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UPDATING THE INVERSE OF A MATRIX*

WILLIAM W. HAGERY

Abstract. The Sherman-Morrison-Woodbury formulas relate the inverse of a matrix after a small-
rank perturbation to the inverse of the original matrix. The history of these fomulas is presented and
various applications to statistics, networks, structural analysis, asymptotic analysis, optimization, and partial
differential equations are discussed. The Sherman-Morrison-Woodbury formulas express the inverse of a
matrix after a small rank perturbation in terms of the inverse of the original matrix. This paper surveys the
history of these formulas and we examine some applications where these formulas are helpful.
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1. History. This paper is in response to Gene Golub’s suggestion that an expo-
sitory paper be prepared concerning various applications of the Sherman-Morrison
and Woodbury formulas. We focus on the following result. If both A and I — VA~™'U
are invertible, then A — UV is invertible and

(1) [A—UV] '=A""+A7'U0-VA~'U) 'VA"
The matrix I — VAU is often called the capacitance matrix. Suppose that U is n X m
with columns u,, u,, ---,u,, and V is m X n with rows v,, v,, - -+, v,,. From the
identity
UV = Z u,;v;,
j=1

1

we see that (1) provides a formula for the inverse of a matrix after it is modified by
m rank 1 corrections. Observe that the matrix I — VA™'U is m X m. Formula (1) is
useful in situations where m is much smaller than # and the structure of A is “nice”
so that the effort involved in evaluating the correction A™'U(I — VA™'U)"'VA' is
small relative to the effort involved in inverting a general # X n matrix.

In the special case where U is a column vector u and V is a row vector v,' (1)
simplifies to

(2) [A—uv] '"=A""+aA 'uvA"" where a=1/(1 —vA'u).

Frequently, (2) is called the Sherman-Morrison formula while (1) is called the
Woodbury formula. However, a study of the literature reveals that (1) appeared in
several papers before Woodbury’s report [52] while (2) is actually a formula given by
Bartlett [6]. In this section, we give a brief history of the Inverse Matrix Modification
Formula.

The Modification Formula emanates from studies of partitioned matrices. Let us
generalize (1) by replacing V with D'V, giving us the relation

3) B'=A"+A"'UMD-VA~'U) 'VA™'
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" Our convention is that all vectors are column vectors except for v, which is a row vector.
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where B=A — UD™'V. A matrix with the form of B is called a Schur complement.
Hence, the Modification Formula provides an expression for the inverse of a Schur
complement. An excellent review of Schur complements and their applications is
given by Cottle in [12].

Letting x denote the solution to Bx = b and defining the vector

y=—(D-VA~'U)"'VA™'D,
we have from (3) that the pair (x, y) satisfies the block-partitioned equation

@ v sl

Duncan’s 1944 paper [16] gives two different representations for the inverse of the
coefficient matrix in (4). In particular, if M denotes the coefficient matrix given by

[a U
Mely bl
then
AT +AUCT'VA™' —A-'UC™]
-1 _
(5a) M '—[ —C'VA™! c! ]
where C =D — VA~'U and
B! _B-'UD"' |
-1
(5b) M _[-—D_IVB_1 D_‘+D”'VB_'UD_'_'

Observe that (5b) is obtained from (5a) by interchanging rows and columns and
relabeling the coefficients. Equating the (1, 1) elements of (5a) and (5b) and setting
D = I, we obtain (1) (see [16, eq. (4.10)]).

Assuming that both A and C =D — VA™'U are invertible, the identity (5a) is
obtained using block Jordan elimination, starting in the upper left corner. Assuming
that both D and B= A — UD™'V are invertible, the identity (5b) is obtained using
block Jordan elimination, starting in the lower right corner. These assumptions
overlap in the sense that if A, D, and C are invertible, then B is invertible. To prove
this, we multiply the first block of rows from M by VA™' and subtract from the
second block of rows to obtain

(6a) I 0jjA U|_|A U _|A U

-VA~™' I{|V D 0 D-VA'U 0 CYy
and we multiply the second block of rows from M by UD™' and subtract from the
first block of rows to obtain

(6b) I -UD7'||A U|_ A-UD7'V 0 _(B 0
0 I V D A" D| |V Df
Taking the determinant of (6a) and (6b) gives us the relations

det M =det A det C=det D det B.

Thus if A is invertible, then M is invertible if and only if C is invertible. And if D is
invertible, then M is invertible if and only if B is invertible. Moreover, if A and D are
invertible, then B is invertible if and only if C is invertible.

The Modification Formula also appears in Guttman’s 1946 paper [24] dealing
with enlargement methods for computing the inverse of a matrix. In highlighting
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some of the features of this method. Guttman remarks that “The first-order procedure
outlined in the next section has been learned by statistical clerks in about ten minutes.
People who calculate inverses only occasionally and forget the process between times
should find the method as economical as those who must constantly compute
inverses.” In the enlargement method for inverting a matrix, we successively compute
the inverses of the leading principal submatrices using (5a) to express the inverse of a
(k+ 1) X (k+ 1) submatrix in terms of the inverse of a previously computed k X k
submatrix. At the end of his paper, Guttman exhibits some matrix identities such as
(1) relevant to (5a). He also notes that the special case where A is a diagonal matrix
is treated in his earlier work [25] and [26].

The formula (1) in the work of Duncan and Guttman did not attract much
attention since the formula was presented as an interesting identity arising in the
study of partitioned matrices, somewhat unconnected with applications. Then in
1949 Sherman and Morrison considered the seemingly unrelated problem of com-
puting an inverse of a matrix after making a change in the elements in a single
column. Their one-third-page statistical abstract [45] (also see [46]) contains the
following result. If A is an n X n square invertible matrix and B is identical to A
except for the elements in some column, say column k, then the elements b,-’jl of B!
can be expressed in terms of the elements a,.“j‘ of A7

_ aj .
(7) b/\'jl =Z:‘7=| ajA_I] B f()r]= 1,23 cer LA,
(®) bi'=a;' —bi) 3 ai'by fori#k and j=12,---,n.
=1

The formulas above correct some typographic errors appearing in [45]. For
example, the minus sign appearing in the formula for b,-'j' is omitted in [45] so that
a,_",' i1s multiplied by b;j‘. Observe that (7) and (8) can be deduced from (2) with the
choice u; = a; — by for i =1 to n and v; =0 for i # k while v, = 1. As the subsequent
literature indicates, this tiny abstract caught people’s attention—the problem of
determining the change in the inverse matrix after a change in a column had many
applications. Later in [6], Bartlett generalized the result of Sherman and Morrison to
obtain (2) while Woodbury completed the generalization in his 1950 report [52],
obtaining the identity (1) already contained in the papers of Duncan and Guttman.
Also, in a completely independent paper [41], published in 1950, (1) is derived by
Plackett when he considers the problem of updating a least-squares estimate after
obtaining new data.

An important formula is not easily laid to rest. In later years, the Modification
Formula is repeatedly rediscovered. Some of these rediscoveries may be due to
insufficient communication between researchers in various fields. Barnett in his study
[4] of stability in linear programming examines how a change in one column of the
constraint matrix affects the solution to a linear program, essentially obtaining (2)
during his analysis. In this review, we will highlight various features and applications
of the Inverse Matrix Modification Formula.

2. The big picture. Although there are many different ways to utilize the Modi-
fication Formula, the most common applications have the following structure. We
are given a linear system Bx = b, where B deviates slightly from a “nice” matrix A
and the difference A — B can be expressed in the form UV, where U and V have
relatively small rank. For example, A may be a tridiagonal matrix, an orthogonal
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matrix, a sparse matrix (one with many zeros), or a matrix that has been factored
previously into a convenient form. Typically, the solution x to the equation Bx =b
(where B= A — UV) is computed in the following way:

(1) Solve Ay = b for the unknown y.

(2) Compute the matrix W = A~'U by solving the linear systems Aw; = u;, where
w; and u, denote the ith column of W and U, respectively.

(3) Form the matrix C =1 - VW, form the vector Vy, and solve the linear system
Cz = Vy for the unknown z.

(4) Finally, x=y + Wz

If the A matrix has a convenient structure, then the linear systems associated
with A in steps (1) and (2) are solved quickly. If V is m X n, where m is much smaller
than n, then the rank of the modification UV is small relative to the dimension # of
A and the system of m linear equations Cz = Vy is solved quickly. In many applica-
tions, m = 1 and z is the scalar Vy/C. In summary, the Modification Formula can be
useful whenever the coefficient matrix for a linear system can be expressed as the sum
of a “nice” matrix and a small rank perturbation.

When applying the Modification Formula, U and V must be chosen carefully—
there are many different ways to express the difference A — B in the form UV, and
some of these choices lead to an ill-conditioned matrix C =1 — VA~'U for which the
numerical errors associated with step (3) make the computed solution worthless. The
condition number « of a matrix M is given by

k(M) = IM][IM~"].

Potentially, the computed solution to a linear system has no correct digits whenever
the condition number is larger than the reciprocal of the machine epsilon (see [30]).
In [53] Yip shows that if either U or V is formed from the columns of the identity
matrix, then for the standard norms,

) k(C) =k (A)x(B).

Moreover, in the 2-norm, the inequality x,(C) = x2(A)«»(B) is valid if either U or V is
formed from the columns of an orthogonal matrix. When (9) holds, the condition
number of C is bounded in terms of the condition numbers of A and B, and if both
A and B are well conditioned, then so is C. In applications where B is the same as A
except for elements in a few columns, it is natural to take U = A — B, where A and
B denote the submatrices of A and B corresponding to the columns that differ while
V is composed of the rows of the identity matrix corresponding to the columns where
A and B differ. For this choice of U and V, (9) holds.

3. Least squares. An application of the Modification Formula to statistics arises
in the following context. We are trying to estimate some parameters in a linear model.
As new data is received, the least-squares estimate for the parameters is updated to
reflect the new data. Some references include Anderson [2] and [3], Plackett [41], and
Riddell [44]. To illustrate this application, let us consider an overdetermined linear
system Ax = b, where A is / X n with /> n. When we assume that the columns of A
are linearly independent, the x that minimizes the Euclidean norm of the residual
b — Ax is given by

(10) x=(A"A)"'A"D.
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Now, suppose we receive new data that gives us the relation vx = ¢. The new A
matrix corresponding to the additional data is

Amw=[A]_
\/

If B denotes the product A”A that is inverted in (10), then the new B corresponding
to the new A can be expressed as

Bncw —_ Bold +uv
where u = v’. By the Inverse Matrix Modification Formula we have
[B™*]"'=[B+uv] '=B~'—aB 'uvB~' where a=1/(1+vB 'u).

In other words, if the old inverse of B is available, then the new inverse of B is found
by adding a rank 1 correction to the old inverse. With this substitution for the new
B!, the new least squares estimate for x can be expressed as

_|u

x"*“=x+k[c—vx] wherek “T+vB 'u

In a similar fashion, the adjustment to the inverse of B associated with m new
equations can be obtained from (1). If the new equations are expressed Vx = ¢, then
the new least-squares estimate is

x"V=x+K[c—Vx] where K=B 'U[I+ VB 'U]"!
where U = V7 while the new inverse of B is
[B™]"'=B~'~B~'U[I+VB~'U]"'VB~".

4. Networks and structures. In network problems, nodes are connected together
by various electrical devices. After a “base-case” solution is obtained, the network
may be modified and a new solution computed. Some references include [1], [32],
and [33]. As a simple illustration of an electrical network, let us consider a collection
of n + 1 nodes labeled 0, 1, - - - , n connected by resistors. Let V; denote the potential
of node i and assume that node zero is the ground: ¥, =0. The current along the
branch-connecting nodes i and j is the voltage difference V;— V; divided by the
resistance R;;. By Kirchhoff’s first law, the sum of the currents entering each node is
zero. Summing over the branches connected to node i, we have
n —
(11) Zu=1,, i=1,2,---,n

=0 Ry
where /; is an external current injected into node i. Since R;; = R;;, the resulting linear
system is symmetric. Equation (11) has the form Ax = b, where x; =V, b;=1I;,

Suppose that after we factor the coeflicient matrix A and solve the linear system
Ax = b, the network is altered. To be specific, suppose that the resistance between
nodes 1 and 3 is changed to S);. This change in the resistance produces a change in
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the coefficient matrix that can be expressed as
A=A —duu”
where
- -

1

0

-1

(12) d=——— and u= 0
0

Thus the voltages corresponding to the altered resistance can be computed using the
Modification Formula.

The illustration given above is called branch-oriented modification (see [1]) since
a correction term is added to the coefficient matrix corresponding to the altered
branch. If m branches in the circuit are altered, then the correction term has the form
UDUY7, where U is a matrix for which all elements in each column are zero except
for a + 1 entry and a — | entry, and D is a diagonal matrix. An alternative viewpoint
is node-oriented modification. If there are m nodes associated with modified branches,
then the correction term again has the form UDU”. However, U now consists of the
columns of the identity matrix corresponding to the altered nodes, and D is zero
except for the elements corresponding to altered branches. The node-oriented modi-
fication corresponding to changing the resistance R,; to S); is given by

SO O —
SO = OO

" d —d|[1t 0 0 0 -
! R

where d is defined in (12). In this example, branch-oriented modification leads to a
simpler correction term than node-oriented modification. When fewer nodes than
branches are modified, node-oriented modification may be preferable.

The technique described above for relating the solution of the modified network
to the solution of the original network using the modification formula is often called
the compensation method. These same techniques are also used in structural analysis
to compute the change in stress and strain due to an alteration in part of the structure.
In the structural mechanics literature, the relevant terminology is static reanalysis
(see [37]).

In some applications, the modifications to the coefficient matrix are performed
in an incremental fashion. For example, with an electric network, the base-case
solution is computed first. Then we successively modify one branch after another,
recomputing the solution after each modification. A specific illustration of this appears
in [31], where lightning is modeled—as a lightning flash propagates in a thundercloud,
a sequence of corrections are added to the coeflicient matrix. After each modification
of the coefficient matrix, the potential field in the thundercloud is reevaluated;
depending on the value of the potential, the flash either continues or it is extinguished.
When applying the Modification Formula (1) in this incremental context, it is
inefficient to refactor the capacitance matrix C after each incremental change in the
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coefficient matrix. In §10, we explain how to incrementally update a factorization
of C.

5. Asymptotic analysis. In some applications, the perturbation to the coefficient
matrix in a linear system involves a parameter, and we are interested in the limiting
solution as the parameter tends to infinity. The Modification Formula often facili-
tates the analysis of the limit. We illustrate this application using three examples:
(a) electrical breakdown in a network; (b) a constrained quadratic program; and
(c) preconditioning for penalty and multiplier methods in constrained optimization.

Consider a large electric network such as a thunderstorm (this example is taken
from [31]). The electric field along a line segment connecting two nodes in the network
is approximated by the voltage difference divided by the distance between the nodes.
When the electric field between two nodes reaches the “breakdown threshold,” the
resistance between these nodes tends to zero and there is an arc. The voltages
throughout the network after the discharge can be evaluated using the Modification
Formula. As we saw in §4, the new coefficient matrix corresponding to the altered
resistance can be expressed A™" = A — duu’, where d tends to infinity as the branch
resistance tends to zero and u is a vector with every component equal to zero except
for one component which is +1 and another component which is —1. By (2) the limit
of the inverse of the new A is given by

dA 'uu A" A 'uu’A™!
newl—1 _ A —1 1 —_ A= " "
(A=A +cl/1_r>130 l—du’A'u u’A"'u

In the limit as d tends to infinity, there is cancellation and the ¢’s disappear.

Note that if the limiting inverse of A™" is premultiplied by u”, we obtain the
relation u’[A™*]~! = 0. Since every component of u is zero except for the +1 and —1
components, it follows that the discharge process equilibrates the potential at the two
nodes associated with the electrical breakdown. In general, if there are m branches
along which electrical breakdown occurs, the Modification Formula leads us to the
following expression for the limiting inverse of the new A:

[Ancw]—l =A-—l —A_IU[UYA_IU]_]UTA_I.
Here U is a matrix with all elements in each column zero, except for a +1 entry and
a —1 entry that correspond to a pair of adjacent nodes where the electric field exceeds
the breakdown threshold. After the discharge, the potential is equal at all nodes

associated with the electrical breakdown.
For our second example, let us consider a constrained least-squares problem:

(13) minimize {[|Qx—q]|3: Vx=c}.
In other words, minimize over x the 2-norm of the residual Qx — q subject to the

constraint Vx = ¢, where V is a given matrix and c is a given vector in the range space
of V. By [27, Thm. 2.4], (13) has a unique solution if

(14) Qx#0 whenever Vx=0 and x#0.

To compute the solution to (13) when the rows of V are linearly independent
and (14) holds, we form the penalized problem, apply the Modification Formula, and
let the penalty tend to infinity. The penalty approximation is the unconstrained
problem:

(15) minimize {|Qx—q|3+ 7| Vx—c| 3}
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where 7 is the penalty parameter. As r tends to infinity, the solution to this uncon-
strained optimization problem approaches the solution to (13). Setting the derivative
to zero, we see that the solution to (15) satisfies the following equation:

(16) (A+rV'V)x=Q"q+rV’c

where A = Q’Q.

Although the coefficient matrix in (16) has the same structure as the coeflicient
matrix in the electrical breakdown example, the parameter 7 in (16) now appears on
the right side of the equation as well as the left side. Due to this extra r, the expansion
must be extended one term further. By the Modification Formula,

(17) A+rV'V)'=A""—rA"'VIT+rVAT'VI]7'VAT!,
Using the expansion
[I+P]'=P '=P?+P 7 —...,

which is valid when the spectral radius of P is less than 1, we can write the bracketed
expression in (17) as

(18) [+ rVAT'V ] = (VAT'V) T = VATV 2+ 00 7).

Inserting this expansion into (17) and taking the limit as r tends to infinity, we see
that the solution to (16) approaches

x=A"'V/(VAT'V) e+ A~'Q q—A~'V/(VA'V')'VA"'Q’q,

which is the solution to (13).

For our final example in this section, we present a preconditioning result related
to penalty and multiplier methods for solving constrained optimization problems.
These results are stated in the context of a constrained quadratic program, although
they apply to general optimization problems (see [28]). As in (13), let us consider the
quadratic program

(19) minimize {x'Ax—2q"x: Vx=0}.
Again, the penalty approximation is
(20) minimize {x"(A+rV"V)x—2q"x}.

Although the solution to (20) approaches the solution to (19) as r tends to infinity,
the convergence rate of gradient methods for solving (20) is arbitrarily slow as r
increases. The convergence rate is governed by the ratio \,/\, between the largest
eigenvalue )\, and the smallest eigenvalue A, of A + rV’V. As r tends to infinity, the
ratio A\,/\, tends to infinity, making the convergence slow. In contrast, for precondi-
tioned gradient techniques, the convergence rate is governed by the ratio between the
largest and smallest eigenvalues of the matrix (A + rV'V)P~!, where P denotes the
preconditioner. To solve the penalized problem quickly using a preconditioned
gradient method, we must choose P so that the eigenvalues of the product
(A + rV'V)P~! are well conditioned.

As we will see, a preconditioner of the form P=S+ rV’V, where S is any
symmetric positive definite matrix, yields well-conditioned eigenvalues; that is, under
fairly standard assumptions, the eigenvalue ratio associated with the preconditioned
problem is bounded by a constant independent of r. To establish this result, let us use
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(17) and the expansion (18) to evaluate the product (A + rV' ' V)(S+rV’V)~!. Omitting
the algebra, we have

A+rVIVY(S+rVIV)Y ' =Z+ 0™
where
Z=AST'"+(I—-ASTHVH(VST'V) YS!,

Thus the preconditioner has “canceled” the larger eigenvalues of A + rV?V. In
addition, we must check to see that the preconditioner has not introduced new small
eigenvalues. If Z is singular, then a new O(r™") eigenvalue will be introduced. In [28]
it is proved that if the rows of V are linearly independent, then Z is nonsingular if
and only if

(21 minimum maximum x’Ay>0.
Vy=0 Vx=0
Iyl=1 Ixi=1

This condition is weaker than the usual second-order sufficient condition associated
with (19)—for further discussion of inf-sup conditions such as in (21), see the survey
article [29]. Note that the following block matrix is nonsingular if and only if the
rows of V are linearly independent and (21) holds:

A VT
vV o [
If S=1 and the rows of V are linearly independent, then the Modification
Formula reveals that the preconditioner (I + ¥V ’V)™! is nearly a projection:
(22) lim [I+/V'V]'=I-VH(VVT)"'V,
Since the right side of (22) projects a vector into the null space of V, we conclude that
(I+ rV"V)~" nearly projects a vector into the null space of V when r is large.

6. Sensitivity in linear programming. A standard format for linear programming
problems is the following:

(23) minimize ¢’x subjectto Mx=b, xZ=0

where ¢, b, and M are given data and M is m X n with n larger than m. A fundamental
theorem in linear programming states that if (23) has a solution and the rows of M
are linearly independent, then (23) has a basic optimal solution (see [36]). By a basic
optimal solution, we mean that the components of the optimal solution can be
partitioned to form two vectors denoted xg and xn, where xx =0 and xg is an
m-component vector for which the corresponding -columns of M are linearly inde-
pendent. Let B and N denote the submatrices of M corresponding to xg
and xy, respectively. The equation Mx =b and the condition xyx =0 imply that
Xp = B_Ib.

Typically, in real-life linear programming problems, the data defining the problem
is uncertain. In sensitivity analysis, we investigate how the solution to the linear
program and the optimal cost depend on the data. Let ¢ denote the vector formed
by those components of ¢ corresponding to the components of xg and let ¢y denote
the vector formed by the remaining components of ¢. To simplify the analysis, we
assume that each component of both xg and the relative-cost vector

ri=ck—c3yB'N
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are positive. When the data are altered, the solution to (23) is given by xg = B™'b and
xn =0 as long as B™'b = 0 and the corresponding relative-cost vector remains non-
negative. Hence, for small changes in ¢, b, or M, the solution to (23) is xg = B~'b and
x~n = 0. When we let C=ciB™'b denote the optimal cost associated with (23), it
follows that

aC aC _ {O if ¢; is a component of ¢y,

51;,= A; and dc; |x; ifc isacomponent of cy

where A = B 7¢g is the dual solution.
When investigating how the cost depends on the coefficient matrix M, we often
consider a perturbation of the form

B=A—-ocuv

where o is related to the uncertainty associated with elements of the coefficient matrix.
Applying the Modification Formula and differentiating with respect to o, we find that
dC _(csA"'u)(vA™'b)
do (1 —ovA™'u)?

Hence, at ¢ =0, we have

aC

= NAUVX,
(90' =0

where x, = A~'b is the optimal solution and A\, = c4A~" is the dual solution corre-
sponding to o = 0.

Another important sensitivity question is to determine the first value of ¢ where
there is a change in the optimal basis. Equivalently, determine the largest interval
[¢1, 02] containing zero with the property that both xg = B™'b and the relative cost
are nonnegative whenever ¢, = o = 0,. By the Modification Formula, the values of «
that do not change the optimal basis satisfy the following inequalities:

vA~'b
24 — A=
( ) XA+J|:1—UVA_]u:|A u 0,
T A —1
(25) Pl g —SBA U Nz
1—ovA™'u

where r, is the relative cost corresponding to o = 0:
ri=ci—ciA'N.

Assuming that either the ¢ term in (24) or the ¢ term in (25) does not vanish, we
conclude that 1 Z ovA "'u for ¢ in the desired interval [s,, 0,]. That is, as ¢ passes
through the pole o = 1/vA ~'u, one of (24) or (25) is violated; hence, we restrict o to
the side of the pole corresponding to ¢ = 0. Multiplying through by the denominator
1 — vA~'uin (24) and (25), we obtain the following pair of inequalities:

(26) XaZoy and ry=oz
where

y=(VA"'Wx,—(VAT'D)A'u and z'=(VA'wri+(cgA 'u)vA~'N.
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The endpoints ¢, and o, of the interval corresponding to those ¢’s that satisfy (26)
are given by

=maximum Jl(rA)' (XA)’ 2;<0, y,<0}
i Zj Vi

az—mlnlmum{(rA)’ (XA)’ z;>0, y,>0}>
ij Zj Vi

Papers that examine stability of the optimal basis in linear programming include [4]
by Barnett and [18] by Flavell and Salkin. The book [17] by Fiacco is a comprehensive
reference for sensitivity analysis in nonlinear programming.

7. Partial differential equations. After obtaining a numerical approximation to
the solution of a partial differential equation using one boundary condition, we may
be asked to solve the equation again using a slightly different boundary condition.
Often the Modification Formula can be used to take advantage of the previously
computed solution. To illustrate how boundary conditions enter the coefficient matrix
of an approximating finite difference system, we consider the equation

27 =x"(1)=f(1), 0=r=1.

Partitioning the interval [0, 1] into N subintervals of equal width Af= 1/N, the
standard centered difference approximation to (27) is

(28) xi+l=(AZ)2ﬁ; l= 1’27"',N_1

where f; is the value of fat 1 =i/N and x; approximates x(i/N). For a Dirichlet
boundary condition x(0) = x(1) = 0, we have the relation x, = x, = 0 so that the finite
difference system (28) reduces to

. +2X,"“

2 -1 IR (A0S ]
-1 2 -1 X (A%
-1 2
(29)
2 -1
| -1 2_ _xN—l_ _(At)zf/\/_‘_

Now let us replace the Dirichlet condition x(1) = 0 with the Neumann condition
x’(1)=0. The usual finite difference approximation to the Neumann condition is
Xy = Xny—1. Combining this discrete Neumann condition with (28), we obtain the
following linear system:

"2
-1

(30)

-1
2
-1

-1
2

2
-1

-1
1

Xi
X2

[XN-1]

(a2 ]
(A1)’f2

(A -]

In going from (29) to (30), the only difference is that the last coefficient in row N — 1
is changed from 2 to 1.

Finally, let us replace the Neumann boundary condition by the periodic boundary
condition x’(0)= x’(1). The usual finite difference approximation to this periodic
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condition is
X1 —Xo=XN—XnN—1,

which implies that xy= xy-, + X, — X,. Combining this with (28), we have the
following linear system:

2 -1 o] [x] [@n¥]
-1 2 -1 X (A1) f2
-1 2 ..
(31) =
2 -1
-1 mUY B EVVEY] N (GO R/

Observe that any of the coefficient matrices in (29), (30), or (31) can be obtained from
any of the other ones by a rank 1 perturbation. Hence, the Modification Formula can
be used to compute the change in the solution due to a change in the boundary
condition. For boundary-value problems in more than one space dimension, the rank
of the perturbation matrix associated with the boundary conditions depends on the
number of meshpoints on the boundary of the domain.

The Modification Formula is also closely connected with both the capacitance
matrix method and domain decomposition techniques. In the capacitance matrix
method (see [43]), fast solution techniques such as the Fast Fourier Transform or
cyclic reduction (see [10], [14], [34], [35], [50], or [51]), which are tailored to a regular
mesh and a rectangular domain, are applied to an equation defined on a domain with
a curved boundary. The basic strategy is to extend the equation from the given
domain to a circumscribing box. The finite difference equations corresponding to the
meshpoints on the boundary of the original domain destroy the regular structure of
the coefficient matrix associated with the box. However, adding a small-rank pertur-
bation to the coeflicient matrix restores the regular structure. Consequently, the
Modification Formula can be used to recover the solution on the original domain
from the solution on the box corresponding to the regular coefficient matrix.

We illustrate these ideas using (27), the finite difference system (28), and the
boundary condition x(0)=x’(1)=0. Let us extend the domain to the interval
0 =t =2, setting fto zero on the interval 1 = ¢ = 2, and impose the Dirichlet boundary
condition x(2) =0 (the conditions on the boundary of the extended domain are
chosen to be convenient; for example, periodic boundary conditions are convenient
if Fast Fourier Transforms are used to solve the extended problem). The matrix
representation of the finite difference approximation to the extended protlem is the
following:

[ 2 - 17 = 7 [ @)

-1 2 -1 X2 (A0’

-1 2
2 -1
(32) -1 1 0 Xv-1 | =] (A fa-,
-1 2 -1 XN 0
-1
.2 -1

L -1 21 Lxov-1d L 0
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Observe that the first N — 1 equations correspond to (30) while the last N equations
correspond to the new region 1 = ¢ = 2. By adding a rank 1 correction to the coeflicient
matrix in (32), the elements in row N — 1 can be changed to produce the symmetric
tridiagonal matrix with every diagonal element equal to 2 and with every subdiagonal
and superdiagonal element equal to —1. In general, when there are m meshpoints on
the boundary of the curved domain, a regular structure for the coefficient matrix is
achieved using a rank m perturbation. The extended finite difference system is solved
using a fast solver while the solution to the original equation is recovered using the
Modification Formula.

In domain decomposition techniques, the domain associated with a partial
differential equation is partitioned into subdomains and the discrete equations are
partitioned into two sets: the equations associated with variables corresponding to the
interior of each subdomain and the equations relating variables in different subdo-
mains. If the interior equations are grouped together in one set and the connection
equations are grouped together in another set, then we obtain a 2 X 2 block partitioned
system, similar to the 2 X 2 system of §1. Some references for domain decomposition
techniques include [8a-c] and [11].

Finally, we point out an application of the Modification Formula to the boundary
element method for linear elasticity. In [19] Ghosh and Mukherjee obtain a system
Bx = b, where every third row of B is dense (contains few zeros) while the intervening
rows are zero except for a few nonzeros near the diagonal. The dense rows correspond
to boundary integrals while the sparse rows correspond to compatibility conditions.
They apply the Modification Formula in the following way. Let A be the matrix that
is identical to B for the sparse rows and is the corresponding row of the identity
matrix for the dense rows. The columns of U are the negatives of the rows of the
identity matrix inserted in A. The rows of V are the dense rows of B except that 1 is
subtracted from each diagonal element. With these definitions, B= A — UV, where
A is an invertible band matrix. Since A is a band matrix, the time needed to solve
Bx = b using the algorithm of §2 is essentially the time needed to factor the dense
capacitance matrix C. An operation count reveals that if there are N dense equations,
then factoring the N X N matrix C is about 27 times faster than Gaussian elimination
applied to the original 3N X 3N system.

8. Tearing and mending. The basic idea in tearing is to use the Modification
Formula to annihilate elements that complicate the structure of the coefficient matrix
for a linear system. For example, suppose that the coeflicient matrix of Bx = b can be
expressed as B=L — P, where L is lower triangular and all the columns of the
perturbation P are completely zero except for m columns. If the nonzeros in P are
annihilated, then we are left with a lower triangular system that can be solved by
forward substitution. The Modification Formula essentially gives us a way to annihi-
late these nonzero elements. Letting U denote the submatrix of P consisting of the
nonzero columns and letting V denote the corresponding rows of the identity matrix,
we have P = UYV. Since B = L. — UV, the algorithm of §2 can be used to solve Bx = b.
The pioneering work on tearing was performed by Kron (see [38]-[40]). A brief but
informative survey of tearing is contained in the paper [15] by Duff. Other references
include [9], [47], and [48]. One difficulty with tearing is that in a complicated problem,
an efficient tearing may not be obvious.

The Modification Formula can be used both to tear the coeflicient matrix,
annihilating undesired nonzero elements, and to mend the coefficient matrix, changing
the value of an undesired zero element. In the usual Gaussian elimination algorithm,
multiples of one row are subtracted from the rows beneath it to annihilate the
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coeflicients beneath the diagonal. In the kth elimination step, multiples of row k are
subtracted from the rows beneath it to annihilate the coeflicients in column k beneath
the diagonal. But if the kth diagonal coeflicient is zero, then the elimination step
breaks down; if the kth diagonal coefhicient is small relative to the other coeflicients
in the column, then numerical errors can overwhelm the computations. Usually,
Gaussian elimination is stabilized by performing a pivot before each elimination step.
In row pivoting, we interchange row k with the one beneath it that has the largest
absolute entry in column k beneath the diagonal. On the other hand, in solving a
large sparse linear system, pivoting may ruin the storage structure.

In [49] Stewart stabilizes the elimination process by adding or subtracting a
perturbation of the form u,u,, where every component of u, is zero except for
component k. By an appropriate choice of u,, it can be arranged so that the kth
diagonal coeflicient of the perturbed matrix is larger in magnitude than the other
coefficients in column k beneath the diagonal. In this way, the pivot operation is
avoided. The solution to the original equation is recovered from the solution of the
perturbed equation using the Modification Formula. Of course, each time that we
modify the coefficient matrix, the dimension of the capacitance matrix increases by
1. If we modify the coefficient matrix before each Gaussian elimination step, then the
cost of solving the linear system associated with the capacitance matrix is greater than
the cost of solving the original linear system. Hence, this modification technique is
practical only when it is performed infrequently.

9. Quasi-Newton methods. The Modification Formula is often employed in
quasi-Newton methods for finding a root of a function or for performing an uncon-
strained minimization. Given a function f mapping R” to R”, Newton’s method for
approximating a root to f (x) = 0 is given by the iteration

Xer1 =X — J(x) 7' (x4)

where J denotes the Jacobian of f. In one type of quasi-Newton method, we attempt
to approximate the Jacobian using rank 1 corrections. The (k + 1)st approximation
A4, is obtained from the kth approximation A, by the rule

(33) A =Ar—uvy

where u, and v, are chosen so that A, approximates the Jacobian at x,,, “better”
than A, approximates the Jacobian at x,.. Typically, u, and v, are chosen so that

(34) Ak+l(xk+l —xk)=f/\'+l_f/\'
where X+, = X, — A} 'f, and f;, = f(x,). Using (34) to solve for u, and v,, we obtain

. Avi—gs

(35) v/ =X;+1—X; and uk=/A—TgA
\AZ

where g, =f,,, —fi. (It can be shown that the perturbation P, with the smallest

2-norm that satisfies the equation

Ak =P )X 1 — X)) =f ) — £
is a rank 1 matrix; see review exercise 3—11 in [30].)
To implement the quasi-Newton iteration x,+, = x, — A} ' fi, we need the inverse

of A,. Applying the Modification Formula to (33), substituting from (35), and
simplifying yields the following recurrence for the inverse of A,:

T—‘A—..] IV —T]
+(V/< K Bi)ViAL '

3 =A7!
(36) A1 =Aj VeA-lg,
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Powell observes in [42] that there is some suppression of rounding errors if the inverse
matrix is updated using (36) rather than the formula

—1 -1
A U/\-V/\»A/\»

A/T-Ll =A;l +
1—viA; ug

obtained directly from (2). Quasi-Newton methods and their properties are surveyed
in [13].

10. Updating a factorization. As mentioned in §4, some applications involve
making a series of rank 1 changes to the coefficient matrix and solving a linear system
after each change. After m rank 1 changes, the capacitance matrix C is m X m. If m
is large, then the algorithm of §2 can be costly due to the same time spent solving the
linear system associated with the capacitance matrix. Moreover, in some applications,
such as the simplex method in linear programming, m can be larger than #n. In
situations where m is large but » is not too large, it may be more efficient to store the
inverse of the coefficient matrix and to successively update the inverse after each rank
1 change using (2). The quasi-Newton recurrence (36) is an example of these successive
updates. As an alternative to successively updating the inverse matrix, we can store
the original matrix in factored form and update the factors. One method for updating
a triangular factorization is presented by Bennett [7] while the series of papers by
Bartels, Gill, Golub, Murray, and Saunders ([5], [20]-[22]) provides a comprehensive
study of many different ways to update the standard factorizations after a rank 1
change in the coefficient matrix.

Updating a factorization is not only an alternative to the Modification Formula,
but also a useful tool in its implementation. In this section we discuss how to update
a factorization of C =1 — VA™'U either after adding a column to U and arow to V,
or after deleting a column from U and a row from V. We focus on triangular
factorizations although orthogonal factorizations can be updated using a similar
technique. Suppose that C is an (m — 1) X (m — 1) matrix factored into the product
LR between a unit lower triangular matrix L and an upper triangular matrix R. If a
new column is added to the right side of U and a new row is added to the bottom of
V, then the new C is identical to the old C except for the elements in row m and
column m. To complete the factorization using the standard Gaussian elimination
algorithm, multiples of the rows of R are subtracted from the bottom row of C,
annihilating all coefficients but the diagonal coefficient. When we initialize #,,; = ¢,
and r;, = ¢;,, for i between 1 and m, the updated coefficients in row m of L and in
column m of R are evaluated by the following algorithm:

j=ltom—1

rim(_'rim—lijrjm fori:j"' ltom—1

next j
i=ltom—1
lmi(_rmi/rii

r,,,‘,-<—r,,,j—r,-‘,-l,,7,- forj=it0 m
next i

For a general matrix, this algorithm is unstable since pivoting is not performed.
On the other hand, Gaussian elimination with pivoting cannot be implemented in
this incremental fashion, where one row and column are added at a time. Hence, the
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factorization given above should only be used when pivoting is not required. It is well
known that pivoting is not needed when a symmetric positive definite matrix is
factored. Consequently, the algorithm given above can be applied when V =U" and
A is symmetric and negative definite, since C=1— VA~'U is positive definite.
Moreover, in this case C can be written in a Cholesky product LL”, where L is lower
triangular with positive diagonal elements. The standard formulas for the new
coeflicients in a Cholesky factorization associated with adding a new row and column
to C are

Jj=1
_ Cinj— Z/\‘= 1 l//\’lmk
lmj_ l
'
forj=1tom—1, and
— ./ —172
[mm =~NCpm— Z;\Ll mk -

When a new row and column are added to the border of C, we compute the new
row and column of the updated factorization without altering the previously computed
factorization. On the other hand, when a column from U and a row from V are
deleted, the entire factorization may change unless the deleted elements lie on the
border of the matrix. Suppose that column k from U is deleted, V=U’, and C is
stored in the Cholesky factorization LL”. Following Gill and Murray in [21], the
new C obtained by deleting column k from U can be expressed C™" = LL” + uu’,
where L is obtained from L by deleting both row and column k and u is column k
from L with element k deleted. Since the new C is expressed as the sum of a Cholesky
factored matrix and a rank | correction, any of the algorithms developed in [20],
[21], or [22] can be used to update the factorization.

For completeness, we now give a direct procedure to update the Cholesky
factorization of the new C. First, augment the matrix L by inserting u between column
k—1 and column k. The augmented matrix M is the same as L but with row k
deleted. The structure of M is indicated in Fig. 1—the top part of the matrix is zero
while the bottom part is generally nonzero. The new C can be expressed as
C™=MM"'. To generate the Cholesky factorization, we annihilate the “superdi-
agonal” bulge of M using a sequence of Givens rotations (see [23] or [30]). These
rotations have the following structure:

1

| L]
where ¢? + s2 = 1. Observe that if

X1 X>

———— and s=——
Vxi+x3 Vxt+x3’

then ¢+ s> =1 and

[x1,x2] ¢ = =[vx1+x3,0].
N C
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o —

_ |

FIG. 1. The augmented matrix M.

In other words, the second component of x is annihilated and the first component is
replaced by the length of x. Letting G denote the product of the Givens rotations that
annihilate the nonzero superdiagonal elements depicted in Fig. 1, we have

C"™ =(MG)G'M).
Deleting the last column of MG, which is zero, we obtain the lower triangular
Cholesky factor of the new C. In detail, if C is m X m, then the updated Cholesky

factor L associated with the deletion of column k and row k from C is obtained by
the following procedure:

j=ktom—1
p—j+1
if /,,=0 goto next j
[+ 517
ce—ly/tand s<1[,/t
I=jtom—1
t—1,
lipe—tc—sl;
lije—1l;c+ st
nexti
next j

Note that the product MG can also be computed using a “fast Givens” procedure,
which eliminates about half the multiplications—see [23] or [30].
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