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a b s t r a c t

Aunified framework is presented for the numerical solution of optimal control problems using collocation
at Legendre–Gauss (LG), Legendre–Gauss–Radau (LGR), and Legendre–Gauss–Lobatto (LGL) points. It
is shown that the LG and LGR differentiation matrices are rectangular and full rank whereas the LGL
differentiation matrix is square and singular. Consequently, the LG and LGR schemes can be expressed
equivalently in either differential or integral form, while the LGL differential and integral forms are not
equivalent. Transformations are developed that relate the Lagrange multipliers of the discrete nonlinear
programming problem to the costates of the continuous optimal control problem. The LG and LGR discrete
costate systems are full rank while the LGL discrete costate system is rank-deficient. The LGL costate
approximation is found to have an error that oscillates about the true solution and this error is shown by
example to be due to the null space in the LGL discrete costate system. An example is considered to assess
the accuracy and features of each collocation scheme.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, pseudospectral methods have become increas-
ingly popular in the numerical solution of optimal control prob-
lems (Benson, Huntington, Thorvaldsen, & Rao, 2006; Elnagar,
Kazemi, & Razzaghi, 1995; Fahroo & Ross, 2001, 2008b; Garg et al.,
2009; Kameswaran & Biegler, 2008; Rao et al., 2010; Vlassen-
broeck & Doreen, 1988). Pseudospectral methods are a class of di-
rect collocation where the optimal control problem is transcribed
to a nonlinear programming problem (NLP) by parameterizing
the state and control using global polynomials and collocating
the differential–algebraic equations using nodes obtained from a
Gaussian quadrature. The use of global polynomials together with
Gaussian quadrature collocation points is known to provide ac-
curate approximations that converge exponentially for problems
whose solutions are smooth. For problems where the solutions
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are nonsmooth or not well approximated by global polynomials
of a reasonably low degree, it is preferable to use a finite-element
approach (see Kameswaran and Biegler (2008)) where the time in-
terval [−1, 1] is partitioned into subintervals and a different poly-
nomial is used over each subinterval. In this paper we examine the
properties of global pseudospectral methods for the numerical so-
lution of optimal control problems using Gaussian quadrature col-
location points.

The three most commonly used sets of collocation points
are Legendre–Gauss (LG), Legendre–Gauss–Radau (LGR), and Leg-
endre–Gauss–Lobatto (LGL) points. These three sets of points are
obtained from the roots of a Legendre polynomial and/or linear
combinations of a Legendre polynomial and its derivatives. In re-
cent years, themostwell documented pseudospectralmethods us-
ing these sets of collocation points are the Legendre–Gauss–Lobatto
pseudospectral method (Elnagar et al., 1995; Fahroo & Ross, 2001),
the Legendre–Gauss pseudospectralmethod (Benson et al., 2006; Rao
et al., 2010), and the Legendre–Gauss–Radau pseudospectral method
(Garg et al., 2009).

Upon cursory examination it may appear as if LG, LGR, and
LGL points are essentially similar, with only minor differences
due to the fact that each set of nodes is a different form of
Gaussian quadrature. As we will show in this paper, however, the
differences between these three pseudospectral methods are not
merely cosmetic. Instead, the use of either LG or LGR points leads
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to a distinctly different mathematical form as compared with that
of using LGL points. As a result, the LG and LGR methods have
different convergence properties from the LGL method.

The contributions of this research are as follows. First, we show
that the differentiation matrices of the LG and LGR schemes are
rectangular and full rank, whereas the LGL differentiation matrix
is square and singular. As a result, the LG and LGR methods can be
written equivalently in either differential or implicit integral form,
while the LGLmethod does not have an equivalent implicit integral
form. Second, we show that the LG and LGR transformed adjoint
systems (analogous to the definition in Hager (2000)) are full
rank while the LGL transformed adjoint system is rank-deficient.
Consequently, the LG and LGR costate approximations converge
exponentially while the LGL costate is potentially nonconvergent.
Third, it is identified that the error in the LGL costate is oscillatory
due to the oscillatory nature of the null space of the LGL
transformed adjoint system. Finally, by studying a representative
example, we demonstrate that the LG and LGR state and control
converge at a significantly faster rate as compared with the LGL
method. The numerical example substantiates the aforementioned
nonconvergence of the LGL costate. This paper provides the first
rigorous analysis that identifies the keymathematical properties of
pseudospectral methods using collocation at Gaussian quadrature
points, enabling a researcher or end-user to see clearly the
accuracy and convergence (or nonconvergence) that can be
expected when applying a particular pseudospectral method on a
problem of interest.

2. LG, LGR, and LGL collocation points

The LG, LGR, and LGL collocation points lie on the open interval
τ ∈ (−1, 1), the half open interval τ ∈ [−1, 1) or τ ∈ (−1, 1],
and the closed interval τ ∈ [−1, 1], respectively. Let N be the
number of collocation points and PN(τ ) be the Nth-degree
Legendre polynomial. The LG points are the roots of PN(τ )
(Abramowitz & Stegun, 1965), the LGR points are the roots of
PN−1(τ ) + PN(τ ) (Abramowitz & Stegun, 1965), the flipped LGR
points are the negative of the LGR points, and the LGL points are the
roots of ṖN−1(τ ) together with the points −1 and 1 (Abramowitz
& Stegun, 1965). In this paper we use the flipped LGR points, while
Garg et al. (2009) uses the standard set of LGR points. The LG, LGR,
and LGL points have the property that∫

+1

−1
p(τ )dτ =

N−
i=1

wip(τi)

is exact, respectively, for polynomials of degree at most 2N − 1
(LG), 2N − 2 (LGR), and 2N − 3 (LGL), where wi, 1 ≤ i ≤ N are,
respectively, the LG, LGR, and LGL quadrature weights.

3. Conventions and notation

For each method derived in this paper, (τ1, . . . , τN) denote
the LG, LGR, or LGL quadrature (collocation) points. Furthermore,
for the LG method we introduce the noncollocated points
(τ0, τN+1) = (−1, +1) while for the LGR method we introduce
the noncollocated point τ0 = −1. For each method, the state is
approximated using a basis of Lagrange polynomials,

Li(τ ) =

N∏
j=K
j≠i

τ − τj

τi − τj
, K ≤ i ≤ N, (1)

where K = 1 if the initial point is collocated and K = 0 otherwise.
Next, all vector functions of time are row vectors; that is, x(τ ) =

[x1(τ ), . . . , xn(τ )] ∈ Rn, and we define the approximation of
the state and the control at τ = τi as Xi and Ui, respectively.
Furthermore, when referring to the state approximations at the N
collocation points, we useN ×nmatricesXLG,XLGR, orXLGL, where
each row contains Xi. Similarly, for the LG and LGR methods the
notationX refers to the (N+1)×nmatrix formed byX0 plus either
XLG orXLGR. Using a notation similar to that for the state, we define
the N × n matrices U and 3 that correspond to the control and
Lagrange multipliers, respectively. Finally, the notation Xi:j will be
used to denote rows i through j ofXwhile the notationDi:j attached
to a differentiation matrix D denotes columns i through j of the
matrix D. In addition, the boldface symbol 1will be used to denote
a column vector of all ones.

We let BT denote the transpose of a matrix B. Given vectors a
and b ∈ Rn, the notation ⟨a, b⟩ is used to denote the dot product
between a and b. If f : Rn

→ Rm, then ∇f is the m by n Jacobian
matrix whose i-th row is ∇fi. In particular, the gradient of a scalar-
valued function is a row vector. If φ : Rm×n

→ R and X is an m by
n matrix, then ∇φ denotes the m by n matrix whose (i, j) element
is (∇φ(X))ij = ∂φ(X)/∂Xij.

Expository approach

To simplify the exposition, we focus on the following un-
constrained optimal control problem on the time interval τ ∈

[−1, +1].

minimize Φ(x(1)),
subject to ẋ(τ ) = f(x(τ ),u(τ )), x(−1) = x0,

(2)

where f : Rn
× Rm

→ Rn, and x0 is the initial condition,
which we assume is given. Note that the time interval can be
transformed from [−1, 1] to the time interval


t0, tf


via the affine

transformation t = (tf − t0)τ/2 + (tf + t0)/2. By the Pontryagin
minimum principle, the first-order optimality conditions of the
continuous-time optimal control problem of (2) are given as
λ(1) = ∇Φ(x(1)), (3)

λ̇(τ ) = −∇x⟨λ(τ ), f(x(τ ),u(τ ))⟩, (4)
0 = ∇u⟨λ(τ ), f(x(τ ),u(τ ))⟩. (5)

4. Collocation at LG, LGR and LGL points

In this section we develop our framework for the numer-
ical solution of optimal control problems using collocation at
Legendre–Gauss (LG), Legendre–Gauss–Radau (LGR), and Legen-
dre–Gauss–Lobatto (LGL) points. It is important to note that,
although both the LG and LGR schemes have noncollocated end-
point(s),we still approximate the state at these endpoints as explained
below.

4.1. Collocation at LG points

Consider collocation at the N LG points and let τ0 = −1 and
τN+1 = +1 be noncollocated points. Setting K = 0 in (1), the state
is approximated by a polynomial of degree at most N as

xN(τ ) =

N−
i=0

XiLi(τ ). (6)

It is important to observe that the series (6) includes the
Lagrange polynomial associated with the noncollocated point
τ0 = −1. Differentiating (6) and evaluating the result at the kth
collocation point, τk, gives

ẋN(τk) =

N−
i=0

XiL̇i(τk) =

N−
i=0

DkiXi, Dki = L̇i(τk). (7)

The N × (N + 1) non-square matrix D is called the Gauss
pseudospectral differentiation matrix, where we note that the extra
column of D is due to the Lagrange polynomial L0(τ ) associated
with the noncollocated point τ0 = −1. Suppose now that we let
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D = [D0 D1:N ] where D0 is the first column of D and D1:N are
the remaining N columns. We now prove the following properties
of D: (a) D1:N is nonsingular and (b) D0 = −D1:N1; equivalently,
−D−1

1:ND0 = 1.

Proposition 1. The matrixD1:N obtained by deleting the first column
of the Gauss pseudospectral differentiation matrix D is invertible.

Proof of Proposition 1. Suppose that for some nonzero p ∈ RN+1

with p0 = 0, we have Dp = 0. Let p be the unique polynomial of
degree at most N which satisfies p(τi) = pi, 0 ≤ i ≤ N . Since
the components of Dp are the derivatives of p evaluated at the
collocation points, we have

0 = (Dp)i = ṗ(τi), 1 ≤ i ≤ N.

Since ṗ is a polynomial of degree at most N − 1, it must be
identically zero since it vanishes at N points. Hence, p is constant.
Since p(−1) = 0 and p is constant, it follows that p is identically 0.
This shows that pi = p(τi) = 0 for each i. Since the equation Dp =

0with p0 = 0 has no nonzero solution, D1:N is nonsingular. �

Proposition 2. D0 = −D1:N1; equivalently, −D−1
1:ND0 = 1.

Proof of Proposition 2. The components of the vector D1 are the
derivatives at the collocation points of the constant polynomial
p(τ ) = 1. Therefore, D1 = 0, which implies that D1 = D0 +

D1:N1 = 0. Rearranging, we obtain

D0 = −D1:N1. (8)

Multiplying by D−1
1:N gives −D−1

1:ND0 = 1. �

Using the matrix D, the dynamics are collocated at the N LG
points as

DX = F(XLG,ULG) ⇐⇒ D1:NXLG
= F(XLG,ULG) − D0X0. (9)

Next, let XN+1 be the approximation of the state at τN+1 = +1.
Because ẋN is a polynomial of degree at most N − 1, we have from
the LG quadrature rule that

XN+1 = X0 + wTDX = X0 + wTF(XLG,ULG). (10)

The finite-dimensional nonlinear programming problem (NLP)
arising from the LG discretization is then given as

minimize Φ(XN+1)

subject to

DX = F(XLG,ULG),

XN+1 = X0 + wTF(XLG,ULG),
X0 = x0,

(11)

where the NLP variables are (X0, . . . ,XN+1) and (U1, . . . ,UN). The
Lagrangian of the NLP (11) is

L = Φ(XN+1) + ⟨3LG, F(XLG,ULG) − DX⟩

+ ⟨3N+1,wTF(XLG,ULG) + X0 − XN+1⟩,

where 3 is a Lagrange multiplier and X0 = x0 is the fixed initial
condition. The Karush–Kuhn–Tucker (KKT) optimality conditions
for the NLP of (11) are then given as

DT
1:N3LG

= ∇X ⟨3
LG

+ W13N+1, F(XLG,ULG)⟩, (12)

3N+1 = ∇XΦ(XN+1), (13)

0 = ∇U ⟨W−13LG
+ 13N+1, F(XLG,ULG)⟩, (14)

whereW is an N × N diagonal matrix of LG weights.

4.1.1. LG transformed adjoint system
Analogous to Hager (2000), we now reformulate the KKT

conditions of the NLP given in (11) so that they become a
discretization of the first-order optimality conditions for the
continuous control problem (2). First, let

λ = W−13LG
+ 13N+1

λN+1 = 3N+1.
(15)

Let DĎ be the N × (N + 1) matrix given by

DĎ
ij = −

wj

wi
Dji, (i, j) = 1, . . . ,N, (16)

DĎ
i,N+1 = −

N−
j=1

DĎ
ij, i = 1, . . . ,N. (17)

Substituting (15) into (12)–(14) and simplifying, we obtain

λN+1 = ∇XΦ(XN+1), (18)

−(DĎ
1:Nλ + DĎ

N+1λN+1) = ∇X ⟨λ, F(XLG,ULG)⟩, (19)

∇U ⟨λ, F(XLG,ULG)⟩ = 0. (20)

Comparing (18)–(20) to the continuous-time first-order optimality
conditions (3)–(5), we observe that the transformed variable λN+1
satisfies exactly the same conditions as the continuous costate
λ(t) evaluated at the endpoint. Also, the discrete and continuous
necessary condition for the control has exactly the same structure.
Below we show that the system (19) is a pseudospectral scheme
for the costate equation. First, though, we note that the expression
λ0 = 3N+1 −DT

0Λ
LG provides an approximation to the continuous

costate evaluated at τ = −1. Then, applying (8), (15), (16) and (19),
we have

λ0 = λN+1 +

N−
j=1

wj∇X ⟨λj, f(Xj,Uj)⟩. (21)

Hence, λ0 amounts to a quadrature approximation to the integral
over [−1, 1] of the adjoint equation. We now show that DĎ

is a differentiation matrix and hence, the system (19) is a
pseudospectral scheme for the costate equation.

Theorem 1. The matrix DĎ defined in (16) and (17) is a differentia-
tion matrix for the space of polynomials of degree N. More precisely,
if q is a polynomial of degree at most N and q ∈ RN+1 is the vector
with ith component qi = q(τi), 1 ≤ i ≤ N + 1, then

(DĎq)i = q̇(τi), 1 ≤ i ≤ N (q of degree ≤ N).

Proof of Theorem 1. Let E denote the differentiation matrix
defined in the statement of the theorem. That is, E is anN×(N+1)
matrix with the property that for all q ∈ RN+1, we have

(Eq)i = q̇(τi), 1 ≤ i ≤ N,

where q is the polynomial of degree at most N which satisfies
qj = q(τj), 1 ≤ j ≤ N + 1. If p and q are smooth, real-valued
functions with q(1) = p(−1) = 0, then integration by parts gives∫ 1

−1
ṗ(τ )q(τ )dτ = −

∫ 1

−1
p(τ )q̇(τ )dτ . (22)

Suppose p and q are polynomials of degree at most N , with N ≥ 1;
in this case, ṗq and pq̇ are polynomials of degree at most 2N − 1.
Since Gauss quadrature is exact for polynomials of degree at most
2N − 1, the integrals in (22) can be replaced by their quadrature
equivalents to obtain

N−
j=1

wjṗjqj = −

N−
j=1

wjpjq̇j, (23)

where pj = p(τj) and ṗj = ṗ(τj), 1 ≤ i ≤ N, p is any polynomial
of degree at most N which vanishes at −1, and q is any polynomial
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of degree at most N which vanishes at +1. A polynomial of degree
N is uniquely defined by its value at N + 1 points. Let p be the
polynomial of degree at most N which satisfies p(−1) = 0 and
pj = p(τj), 1 ≤ j ≤ N . Let q be the polynomial of degree at most N
which satisfies q(+1) = 0 and qj = q(τj), 1 ≤ j ≤ N . Substituting
ṗ = Dp and q̇ = Eq in (23) gives

(WDp)Tq1:N = −(Wp1:N)TEq,

where W is the diagonal matrix of quadrature weights. Since the
first component of p and the last component of q vanish, this
reduces to

pT
1:N(DT

1:NW + WE1:N)q1:N = 0.

Since p1:N and q1:N are arbitrary, we deduce that

DT
1:NW + WE1:N = 0,

which implies that

Eij = −
wj

wi
Dji, (i, j) = 1, . . . ,N. (24)

Since E is a differentiation matrix, E1 = 0, which yields

Ei,N+1 = −

N−
j=1

Eij, 1 ≤ i ≤ N. (25)

Comparing (16) with (24) and (17) with (25), we see that DĎ

= E. �

Thus we have shown that the transformed KKT conditions are
related to a pseudospectral discretization of the continuous costate
equation. Furthermore, the differentiationmatrices of the state and
costate discretizations are based on the derivatives of polynomials
of degree N . Note that either D or DĎ operate on polynomial
values to give the derivative at the collocation points. However,
D operates on the polynomial values p(τi), 0 ≤ i ≤ N , while DĎ

operates on the polynomial values p(τi), 1 ≤ i ≤ N + 1.

4.1.2. Integral formulation using LG collocation
We will now show that the LG pseudospectral discretization of

the state equation has an equivalent integrated formulation. Let p
be any polynomial of degree at most N . By the construction of the
N × (N + 1) matrix D, we have Dp = ṗ where

pi = p(τi), 0 ≤ i ≤ N,

ṗi = ṗ(τi), 1 ≤ i ≤ N.
(26)

Multiplying the identity ṗ = Dp = D0p0 + D1:Np1:N by D−1
1:N and

utilizing Proposition 2 gives

pi = p0 +

D−1

1:N ṗ

i , 1 ≤ i ≤ N. (27)

Next, we obtain a different expression for pi − p0 based on the
integration of the interpolant of the derivative. First, set K = 1 in
(1) and let LĎj (τ ) be the resulting Lagrange polynomial basis. Notice
that the Lagrange polynomials Lj defined in (6) are degree N while
the Lagrange polynomials LĎj are degree N − 1. Then because ṗ is a
polynomial of degree at most N − 1, it can be interpolated exactly
by the Lagrange polynomials LĎj :

ṗ =

N−
j=1

ṗjL
Ď
j (τ ). (28)

Integrating ṗ from −1 to τi, we obtain

p(τi) = p(−1) +

N−
j=1

ṗjAij,

Aij =

∫ τi

−1
LĎj (τ )dτ , 1 ≤ i ≤ N.

(29)
Utilizing the notation (26), we have

pi = p0 + (Aṗ)i , 1 ≤ i ≤ N. (30)

The relations (27) and (30) are satisfied for any polynomial of
degree at most N . We equate (27) and (30) to obtain

Aṗ = D−1
1:N ṗ.

Choose ṗ from the columns of the identity matrix to deduce that
A = D−1

1:N . Multiply (9) by A = D−1
1:N and utilize Proposition 2 to

obtain

Xi = X0 + AiF(XLG,ULG), 1 ≤ i ≤ N + 1, (31)

where Ai is the ith row of A = D−1
1:N , 1 ≤ i ≤ N , and AN+1 =

wT. Hence, the differential form of the state equation DX =

F(XLG,ULG) and the integral form of (31) are equivalent; the
elements of A are the integrals of the Lagrange basis LĎj , while the
elements of D in the differential form are the derivatives of the
Lagrange basis Li defined in (7). Note that the integral form of LG
collocation provides an approximation to the state at each of the LG
points plus the terminal point. We call the differential form of LG
collocation derived in this paper the Gauss pseudospectral method.

Similar to the derivation of (31), we can also formulate an
integrated version of the discrete costate dynamics:

λi = λN+1 − Bi∇X ⟨λ, F(X,U)⟩, 0 ≤ i ≤ N, (32)

where B0 = −wT, Bi for 1 ≤ i ≤ N is the ith row of B = (DĎ
1:N)−1,

and

Bij =

∫ τi

+1
LĎj (τ )dτ .

A compact representation of the LG pseudospectrally discretized
first-order optimality conditions are given by (18), (20), (31) and
(32), which we collect below:

Xi = X0 + AiF(X,U), 1 ≤ i ≤ N + 1,
λi = λN+1 − Bi∇X ⟨λ, F(X,U)⟩, 0 ≤ i ≤ N,

λN+1 = ∇XΦ(XN+1),

0 = ∇U ⟨λ, F(X,U)⟩.

Thus, we have shown that the differential and integral forms of the
state and costate dynamics in the Gauss pseudospectral method
are equivalent.

4.2. Collocation at LGR points

Consider collocation at the N flipped LGR points (τ1, . . . , τN)
(where τN = +1) on [−1, +1] and let τ0 = −1 be a noncollocated
initial point. Setting K = 0 in (1), the state is approximated by a
polynomial of degree at most N as

xN(τ ) =

N−
i=0

XiLi(τ ). (33)

It is important to observe that the series (33) includes the Lagrange
polynomial associated with the noncollocated point τ0 = −1.
Differentiating (33) and evaluating the result at the kth collocation
point, τk, gives

ẋN(τk) =

N−
i=0

XiL̇i(τk) =

N−
i=0

DkiXi, Dki = L̇i(τk). (34)

The N × (N + 1) non-square matrix D is called the Radau
pseudospectral differentiation matrix. Similar to the result for LG
collocation, the matrix D has one more column than row due to
the Lagrange polynomial L0(τ ) associated with the noncollocated
point τ0 = −1. In a manner similar to that given in Garg et al.
(2009), the following properties can be shown for the Radau
differentiationmatrix: (a)D1:N is nonsingular and (b)D0 = −D1:N1
or equivalently, −D−1

1:ND0 = 1. Collocating the dynamics at the N
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flipped LGR points, we have

DX = F(XLGR,ULGR). (35)

The finite-dimensional nonlinear programming problem (NLP)
associated with the LGR method is then given as

minimize Φ(XN)

subject to DX = F(XLGR,ULGR), X0 = x0.
(36)

The Lagrangian of the NLP (36) is then given as

L = Φ(XN) + ⟨3LGR, F(XLGR,ULGR) − DX⟩ + ⟨µ, x0 − X0⟩,

where3 andµ are Lagrangemultipliers. Unlike the LG scheme, we
introduce the multiplier µ corresponding to the initial condition—
if we were to treat X0 as fixed in the Radau Lagrangian, then there
would be an asymmetry since U0, the control corresponding to the
τ = −1, appears in the Radau discretization. The KKT optimality
conditions for the NLP of (36) are then given as

µ = −DT
03

LGR, (37)

∇X ⟨3
LGR, F(XLGR,ULGR)⟩ = DT

1:N3LGR, (38)

∇(Φ(XN)) + ⟨3N , f(XN ,UN)⟩ = DT
N3LGR, (39)

∇U ⟨3LGR, F(XLGR,ULGR)⟩ = 0. (40)

The system dynamics in (36) can be rewritten

D1:NX1:N = F(XLGR,ULGR) − D0x0. (41)

Similarly, the costate equations (38) and (39) can be rewritten

DT
1:N3LGR

= ∇X ⟨3
LGR, F(XLGR,ULGR)⟩ + eN∇Φ(XN), (42)

where eN is the last columnof the identitymatrix. Finally, as shown
in Garg et al. (2009), the N × N matrix D1:N appearing on the left-
hand side of (41) and (42) is invertible (see Garg et al. (2009) for the
proof).

4.2.1. LGR transformed adjoint system
Analogous to Garg et al. (2009), the transformed adjoint

variables corresponding to Radau collocation can be expressed in
terms of the N × nmatrix λ and the row vector λ0,

λ = W−13LGR, (43)

λ0 = −DT
03

LGR (44)

where W is a diagonal matrix of LGR weights. Let DĎ be an N × N
matrix defined as follows:

DĎ
NN = −DNN +

1
wN

and DĎ
ij = −

wj

wi
Dji otherwise. (45)

Using the transformations of (43) and (44), together with DĎ, we
obtain the following transformed KKT conditions for the flipped
LGR discretization (see Garg et al. (2009) for details):

λ0 = µ, (46)

∇Φ(XN) = λ0 −

N−
i=1

wi∇X ⟨λi, f(Xi,Ui)⟩, (47)

DĎλ = −∇X ⟨λ, F(XLGR,ULGR)⟩ +
eN
wN

(λN − ∇Φ(XN)), (48)

0 = ∇U ⟨λ, F(XLGR,ULGR)⟩. (49)

Observe that the discrete and continuous necessary condition for
the control [compare (5) and (49)] have exactly the same struc-
ture. Moreover, the transformed variable λ0 in (46), corresponding
to the continuous costate λ(−1), is free, exactly as in the continu-
ous optimality conditions (3)–(5). The summation in (47) approx-
imates the integral of λ̇ over the interval [−1, 1]. Hence, the right
side of (47) approximates λ(1), which corresponds to λN , and the
condition (47) is a subtle way of enforcing the equality ∇Φ(XN) =

λN , in an approximate sense. Moreover, when ∇Φ(XN) =

λN , then the last term in the discrete dynamics (48) vanishes. Fi-
nally, as has been shown in Garg et al. (2009), the system (48), with
the last term dropped, is a pseudospectral scheme for the costate
equation. More precisely, if p is a polynomial of degree at most
N − 1 and pj = p(τj), 1 ≤ j ≤ N , then

(DĎp)i = ṗ(τi), 1 ≤ i ≤ N (p of degree ≤ N − 1).

Thus we have shown that the transformed KKT conditions are
related to a pseudospectral discretization of the continuous costate
equation. However, the differentiation matrix DĎ in the costate
discretization is connected with the derivatives of polynomials
of degree at most N − 1, while the differentiation matrix in the
state discretization is based on the derivatives of polynomials of
degree N .

4.2.2. Integral formulation using LGR collocation
In Garg et al. (2009) it was shown that the pseudospectral

method using the standard LGR points has an equivalent inte-
grated formulation. The flipped LGR points possess the same in-
tegral/differential property given as follows.

Suppose now that p is any polynomial of degree atmostN . Then,
by the construction of the N × (N +1) differentiationmatrixD, we
have Dp = ṗ where

pi = p(τi), 0 ≤ i ≤ N, ṗi = ṗ(τi), 1 ≤ i ≤ N. (50)

Multiplying the identity ṗ = Dp = D0p0 + D1:Np1:N by D−1
1:N and

utilizing the fact that D0 = −D1:N1, we obtain

pi = p0 + (D−1
1:N ṗ)i, 1 ≤ i ≤ N. (51)

Next, set K = 1 in (1) and let LĎi (τ ) be the resulting Lagrange
polynomial basis. Then ṗ can be interpolated exactly as

ṗ(τ ) =

N−
j=1

ṗjL
Ď
j (τ ).

Integrating from −1 to τi, we obtain

pi = p0 + (Aṗ)i, 1 ≤ i ≤ N, (52)

Aij =

∫ τi

−1
LĎj (τ ) dτ , 1 ≤ i, j ≤ N. (53)

By (51) and (52), we have A = D−1
1:N . Furthermore, by (41) and the

fact that D−1
1:ND0 = −1,

Xi = X0 + AiF(XLGR,ULGR), 1 ≤ i ≤ N, (54)

where Ai is the ith row of A. Hence, the differential form of the
state equation DX = F(XLGR,ULGR) is equivalent to the integrated
form (54), where the elements of A are integrals of the Lagrange
basis functions LĎj defined in (53) while the elements of D in the
differential form are the derivatives of the Lagrange basis function
Li defined in (34). We call the differential form of LGR collocation
derived in this paper the Radau pseudospectral method.

4.3. Collocation at LGL points

Consider now collocation using the N LGL collocation points.
Unlike either Gauss or Radau collocation, where additional nodes
were introduced at the endpoints, there is no need for additional
nodes with LGL since the endpoint −1 and +1 are collocation
points. Hence, the state at the endpoints naturally appear in the
discrete problem. Setting K = 1 in (1), the state is approximated
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by a polynomial of degree at most N − 1 as (Elnagar et al., 1995;
Fahroo & Ross, 2001)

xN(τ ) =

N−
i=1

XiLi(τ ). (55)

Differentiating the series and evaluating at the collocation point τk
gives (Elnagar et al., 1995; Fahroo & Ross, 2001)

ẋN(τk) =

N−
i=1

XiL̇i(τk) =

N−
i=1

DkiXi, Dki = L̇i(τk). (56)

The N × N square matrix D is called the Lobatto pseudospectral
differentiationmatrix. In the LGL case thematrixD is square because
the collocation points are the same as the approximation points
(that is, the endpoints are also collocation points). Note that the
Lobatto differentiation matrix is singular since D1 = 0.

The finite-dimensional NLP corresponding to the LGL pseu-
dospectral method is then given as

minimize Φ(XN)

subject to DXLGL
= F(XLGL,ULGL), X1 = x0.

(57)

The Lagrangian associated with (57) is
L = Φ(XN) + ⟨3LGL, F(XLGL,ULGL) − DXLGL

⟩ + ⟨µ, x0 − X1⟩.

The KKT optimality conditions for the NLP of (57) are then given as
(Fahroo & Ross, 2001)

∇⟨31, f(X1,U1)⟩ − DT
13

LGL
= µ, (58)

DT
N3LGL

− ∇X ⟨3N , f(XN ,UN)⟩ = ∇XΦ(XN) (59)

∇X ⟨32:N−1, F(X2:N−1,U2:N−1)⟩ = DT
2:N−132:N−1, (60)

∇U ⟨3LGL, F(XLGL,ULGL)⟩ = 0. (61)

4.3.1. LGL transformed adjoint system
Using an approach nearly identical to that used for LGR

collocation, the KKT conditions of the NLP are now reformulated
so that they become a discretization of the first-order optimality
conditions for the continuous control problem (2). Let wi, 1 ≤ i ≤

N , be the LGL quadrature weights; the transformed adjoint is the
N × n matrix λ defined by Fahroo and Ross (2001)
λi = 3i/wi, 1 ≤ i ≤ N. (62)
Let DĎ be the N × N matrix defined as follows:

DĎ
ii = Dii, 2 ≤ i ≤ N − 1

DĎ
11 = −D11 −

1
w1

DĎ
NN = −DNN +

1
wN

DĎ
ij = −

wj

wi
Dji, 1 ≤ i, j ≤ N, i ≠ j.

(63)

The substitutions (62) and (63) in (59)–(60) lead to the following
transformed costate equation:

DĎλ = −∇X ⟨λ, F(XLGL,ULGL)⟩ +
e1
w1

(µ − λ1)

+
eN
wN

(λN − ∇XΦ(XN)), (64)

where e1 and eN are the first and last columns of theN×N identity
matrix. Finally, (61) implies that

∇U ⟨λ, F(XLGL,ULGL)⟩ = 0. (65)
Observe that the continuous and discrete control necessary
conditions (5) and (65) again have the same structure. The discrete
and continuous adjoint of (4) and (64), however, are quite different
from one another because the continuous endpoint condition (3)
is not present in the discrete system (64). Finally, it has been
shown in Fahroo and Ross (2006) that DĎ

= D for LGL collocation,
thus making DĎ a differentiation matrix connected with the LGL
quadrature points.

4.3.2. Integral formulation using LGL collocation
An integral analog of LGL collocation can be developed as

follows: Given a polynomial p of degree atmostN−1, its derivative
ṗ is a polynomial of degree at most N − 2. Set K = 1 in (1) and let
LĎj (τ ) be the Lagrange polynomial basis used to interpolate ṗ. Then
ṗ can be interpolated exactly using LĎj (τ ) as

ṗ(τ ) =

N−
j=1

ṗjL
Ď
j (τ ), ṗj = ṗ(τj).

Again, we integrate from −1 to τi to obtain the relation

p(τi) = p(−1) +

N−
j=1

ṗjAij,

Aij =

∫ τi

−1
LĎj (τ ) dτ , 2 ≤ i ≤ N.

(66)

If this is applied to each component of the state variable, then we
have

Xi = X0 + AiF(XLGL,ULGL), 2 ≤ i ≤ N, (67)

where Ai is the ith row of A. Note, though, that the integrated
scheme (67) is not equivalent to the original LGL collocation
system, it is an altogether different scheme. In fact, the original
LGL discrete system contains N equations, one equation for each
collocation point while (67) represents N − 1 equations because
the first row of the matrix A is zero. It is noted that the Lobatto
integration matrix given (67) is the same as that found in Axelsson
(1964).

5. Unified view of pseudospectral methods

5.1. State endpoint approximation

With each of the collocation schemes, the state at the final
time is approximated by a quadrature rule associated with the
collocation points. For LG collocation, this quadrature rule is
contained in the constraint (10):

XN+1 = X0 + wT
LGF(X

LG,ULG). (68)

Here X0 and XN+1 are the approximations to the state at τ = −1
and τ = +1 respectively, and wT

LGF(X
LG,ULG) is a quadrature

approximation to the integral


+1
−1 ẋ(t) dt .

Now consider the Lobatto differentiation matrix DLGL and the
corresponding quadratureweightwLGL. By the exactness of the LGL
quadrature rule, we have

(wT
LGLD

LGL)j =

∫
+1

−1
L̇Ďj (t) dt =


−1, j = 1,
0, 2 ≤ j ≤ N − 1,
+1, j = N

where j corresponds to the jth element in the row vector wD.
Hence, multiplying each side of the LGL state equation DXLGL

=

F(XLGL,ULGL) by wT
LGL yields the identity

XN = X1 + wT
LGLF(X

LGL,ULGL). (69)

For Lobatto collocation, X1 and XN correspond to the state at τ =

−1 and τ = +1 respectively. Hence, the Lobatto identity (69) is
analogous to the Gauss identity (68).

Finally, let us consider the LGR collocation scheme. Since the
Lagrange polynomials in (33) start from i = 0, it follows that
for the Radau differentiation matrix DLGR and the corresponding
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quadrature weightswLGR, we have

(wT
LGRD

LGR)j =

∫
+1

−1
L̇j(t)dt =


−1, j = 0,
0, 1 ≤ j ≤ N − 1,
+1, j = N.

As a result, multiplying each side of the LGR state equation
DXLGR

= F(XLGR,ULGR) by wT
LGR yields the identity

XN = X0 + wT
LGRF(X

LGR,ULGR). (70)
For Radau collocation, X0 and XN correspond to the state at τ =

−1 and τ = +1 respectively. Hence, each collocation scheme
ultimately leads to a state approximation at the terminal time
based on the scheme’s quadrature rule [see (68)–(70)].

With each of the schemes, the initial state is introduced in the
discretization through interpolation. In particular, for either LG or
LGR collocation, the initial value of the state variable appears as the
coefficient of L0 in the expansion (6). Here L0 is the Lagrange basis
function associated with the noncollocated point τ0 = −1. For LGL
collocation, the initial value of the state appears as the coefficient
of LĎ1 in (55). In this case, LĎ1 is the Lagrange basis function associated
with the collocated Lobatto point τ1 = −1.

5.2. Map from control to state

Another interesting feature of the three pseudospectral
schemes concerns the discrete mapping from the control to the
state. Consider the continuous-time dynamics
ẋ = f(u), (71)
where x(τ ) ∈ Rn is the state and u(τ ) ∈ Rm is the control. When
either the LG or LGR method is used to discretize the continuous
dynamics,we obtain a systemof the formDX = D0X0+D1:NX1:N =

F(U), where D is the Gauss/Radau differentiation matrix and D0 is
the first column ofD.We have already shown thatD1:N is invertible
and that D−1

1:ND0 = −1. Consequently, we have

X1:N = 1X0 + D−1
1:NF(U). (72)

If the initial condition is given, then (72) yields a unique discrete
state X1:N for each choice of the control U, analogous to the
differential equation (71). For the Lobatto scheme, the dynamics
of (71) are approximated as

DLPMX1:N = F(U), (73)
where we recall that the matrix DLPM is square and singular.
Consequently, (73) will only have a solution if F(U) lies in the
column space of DLPM. And if F(U) lies in the column space of DLPM,
there are an infinite family of states satisfying (73) corresponding
to the null space of DLPM. Hence, the correspondence between
control and state with Lobatto is much more complex than with
either Gauss or Radau due to the singularity of the Lobatto
differentiation matrix.

5.3. Costate dynamics

The three pseudospectral schemes treat the costate endpoint
conditions quite differently. For LG collocation, the endpoint
condition appears explicitly in the transformed adjoint condition
(18). For LGR collocation, the initial condition appears explicitly in
(46) while the terminal condition appears in the approximate form
(47). For LGL collocation, the boundary conditions are embedded
inside the costate dynamics (64).

There is a fundamental difference between the LGL costate
dynamics and the costate dynamics for LGR and LG. The discrete
costate dynamics form a linear system of equations in λ; for LG and
LGR, the equations are typically invertible,while for LGL, thematrix
in the equations has a null space. In particular, for LG the discrete
costate dynamics are defined by Eqs. (18)–(19), which represent
N + 2 equations in the N + 2 unknowns λ0, . . . ,λN+1. For LGR
the costate dynamics are defined by (47)–(48), which represent
N+1 equations in theN+1 unknownsλ0, . . . ,λN . The LGL costate
dynamics is given by (64), which represents N equations in N + 1
unknowns λ1, . . . ,λN , µ. Hence, the matrix of the linear system
has a null space and there exists an infinite number of solutions
to the LGL costate dynamics. The dimension of the null space is at
least n since λi ∈ Rn.

Despite the null space in the LGL costate dynamics, a wealth
of numerical examples, including the two that follow in Section 6,
have been published in the literature (Fahroo & Ross, 2001,
2006, 2008a,b; Gong, Ross, Kang, & Fahroo, 2008; Ross & Fahroo,
2008). These examples demonstrate that the LGL scheme leads
to convergent approximations to the state and control variable.
However, due to thenull space in thediscrete costate dynamics, the
concept of convergence for the costate is open to interpretation.
Gong et al. (2008), show in their ‘‘Covector Mapping Theorem’’
that any solution to the first-order optimality conditions (3)–(5)
for the continuous control problem, approximately satisfies the
first-order optimality conditions for the discrete LGL problem (57),
and the error tends to zero as N → ∞. This shows that among
the infinite set of solutions associated with the discrete costate
dynamics, there exists a good approximation to the continuous
costate. Moreover, in Gong et al. (2008) the authors propose
a closure condition for selecting a good approximation to the
continuous costate from among the infinite set of solutions to the
costate dynamics. In the context of our control problem (2), the
closure condition amounts to choosing a solution to the discrete
costate Eq. (64) which satisfies the conditions ‖λ1 − µ‖ ≤ δ and
‖λN − ∇XΦ(XN)‖ ≤ δ, where δ is some given error tolerance. In
Theorem 4 of Gong et al. (2008) it is shown that an asymptotically
valid choice for δ is of the form δ = N (1.5−m), where m ≥

4, independent of N , depends on the number of derivatives of
smoothness of an optimal solution. In practice, the null space for
the LGL costate dynamics is often observed to be highly oscillatory.
As a result, page 276 of Fahroo and Ross (2001) suggested that the
computed costate can be post-processed using a filter to obtain a
good approximation to the continuous costate.

6. Example

In order to demonstrate the key characteristics of the Gauss,
Radau, and Lobatto pseudospectral methods, consider the follow-
ing optimal control problem: minimize J = −y(2) subject to the
dynamic constraint ẏ =

5
2 (−y + yu − u2) and the initial condition

y(0) = 1. The solution to this optimal control problem is y∗(t) =

4/a(t), u∗(t) = y∗(t)/2, and λ∗
y(t) = − exp(2 ln(a(t)) − 5t/2)/b,

where a(t) = 1 + 3 exp(5t/2) and b = exp(−5) + 6 + 9 exp(5).
The example was solved using the Gauss, Radau, and Lobatto

pseudospectral methods using the NLP solver SNOPT with
optimality and feasibility tolerances of 10−15 and 2 × 10−15,
respectively. For each method, the initial guess was the exact
solution to the continuous optimal control problem. Figs. 1–3
show the base 10 logarithm of the L∞-norm errors for the state,
control, and costate, respectively. Fig. 1 shows that the state
error using either the Gauss or Radau pseudospectral methods is
approximately two to four orders of magnitude smaller than the
state for the Lobatto pseudospectral method forN ≤ 15. In Fig. 2, it
is seen that the Gauss and Radau control is between two and seven
orders ofmagnitudemore accurate than the corresponding Lobatto
controls for N ≤ 15. For N > 15, the Gauss and Radau state and
control errors drop to machine precision (approximately 10−16),
while the Lobatto errors achieve machine precision at N = 30.

In Fig. 3 it is seen that the Gauss and Radau costate errors
decrease to near the optimizer tolerances (approximately 10−15)
while the Lobatto costate error remains above 10−2. Fig. 4 shows
an enlarged plot of the exact costate and the approximations
generated by all three methods for N = 30. It is seen that
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Fig. 1. State errors for example.

Fig. 2. Control errors for example.

Fig. 3. Costate errors for example.

the Lobatto costate oscillates about the exact solution while the
Gauss and Radau costates are indistinguishable from the optimal
solution. The oscillation of the Lobatto costate is due to the null
space in the Lobatto costate dynamics discussed in Section 5. Since
n = 1 in this problem, the dimension of the null space is 1. In
Fig. 5 we plot a vector in the null space. Comparing Figs. 4 to 5, we
see that the oscillations in the Lobatto costate around the correct
costate are essentially due to the addition of vector in the null
space. Fig. 4 shows a modified Lobatto costate obtained by adding
0.4 times the null space vector given in Fig. 5 to the costate estimate
obtained from the NLP solver; it is seen that the modified costate
is quite close to the continuous costate.

7. Conclusions

A unified framework has been presented for the numeri-
cal solution of optimal control problems using collocation at
Fig. 4. Enlargement of costate for example.

Fig. 5. Null space of Lobatto transformed adjoint system.

Legendre–Gauss (LG), Legendre–Gauss–Radau (LGR), and Legen-
dre–Gauss–Lobatto (LGL) points. It was shown that the LG and LGR
differentiation matrices are rectangular and full rank whereas the
LGL differentiation matrix is square and singular. This fact leads to
the property that the LG and LGR schemes can be expressed equiv-
alently in either differential or integral form, while the differential
and integral forms of the LGL method are not equivalent. It was
found that LG and LGR transformed adjoint systems are full rank
whereas the LGL transformed adjoint system is rank-deficient. The
rank-deficiency in the LGL discrete costate leads to the property
that the LGL costate oscillates about the true solution. A numeri-
cal example was studied, where it was observed that the error in
the state and control approximations tend to zero at an exponen-
tial rate for all 3 methods, but that the Gauss and Radau state and
control converge at a faster rate than that of Lobatto. It was found,
however, that the Lobatto costate did not converge for the exam-
ple, while the Gauss and Radau costates converged at a rate similar
to that for the state and control.
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