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Uniform Channel Decomposition
for MIMO Communications
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Abstract—Assuming the availability of the channel state infor-
mation at the transmitter (CSIT) and receiver (CSIR), we consider
the joint optimal transceiver design for multi-input multi-output
(MIMO) communication systems. Using the geometric mean
decomposition (GMD), we propose a transceiver design that can
decompose, in a strictly capacity lossless manner, a MIMO channel
into multiple subchannels with identical capacities. This uniform
channel decomposition (UCD) scheme has two implementation
forms. One is the combination of a linear precoder and a min-
imum mean-squared-error VBLAST (MMSE-VBLAST) detector,
which is referred to as UCD-VBLAST, and the other includes
a dirty paper (DP) precoder and a linear equalizer followed by
a DP decoder, which we refer to as UCD-DP. The UCD scheme
can provide much convenience for the modulation/demodulation
and coding/decoding procedures due to obviating the need for
bit allocation. We also show that UCD can achieve the maximal
diversity gain. The simulation results show that the UCD scheme
exhibits excellent performance, even without the use of any error
correcting codes.

Index Terms—Channel capacity, DBLAST, dirty paper pre-
coder, diversity gain, geometric mean decomposition, joint trans-
ceiver design, MIMO, minimum mean-squared-error, VBLAST,
water filling.

I. INTRODUCTION

COMMUNICATIONS over multiple-input multiple-output
(MIMO) channels have been the subject of intense re-

search over the past several years because MIMO channels
can support much greater data rate and higher reliability than
their single-input single-output (SISO) counterpart [1], [2]. The
majority of the researches focus on the scenarios where only
the channel state information at receiver (CSIR) is available.
Nevertheless, if the communication environment is slowly time
varying, such as communications via indoor wireless local
area networks (WLANs) or data transmission via the bonded
digital subscriber lines (DSLs), the channel state information
at the transmitter (CSIT) is also possible via feedback or
the reciprocal principle when time division duplex (TDD) is
used. Based on this assumption, the joint optimal transceiver
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design has recently attracted considerable attention (see [3]
and the references therein). Almost all the researchers have
concentrated on the linear transceiver designs. To maximize
the channel throughput, the channel must be diagonalized via
the singular value decomposition (SVD). Due to the usually
large condition number of the channel matrix, the SVD-based
channel decomposition usually results in subchannels with
vastly different signal-to-noise ratios (SNRs), which can add
much complexity to the subsequent modulation/demodulation
and coding/decoding procedures. For example, to achieve the
channel capacity, bit allocation (see, e.g., [4]) is required to
match each subchannel capacity, which not only makes modula-
tion rather complicated but also causes capacity loss due to the
finite constellation granularity. On the other hand, if the same
constellation is used for each subchannel, like the schemes
adopted by the European standard HIPERLAN/2 and the IEEE
802.11 standards for wireless local area networks (WLANs),
then more power should be allocated to the poorer subchannels,
which can lead to considerable performance loss [5]. There is
apparently a tradeoff between the channel throughput and the
bit-error-rate (BER) performance if one attempts to avoid bit
allocation. We show the contrary as detailed below.

An efficient nonlinear transceiver design based on the geo-
metric mean decomposition (GMD) algorithm is proposed in
[5]. By combining the GMD matrix decomposition algorithm
[6] with either the zero-forcing VBLAST (ZF-VBLAST)
detector [7] or the zero-forcing dirty paper precoder (ZFDP),
the GMD scheme1 decomposes a MIMO channel into multiple
identical parallel subchannels. The GMD scheme has proven
to be asymptotically optimal for high SNR in both the channel
throughput and the BER performance aspects. Hence, the GMD
scheme does not make tradeoffs between the capacity and the
BER performance. Instead, it attempts to achieve the best of
both worlds simultaneously. However, the GMD scheme may
suffer from considerable capacity loss at low SNR due to the
inherent “zero-forcing” operations, which are capacity lossy,
especially at low SNR.

In this paper, we propose a uniform channel decomposition
(UCD) scheme, which is also based on the GMD matrix decom-
position algorithm to decompose a MIMO channel into multiple
identical subchannels. The UCD scheme has two implemen-
tation forms. One is the combination of a linear precoder and
a minimum mean-squared-error VBLAST (MMSE-VBLAST)
detector, which is referred to as UCD-VBLAST, and the other
includes a dirty paper (DP) precoder and a linear equalizer fol-
lowed by a DP decoder, which we refer to as UCD-DP. Just

1In the sequel, we refer to the GMD scheme or GMD as the MIMO transceiver
design based on the GMD matrix decomposition algorithm.
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like the GMD scheme, UCD can bring much convenience to
the subsequent modulation/demodulation and coding/decoding
procedures by obviating the need of bit allocation. Two remark-
able merits of UCD, which are not shared by the GMD scheme,
are that first, UCD is strictly capacity lossless at any SNR, and
second, UCD has the maximal diversity gain. Moreover, the
UCD scheme can decompose a MIMO channel into an arbi-
trarily large number of independent subchannels, which is an
enabling technology to achieve high data rate transmission using
small symbol constellations. The UCD scheme suggests a new
way of channel decomposition, which can decompose a MIMO
channel into multiple subchannels with desired channel capaci-
ties [8]. This is much more flexible than the conventional SVD-
based approaches.

The rest of this paper is organized as follows. Section II
introduces the channel model. Section III briefly reviews of
the VBLAST scheme, the dirty paper theorem, and the GMD
scheme. A closed-form expression of the MMSE-VBLAST
detector, which is proven to be very useful for the UCD design,
is also introduced. Two versions of the UCD scheme, i.e.,
UCD-VBLAST and UCD-DP, are proposed in Section IV.
We also compare the diversity gains of UCD and the GMD
scheme therein. Section V presents several numerical examples
to demonstrate the advantages of the UCD scheme over GMD
and the open-loop VBLAST scheme. Finally, Section VI gives
the conclusions of this paper.

II. CHANNEL MODEL

We consider a communication system with transmitting
and receiving antennas in a frequency flat fading channel.
The sampled baseband signal is given by

(1)

where is the information symbols precoded by the
linear precoder , is the received signal,
and is the channel matrix with rank and with
its th element denoting the fading coefficient between
the th transmitting and th receiving antennas. We assume

, where is the expected value, denotes
the identity matrix with dimension , and is
the circularly symmetric complex Gaussian noise. We define
the SNR as

Tr Tr (2)

where is the conjugate transpose, and Tr stands for the
trace of a matrix. Throughout this paper, we assume that is
known at both the transmitter and receiver. We note that the
more general frequency-selective channel can be represented by
a spatial-temporal channel with a larger dimensionality. Hence,
(1) is rather general.

Suppose is a Gaussian random vector. The capacity of the
MIMO channel (1) is

(3)

where denotes the determinant of a matrix. If both CSIT and
CSIR are available, we can maximize the channel capacity with
respect to , given the input power constraint Tr

. That is

Tr
(4)

where is as defined in (2), and the subscript of stands for
“informed transmitter.”

Denote the SVD of as , where is a
diagonal matrix whose diagonal elements are the
nonzero singular values of . The solution to in (4) is [9]

(5)

Here is diagonal whose th diagonal element
determines the power loaded to the th subchannel and is

found via “water filling” to be

(6)

where is chosen such that and
. Then, the solution to (4) is

bits/s/Hz (7)

Note that since some of ’s can be zeros. In this case, we can
only transmit data streams.

Indeed, the linear precoder of (5) combined with a linear
MMSE equalizer represents a linear transceiver design that is
optimal in the information-theoretic aspect. However, due to the
usually very different , the linear transceiver leads
to multiple subchannels with very different SNRs. Hence, this
seemingly simple linear transceiver can bring much difficulty to
the subsequent modulation/demodulation and coding/decoding
procedures.

III. PRELIMINARIES

In this section, we give a brief review of the concepts of the
VBLAST detector and DP precoder, which are the components
of UCD-VBLAST and UCD-DP, respectively. We also give a
brief introduction to the GMD scheme since the UCD scheme
shares the same underlying idea as the GMD scheme. Finally, a
closed-form expression of the MMSE-VBLAST algorithm, on
which the UCD scheme relies, is introduced.

A. ZF-VBLAST

It is well-known that the ZF-VBLAST scheme can be rep-
resented by the QR decomposition , where is an

upper triangular matrix, and is an matrix
with its orthonormal columns being the ZF nulling vectors. Let
us rewrite (1) as

(8)
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Multiplying to both sides of (8), which is virtually the
nulling step, yields

(9)

or

...
...

. . .
. . .

...
...

...

(10)
The sequential signal detection, which involves the successive
interference cancellation, is as follows:

for

end

Ignoring the error-propagation effect, we see that the MIMO
channel is decomposed into parallel scalar subchannels

(11)

B. DP Precoder

As a dual form of the known interference cancellation at the
receiver, the DP precoder can be used at the transmitter [10],
[11] to suppress known interferences at transmitter.

Consider a scalar Gaussian channel

(12)

where , are independent Gaussian noise with known to the
receiver. Clearly, the channel of (12) is exactly the same as the
additive white Gaussian noise (AWGN) channel

(13)

since the receiver can cancel out the known-interference prior
to signal detection. This is what the VBLAST detector does at
the em cancellation step.

Now, reconsider the channel of (12), where the interference
is unknown to the receiver but known to the transmitter. The

dirty paper theorem [12] predicts the existence of an amazing
precoder that can cancel out the interference completely without
consuming additional input power. That is, we can still obtain
an equivalent AWGN channel .

As the practical implementation of the dirty paper precoder,
the Tomlinson–Harashima precoder [13] can be used to achieve
known-interference cancellation at the transmitter with only a
small amount of power amplification.

C. GMD

The GMD algorithm is based on the following lemma. [We
abuse the notation slightly for the sake of notational simplicity.
The matrices , given in Lemma III.1 are not related to those
given in (8).]

Lemma III.1: Any rank matrix with sin-
gular values can be decom-
posed into

(14)

where is an upper triangular matrix with equal
diagonal elements

(15)

and and have orthonormal columns.
Proof: See [5].

We present, in [6], a computationally efficient and numeri-
cally stable algorithm to calculate (14). To facilitate our dis-
cussions and to make this paper self-contained, we include the
GMD algorithm in Appendix A.

Assuming CSIT, we can make the precoder . Hence,
the received signal of (1) is

(16)

Multiplying to both sides of (16) yields

(17)

Hence, using either the sequential detected signal cancellation
or the DP precoding, we can cancel the interference due to
the off-diagonal elements of and obtain identical scalar
subchannels

(18)

The GMD scheme can bring much convenience to the sub-
sequent modulation/demodulation and coding/decoding proce-
dures, and it has superior performance over the linear transceiver
designs, as demonstrated in [5]. However, it may suffer from
considerable capacity loss at low SNR. Indeed, the major moti-
vation of this paper is to eliminate the capacity loss while pre-
serving all the desirable properties of the GMD scheme. The
proposed solution is the UCD scheme, which also relies on
the GMD matrix decomposition algorithm. It also relies on the
closed-form representation of the MMSE-VBLAST detector.

D. Closed-Form Representation of MMSE-VBLAST

For MMSE-VBLAST, the nulling vector for the th layer is

(19)

The MMSE-VBLAST algorithm can be represented in a concise
matrix form that was given in [14] (also see the more detailed
version [15]).

Consider the augmented matrix

(20)
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Applying the QR decomposition to yields

(21)

where is an upper triangular matrix with
positive diagonal elements, and . Note that

is not the QR decomposition of since is
not unitary. However, we can readily obtain the nulling vectors
using and , as shown in the following lemma [15].

Lemma III.2: Let denote the columns of
and the diagonal elements of , where and

are given in (21). The nulling vectors of (19) satisfy

(22)

Then, the output signal-to-interfere-and-noise ratio (SINR) of
the th layer (i.e., the signal corresponding to ) using is

(23)

Inserting (19) into (23), we can simplify (23) via some straight-
forward calculations to be (see, e.g., [16])

(24)

where .
The SINRs given in (24) are related to , as shown in the

following lemma.
Lemma III.3: The diagonal of given in (21) and

given in (24) satisfy

(25)

Proof: See Appendix B.
An immediate corollary follows.
Corollary III.4: The MMSE-VBLAST detector is informa-

tion lossless. That is

(26)

where the right-hand side of (26) is equal to (4) with .
The proof is omitted. We note that Corollary III.4 coincides

with the findings in [16]. In spite of the capacity lossless prop-
erty, MMSE-VBLAST suffers from poor diversity gain.

IV. UNIFORM CHANNEL DECOMPOSITION

In the following, we introduce the UCD-VBLAST scheme,
which consists of a linear precoder and the MMSE-VBLAST
detector. Then, we present the UCD-DP scheme as the dual
form of UCD-VBLAST. We also compare the UCD and GMD
schemes in terms of diversity gain. Our further remarks are pro-
vided at the end of this section.

A. UCD-VBLAST

If we modify the precoder given in (5) to be

(27)

where with (to avoid capacity loss, we
should not choose in general) and , then

we see, by inserting (27) into (4), that the given in (27) is
also a precoder maximizing the channel throughput. However,
introducing brings much greater flexibility than the precoder
of (5). In the following, we concentrate on how to design .

Given the precoder of (27), the virtual channel is

(28)

where is a diagonal matrix with diagonal elements
for . Let denote the augmented matrix

(29)

The UCD scheme is based on the following lemma.
Lemma IV.1: For any matrix of the form given in (29), we

can find a semi-unitary matrix such that the QR de-
composition of yields an upper triangular matrix with equal
diagonal elements.

Proof: Rewrite (29) as

...
(30)

where is a unitary matrix whose first columns
form . We further rewrite (30) as

...
(31)

From Lemma III.1, we can have the following GMD:

...
(32)

where is an upper triangular matrix with equal di-
agonal elements, is semi-unitary, and

is unitary. Inserting (32) into (31) yields

(33)

Let and

(34)

Then, (33) can be rewritten to be , which is the
QR decomposition of . The semi-unitary matrix associated
with consists of the first columns of (or ).

From Lemmas IV.1 and III.3, we conclude that we can always
combine a linear precoder and the MMSE-VBLAST detector
to uniformly decompose a MIMO channel into sub-
channels with the same output SINRs. According to Corollary
III.4, we can further conclude that the channel decomposition is
strictly capacity lossless. We refer to the scheme demonstrated
in Lemma IV.1 as UCD-VBLAST.

The proof of Lemma IV.1 is insightful. Indeed, given the SVD
of and the “water filling” level , we only need to calcu-
late the GMD given in (32). Then, we immediately obtain the
linear precoder , where consists of the first
columns of . Let denote the first rows of or,



JIANG et al.: UNIFORM CHANNEL DECOMPOSITION FOR MIMO COMMUNICATIONS 4287

equivalently, the first rows of [cf. (34)]. According to
Lemma III.2, the nulling vectors are calculated as

(35)

where is the th diagonal element of , and is the
th column of .

Some observations can help reduce the computational com-
plexity. For any matrix with SVD
and the augmented matrix with SVD

(36)

the diagonal elements of and , i.e., and , satisfy

(37)

Moreover

and (38)

Hence, the SVD of defined in (32) is

...
(39)

where is an diagonal matrix with the diagonal elements

(40a)

and

(40b)

Applying the GMD matrix decomposition algorithm given in
Appendix A to yields

(41)

Hence

...
...

(42)

Then, the linear precoder has the form

... (43)

The nulling vectors are calculated according to (35) with
, and

... (44)

Note that and are Givens rotation
matrices, and hence, calculating (43) and (44) needs

and flops, respectively.

We summarize the UCD-VBLAST scheme as follows:2

step operation flops

Compute SVD

Calculate using (6)

Obtain using (40)

Apply GMD to to obtain (41)

Generate using (43)

Compute using (44)

Calculate using (35)

Obviously, our UCD-VBLAST scheme has comparable com-
putational complexity to the SVD based linear transceiver de-
signs. An observation relevant to practical implementations is as
follows. Note that the receiver does not have to calculate Step
6 since CSIT is available, and the transmitter can run Steps 1
to 6. However, if the receiver calculates , which only takes a
small number of flops, and feeds it back to the transmitter, then
the transmitter is relieved from calculating the SVDs. Hence,
in FDD systems, it is preferable to feed back , rather than ,
to the transmitter. In TDD systems, there are still advantages
for feeding back since this reduces by approximately half the
overall computational complexity.

We conclude the discussions of the UCD-VBLAST scheme
by deriving the SINR of each subchannel. Note that the diagonal
elements of is

(45)

which is the geometric mean of the diagonal elements of . It
follows from (40) that

(46)
According to Lemma III.3

(47)

Hence

(48)

which is exactly the in (7). Hence, UCD-VBLAST is
strictly capacity lossless.

2Steps 5–7 can be processed simultaneously as in the GMD algorithm.
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B. UCD-DP

As a dual form of UCD-VBLAST, the UCD scheme can
be implemented by using DP precoding, which we refer to
as UCD-DP. For UCD-DP, a direct construction of the linear
precoder , as done in Section IV-A, is not obvious. Instead,
we exploit the uplink-downlink duality revealed in [17] to
obtain UCD-DP.

We convert the UCD-DP problem into the UCD-VBLAST
problem in the reverse channel, where the roles of the trans-
mitter and receiver are exchanged:

(49)

The UCD-VBLAST scheme can be applied to the channel of
(49), which yields the precoder and the equalizer ,
as in (43) and (35), respectively. Normalize to be of
unit Euclidean norm, which we denote as . Let

. According to the uplink-downlink duality, the
precoder of UCD-DP should be , where is di-
agonal with the diagonal elements , which will be de-
termined based on (54) below. We use , which is the linear
precoder in the reverse channel, as the linear equalizer. Then,
the equivalent MIMO channel is

(50)

where the th scalar subchannel of the MIMO channel is

(51)

Applying the dirty paper precoder to and treating
as the interference known at the trans-

mitter (note that here, we precode the first layer first, while for
UCD-VBLAST, we detect the th layer first), we obtain an
equivalent subchannel

(52)

with SINR

for

(53)
The next step is to calculate such that ,

, where is as defined in (47). Let . Then,
(53) can be represented in the matrix form

...
. . .

. . .
...

...
...

(54)
It is easy to see that , . It is proven in [17] that

Tr Tr . That is, the UCD-DP
needs exactly the same power as the UCD-VBLAST to obtain

identical subchannels with SINR .

The UCD-DP using the Tomlinson–Harashima precoder
leads to an input power increase of for M-QAM
symbols. Nevertheless, for a system with high dimensionality
and/or using large constellation, UCD-DP is a better choice
than UCD-VBLAST since it is free of propagation errors.

C. Diversity Gain Analysis

Consider a channel given in (1). Assume, without loss of gen-
erality, that the rank of is , and let the
number of identical subchannels be (GMD only allows

). The output SINRs of the subchannels obtained via
GMD and UCD are [cf. (15)]

(55)

where is the input SNR defined in (2), and [cf. (47)]

(56)

where is the th diagonal element of the defined in (28) and
is a function of . One can verify that

(57)

i.e., the coding gain of the UCD scheme over the GMD scheme
is asymptotically negligible for high SNR. It is a direct conse-
quence of the fact that GMD is asymptotically for high SNR
capacity lossless [5].

Another important performance metric is diversity gain,
which is defined as follows [18].

Definition IV.2: Let denote the average error proba-
bility of a scheme at SNR . The diversity gain of the scheme is

(58)

The diversity gain measures how fast the error probability de-
cays with SNR. We note that diversity gain is usually discussed
without assuming the availability of CSIT. The reason is that
diversity gain is a concept associated with channel outage, i.e.,
the case where the channel is too poor to support a target data
rate. Using CSIT, one can adjust the transmission rate to avoid
channel outage. However, if the rate is fixed, which is desirable
in practice, we can also use diversity gain as a performance mea-
sure of the transceiver designs. Based on this observation, we
analyze the diversity gains of the UCD and GMD schemes. The
result is summarized in the following proposition.

Proposition IV.3: Consider the i.i.d. Rayleigh flat fading
MIMO channel defined in (1). Let and

. The diversity gains of the GMD and the
UCD schemes are

and
(59)

respectively.
We have applied the typical error event analysis (see [18] and

[19]) to obtain (59). The details are relegated to Appendix C. We
see that although UCD has a negligible coding gain compared
with the GMD scheme at high SNR, it has an additional
diversity gains over GMD. An interesting point to make is that
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Fig. 1. Complementary cumulative distribution function of the capacity of an i.i.d. Rayleigh flat fading channel withM = 10 andM = 10. Results based on
2000 Monte Carlo trials. SNR is (a) 10 dB, (b) 10 dB, (c) 20 dB, and (d) 30 dB.

water filling does not help improve diversity gains. Hence, at
high SNR, water filling is useless in both capacity and diversity
aspects.

Given the fact that the GMD scheme is asymptotically ca-
pacity lossless for high SNR, it is rather surprising to see the
large diversity loss of GMD compared with UCD. We give an
intuitive explanation as follows. Note that diversity gain is de-
termined by the typical error events that the MIMO channel is
in deep fade. Namely, the diversity gain of a scheme depends
on its ability to deal with bad channels. A deeply faded channel
with high input SNR is equivalent to a “normal” channel with
low SNR; in this scenario, the GMD scheme is far less efficient
than UCD, as shown in the numerical examples. Consequently,
the GMD has less diversity gain than UCD.

D. Further Remarks

Besides the larger coding gain at low SNR and an improved
diversity gain at high SNR, the UCD scheme enjoys more flexi-
bility than the GMD scheme. For a rank MIMO channel, the
GMD scheme can support no more than independent data
streams. However, the UCD scheme can decompose a rank
MIMO channel into identical subchannels, and is not
even limited by the dimensionality of the channel matrix. This
property of the UCD scheme enables one to achieve high data
rate transmission using small constellations as demonstrated in
the numerical examples.

The UCD scheme also suggests new ways of channel decom-
position that are much more flexible than the conventional SVD
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based ones. Indeed, one may chose the permutation matrices
and Givens rotations to achieve a wide variety of channel de-
compositions with some prescribed SINRs, as suggested by the
generalized triangular decomposition (GTD) [8], [20].

Finally, we link UCD with DBLAST [2], which has been
shown to be able to achieve the optimal tradeoff between the
channel diversity and multiplexing [18]. We observe that each
diagonal layer of DBLAST can be viewed as the interleaving
of the vertical layers of VBLAST in the space-time domain,
and each diagonal layer can be regarded as a virtual subchannel
with the same capacity. However, DBLAST requires short and
powerful error-correcting coding to make the virtual subchannel
work as a “real” one. This is a major difficulty for the implemen-
tation of DBLAST. In addition, DBLAST suffers from boundary
wastage. In contrast, our UCD scheme, by exploiting CSIT, ap-
plies interleaving (via the Givens rotations and permutations)
in the space domain only. This makes the UCD scheme free
from the boundary wastage. Moreover, the UCD scheme is de-
coupled from coding procedures. Indeed, UCD can be concate-
nated with any error-correcting code. Furthermore, UCD makes
it easier to design the coding scheme since UCD decomposes
a MIMO channel into multiple subchannels with identical ca-
pacities. Thus, in a slowly time-varying channel, UCD is much
easier to implement than DBLAST, despite their duality. This
clearly manifests the values of CSIT.

V. NUMERICAL EXAMPLES

We present next several numerical examples to demonstrate
the effectiveness of the UCD scheme.

In the first example, we assume Rayleigh independent flat
fading channels with and . We compare the
channel capacity using the UCD and GMD schemes. The com-
plementary cumulative distribution functions (CCDF) of the ca-
pacity drawn out of 2000 Monte Carlo realizations of are
shown in Fig. 1. We see that the UCD scheme outperforms the
GMD scheme significantly at low SNR, although the difference
becomes smaller at higher SNR.

Fig. 2 shows the CCDFs of the channel capacities of a 5
5 independent Rayleigh flat fading channel with SNR equal to
25 dB. The five thin dashed curves denote the channel capaci-
ties of the five subchannels obtained via SVD plus water filling.
Note that the leftmost thin dashed curve crosses the vertical axis
at a value less than one, which means that the worst subchannel
(corresponding to the smallest singular value of the channel ma-
trix) is sometimes discarded by water filling. The thick solid
line is the CCDF of the capacity of the subchannels
obtained via UCD. All these subchannels have the same ca-
pacity. As discussed in Section IV-A, a rank MIMO channel
can be decomposed into subchannels. The thin solid
line represents the case where a MIMO channel is decomposed
into seven identical subchannels using the UCD scheme. Fig. 2
demonstrates the advantages of our UCD scheme over the con-
ventional “SVD plus bit allocation” scheme (see, e.g., [4]). The
channel capacities of the five subchannels obtained via SVD
plus water filling range from 0 to about 11 bit/s/Hz, which sug-
gests that the binary phase shift keying (BPSK) or quadrature
phase shift keying (QPSK) modulation should be used to match

Fig. 2. Complementary cumulative distribution functions of the capacities of
five subchannels of an i.i.d. Rayleigh flat fading channel with M = 5 and
M = 5. Results based on 2000 Monte Carlo trials.

Fig. 3. Uncoded BER performance when using 16-QAM. Results based on
1000 Monte Carlo trials of an i.i.d. Rayleigh flat fading channel withM = 4

andM = 4.

the capacity of the worst subchannel and something like 1024
or 2048 quadrature amplitude modulation (QAM) to the best
subchannel. This bit allocation significantly increases the mod-
ulation/demodulation complexity. Moreover, using a constella-
tion with size greater than 256 is impractical for the current RF
circuit design technology. Using GMD or UCD, we can decom-
pose a rank 5 MIMO channel into five subchannels, and hence,
the same constellation with a reasonable size, say 128-QAM,
can be used to reap most of the channel capacity. The UCD
scheme can do even better. In this example, after decomposing a
MIMO channel into seven subchannels via UCD, we can apply
a small to moderate constellation, say 16-QAM or 64-QAM, to
achieve the channel capacity.
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Fig. 4. BER performances of the UCD-DP, UCD-VBLAST schemes and the
imaginary UCD-genie scheme. Results based on 1000 Monte Carlo trials of an
i.i.d. Rayleigh flat fading channel withM = 10 andM = 10.

In the third example, we assume Rayleigh independent flat
fading channels with and . We compare
the BER performance of the GMD and UCD schemes along
with the conventional MMSE-VBLAST with optimal detection
ordering in Fig. 3. We see that both GMD and UCD outper-
form the conventional VBLAST detector significantly. More-
over, the BER versus SNR lines of the GMD and UCD schemes
have much steeper decreasing slopes, which means much better
diversity gains than the conventional VBLAST. The diversity
gains of the GMD and UCD schemes are 4 and 16, respectively.
While there is a noticeably larger diversity gain for UCD com-
pared with GMD, as shown in Fig. 3, the difference is not as
drastic as the theoretical prediction. It is because the input SNR
is not high enough to validate the approximations made in the
typical error event analyses (see Appendix C).

In the final example, we compare the BER performance of
UCD-VBLAST and UCD-DP in the scenario of a 10 10
Rayleigh flat fading channel. To present a benchmark, we also
include UCD-genie as the imaginary scenario, where at each
layer, a genie would eliminate the influence of erroneous de-
tections from the previous layers when using UCD-VBLAST.
Fig. 4 shows that UCD-VBLAST may suffer from some small
BER degradations caused by error propagation (about 0.5 dB
for BER ) compared with UCD-genie. The UCD-DP,
on the contrary, is free of error propagation and, hence, has a
BER performance very close to that of UCD-genie. The slight
SNR loss of UCD-DP is mainly due to the inherent power-am-
plification effect of the Tomlinson–Harashima precoder.

VI. CONCLUSIONS

Based on the GMD matrix decomposition algorithm and the
closed-form representation of the MMSEVBLAST detector, we
have introduced the UCD scheme for MIMO communications
that can decompose a MIMO channel into multiple subchan-
nels with identical capacities in a capacity lossless manner. We
have proposed two versions of the UCD scheme, i.e., UCD-

VBLAST and UCD-DP. The UCD scheme can provide much
convenience for the subsequent modulation/demodulation and
coding/decoding procedures due to obviating the need for bit
allocation. We have also shown that UCD can achieve the max-
imal diversity gain. The simulations show that the UCD scheme
has excellent performance even without the use of error-cor-
recting codes. The UCD scheme suggests a new way of channel
decomposition that enjoys much more flexibility than the con-
ventional SVD-based ones.

APPENDIX A
GEOMETRIC MEAN DECOMPOSITION

We now give an algorithm for evaluating the GMD that starts
with the SVD . The algorithm generates a sequence
of upper triangular matrices , , with

. Each matrix has the following properties.

a) when or .
b) for all , and the geometric mean of

, , is .
We express where and are or-
thogonal for each .

These orthogonal matrices are constructed using a symmetric
permutation and a pair of Givens rotations. Suppose that
satisfies a) and b). If , then let be a permutation ma-
trix with the property that exchanges the st di-
agonal element of with any element , , for which

. If , then let be chosen to exchange the
st diagonal element with any element , , for

which . Let and denote the new
diagonal elements at locations and associated with the
permuted matrix .

Next, we construct orthogonal matrices and by mod-
ifying the elements in the identity matrix that lie at the intersec-
tion of rows and and columns and . We multiply
the permuted matrix on the left by and on the right
by . These multiplications will change the elements in the 2
by 2 submatrix at the intersection of rows and with
columns and . Our choice for the elements of and

is shown below, where we focus on the relevant 2 by 2 sub-
matrices of , and :

(60)

If , we take and ; if , we take

and (61)

Since lies between and , and are non-negative real-
valued scalars.

Fig. 5 depicts the transformation from to
. The dashed box is the 2 by 2 submatrix displayed in (60).

Note that and , which are defined in (61), are real-valued
scalars chosen so that

and
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Fig. 5. Operation displayed in (60).

With these identities, the validity of (60) follows by direct com-
putation. Defining and , we set

(62)

It follows from Fig. 5, (60), and the identity ,
that a) and b) hold for . Thus, there exists a real-
valued upper triangular matrix with on the diagonal
and unitary matrices and , , such that

Combining this identity with the SVD, we obtain ,
where

and

A Matlab implementation of this algorithm for the GMD
is posted at the following web site: http://www.sal.ufl.edu/
yjiang/papers/gmd.m. Given the SVD, this algorithm for
the GMD requires flops. For comparison,
reduction of to bidiagonal form by the Golub–Kahan bidi-
agonalization scheme [21], which is often the first step in the
computation of the SVD, requires flops.

APPENDIX B
PROOF OF LEMMA III.3

Rewrite (21)

(63)

Let denote the submatrix containing the first columns
of and the th column. Then

(64)

For the QR decomposition , the geometric
implication of is the component of projected onto the
subspace spanned by the th column of , i.e., . Note

that is orthogonal to the subspace spanned by ,
or equivalently, the column space of . Hence

(65)

where stands for the orthogonal projection onto th null space
of . Therefore

(66)
Inserting (64) into (66) yields

(67)

From (24), we see that

(68)

Hence, . The lemma is proven.

APPENDIX C
PROOF OF PROPOSITION IV.3

Without loss of generality, we assume , where
each entry is of circularly symmetric Gaussian distribution with
zero-mean and unit variance. Consider BPSK modulation. The
average error probability of the GMD scheme is

(69)

where the Q-function is defined as

The diversity gain of the CMD scheme is

(70)

For any QAM constellation, the average error probability is
similar to (69), except for some constants before or inside the
Q-function. Since we focus on the high SNR region, all these
constants will not affect the diversity gain defined in (70).

At high SNR, the typical error event is

(71)

It can be shown that instead of calculating (70), which involves
complicated integrations, we can compute the following [19,
Ch. 3]:

(72)
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Note that

(73)

According to [22, Th. 7.5.3] (with straightforward extensions
from real-valued domain to the complex-valued domain)

(74)

where ’s are independent Chi-squared random variables with
probability density

(75)

Now the typical error event can be written as

(76)

where . Hence

(77)

From (75), we know that as

(78)

Using (72), (77), and (78), we calculate the diversity gain as

(79)

(80)

where . To obtain (80) from
(79), we have used the property that the integral in the numerator
of (79) is dominated by the term with the SNR exponent closest
to zero, as (see [18] for details). Here, the integration
is constrained over because the integration over is domi-
nated by the one over . The reason is as follows. Suppose only

, , and the other s are
negative. Then

Let denote .
Clearly

which implies that the integration over is dominated by that
over . Solving the optimization problem of (80) yields

(81)

Now, we consider UCD. We observe that the power allocation
applied to each eigen subchannel is no greater than . Hence, the
overall channel throughput of UCD is

(82)

where the left term denotes the channel throughput associated
with uniform power allocation. Applying UCD, we obtain m
subchannels with the same SNR:

(83)
The typical error event is

(84)

It follows from (83) that

(85)

It is easy to see that

(86)

Hence

(87)

which implies that water filling does not help improve diversity
gain.
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It follows from the analyses of [18] that the UCD scheme
achieves the optimal diversity-multiplexing tradeoff. In partic-
ular, when the transmission data rate is fixed, disregard the in-
crease of input SNR, and the diversity gain is

.
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