec(Ei) = (IN ⊗ R1/2
r )vec(HwiŜ

T
i ).
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The covariance matrix ofei is given as

E(eie
H
i ) = E[(IN ⊗ R1/2

r )vec(HwiŜ
T
i )vec(HwiŜ

T
i )H(IN ⊗ R1/2

r )H ]

= (IN ⊗ R1/2
r )E[vec(HwiŜ

T
i )vec(HwiŜ

T
i )H ](IN ⊗ R1/2

r ).

Let e
′

i = vec(HwiŜ
T
i ), it is easy to see that the covariance matrix ofe

′

i is

E[e
′

ie
′H
i ] =





∑ni

k=1R
i
k,k(0)Ir . . .

∑ni

k=1R
i
k,k(N − 1)Ir

...
. . .

...
∑ni

k=1R
i
k,k(N − 1)Ir . . .

∑ni

k=1R
i
k,k(0)Ir





= QNi ⊗ Inr
.

Then we have

E[eie
H
i ] = (IN ⊗ R1/2

r )(QNi ⊗ Inr
)(IN ⊗ R1/2

r )

= QNi ⊗ Rr.

The covariance matrix ofe is then given as

E[eeH ] =

MI∑

i=1

QNi ⊗ Rr = QN ⊗ Rr.

B. Solution of the optimization problem (3)

We solve the optimization problem by using the method introduced in [25]. First, we analyze the

optimal structure of the solution by using the Lagrangian method, then find the optimal power allocation

scheme, and finally determine the optimal ordering for the related eigenvector matrices.

1) Solution Structure: We begin by analyzing the structure of an optimal solution to(3). Let us define

T = UHSV. (9)

SubstitutingS = UTVH in (3) gives the following equivalent optimization problem:

min tr(THΛ−1T + ∆−1)−1 subject to tr(THT) ≤ P, T ∈ C
N×nt . (10)

We now show that the solution to (10) has at most one nonzero ineach row and column.

Theorem 5.1: There exists a solution of(10) of the form T = Π1ΣΠ2 where Π1 and Π2 are

permutation matrices andσij = 0 for all i 6= j.

Proof: We argue that it suffices to prove the theorem under the following nondegeneracy assumption:

δi 6= δj > 0 andλi 6= λj > 0 for all i 6= j. (11)
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Indeed, since the cost function of (10) is a continuous function of ∆ andΛ, and since anyλ > 0 and

δ > 0 can be approximated arbitrarily closely by vectorsδ andλ satisfying the nondegeneracy conditions

(11), we conclude that the theorem holds for arbitraryλ > 0 andδ > 0.

There exists an optimal solution of (10) since the feasible set is compact and the cost function is a

continuous function ofT. Since the eigenvalues of∆
1

2 THΛ−1T∆
1

2 are nonnegative, the eigenvalues

of (∆
1

2 THΛ−1T∆
1

2 + I)−1 are less than or equal to1. Also, by [28, Chap. 9, H.1.g], the trace of the

product of two positive semi-definite Hermitian matrices isbounded by the dot product of the eigenvalues

of the two matrices which are arranged in decreasing order. It follows that for any choice ofT,

tr(THΛ−1T + ∆−1)−1 = tr∆(∆
1

2 THΛ−1T∆
1

2 + I)−1 ≤ tr(∆),

with equality whenT = 0. Hence, there exists a nonzero optimal solution of (10), which is denoted̄T.

The first-order necessary condition for an optimal solutionis the following: There exists a scalarγ ≥ 0

such that
d

dT
tr

(
(THΛ−1T + ∆−1)−1 + γTHT

)
T=T̄

= 0. (12)

Let M = T̄HΛ−1T̄ + ∆−1. Since the derivative [26] of the invertible matrixM is given by dM−1

dt =

−M−1
(

dM
dt

)
M−1 for every elementt of the matrixT, (12) is equivalent to:

tr
(
γ[T̄HδT + δTHT̄] − M−1[T̄HΛ−1δT + δTHΛ−1T̄]M−1

)
= 0

for all matricesδT ∈ C
N×nt.

Let Real(z) denote the real part ofz ∈ C. Based on the fact that tr(A+AH) = 2(Real [tr (A)]) and

tr (AB) = tr (BA), we have Real
[
tr

(
γT̄HδT −M−2T̄HΛ−1δT

)]
= 0. By takingδT either pure real

or pure imaginary, we deduce that tr
(
[γT̄H − M−2T̄HΛ−1]δT

)
= 0 for all δT. By choosingδT to be

completely zero except for a single nonzero entry, we conclude that

γT̄H − M−2T̄HΛ−1 = 0. (13)

If γ = 0, thenT̄ = 0 since both∆ andΛ are invertible. Hence,γ > 0.

We multiply (13) on the right bȳT to obtain

γT̄HT̄ = M−2T̄HΛ−1T̄ = (T̄HΛ−1T̄ + ∆−1)−2T̄HΛ−1T̄ (14)

SinceT̄HT̄ is Hermitian, we have

(T̄HΛ−1T̄ + ∆−1)−2T̄HΛ−1T̄ = T̄HΛ−1T̄(T̄HΛ−1T̄ + ∆−1)−2.
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Then we will show thatT̄HΛ−1T̄ and∆−1 commute with each other. We need the following lemma

[27, P. 249]:

Lemma 5.1: If A and B are diagonalizable, they share the same eigenvector matrixif and only if

AB = BA.

Let A = T̄HΛ−1T̄ and B = ∆−1. Then we have(A + B)−2A = A(A + B)−2. According to

Lemma 5.1,A and (A + B)−2 share the same eigenvector matrix. SinceA + B and (A + B)−2

have the same eigenvector matrix,A and A + B share the same eigenvector matrix. Then we have

A(A + B) = (A + B)A. Hence,AB = BA, which implies thatT̄HΛ−1T̄ and∆−1 commute with

each other. Since∆−1 is diagonal, it follows from the nondegeneracy assumption that T̄HΛ−1T̄ is

diagonal. SincēTHΛ−1T̄ is diagonal,T̄HT̄ is diagonal by (14).

Since T̄HΛ−1T̄ and ∆−1 are diagonal, bothM andM−1 are diagonal. Hence, the factorM−2 in

(13) is diagonal with real diagonal elements denotedej , 1 ≤ j ≤ nt. By (13), we haveγt̄ij = ej t̄ij

λi
. If

t̄ij 6= 0, then this further implies thatej

λi
= γ 6= 0. By the nondegeneracy condition (11), no two diagonal

elements ofΛ are equal. If for any fixedj, t̄ij 6= 0 for i = i1 and i2, then the identityej

λi
= γ yields

a contradiction sinceγ 6= 0 andλi1 6= λi2 . Hence, each column of̄T has at most one nonzero. Since

T̄HT̄ is diagonal, two different columns cannot have their singlenonzero in the same row. This implies

that each column and each row ofT have at most one nonzero. A suitable permutation of the rows and

columns ofT̄ gives a diagonal matrixΣ, which completes the proof.

Combining the relationship (9) betweenT andS and Theorem 5.1, we conclude that problem(3) has

a solution of the formS = UΠ1ΣΠ2V
H , whereΠ1 andΠ2 are permutation matrices. We will show

that we can eliminate one of these two permutation matrices.SubstitutingS = UΠ1ΣΠ2V
H in (3), the

equivalent optimization problem is obtained as:

min
Σ,Π1,Π2

tr

(
ΣH(ΠH

1 Λ−1Π1)Σ + Π2∆
−1ΠH

2

)−1

subject to
M∑

i=1

σ2
i ≤ P (15)

whereM represents the minimum ofN andnt. In the above optimization problem, the minimization is

over diagonal matricesΣ with σ1, . . . , σM as the diagonal elements, and two permutation matricesΠ1

andΠ2. Since the symmetric permutationsΠH
1 Λ−1Π1 andΠ2∆

−1ΠH
2 essentially interchange diagonal

elements ofΛ and∆, (15) is equivalent to

min
σ,π1,π2

M∑

i=1

1

σi
2/λπ1(i) + 1/δπ2(i)
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subject to
M∑

i=1

σ2
i ≤ P, π1 ∈ PN , π2 ∈ Pnt

(16)

wherePN is the set of bijections of{1, 2, . . . ,N} onto itself.

We will now show that the optimal solution only depends on thesmallest eigenvalues ofQN and the

largest eigenvalues ofRt.

Lemma 5.2: Let UΛUH and V∆VH be diagonalizations ofQN and Rt respectively where the

columns ofU andV are orthonormal eigenvectors. Letσ, π1, andπ2 denote an optimal solution of(16)

and define the setsM = {i : σi > 0}, Q = {λπ1(i) : i ∈ M}, andR = {δπ2(i) : i ∈ M}. If M hasl

elements, then the elements of the setQ constitute thel smallest eigenvalues ofQN , and the elements

of R constitute thel largest eigenvaluesRt, respectively.

Proof: Assumek 6∈ M andλπ1(k) < λπ1(i) for somei ∈ M. It is easy to see that by interchanging

the values ofπ1(i) andπ1(k), the newith term in the cost function is smaller than the previousith term.

This contradicts the assumption thatσ andπ are optimal. Hence,λπ1(k) ≥ λπ1(i).

Suppose thatk 6∈ M andδπ2(k) > δπ2(i) for somei ∈ M. Let C denote the cost value due to the sum

of the ith term and thekth term before the interchange. Similarly, letC+ denote the cost value due to

the sum of theith term and thekth term after the interchange of the values ofπ2(i) andπ2(k). We have

C =
1

σi
2/λπ1(i) + 1/δπ2(i)

+ δπ2(k)

and

C+ =
1

σi
2/λπ1(i) + 1/δπ2(k)

+ δπ2(i)

Sinceδπ2(k) > δπ2(i), we have

C+ − C = −
(δπ2(k) − δπ2(i))(σi

4δπ2(k)δπ2(i)/λ
2
π1(i)

+ σi
2δπ2(k)/λπ1(i) + σi

2δπ2(i)/λπ1(i))

(σi
2δπ2(k)/λπ1(i) + 1)(σi

2δπ2(i)/λπ1(i) + 1)
< 0.

The cost is reduced by interchanging the values ofπ2(i) andπ2(k), which violates the optimality ofσ

andπ. Hence,δπ2(k) ≤ δπ2(i).

Using Lemma 5.2, we now show that one of the permutations in (16) can be deleted if the eigenvalues

of QN andRt are arranged in a particular order.

Theorem 5.2: Let UΛUH and V∆VH be diagonalizations ofQN and Rt respectively where the

columns ofU andV are orthonormal eigenvectors, the eigenvalues ofQN are arranged in an increasing

order and the eigenvalues ofRt are arranged in a decreasing order. Then(16) is equivalent to

min
σ,π

M∑

i=1

1

σ2
i /λπ(i) + 1/δi

subject to
M∑

i=1

σ2
i ≤ P, π ∈ PM , (17)
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whereσi = 0 for i > M .

Proof: Sinceσ has at mostM entries, and since the elements ofQ are the smallest eigenvalues

of Q and the elements ofR are the largest eigenvalues ofRt, we can assume thatπ1(i) ∈ [1,M ] and

π2(i) ∈ [1,M ] for eachi ∈ M. Hence, we restrict the sum in (16) to those indicesi ∈ S △
= {π−1

2 (j) :

1 ≤ j ≤M}. Let us defineσ′j = σπ−1

2
(j) andπ(j) = π1(π

−1
2 (j)). Sinceπ(j) ∈ [1,M ] for j ∈ [1,M ], it

follows thatπ ∈ PM . In (16) we restrict the summation toi ∈ S and we replacei by π−1
2 (j) to obtain

∑

i∈S

1

σ2
i /λπ1(i) + 1/δπ2(i)

=

M∑

j=1

1

σ′2j /λπ(j) + 1/δj
, where

M∑

i=1

(σ′j)
2 ≤ P.

This completes the proof of (17).

Combining the relationship (9) betweenT andS, Theorems 5.1 and 5.2 yields the following corollary:

Corollary 5.1: Problem(3) has a solution of the formS = UΠΣVH where the columns ofU and

V are orthonormal eigenvectors ofQN and Rt respectively with the eigenvalues ofQN arranged in

increasing order and the eigenvalues ofRt arranged in a decreasing order,Π is a permutation matrix,

andΣ is diagonal.

Proof: Let σ and π be a solution of (17). Fori > M , defineπ(i) = i and σi = 0. If Π is the

permutation matrix corresponding toπ, then making a substitutionS = UΠΣVH in the cost function

of (3) yields the cost function in (17). Since (16) and (17) are equivalent by Theorem 5.2,S is optimal

in (3).

2) The Optimal Σ: We now consider the optimization problem which minimizes the cost function over

σ with the permutationπ in (17) given. In the next subsection, we find the optimal permutationπ based

on the solution to the optimization problem considered here. For the sake of notational simplicity, letρi

denote1/λπ(i) and qi denote1/δi. Hence, for fixedπ, (17) is equivalent to the following optimization

problem:

min
σ

M∑

i=1

1

ρiσ2
i + qi

subject to
M∑

i=1

σ2
i ≤ P. (18)

The solution of (18) can be expressed in terms of a Lagrange multiplier related to the power constraint.

The structure of this solution has a water filling interpretation in the communication literature.

Theorem 5.3: The optimal solution of(18) is given by

σi = max

{√
1

ρiµ
− qi
ρi
, 0

}1/2

,

where the parameterµ is chosen so that
∑M

i=1 σ
2
i = P .

Proof: Since the minimization of the cost function in (18) is over a closed and bounded set, there

exists a solution. At an optimal solution to (18), the power constraint must be an equality. Otherwise,
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we can multiplyσ by a scalar larger than 1 to reduce to the value of the cost function. For the sake of

notation simplicity, letti = σ2
i . Then the reduced optimization problem (18) is equivalent to

min
t

M∑

i=1

1

ρiti + qi
subject to

M∑

i=1

ti = P, t ≥ 0. (19)

Since the cost function is strictly convex and the constraint is convex, the optimal solution to (19) is

unique.

The first-order necessary conditions (Karush-Kuhn-Tuckerconditions) for an optimal solution of (19)

are the following: There exists a scalarµ ≥ 0 and a vectorν ∈ R
M such that

− ρi

(ρiti + qi)2
+ µ− νi = 0, νi ≥ 0, ti ≥ 0, νiti = 0, 1 ≤ i ≤M. (20)

Due to the convexity of the cost and the constraint, any solution of these conditions is the unique optimal

solution of (19).

A solution to (20) can be obtained as follows. We define the function

ti(µ) =

(√
1

ρiµ
− qi
ρi

)+

. (21)

Herex+ = max{x, 0}. This particular value forti is obtained by settingνi = 0 in (20) and solving for

ti; when the solution is< 0, we setti(µ) = 0 (this corresponds to the + operator (21)). We note that

ti(µ) is a decreasing function ofµ which approaches+∞ asµ approaches 0 and which approaches 0

asµ grows to+∞. Hence, the equation
M∑

i=1

ti(µ) = P (22)

has a unique positive solution. Sinceti(ρi/q
2
i ) = 0, we haveti(µ) = 0 for µ ≥ ρi/q

2
i . Then we have

− ρi

(ρiti(µ) + qi)2
+ µ = − ρi

q2i
+ µ > 0 for µ > ρi/q

2
i .

We deduce that the Karush-Kuhn-Tucker conditions can be satisfied whenµ is the positive solution of

(22).

3) Optimal Eigenvector Ordering: Finally, we need to find an optimal permutation in(17), or

equivalently, an optimal ordering for the eigenvalues ofQN andRt.

Theorem 5.4: If the eigenvalues{λi} of QN are arranged in an increasing order and the eigenvalues

{δi} of Rt are arranged in a decreasing order, then an optimal permutation in (17) is

π(i) = i, 1 ≤ i ≤M. (23)

Proof: Suppose thatσ andπ are optimal in (17). For convenience, letλi stand forλπi
. If there

exist indicesi and j such thati < j, σi > 0, σj > 0, λi > λj and δi > δj , (equivalently,ρi < ρj and
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qi < qj), then we show that ifλi andλj are interchanged in (17), the value of the objective function can

be reduced.

Let us consider the following optimization problem:

min
ti,tj

1

ρiti + qi
+

1

ρjtj + qj
subject to ti + tj = P̄ , ti ≥ 0, tj ≥ 0, (24)

whereP̄ = σ2
i + σ2

j . Sinceσ yields an optimal solution of (17), it follows that a solution of the above

optimization problem isti = σ2
i and tj = σ2

j . By Theorem 5.3,

ti(µ) =

√
1

ρiµ
− qi
ρi
, (25)

whereµ is a Lagrange multiplier obtained from the power constraintti + tj = P̄ :

√
µ =

1√
ρi

+ 1√
ρj

P̄ + qi

ρi
+ qj

ρj

. (26)

Let C denote the cost function for (24). Combining (25) and (26) gives

C =
1

ρiti + qi
+

1

ρjtj + qj
=

( 1√
ρi

+ 1√
ρj

)2

P̄ + qi

ρi
+ qj

ρj

.

Now, suppose that we interchange the values ofρi andρj . Let C+ denote the cost value associated

with the interchange. That is,C+ is given by

C+ = min
ti,tj

1

ρjti + qi
+

1

ρitj + qj
subject to ti + tj = P̄ , ti ≥ 0, tj ≥ 0, (27)

Assuming the optimal solution of (24) is positive (after theexchange ofρi andρj), we have

C+ =
( 1√

ρi
+ 1√

ρj
)2

P̄ + qj

ρi
+ qi

ρj

.

We need to use the following lemma [28]:

Lemma 5.3: If ai, bi, i = 1, . . . , n are two sets of numbers,
n∑

i=1

a[i]b[n−i+1] ≤
n∑

i=1

aibi ≤
n∑

i=1

a[i]b[i],

wherea[1] ≥ . . . ≥ a[n] denote the components ofai in a decreasing order.

By Lemma 5.3, we haveqj

ρi
+ qi

ρj
> qi

ρi
+ qj

ρj
sinceρi < ρj andqi < qj. This implies thatC+ < C.

The fact thanC+ < C contradicts the optimality ofσ. Hence for eachi and j with i < j, ρi < ρj

and qi < qj , we can interchange the values ofρi andρj to obtain a new permutation with the reduced

value for the cost function. After the interchange, we haveρi > ρj andλi < λj. In this way, theλi’s

are arranged in an increasing order. Since theδi’s are arranged in a decreasing order, we conclude that

the associated optimal permutationπ is (23).
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Now, consider the case where the optimal solution of (24) is not strictly positive. Since the original

solution of (24), before the exchange, is positive, it follows from (25) and (26) that

P̄ >
qi√
ρiρj

− qj
ρj

and P̄ >
qj√
ρiρj

− qi
ρi
. (28)

After the exchange, the analogous inequalities that must besatisfied to preserve nonnegativity are

P̄ >
qj√
ρiρj

− qi
ρj
, (29)

and

P̄ >
qi√
ρiρj

− qj
ρi
. (30)

Note that (30) is satisfied from (28) and the fact thatρi < ρj and qi < qj. If (29) is also satisfied, the

proof is completed since the solution of (24) after the exchange ofλi andλj is positive.

Now, suppose that (29) is violated. In this case, we have

P̄ ≤ qj√
ρiρj

− qi
ρj
. (31)

Combining (28) and (31), it follows that

max
{ qi√

ρiρj
− qj
ρj
,

qj√
ρiρj

− qi
ρi

}
< P̄ ≤ qj√

ρiρj
− qi
ρj
. (32)

We show that for allP̄ satisfying (32),C+ ≤ C. Consequently, by exchangingλi andλj , the cost cannot

increase.

Let C∗ be the objective function value in (27) corresponding totj = 0 and ti = P̄ :

C∗ =
1

ρjP̄ + qi
+

1

qj
.

We show thatC∗ ≤ C. SinceC+ ≤ C∗, we deduce thatC+ ≤ C.

The inequalityC∗ ≤ C is equivalent to the following:

1

ρjP̄ + qi
+

1

qj
≤

( 1√
ρi

+ 1√
ρj

)2

P̄ + qi

ρi
+ qj

ρj

.

Multiplying both sides of the above inequality by(ρjP̄ + qi)qj(P̄ + qi

ρi
+ qj

ρj
) gives

qj(P̄ +
qi
ρi

+
qj
ρj

) + (ρjP̄ + qi)(P̄ +
qi
ρi

+
qj
ρj

) ≤ (
1√
ρi

+
1

√
ρj

)2(ρjP̄ + qi)qj .

After some rearrangement, this reduces to

f(P̄ ) = ρjP̄
2 + (qi + qj +

ρjqi
ρi

− ρjqj
ρi

−
2
√
ρjqj√
ρi

)P̄ + (
qi√
ρi

− qj√
ρj

)2 ≤ 0.
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We now evaluatef at the possible endpoints of the interval given in (32). We have

f(
qi√
ρiρj

− qj
ρj

) = (

√
ρj√
ρi

+ 1)(qi − qj)(
qi√
ρiρj

− qj
ρj

− qj√
ρiρj

+
qi
ρi

) ≤ 0

when qi√
ρiρj

− qj

ρj
≥ qj√

ρiρj
− qi

ρi
,

f(
qj√
ρiρj

− qi
ρi

) =
qj
qi

(ρi − ρj)(
qj√
ρiρj

− qi
ρi

− qi√
ρiρj

+
qj
ρj

) ≤ 0

when qj√
ρiρj

− qi

ρi
≥ qi√

ρiρj
− qj

ρj
, and

f(
qj√
ρiρj

− qi
ρj

) = qj(qi − qj)
1

ρi
√
ρiρj

(
√
ρi +

√
ρj)(ρj − ρi) ≤ 0.

Sincef is convex and nonpositive at the ends of the interval (32),f is nonpositive on the entire interval.

This implied thatC∗ ≤ C and the proof is complete.

C. Proof of Lemma 4.1

Let PS = S(SHS)−1SH be the projection ontoR(S) and P⊥
S

= I − PS be the projection onto

R⊥(S). First, let(Rt,QN ), (R
′

t,Q
′

N ) ∈ D. Let Rq = SRtS
H +QN andR

′

q = SR
′

tS
H +Q

′

N . Consider

P⊥
S
Rq = P⊥

S
QN = QN , PSRq = SRtS

H , andP⊥
S
R

′

q = P⊥
S
Q

′

N = Q
′

N , PSR
′

q = SR
′

tS
H . SinceS is

of full rank, PSRq = PSR
′

q iff Rt = R
′

t. Also sincePS andP⊥
S

are projections onto complementary

subspaces,Rq = R
′

q iff P⊥
S
Rq = P⊥

S
R

′

q andPSRq = PSR
′

q, i.e. (Rt,QN ) = (R
′

t,Q
′

N ). Moreover,

given (Rt,QN ), chooseR
′

t 6= Rt and defineQ
′

N = QN + SRtS
H − SR

′

tS
H . SinceS is of full rank,

Q
′

N 6= QN . But R
′

q = SR
′

tS
H + Q

′

N = SRtS
H + QN = Rq.

D. Proof of Lemma 4.2

In addition to the weak norm defined just right before the statement of the lemma, we are also interested

in the strong norm [22], [23] of a matrixA: ‖ A ‖= maxx:xHx=1[x
HAHAx] =

√
λmax(AHA), where

λmax represents the largest eigenvalues of a matrix. IfA is Hermitian,‖ A ‖= |λmax(A)|.
Note thatQN can be represented by a sequence{qk; k = 0, 1, 2, . . .} with QN = {qk,j} = {qk−j},

qk = q∗−k and
∑∞

k=0 |qk| < ∞. It is shown in [29] that‖ QN ‖≤ 2 (|q0| + 2
∑∞

k=1 |qk|) = 2Mq < ∞.

To proceed, we need the following lemma [28]:

Lemma 5.4: For two Hermitian positive semi-definite matricesG and H, λmax(GH) ≤
λmax(G)λmax(H).

Then, we have

‖ PSQN ‖=
√
λmax(QNPSQN ) ≤

√
λmax(QN )λmax(PS)λmax(QN ) =‖ QN ‖ . (33)
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We now show that the difference between the two matrices goesto zero asymptotically in weak norm.

Using the properties of weak norm, we have

|QN − P⊥
SQNP⊥

S |w = |PSQN + QNPS − PSQNPS|w

≤ |PSQN |w + |QNPS|w + |PSQNPS|w. (34)

We need the following Lemma [22], [29]:

Lemma 5.5: Given twon× n matricesG andH, then |GH|w ≤‖ G ‖ |H|w.

First note that|PS|w =
√

tr[S(SHS)−1SH ]/N =
√

tr[Int
]/N =

√
nt/N . Then using the above lemma,

we have|QNPS|w ≤‖ QN ‖ |PS|w ≤ 2Mq

√
nt/N . Similarly, |PSQN |w = |QNPS|w ≤ 2Mq

√
nt/N .

Combining Lemma 5.5 and (33), we have|PSQNPS|w ≤‖ PSQN ‖
√
nt/N ≤‖ QN ‖

√
nt/N ≤

2Mq

√
nt/N . Thus, from (34), we havelimN→∞ |QN − P⊥

S
QNP⊥

S
|w = 0.
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Fig. 1. Comparison of total MSEs obtained using different training sequences. ISI-free symbol waveform and high spatial

correlation channel.
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Fig. 2. Comparison of total MSEs obtained using different training sequences. ISI-free symbol waveform and low spatial

correlation channel.
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Fig. 3. Comparison of total MSEs obtained using different training sequences. AR jammers and high spatial correlation channel.
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Fig. 4. Comparison of total MSEs obtained using different training sequences. AR jammers and low spatial correlation channel.


