
MODIFYING A SPARSE CHOLESKY FACTORIZATION∗

TIMOTHY A. DAVIS† AND WILLIAM W. HAGER‡

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 606–627

Abstract. Given a sparse symmetric positive definite matrix AAT and an associated sparse
Cholesky factorization LDLT or LLT, we develop sparse techniques for obtaining the new factoriza-
tion associated with either adding a column to A or deleting a column from A. Our techniques are
based on an analysis and manipulation of the underlying graph structure and on ideas of Gill et al.
[Math. Comp., 28 (1974), pp. 505–535] for modifying a dense Cholesky factorization. We show that
our methods extend to the general case where an arbitrary sparse symmetric positive definite matrix
is modified. Our methods are optimal in the sense that they take time proportional to the number
of nonzero entries in L and D that change.

Key words. numerical linear algebra, direct methods, Cholesky factorization, sparse matrices,
mathematical software, matrix updates

AMS subject classifications. 65F05, 65F50, 65-04

PII. S0895479897321076

1. Introduction. This paper presents a method for updating and downdating
the sparse Cholesky factorization LDLT or LLT of the matrix AAT, where A is
m-by-n. More precisely, we evaluate the Cholesky factorization of AAT + σwwT,
where either σ is +1 (corresponding to an update) and w is arbitrary or σ is −1
(corresponding to a downdate) and w is a column of A. Both AAT and AAT +
σwwT must be symmetric and positive definite. From this it follows that m ≤ n.
The techniques we develop for the matrix AAT can be extended to determine the
effects on the Cholesky factors of a general symmetric positive definite matrix M of
any symmetric change of the form M + σwwT that preserves positive definiteness.
The AAT case is simpler than the general case, which is why we discuss it first.
Moreover, the techniques we develop for updating and downdating AAT are used in
the algorithm for updating the general matrix M. Our methods take into account
the change in the sparsity pattern of A and L and are optimal in the sense that they
take time proportional to the number of nonzero entries in L and D that change.

The importance of this problem has long been recognized [36], but prior sparse
methods either are nonoptimal or do not consider changes to the sparsity pattern
of A or L. Both Law’s sparse update method [27, 28] and the method of Chan and
Brandwajn [6] are based on Bennett’s method [3], which needs to be used with caution
[20]. Law’s symbolic update has nonoptimal asymptotic run time and can take more
time than doing the symbolic factorization from scratch. The method of Row, Powell,
and Mondkar [32] is for envelope-style factorization only and is also nonoptimal in both
its numerical and its symbolic work. Neither of these approaches consider symbolic or
numerical downdate. Chan and Brandwajn [6] consider the sparse numerical update
and downdate, but with a fixed sparsity pattern.

∗Received by the editors May 5, 1997; accepted for publication (in revised form) by S. Vavasis
April 28, 1998; published electronically March 2, 1999.

http://www.siam.org/journals/simax/20-3/32107.html
†Department of Computer and Information Science and Engineering, University of Florida,

Gainesville, FL 32611-6120 (davis@cise.ufl.edu, http://www.cise.ufl.edu/∼davis). The work of this
author was supported by National Science Foundation grant DMS-9504974.
‡Department of Mathematics, University of Florida, Gainesville, FL 32611-6120 (hager@

math.ufl.edu, http://www.math.ufl.edu/∼hager). The work of this author was supported by National
Science Foundation grant DMS-9404431.

606

D
ow

nl
oa

de
d

07
/2

8/
17

 to
 1

28
.2

27
.1

88
.1

29
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

MODIFYING A SPARSE CHOLESKY FACTORIZATION 607

There are many applications of the techniques presented in this paper. In the
linear program dual active set algorithm (LP DASA) [26], the A matrix corresponds
to the basic variables in the current basis of the linear program, and in successive
iterations, we bring variables in and out of the basis, leading to changes of the form
AAT + σwwT. Other application areas where the techniques developed in this pa-
per are applicable include least-squares problems in statistics, the analysis of elec-
trical circuits and power systems, structural mechanics, sensitivity analysis in linear
programming, boundary condition changes in partial differential equations, domain
decomposition methods, and boundary element methods. For a discussion of these
application areas and others, see [25].

Section 2 introduces our notation. For an introduction to sparse matrix tech-
niques, see [9, 13]. In section 3 we discuss the structure of the nonzero elements in the
Cholesky factorization of AAT, and in section 4 we discuss the structure associated
with the Cholesky factors of AAT + σwwT. The symbolic update and downdate
methods provide the framework for our sparse version of Method C1 of Gill et al.
[20] for modifying a dense Cholesky factorization. We discuss our sparse algorithm in
section 5. Section 6 presents the general algorithm for modifying the sparse Cholesky
factorization for any sparse symmetric positive definite matrix. A single update or
downdate in the general case is more complicated and requires both a symbolic update
and a symbolic downdate, based on the methods for AAT presented in section 4. The
results of a numerical experiment with a large optimization problem from Netlib [8]
are presented in section 7. Section 8 concludes with a discussion of future work.

2. Notation. Throughout the paper, matrices are capital bold letters like A or
L, while vectors are lower-case bold letters like x or v. Sets and multisets are in
calligraphic style like A, L, or P. Scalars are either lower-case Greek letters or italic
style like σ, k, or m.

Given the location of the nonzero elements of AAT, we can perform a symbolic
factorization (this terminology is introduced by George and Liu in [13]) of the matrix
to predict the location of the nonzero elements of the Cholesky factor L. In actuality,
some of these predicted nonzeros may be zero due to numerical cancellation during
the factorization process. The statement “lij 6= 0” will mean that lij is symbolically
nonzero. The main diagonals of L and D are always nonzero since the matrices that
we factor are positive definite (see [35, p. 253]). The nonzero pattern of column j of
L is denoted Lj ,

Lj = {i : lij 6= 0},
while L denotes the collection of patterns:

L = {L1,L2, . . . ,Lm}.
Similarly, Aj denotes the nonzero pattern of column j of A,

Aj = {i : aij 6= 0},
while A is the collection of patterns:

A = {A1,A2, . . . ,An}.
The elimination tree can be defined in terms of a parent map π (see [29]). For any

node j, π(j) is the row index of the first nonzero element in column j of L beneath
the diagonal element:

D
ow

nl
oa

de
d

07
/2

8/
17

 to
 1

28
.2

27
.1

88
.1

29
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

608 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

π(j) = min Lj \ {j},

where “min X” denotes the smallest element of X :

min X = min
i∈X

i.

Our convention is that the min of the empty set is zero. Note that j < π(j) except
in the case where the diagonal element in column j is the only nonzero element. The
inverse π−1 of the parent map is the children multifunction. That is, the children of
node k are the set defined by

π−1(k) = {j : π(j) = k}.

The ancestors of a node j, denoted P(j), are the set of successive parents:

P(j) = {j, π(j), π(π(j)), . . .} = {π0(j), π1(j), π2(j), . . .}.

Here the powers of a map are defined in the usual way: π0 is the identity while πi

for i > 0 is the i-fold composition of π with itself. The sequence of nodes j, π(j),
π(π(j)), . . . , forming P(k), is called the path from j to the associated tree root. The
collection of paths leading to a root form an elimination tree. The set of all trees is
the elimination forest. Typically, there is a single tree whose root is m; however, if
column j of L has only one nonzero element, the diagonal element, then j will be the
root of a separate tree.

The number of elements (or size) of a set X is denoted |X |, while |A| or |L|
denotes the sum of the sizes of the sets they contain. Let the complement of a set X
be denoted as X c = {x : x /∈ X}.

3. Symbolic factorization. Any approach for generating the pattern set L is
called symbolic factorization [10, 11, 12, 13, 34]. The symbolic factorization of a
matrix of the form AAT is given in Algorithm 1 (see [14, 29]).

Algorithm 1 (symbolic factorization of AAT).
π(j) = 0 for each j
for j = 1 to m do

Lj = {j} ∪
 ⋃
c∈π−1(j)

Lc \ {c}
 ∪

 ⋃
min Ak=j

Ak

π(j) = min Lj \ {j}
end for

Algorithm 1 basically says that the pattern of column j of L can be expressed as
the union of the patterns of each column of L whose parent is j and the patterns of the
columns of A whose first nonzero element is j. The elimination tree, connecting each
child to its parent, is easily formed during the symbolic factorization. Algorithm 1
can be done in O(|L|+ |A|) time1 [14, 29].

Observe that the pattern of the parent of node j contains all entries in the pattern
of column j except j itself [33]. That is,

Lj \ {j} = Lj ∩ {i : π(j) ≤ i} ⊆ Lπ(j).

1Asymptotic complexity notation is defined in [7]. We write f(n) = O(g(n)) if there exist positive
constants c and n0 such that 0 ≤ f(n) ≤ cg(n) for all n > n0.

D
ow

nl
oa

de
d

07
/2

8/
17

 to
 1

28
.2

27
.1

88
.1

29
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

MODIFYING A SPARSE CHOLESKY FACTORIZATION 609

Proceeding by induction, if k is an ancestor of j, then

{i : i ∈ Lj , k ≤ i} ⊆ Lk.(3.1)

This leads to the following relation between Lj and the path P(j). The first part of
this proposition, and its proof, are given in [33]. Our proof differs slightly from the
one in [33]. We include it here since the same proof technique is exploited later.

Proposition 3.1. For each j, we have Lj ⊆ P(j); furthermore, for each k and
j ∈ P(k), Lj ⊆ P(k).

Proof. Obviously, j ∈ P(j). Let i be any given element of Lj with i 6= j. Since
j < i, we see that the following relation holds for l = 0:

π0(j) < π1(j) < · · · < πl(j) < i.(3.2)

Now suppose that (3.2) holds for some integer l ≥ 0, and let k denote πl(j). By (3.1)
and the fact that k < i, we have i ∈ Lk, which implies that

i ≥ π(k) = π(πl(j)) = πl+1(j).

Hence, either i = πl+1(j) or (3.2) holds with l replaced by l+1. Since (3.2) is violated
for l sufficiently large, we conclude that there exists an l for which i = πl+1(j).
Consequently, i ∈ P(j). Since each element of Lj is contained in P(j), we have
Lj ⊆ P(j). If j ∈ P(k) for some k, then j is an ancestor of k and P(j) ⊆ P(k). Since
we have already shown that Lj ⊆ P(j), the proof is complete.

As we will see, the symbolic factorization of AAT + wwT can be obtained by
updating the symbolic factorization of AAT using an algorithm that has the same
structure as that of Algorithm 1, except that it operates only on nodes in the path
P(j) (of the updated factors) for some node j. The symbolic update algorithm adds
new entries to the nonzero pattern, which can be done with a simple union operation.

However, downdating is not as easy as updating. Once a set union has been
computed, it cannot be undone without knowledge of how entries entered the set. We
can keep track of this information by storing the elements of L as multisets rather
than as sets. The multiset associated with column j has the form

L]j = {(i,m(i, j)) : i ∈ Lj},
where the multiplicity m(i, j) is the number of children of j that contain row index i
in their pattern plus the number of columns of A whose smallest entry is j and that
contain row index i. Equivalently,

m(i, j) = |{k ∈ π−1(j) : i ∈ Lk}|+ |{k : min Ak = j and i ∈ Ak}|.
With this definition, we can undo a set union by subtracting multiplicities.

We now define some operations involving multisets. First, if X] is a multiset
consisting of pairs (i,m(i)) where m(i) is the multiplicity associated with i, then X is
the set obtained by removing the multiplicities. In other words, the multiset X] and
the associated base set X satisfy the relation

X] = {(i,m(i)) : i ∈ X}.
We define the addition of a multiset X] and a set Y in the following way:

X] + Y = {(i,m′(i)) : i ∈ X or i ∈ Y},

D
ow

nl
oa

de
d

07
/2

8/
17

 to
 1

28
.2

27
.1

88
.1

29
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

610 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

where

m′(i) =

 1 if i /∈ X and i ∈ Y,
m(i) if i ∈ X and i /∈ Y,
m(i) + 1 if i ∈ X and i ∈ Y.

Similarly, the subtraction of a set Y from a multiset X] is defined by

X] − Y = {(i,m′(i)) : i ∈ X and m′(i) > 0},
where

m′(i) =

{
m(i) if i /∈ Y,
m(i)− 1 if i ∈ Y.

The multiset subtraction of Y from X] cancels a prior addition. That is, for any
multiset X] and any set Y, we have

((X] + Y)− Y) = X].
In contrast ((X ∪ Y) \ Y) is equal to X if and only if X and Y are disjoint sets.

Algorithm 2 below performs a symbolic factorization of AAT with each set union
operation replaced by a multiset addition. This algorithm is identical to Algorithm 1
except for the bookkeeping associated with multiplicities.

Algorithm 2 (symbolic factorization of AAT using multisets).
π(j) = 0 for each j
for j = 1 to m do

L]j = {(j, 1)}
for each c ∈ π−1(j) do

L]j = L]j + (Lc \ {c})
end for
for each k where min Ak = j do

L]j = L]j +Ak
end for
π(j) = min Lj \ {j}

end for
We conclude this section with a result concerning the relation between the pat-

terns of AAT and the patterns of AAT + wwT.
Proposition 3.2. Let C and D be the patterns associated with the symmetric

positive definite matrices C and D, respectively. Neglecting numerical cancellation,
Cj ⊆ Dj for each j implies that (LC)j ⊆ (LD)j for each j, where LC and LD are the
patterns associated with the Cholesky factors of C and D, respectively.

Proof. In [13, 31] it is shown that an edge (i, j) is contained in the undirected
graph of the Cholesky factor of a symmetric positive definite matrix C if and only
if there is a path from i to j in the undirected graph of C with each intermediate
vertex of the path between 1 and min {i, j}. If Cj ⊆ Dj for each j, then the paths
associated with the undirected graph of C are a subset of the paths associated with
the undirected graph of D. It follows that (LC)j ⊆ (LD)j for each j.

Ignoring numerical cancellation, the edges in the undirected graph of AAT are a
subset of the edges in the undirected graph of AAT + wwT. By Proposition 3.2, we
conclude that the edges in the undirected graphs of the associated Cholesky factors
satisfy the same inclusion.

D
ow

nl
oa

de
d

07
/2

8/
17

 to
 1

28
.2

27
.1

88
.1

29
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

MODIFYING A SPARSE CHOLESKY FACTORIZATION 611

4. Modifying the symbolic factors. Let A be the modified version of A. We
put a bar over a matrix or a set or a multiset to denote its value after the update or
downdate is complete. In an update, A is obtained from A by appending the column
w on the right, while in a downdate, A is obtained from A by deleting the column w
from A. Hence, we have

A A
T

= AAT + σwwT,

where σ is either +1 and w is the last column of A (update) or σ is −1 and w is a
column of A (downdate). Since A and A differ by at most a single column, it follows
from Proposition 3.2 that Lj ⊆ Lj for each j during an update, while Lj ⊆ Lj during
a downdate. Moreover, the multisets associated with the Cholesky factor of either the
updated or downdated matrix have the structure described in the following theorem.

Theorem 4.1. Let k be the index associated with the first nonzero component

of w. For an update, P(k) ⊆ P(k). Moreover, L]i = L]i for all i ∈ P(k)c. That is,

L]i = L]i for all i except when i is k or one of the new ancestors of k. For a downdate,

P(k) ⊆ P(k). Moreover, L]i = L]i for all i ∈ P(k)c. That is, L]i = L]i for all i except
when i is k or one of the old ancestors of k.

Proof. To begin, let us consider an update. We will show that each element of
P(k) is a member of P(k) as well. Clearly, k lies in both P(k) and P(k). Proceeding
by induction, suppose that

π0(k), π1(k), π2(k), . . . , πj(k) ∈ P(k),

and define l = πj(k). We need to show that

π(l) = π(πj(k)) = πj+1(k) ∈ P(k)

to complete the induction. Since l ∈ P(k), we have l = πh(k) for some h. If π(l) =
π(l), then

πh+1(k) = π(πh(k)) = π(l) = π(l) = π(πj(k)) = πj+1(k).

Since πj+1(k) = πh+1(k) ∈ P(k), the induction step is complete and πj+1(k) ∈ P(k).
If π(l) 6= π(l), then by Proposition 3.2, π(l) < π(l) and the following relation

holds for p = 1:

π1(l) < π2(l) < · · · < πp(l) < π(l).(4.1)

Now suppose that (4.1) holds for some integer p ≥ 1, and let q denote πp(l). By
Proposition 3.2, π(l) ∈ Ll ⊆ Ll, and combining this with (4.1), q = πp(l) < π(l) ∈ Ll.
It follows from (3.1) that π(l) ∈ Lq for q = πp(l). By the definition of the parent,

π(q) = π(πp(l)) = πp+1(l) ≤ π(l) ∈ Lq.
Hence, either πp+1(l) = π(l) or (4.1) holds with p replaced by p + 1. Since (4.1) is
violated for p sufficiently large, we conclude that there exists an integer p such that
πp(l) = π(l), from which it follows that

πj+1(k) = π(πj(k)) = π(l) = πp(l) = πp(πh(k)) = πp+h(k) ∈ P(k).

Since πj+1(k) ∈ P(k), the induction step is complete and P(k) ⊆ P(k).

D
ow

nl
oa

de
d

07
/2

8/
17

 to
 1

28
.2

27
.1

88
.1

29
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

612 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

Suppose that l ∈ P(k)c. It is now important to recall that k is the index of the
first nonzero component of w, the vector appearing in the update. Observe that l

cannot equal k since l ∈ P(k)c and k ∈ P(k). The proof that L]l = L]l is by induction
on the height h defined by

h(l) = max{i : πi(j) = l for some j}.
If h(l) = 0, then l has no children and the child loop of Algorithm 2 will be skipped

when either L]l or L]l are evaluated. And since l 6= k, the pattern associated with w

cannot be added into L]l . Hence, when h(l) = 0, the identity L]l = L]l is trivial. Now,

assuming that for some p ≥ 0 we have L]l = L]l whenever l ∈ P(k)c and h(l) ≤ p,

let us suppose that h(l) = p + 1. If i ∈ π−1(l), then h(i) ≤ p. Hence, L]i = L]i for
i ∈ π−1(l) by the induction assumption. And since l 6= k, the pattern of w is not

added to L]l . Consequently, when Algorithm 2 is executed, we have L]l = L]l , which
completes the induction step.

Now consider the downdate part of the theorem. Rearranging the downdate

relation A A
T

= AAT −wwT, we have

AAT = A A
T

+ wwT.

Hence, in a downdate, we can think of A as the updated version of A. Consequently,
the second part of the theorem follows directly from the first part.

4.1. Symbolic update algorithm. We now present an algorithm for evaluating
the new pattern L associated with an update. Based on Theorem 4.1, the only sets Lj
that change are those associated with P(k) where k is the index of the first nonzero
component of w. Referring to Algorithm 2, we can set j = k, j = π(k), j = π2(k),
and so on, marching up the path from k, and we can evaluate all the changes induced
by the additional column in A. In order to do the bookkeeping, there are at most
four cases to consider:

Case 1: j = k. At the start of the new path, we need to add the pattern for w to
L]j .

Case 2: c ∈ P(k), j ∈ P(k), j > k, and c ∈ π−1(j) ∩ π−1(j). In this case, c is a
child of j in both the new and the old elimination trees. Since the pattern Lc may

differ from Lc, we need to add the difference to L]j . Since j has a unique child on the

path P(k), there is at most one node c that satisfies these conditions. Also note that
if

c ∈ π−1(j) ∩ π−1(j) ∩ P(k)c,

then by Theorem 4.1 Lc = Lc and hence this node c does not lead to an adjustment

to L]j in Algorithm 2.

Case 3: j ∈ P(k), j > k, and c ∈ π−1(j) \ π−1(j). In this case, c is a child of
j in the new elimination tree, but not in the old tree, and the entire set Lc should

be added to L]j since it was not included in L]j . By Theorem 4.1, π(p) = π(p) for all

p ∈ P(k)c. Since c ∈ π−1(j) but c 6∈ π−1(j), it follows that π(c) = j 6= π(c), and
hence, c 6∈ P(k)c or, equivalently, c ∈ P(k). Again, since each node on the path P(k)
from k has only one child on the path, there is at most one node c satisfying these
conditions and it lies on the path P(k).

D
ow

nl
oa

de
d

07
/2

8/
17

 to
 1

28
.2

27
.1

88
.1

29
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

MODIFYING A SPARSE CHOLESKY FACTORIZATION 613

Case 4: j ∈ P(k), j > k, and c ∈ π−1(j) \ π−1(j). In this case, c is a child of j in
the old elimination tree, but not in the new tree, and the set Lc should be subtracted

from L]j since it was previously added to L]j . Since π(p) = π(p) for each p ∈ P(k)c,

the fact that π(c) = j 6= π(c) implies that c ∈ P(k). In the algorithm that follows,
we refer to nodes c that satisfy these conditions as lost children. A node j in the
elimination tree can lose multiple children.

In each of the cases above, every node c that led to adjustments in the pattern
was located on the path P(k). To make these changes, Algorithm 3 (below) simply
marches up the path P(k) from k to the root making the adjustments enumerated in
Cases 1 through 4 above. Consider a node c. If its parent changes, we have π(c) < π(c)
by Proposition 3.2. Both the new parent π(c) and the old parent π(c) are on the path
P(k). Node c is a new child of π(c) (Case 3), which is the next node in the path
P(k). Node c is a lost child of π(c) (Case 4). That is, one node’s new child is another
node’s lost child. If Algorithm 3 is at node j = π(c) and we notice a single new
child c, we can place that node in a lost-child-queue for node π(c) and process that
queue when we come to the node π(c) later in the path. We could instead modify
node π(c) the moment we find that it loses a child, but this could not be done in a
simple left-to-right pass of the columns corresponding to the nodes in the path P(k).
As we will see in section 5, this will allow us to combine the symbolic and numeric
algorithms into a single pass.

Algorithm 3 (symbolic update, add new column w).
Case 1: first node in the path
W = {i : wi 6= 0}
k = min W
L]k = L]k +W
π(k) = min Lk \ {k}
c = k
j = π(c)
while j 6= 0 do

if j = π(c) then
Case 2: c is an old child of j, possibly changed

L]j = L]j + (Lc \ Lc)
else

Case 3: c is a new child of j and a lost child of π(c)

L]j = L]j + (Lc \ {c})
place c in lost-child-queue of π(c)

end if
Case 4: consider each lost child of j
for each c in lost-child-queue of j do

L]j = L]j − (Lc \ {c})
end for
π(j) = min Lj \ {j}
c = j
j = π(c)

end while

L]j = L]j and π(j) = π(j) for all j ∈ P(k)c

end Algorithm 3
The time taken by this algorithm is given by the following lemma.

D
ow

nl
oa

de
d

07
/2

8/
17

 to
 1

28
.2

27
.1

88
.1

29
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

614 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

4

2 3

1

6

7

8

5

*

AT

=

AATA

L elimination tree of L

Fig. 4.1. An example matrix, its factor, and its elimination tree.

Lemma 4.2. The time to execute Algorithm 3 is bounded above by a constant
times the number of entries associated with patterns for nodes on the new path P(k).
That is, the time is

O

 ∑
j∈P(k)

|Lj |
 .

Proof. In Algorithm 3, we simply march up the path P(k) making adjustments

to L]j as we proceed. At each node j, preparing column j for all set subtractions or

additions takes O(|Lj |) time (a scatter operation), and it takes O(|Lj |) time to gather
the results at the end of step j. For each child of j, the set subtraction/addition adds
time proportional to the size of the subtracted/added set. Each node is visited as a
child c at most twice, since it falls into one or two of the four cases enumerated above
(a node c can be a new child of one node and a lost child of another). If this work
(proportional to |Lc| or |Lc|) is accounted to step c instead of j, the time to make the
adjustment to the pattern is bounded above by a constant times either |Lj | or |Lj |.
Since |Lj | ≤ |Lj | by Theorem 4.1, the proof is complete.

In practice, we can reduce the execution time for Algorithm 3 by skipping over
the current node j if it has no lost children and if its child c falls under Case 2 with

Lc = Lc. This check can be made in constant time, and if true, implies that L]j = L]j .
We illustrate Algorithm 3 with an example. Figure 4.1 shows the nonzero pattern

of an 8-by-8 matrix A, the patterns of AAT and its factor L, and the elimination tree
of L. The highlighted portion of the elimination tree of L corresponds to the nodes
in the path P(k) if AAT is updated with wwT, where the nonzero pattern of w is

W = {4, 6, 8}. The updated matrix A A
T

, its factor L, and the elimination tree of L
are shown in Figure 4.2. The new column w is appended to the original matrix A.

D
ow

nl
oa

de
d

07
/2

8/
17

 to
 1

28
.2

27
.1

88
.1

29
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

MODIFYING A SPARSE CHOLESKY FACTORIZATION 615

TA

8

7

6

4

2 3

1

5

AAA

L elimination tree of L

*

T

=

Fig. 4.2. An example matrix after update.

For this example, we have W = {4, 6, 8} and thus k = 4. The pattern of column
4 of L falls under Case 1 and becomes L4 = {4, 6, 7, 8}. The new parent of node 4 is
node 6. At node 6, we find that c = 4 is a lost child of π(4) = 7 and a new child of
node 6 (Case 3). The pattern of column 6 does not change, although its multiplicities
do. The parent of node 6 is thus unchanged (node 7). Node 4 is placed in column 7’s
lost-child-queue. Node 6’s lost-child-queue is empty. At column 7, we find that c = 6
is the old child of node 7 (Case 2), and node 4 is found in node 7’s lost-child-queue
(Case 4). This changes the multiplicities of column 7, but not its pattern. Finally, at
node 8, nothing changes.

4.2. Symbolic downdate algorithm. Let us consider the removal of a column
w from A, and let k be the index of the first nonzero entry in w. The symbolic
downdate algorithm is analogous to the symbolic update algorithm, but the roles of
P(k) and P(k) are interchanged in accordance with Theorem 4.1. Instead of adding

entries to L]j , we subtract entries; instead of lost-child-queues, we have new-child-

queues; instead of walking up the path P(k), we walk up the path P(k) ⊇ P(k).

Algorithm 4 (symbolic downdate, remove column w).
Case 1: first node in the path
W = {i : wi 6= 0}
k = min W
L]k = L]k −W
π(k) = min Lk \ {k}
c = k
j = π(c)
while j 6= 0 do

if j = π(c) thenD
ow

nl
oa

de
d

07
/2

8/
17

 to
 1

28
.2

27
.1

88
.1

29
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

616 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

Case 2: c is an old child of j, possibly changed

L]j = L]j − (Lc \ Lc)
else

Case 3: c is a lost child of j and a new child of π(c)

L]j = L]j − (Lc \ {c})
place c in new-child-queue of π(c)

end if
Case 4: consider each new child of j
for each c in new-child-queue of j do

L]j = L]j + (Lc \ {c})
end for
π(j) = min Lj \ {j}
c = j
j = π(c)

end while

L]j = L]j and π(j) = π(j) for all j ∈ P(k)c

end Algorithm 4
Similar to Algorithm 3, the execution time obeys the following estimate.
Lemma 4.3. The time to execute Algorithm 4 is bounded above by a constant

times the number of entries associated with patterns for nodes on the old path P(k).
That is, the time is

O

 ∑
j∈P(k)

|Lj |
 .

We can skip over some nodes that do not change in a similar manner as Algo-
rithm 3. Figures 4.1 and 4.2 can be viewed as an example of symbolic downdate,

A A
T −wwT = AAT, where w is the ninth column of A. The roles of A and A are

reversed.

5. The numerical factors. When we add or delete a column in A, we update
or downdate the symbolic factorization in order to determine the location in the
Cholesky factor of either new nonzero entries or old nonzero entries that are now
zero. Knowing the location of the nonzero entries, we can update the numerical value
of these entries. We first consider the case when A and L are dense and draw on the
ideas of [20]. Then we show how the method extends to the sparse case.

5.1. Modifying a dense factorization. Our algorithm to implement the nu-
merical update and downdate is based on a modification of Method C1 in [20] for
dense matrices. Although this algorithm is portrayed as a nonorthogonal algorithm
in [20], it is equivalent, after a diagonal scaling, to the orthogonal algorithm of Pan
[4, 30]. Hence, Method C1 should possess strong numerical stability properties com-
parable to those of Pan’s method. Other dense update or downdate methods include
[2, 5, 21, 22].

To summarize Gill et al.’s approach, we can write

A A
T

= AAT+σwwT = LDLT+σwwT = L(D+σvvT)LT = L(L̃D̃L̃T)LT = L D L
T
,

where v = L−1w, L = LL̃, and D = D̃. In Algorithm 5 below, we evaluate the new
Cholesky factor L = LL̃ without forming L̃ explicitly [20] by taking advantage of the

D
ow

nl
oa

de
d

07
/2

8/
17

 to
 1

28
.2

27
.1

88
.1

29
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

MODIFYING A SPARSE CHOLESKY FACTORIZATION 617

special structure of L̃. The product is computed column by column, moving from left
to right. In practice, L can be overwritten with L.

Algorithm 5 (dense numeric update/downdate; Method C1, modified).
α = 1
for j = 1 to m do

α = α+ σw2
j/dj

γ = wj/(αdj)

dj = (α/α)dj
α = α
wj+1,...,m = wj+1,...,m − wjLj+1,...,m,j

Lj+1,...,m,j = Lj+1,...,m,j + σγwj+1,...,m

end for

Note that Algorithm 5 also overwrites w with v = L−1w. In the jth iteration,
wj is simply equal to vj . This observation is important to the sparse case discussed
in the next section. Since σ is ±1, the floating point operation count of Algorithm 5
is precisely 2m2 +5m, counting multiplications, divisions, subtractions, and additions
separately. As noted above, if we introduce a diagonal scaling in Algorithm 5, we
obtain Pan’s method [4, 30] for modifying the sparse LLT factorization, for which the
corresponding operation count is 2.5m2 + 6.5m plus an additional m square roots.
Whether we use Algorithm 5 or Pan’s algorithm to update the numerical factors, the
symbolic algorithms are unchanged.

5.2. Modifying a sparse factorization. In the sparse case, v = L−1w is
sparse and its nonzero pattern is crucial. In Algorithm 5, we can essentially by-pass
those executable statements associated with values of j for which the variable wj
vanishes. That is, when wj vanishes, the values of α, dj , w, and column j of L
are unchanged. Since wj has been overwritten by vj , it follows that when executing
Algorithm 5, column j of L changes only when vj does not vanish. The nonzero
pattern of v can be found using the following lemma. The lemma is based on the
directed graph G(LT) = {V, E}, where V = {1, 2, . . . ,m} is the vertex set and E =
{(j, i) | i ∈ Lj} is the directed edge set.2

Lemma 5.1. The nodes reachable from any given node k by path(s) in the directed
graph G(LT) coincide with the path P(k).

Proof. If P(k) has a single element, the lemma holds. Proceeding by induction,
suppose that the lemma holds for all k for which |P(k)| ≤ j. Now, if P(k) has j + 1
elements, then by the induction hypothesis, the nodes reachable from π(k) by path(s)
in the directed graph G(LT) coincide with the path P(π(k)). The nodes reachable
in one step from k consist of the elements of Lk. By Proposition 3.1, each of the
elements of Lk is contained in the path P(k). If i ∈ Lk, i 6= k, then |P(i)| ≤ j. By
the induction hypothesis, the nodes reachable from i coincide with P(i) ⊆ P(k). The
nodes reachable from k consist of the union of {k} with the nodes reachable from Lk.
Since k ∈ P(k), it follows that the nodes reachable from k are contained in P(k).
On the other hand, for each p, the element of LT in row πp(k) and column πp+1(k)
is nonzero. Hence, all the elements of P(k) are reachable from k. Since the nodes
in P(k) coincide with the nodes reachable from k by path(s) in the directed graph
G(LT), the induction step is complete.

2Note that this definition of G(LT) includes self-loops corresponding to the diagonal entries
of L.

D
ow

nl
oa

de
d

07
/2

8/
17

 to
 1

28
.2

27
.1

88
.1

29
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

618 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

Theorem 5.2. During symbolic downdate A A
T

= AAT −wwT (where w is a
column of A), the nonzero pattern of v = L−1w is equal to the path P(k) in the (old)
elimination tree of L where

k = min {i : wi 6= 0}.(5.1)

Proof. Let W = {i : wi 6= 0}. Theorem 5.1 of Gilbert [15, 16, 19] states that
the nonzero pattern of v is the set of nodes reachable from the nodes in W by paths
in the directed graph G(LT). By Algorithm 1, W ⊆ Lk. Hence, each element of W
is reachable from k by a path of length one, and the nodes reachable from W are a
subset of the nodes reachable from k. Conversely, since k ∈ W, the nodes reachable
from k are a subset of the nodes reachable from W. Combining these inclusions, the
nodes reachable from k and from W are the same, and by Lemma 5.1, the nodes
reachable from k coincide with the path P(k).

Corollary 5.3. During symbolic update A A
T

= AAT + wwT, the nonzero
pattern of v = L−1w is equal to the path P(k) in the (new) elimination tree of L
where k is defined in (5.1).

Proof. Since LDLT = A A
T − wwT, we can view L as the Cholesky factor for

the downdate A A
T −wwT. Hence, we can apply Theorem 5.2, in effect replacing P

by P.
As a result of Theorem 5.2, a sparse downdate algorithm can skip over any column

j ∈ P(k)c. Similarly, as a result of Corollary 5.3, a sparse update algorithm can skip
over any column j ∈ P(k)c. In both cases, the jth iteration of Algorithm 5 requires
both the old and new nonzero patterns of the jth column of L (that is, Lj and
Lj). These are computed in the symbolic update and downdate Algorithms 3 and 4.
Finally, note that the symbolic and numeric algorithms have the same structure. They
both iterate over the columns in the associated path. Therefore, Algorithms 3 and 5
can be combined to obtain a complete sparse update algorithm that makes just one
pass of the matrix L. The jth iteration of Algorithm 5 is placed just before the
j = π(c) statement in Algorithm 3. Since Lj ⊆ Lj during a sparse update, the total
time taken for Algorithms 3 and 5 is

O

 ∑
j∈P(k)

|Lj |
 .

Similarly, Algorithms 4 and 5 can be combined to obtain a complete sparse down-
date algorithm. Since Lj ⊆ Lj during a sparse downdate, the time taken for Algo-
rithms 4 and 5 is

O

 ∑
j∈P(k)

|Lj |
 .

This time can be much less than the O(m2) time taken by Algorithm 5 in the dense
case.

6. Arbitrary symbolic and numerical factors. The methods we have devel-
oped for computing the modification to the Cholesky factors of AAT corresponding
to the addition or deletion of columns in A can be used to determine the effect on

D
ow

nl
oa

de
d

07
/2

8/
17

 to
 1

28
.2

27
.1

88
.1

29
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

MODIFYING A SPARSE CHOLESKY FACTORIZATION 619

the Cholesky factors of a general symmetric positive definite matrix M of any sym-
metric change of the form M +σwwT that preserves positive definiteness. We briefly
describe how Algorithms 1 through 5 are modified for the general case.

Let Mj denote the nonzero pattern of the lower triangular part of M:

Mj = {i : mij 6= 0 and i ≥ j}.

The symbolic factorization of M [10, 11, 12, 13, 34] is obtained by replacing the union
of Ak terms in Algorithm 1 with the setMj . With this change, Lj of Algorithm 1 is
given by

Lj = {j} ∪
 ⋃
c∈π−1(j)

Lc \ {c}
 ∪Mj .

This leads to a change in Algorithm 2 for computing the multiplicities. The multi-
plicity of an index i in Lj becomes

m(i, j) = |{k ∈ π−1(j) : i ∈ Lk}|+ (1 if i ∈Mj , or 0 otherwise).

The loop involving the Ak terms in Algorithm 2 is replaced by the single statement
L]j = L]j +Mj . More precisely, we have

for each k where min Ak = j do

L]j = L]j +Ak
end for

 ⇒ L]j = L]j +Mj .

Entries are removed or added symbolically from AAT by the deletion or addition
of columns of A, and numerical cancellation is ignored. Numerical cancellation of
entries in M should not be ignored, however, because this is the only way that entries
can be dropped from M. When numerical cancellation is taken into account, neither
of the inclusions Mj ⊆ Mj nor Mj ⊆ Mj may hold. We resolve this problem
by using a symbolic modification scheme with two steps: a symbolic update phase
in which new nonzero entries in M + σwwT are taken into account, followed by a
separate symbolic downdate phase to handle entries that become numerically zero.
Since each modification step now involves an update phase followed by a downdate
phase, we attach (in this section) an overbar to quantities associated with the update
and an underbar to quantities associated with the downdate.

Let W be the nonzero pattern of w, namely, W = {i : wi 6= 0}. In the first
symbolic phase, entries from W are symbolically added to Mj for each j ∈ W. That
is, if i 6∈ Mj , but i, j ∈ W with i > j, then we add i to Mj :

Mj =Mj ∪ {i ∈ W : i > j}.

In the second symbolic phase, entries fromW are symbolically deleted for each j ∈ W:

Mj =Mj \ {i ∈ W : i > j, mij + σwiwj = 0}.(6.1)

In practice, we need to introduce a drop tolerance t and replace the equality

mij + σwiwj = 0

D
ow

nl
oa

de
d

07
/2

8/
17

 to
 1

28
.2

27
.1

88
.1

29
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

620 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

in (6.1) by the inequality |mij + σwiwj | ≤ t. For a general matrix, the analogue of
Theorem 4.1 is the following.

Theorem 6.1. If α is the first index for which Mα 6=Mα, then P(α) ⊆ P(α).

Moreover, L]i = L]i for all i ∈ P(α)c. If β is the first index for which Mβ 6= Mβ,

then P(β) ⊆ P(β). Moreover, L]i = L]i for all i ∈ P(β)c.

In evaluating the modification in the symbolic factorization associated with M +
σwwT, we start at the first index α whereMα 6=Mα and we march up the path P(α)

making changes to L]j , obtaining L]j . In the second phase, we start at the first index

where Mβ 6=Mβ and we march up the path P(β) making changes to L]j , obtaining

L]j . The analogue of Algorithm 3 in the general case differs only in the starting index

(now α) and in the addition of the sets Mj \Mj in each pass through the j-loop.

Algorithm 6a (symbolic update phase, general matrix).
Case 1: first node in the path
α = min {i :Mi 6=Mi}
L]α = L]α +Mα \Mα

π(α) = min Lα \ {α}
c = α
j = π(c)
while j 6= 0 do

L]j = L]j +Mj \Mj

if j = π(c) then
Case 2: c is an old child of j, possibly changed

L]j = L]j + (Lc \ Lc)
else

Case 3: c is a new child of j and a lost child of π(c)

L]j = L]j + (Lc \ {c})
place c in lost-child-queue of π(c)

end if
Case 4: consider each lost child of j
for each c in lost-child-queue of j do

L]j = L]j − (Lc \ {c})
end for
π(j) = min Lj \ {j}
c = j
j = π(c)

end while

L]j = L]j and π(j) = π(j) for all j ∈ P(α)c

end Algorithm 6a

Similarly, the analogue of Algorithm 4 in the general case differs only in the
starting index (now β) and in the subtraction of the sets Mj \ Mj in each pass
through the j-loop.

Algorithm 6b (symbolic downdate phase, general matrix).
Case 1: first node in the path
β = min {i :Mi 6=Mi}
L]β = L]β −Mβ \Mβ

π(β) = min Lβ \ {β}

D
ow

nl
oa

de
d

07
/2

8/
17

 to
 1

28
.2

27
.1

88
.1

29
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

MODIFYING A SPARSE CHOLESKY FACTORIZATION 621

c = β
j = π(c)
while j 6= 0 do

L]j = L]j −Mj \Mj

if j = π(c) then
Case 2: c is an old child of j, possibly changed

L]j = L]j − (Lc \ Lc)
else

Case 3: c is a lost child of j and a new child of π(c)

L]j = L]j − (Lc \ {c})
place c in new-child-queue of π(c)

end if
Case 4: consider each new child of j
for each c in new-child-queue of j do

L]j = L]j + (Lc \ {c})
end for
π(j) = min Lj \ {j}
c = j
j = π(c)

end while

L]j = L]j and π(j) = π(j) for all j ∈ P(β)c

end Algorithm 6b

Algorithm 5 is completely unchanged in the general case. It can be applied after
the completion of Algorithm 6b so that we know the location of new nonzero entries
in the Cholesky factor. It processes the submatrix associated with rows and columns
in P(k), where k is the index of the first nonzero element of w. When M has the form
AAT and when M is found by either adding or deleting a column in A, then assuming
no numerical cancellations, Algorithm 6b can be skipped when we add a column to A
sinceMj =Mj for each j. Similarly, when a column is removed from A, Algorithm 6a

can be skipped since Mj = Mj for each j. Hence, when Algorithm 6a followed by

Algorithm 6b is applied to a matrix of the form AAT, only Algorithm 6a takes effect
during an update, while only Algorithm 6b takes effect during a downdate. Thus the
approach we have presented in this section for an arbitrary symmetric positive definite
matrix generalizes the earlier approach where we focus on matrices of the form AAT.

7. Experimental results. We have developed Matlab codes to experiment with
all the algorithms presented in this paper, including the algorithms of section 6 for
a general symmetric, positive definite matrix. In this section, we present the results
of a numerical experiment with a large sparse optimization problem from Netlib [8]
in the context of the LP DASA [26]. The computer used for this experiment was a
Model 170 UltraSparc, equipped with 256MB of memory and with Matlab Version
4.2c.

7.1. Experimental design. In the LP DASA, the columns of the matrix A in
the product AAT are all chosen from among the columns of some fixed matrix B.
After a few updates or downdates, the system AATx = b must be solved with a
dense right-hand side b.

The Cholesky factorization of the initial AAT (before any columns are added or
deleted) is often preceded by a fill-reducing permutation P of the rows and columns

D
ow

nl
oa

de
d

07
/2

8/
17

 to
 1

28
.2

27
.1

88
.1

29
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

622 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

([1], for example). We can compute a permutation to reduce the fill for BBT since the
Cholesky factors of AAT will be at least as sparse as those of BBT by Proposition 3.2,
regardless of how the columns of A are chosen from the columns of B. Based on the
number of nonzeros in each column of the Cholesky factors of BBT, we allocate a
static storage structure that will always contain the Cholesky factors of each AAT.
This can lead to wasted space if the number of nonzeros in the Cholesky factors
of AAT is far less than the number of nonzeros in the Cholesky factors of BBT.
Alternatively, we could store the Cholesky factor of the current AAT in a smaller
space and reallocate storage during the updates and downdates, based on the changes
in the nonzero patterns.

We selected an optimization problem from airline scheduling (DFL001). Its con-
straint matrix B is 6,071-by-12,230 with 35,632 nonzeros. We rescaled the variables
so that the columns of B are all unit vectors, and we augmented B by appending on
its right the matrix 10−6I. This ensures that BBT is strictly positive definite. The
matrix BBT has 37,923 nonzeros in its strictly lower triangular part. The Cholesky
factor LB has 1.49 million nonzeros (with a fill-minimizing permutation PB of the
rows of B, described below) and requires 1.12 billion floating point operations and 115
seconds to compute (the LP DASA does not require this matrix; however, as noted
above, this is an upper bound on the number of nonzeros that can occur during the
execution of the LP DASA). This high level of fill-in in LB is the result of the highly
irregular nonzero pattern of B. The matrix A0, corresponding to an optimal solu-
tion of the linear programming problem, has 5,446 columns taken from the original
columns of B plus the 6,071 columns of the appended matrix 10−6I.

We wrote a set of Matlab scripts that implements our complete sparse Cholesky
update/downdate algorithm, discussed in section 4 and section 5. We first found
PB , using 101 trials of Matlab’s column multiple minimum degree ordering algorithm
(colmmd [17]), 100 of them with a different random permutation of the rows of B. We
then took the best permutation found. The time for the initial Cholesky factorization
of AAT is given by (see [13]) the following expression:

O

 m∑
j=1

|Lj |2
 ,

which is O(m3) if L is dense. With our permutation PB , the factor L of A0A
T
0 has

831 thousand nonzeros and took 481 million floating point operations and 51 seconds
to compute (using Matlab’s chol). Following the method used in LP DASA, we added
10−12 to the diagonal to ensure positive definiteness (the columns of B are scaled to
be unit vectors). We used the same permutation PB for the entire experiment. The
initial symbolic factorization took 15 seconds (Algorithm 2). It is this matrix and its
factor that are required by the LP DASA.

We did not use Matlab’s sparse matrix data structure since Matlab removes ex-
plicit zeros. Changing the nonzero pattern by a single entry can cause Matlab to
make a new copy of the entire matrix. This would defeat the asymptotic performance
of our algorithms. Instead, the column-oriented data structure we use for L, L], and
L consists of three arrays of length |LB |, an array of length m that contains indices
to the first entry in each column, and an array of length m holding the number of
nonzeros in each column. The columns are allocated so that each column can hold as
many nonzeros as the corresponding column of LB without reallocation.

Starting with the matrix A0, we added one column at a time until all 12,230

D
ow

nl
oa

de
d

07
/2

8/
17

 to
 1

28
.2

27
.1

88
.1

29
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

MODIFYING A SPARSE CHOLESKY FACTORIZATION 623

columns from the original B were present, and then we removed them one at a time
(in a first-in first-out order) to obtain the starting A0. No linear programming solver
does so much work, but this provides a simple contrived test of our methods under
a wide range of conditions that could occur in practice. The average time and work
required to modify the factors at each step was 3.5 seconds and 2.6 million floating
point operations. By comparison, solving a linear system LDLTx = b with a dense
right-hand side b (using our column-oriented data structure for L) at each step took
an average of 6.9 seconds and 5.0 million floating point operations (each solve takes
O(|L|) time). Thus, modifying the factors takes about half the time and work as using
the factors to solve a linear system.

The time taken for the entire update/downdate computation would be much
smaller if our code was written in a compiled language. Solving one system LDLTx =
b with a dense right-hand side (using the factorization of the matrix A0) takes 5.5
seconds using our column-oriented data structure, 1.3 seconds using a Matlab sparse
matrix for L, and 0.22 seconds using Fortran 77. Hence, for the DFL001 test problem,
we expect that our computation (both symbolic and numerical) would take about a
tenth of a second per update or downdate in Fortran 77, on average.

7.2. Numerical accuracy. In order to measure the error in the computed

Cholesky factorization, we evaluated the difference ‖AAT− L̂D̂L̂
T‖1, where L̂D̂L̂

T
is

the computed Cholesky factorization. For the airline scheduling matrix of section 7,

L̂ has up to 1.49 million nonzeros and it is impractical to compute the product L̂D̂L̂
T

after each update. To obtain a quick and accurate estimate for ‖E‖1, where E =

AAT − L̂D̂L̂
T

, we applied the strategy presented in [23] (see [24, p. 139] for a sym-
bolic statement of the algorithm) to estimate the 1-norm of a matrix. That is, we used
a gradient ascent approach to compute a local maximum for the following problem:

max{‖Ex‖1 : ‖x‖1 = 1}.
Since L̂ is used multiple times in the following algorithm, we copied our data structure
for L̂ into a Matlab sparse matrix. In exact arithmetic, Algorithm 7 computes a lower
bound on the 1-norm of E.3

Algorithm 7 (estimate 1-norm of an m-by-m matrix E).
xi = 1/m for 1 ≤ i ≤ m
ρ = 0 (ρ is the current estimate for ‖E‖)
while ‖Ex‖1 > ρ do

ρ = ‖Ex‖1
for i = 1 to m do

yi = 1 if (Ex)i ≥ 0
yi = −1 if (Ex)i < 0

end for
z = ETy
j = arg max {|zi| : i = 1 to m}
if |zj | ≤ zTx return
xi = 0 for i = 1 to n
xj = 1

end while
end Algorithm 7

3Algorithm 7 is available in Mathwork’s contributed m-files ftp site, ftp.mathworks.com, as the
file pub/contrib/v4/linalg/normest1.m.

D
ow

nl
oa

de
d

07
/2

8/
17

 to
 1

28
.2

27
.1

88
.1

29
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

624 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

0 2000 4000 6000 8000 10000 12000 14000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−12

step

E
rr

or
 n

or
m

, a
s

es
tim

at
ed

 b
y

A
lg

or
ith

m
 7

Fig. 7.1. Estimated 1-norm of error in the LDLT factorization.

To improve the accuracy of the 1-norm estimate, we used Algorithm 7 three times.
In the second and third trials, a different starting vector x was used as described in
[23]. Observe that Algorithm 7 only makes use of the product between the matrix
E and a vector. This feature is important in the context of sparse matrices since

E contains the term L̂D̂L̂
T

. It is impractical to compute the product L̂D̂L̂
T

, but

it is practical to multiply L̂D̂L̂
T

by a vector. For the airline scheduling matrix of
section 7, the values for ‖E‖1 initially, at step 6,784, and at the end were 2.5× 10−13,
2.4× 10−12, and 3.0× 10−12, respectively. The estimates obtained using Algorithm 7
were nearly identical at the same three steps (2.6×10−13, 2.5×10−12, and 2.9×10−12,
respectively). On the other hand, the times to compute ‖E‖1 at the initial step and at
step 6,784 were 119.4 and 266.4 seconds, while the times for three trials of Algorithm 7
were 8.3 and 13.5 seconds, respectively (excluding the time to construct the Matlab
sparse matrix for L̂).

Our methods were quite accurate for this problem. After 6,784 updates and
6,784 downdates, or 13,568 changes in A, the 1-norm of E increased by only a factor
12. Figure 7.1 shows the estimated value of ‖E‖1 computed every 10 steps using
Algorithm 7. The initial and final estimates are circled. The 1-norm of the matrix
AAT increases from 458.0 initially to 1107.0 at iteration 6,784, then returns to 458.0
at iteration 13,568. Hence, the product of the computed Cholesky factors agrees with
the product AAT to about 15 significant digits initially, while the products agree to
about 14 significant digits after 13,568 modifications of A.

7.3. Alternative permutations. Our methods are optimal in the sense that
they take time proportional to the number of nonzero entries in L and D that change
at each step. However, they are not optimal with respect to fill-in, since we assume a
single initial permutation and no subsequent permutations. A fill-reducing ordering
of BBT might not be the best ordering to use for all the A matrices. A simple
pathological example is the m-by-n matrix B, where n = m(m−1)/2 and the nonzero
pattern of each column of B is a unique pair of integers from the set {1, 2, . . . ,m}.

D
ow

nl
oa

de
d

07
/2

8/
17

 to
 1

28
.2

27
.1

88
.1

29
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

MODIFYING A SPARSE CHOLESKY FACTORIZATION 625

0 2000 4000 6000 8000 10000 12000 14000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6

step

N
on

ze
ro

s
in

 L

Nonzeros in L for three different permutations

Fig. 7.2. Nonzeros in L using three different permutations.

In this case, every element of BBT is nonzero, while the nonzero pattern of AAT

is arbitrary. As the matrix A changes, it might be advantageous to compute a fill-
reducing ordering of AAT if the size of its factors grow “too large.” A refactorization
with the new permutation would then be required.

We found a fill-reducing permutation PA of the starting matrix A0A
T
0 (again, the

best of 101 trials of colmmd). This results in a factor L with 381 thousand nonzeros,
requiring only 169 million floating point operations to compute. This is significantly
less than the number of nonzeros (831 thousand) and floating point operations (481
million) associated with the fill-reducing permutation for BBT. We also computed an
ordering of AAT at each step, using colmmd just once, and then computed the number
of nonzeros in the factor if we were to factorize AAT using this permutation (Ps).
Although it only takes about 1 second to compute the ordering [17] and symbolic
factorization [18], it is not practical to use 100 random trials at each step.

Figure 7.2 depicts the nonzero counts of L for these three different permutations
at each of the 13,568 steps. The fixed permutation PB results in the smooth curve
starting at 831 thousand and peaking at 1.49 million. The fixed permutation PA

results in a number of nonzeros in L that starts at 381 thousand and rises quickly,
leaving the figure at step 1,206 and peaking at 7.4 million in the middle. It surpasses
PB at step 267. Using a permutation Ps, computed at each step s, gives the erratic
line in the figure, starting at 390 thousand and peaking at 1.9 million in the middle.
These results indicate that it might be advantageous to start with the fixed permuta-
tion PA, use it for 267 steps, and then refactorize with the permutation Ps computed
at step 267. This results in a new factor with only 463 thousand nonzeros. Near the
center of the figure, however, A includes most of the columns in B, and in this case
the PB permutation should be used.

8. Summary. We have presented a new method for updating and downdating
the factorization LDLT or LLT of a sparse symmetric positive definite matrix AAT.
Our experimental results show that the method should be fast and accurate in prac-
tice. Extensions to an arbitrary sparse symmetric positive definite matrix, M, have
been discussed. We mention additional extensions to our work that would be useful.

D
ow

nl
oa

de
d

07
/2

8/
17

 to
 1

28
.2

27
.1

88
.1

29
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

626 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

One drawback of our approach is the increase in storage. With the compressed
pattern (a supernodal form of L) [13], the storage of L is dominated by the floating
point values. In our storage scheme, we require two integers per floating point value
(a row index and its multiplicity). Our methods almost double the storage for L
(assuming 8-byte floating point values and 4-byte integers). A method based on a
supernodal form could require less time and storage. However, supernodes would
merge during update and split during downdate, which would be complicated to
manage. Although implementing supernodes in the context of our current update
and downdate methods is difficult, the numerical factorization can still be based on a
supernodal method.

Some applications, such as local mesh refinement and coarsening and primal ac-
tive set algorithms in optimization, require changes to the dimension of a symmetric
positive definite matrix. These changes can be implemented using the techniques
presented in this paper.

REFERENCES

[1] P. R. Amestoy, T. A. Davis, and I. S. Duff, An approximate minimum degree ordering
algorithm, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 886–905.

[2] R. H. Bartels, G. H. Golub, and M. A. Saunders, Numerical techniques in mathematical
programming, in Nonlinear Programming, J. B. Rosen, O. L. Mangasarian, and K. Ritter,
eds., Academic Press, New York, 1970, pp. 123–176.

[3] J. M. Bennett, Triangular factors of modified matrices, Numer. Math., 7 (1965), pp. 217–221.
[4] C. H. Bischof, C.-T. Pan, and P. T. P. Tang, A Cholesky up- and downdating algorithm for

systolic and SIMD architectures, SIAM J. Sci. Comput., 14 (1993), pp. 670–676.
[5] N. A. Carlson, Fast triangular factorization of the square root filter, AIIA J., 11 (1973),

pp. 1259–1265.
[6] S. M. Chan and V. Brandwajn, Partial matrix refactorization, IEEE Trans. on Power Sys-

tems, PWRS-1 (1986), pp. 193–200.
[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT Elec-

trical Engineering and Computer Science Series, MIT Press, Cambridge, MA; McGraw–
Hill, New York, 1990.

[8] J. J. Dongarra and E. Grosse, Distribution of mathematical software via electronic mail,
Comm. ACM, 30 (1987), pp. 403–407.

[9] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, Oxford
University Press, London, 1986.

[10] S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman, Yale sparse matrix
package, I: The symmetric codes, Internat. J. Numer. Methods Engrg., 18 (1982), pp. 1145–
1151.

[11] A. George and J. W. H. Liu, The design of a user interface for a sparse matrix package,
ACM Trans. Math. Software, 5 (1979), pp. 139–162.

[12] A. George and J. W. H. Liu, An optimal algorithm for symbolic factorization of symmetric
matrices, SIAM J. Comput., 9 (1980), pp. 583–593.

[13] A. George and J. W. H. Liu, Computer Solution of Large Sparse Positive Definite Systems,
Prentice–Hall, Englewood Cliffs, NJ, 1981.

[14] A. George, J. Liu, and E. Ng, A data structure for sparse QR and LU factorizations, SIAM
J. Sci. Stat. Comput., 9 (1988), pp. 100–121.

[15] J. R. Gilbert, Predicting Structure in Sparse Matrix Computations, Tech. report CS-86-750,
Computer Science Dept., Cornell Univ., Ithaca, NY, 1986.

[16] J. R. Gilbert, Predicting structure in sparse matrix computations, SIAM J. Matrix Anal.
Appl., 15 (1994), pp. 62–79.

[17] J. R. Gilbert, C. Moler, and R. Schreiber, Sparse matrices in MATLAB: Design and
implementation, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 333–356.

[18] J. R. Gilbert, E. G. Ng, and B. W. Peyton, An efficient algorithm to compute row and
column counts for sparse Cholesky factorization, SIAM J. Matrix Anal. Appl., 15 (1994),
pp. 1075–1091.

[19] J. R. Gilbert and T. Peierls, Sparse partial pivoting in time proportional to arithmetic
operations, SIAM J. Sci. Stat. Comput., 9 (1988), pp. 862–874.

D
ow

nl
oa

de
d

07
/2

8/
17

 to
 1

28
.2

27
.1

88
.1

29
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

MODIFYING A SPARSE CHOLESKY FACTORIZATION 627

[20] P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders, Methods for modifying matrix
factorizations, Math. Comp., 28 (1974), pp. 505–535.

[21] P. E. Gill and W. Murray, Quasi-Newton methods for unconstrained optimization, J. Inst.
Math. Appl., 9 (1972), pp. 91–108.

[22] P. E. Gill, W. Murray, and M. A. Saunders, Methods for computing and modifying the
LDV factors of a matrix, Math. Comp., 29 (1975), pp. 1051–1077.

[23] W. W. Hager, Condition estimates, SIAM J. Sci. Stat. Comput., 5 (1984), pp. 311–316.
[24] W. W. Hager, Applied Numerical Linear Algebra, Prentice–Hall, Englewood Cliffs, NJ, 1988.
[25] W. W. Hager, Updating the inverse of a matrix, SIAM Rev., 31 (1989), pp. 221–239.
[26] W. W. Hager, The LP dual active set algorithm, in High Performance Algorithms and Software

in Nonlinear Optimization, R. De Leone, A. Murli, P. M. Pardalos, and G. Toraldo, eds.,
Kluwer Academic Publishers, Norwell, MA, to appear.

[27] K. H. Law, Sparse matrix factor modification in structural reanalysis, Internat. J. Numer.
Methods Engrg., 21 (1985), pp. 37–63.

[28] K. H. Law, On updating the structure of sparse matrix factors, Internat. J. Numer. Methods
Engrg., 28 (1989), pp. 2339–2360.

[29] J. W. H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal.
Appl., 11 (1990), pp. 134–172.

[30] C.-T. Pan, A modification to the LINPACK downdating algorithm, BIT, 30 (1990), pp. 707–
722.

[31] D. J. Rose, R. E. Tarjan, and G. S. Lueker, Algorithmic aspects of vertex elimination on
graphs, SIAM J. Comput., 5 (1976), pp. 266–283.

[32] D. G. Row, G. H. Powell, and D. P. Mondkar, Solution of progressively changing equilib-
rium equations for nonlinear structures, Comput. & Structures, 7 (1977), pp. 659–665.

[33] R. Schreiber, A new implementation of sparse Gaussian elimination, ACM Trans. Math.
Software, 8 (1982), pp. 256–276.

[34] A. H. Sherman, On the Efficient Solution of Sparse Systems of Linear and Nonlinear Equa-
tions, Tech. report 46, Dept. of Computer Science, Yale Univ., New Haven, CT, 1975.

[35] G. Strang, Linear Algebra and Its Applications, Academic Press, New York, 1980.
[36] J. H. Wilkinson, Linear algebra algorithms, in Software for Numerical Mathematics, Proceed-

ings of the Loughborough Univ. of Technology Conf. of the Inst. of Mathematics and its
Appl., 1973, D. J. Evans, ed., Academic Press, New York, 1974, pp. 17–28.

D
ow

nl
oa

de
d

07
/2

8/
17

 to
 1

28
.2

27
.1

88
.1

29
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

