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1. Introduction

This dissertation will investigate certain connections between the following three topics of interest:

(1) metric thickenings of (infinite) metric spaces at large scales,

(2) theorems of Borsuk–Ulam type, and

(3) (real) convex geometry.

Motivating this research is a desire to understand, broadly speaking, the topology of certain simplicial

complexes defined on spheres at large scales. In turn, a better understanding of the topology of these com-

plexes is relevant to applications of persistent homology, where the “correct” scale parameter of a filtration

of simplicial complexes (i.e., the scale at which one recovers the homotopy type of the underlying unknown

space) is a priori unknown.
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Figure 1. A schematic representation of connections between different topics of interest.

Dashed thicker gray lines indicate newly formed connections which may provide deeper

insight into the relationship between metric thickenings and Borsuk–Ulam type theorems.

Mounting evidence suggests that an effective approach to the study of the topology of metric thickenings

at large scales may be indirect — specifically, through the study of certain objects in convex geometry

and Borsuk–Ulam type theorems. In this proposal, we provide evidence for the validity and effectiveness

of this indirect approach in the form of preliminary results and conjectures. For example, we explain

how knowledge of the homotopy connectivity of metric thickenings of spheres implies generalizations of the

Borsuk–Ulam theorem for maps to higher dimensional codomains, and how certain convex bodies may inform

our understanding of the topology of these metric thickenings. We also describe new directions and methods

for this research, including the potential to apply techniques of representation theory (specifically, through

the study of a family of Schur polynomials) and characteristic classes of certain principal G-bundles.

2. Background and literature review

In this section we review notation and related work on Vietoris–Rips simplicial complexes, metric thick-

enings, convex geometry, moment curves, orbitopes, and Borsuk–Ulam type theorems.

2.1. Conventions regarding Sn. We equip the sphere Sn with the geodesic metric in which great circles

have circumference 2π, although all stated results also hold (with easy modifications) when Sn is instead

equipped with the restriction of the Euclidean metric on Rn+1.

2.2. Vietoris–Rips and Čech simplicial complexes. In applications of topological data analysis, one

requires a method of turning a finite metric space (M,d), often a collection of discrete points in Rk, into

a useful topological space. Commonly, this topological space is taken to be the geometric realization of a
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simplicial complex with vertex set M . Further, it is often useful to define a parametrized family of these

simplicial complexes in such a way as to incorporate the metric of the underlying vertex set. Two common

families of parametrized simplicial complexes that are defined in terms of the metric d are the Vietoris–Rips

and the Čech simplicial complexes.

Definition 1. Let X be a metric space and fix r ≥ 0. The Vietoris–Rips simplicial complex of X with scale

parameter r, denoted VR(X; r), has X as its vertex set and a finite subset σ ⊆ X as a simplex whenever

diam(σ) ≤ r.

Definition 2. Let X be a metric space, and fix r ≥ 0. The Čech simplicial complex of X with scale

parameter r, denoted Č(X; r), has X as its vertex set and a finite subset σ ⊆ X as a simplex whenever

∩v∈σB(v; r) 6= ∅, where B(v; r) denotes the closed ball of radius r centered at v.

Note that we use the ≤ convention for Vietoris–Rips and Čech complexes throughout this document,

rather than the < convention. Additionally, we identify an abstract simplicial complex with its geometric

realization, which is a topological space.

While the theorems of Hausmann and Latschev [21, 27] describe conditions under which the homotopy

type of a manifold is recoverable from a Vietoris–Rips complex for sufficiently small r ≥ 0, much less is

known about the topological behavior of these constructions for large values of r, even though large values

of r commonly arise in applications of persistent homology [15]. However, more is known in the specific case

when the underlying manifold is the circle. The following theorem from [2] is based on [1, 4].

Theorem 3. Let 0 ≤ r < π. There are homotopy equivalences

VR(S1; r) '

S2k−1 if 2π(k−1)
2k−1 < r < 2πk

2k+1∨c
S2k if r = 2πk

2k+1 ,

where k = 0, 1, 2, . . ., and where c denotes the cardinality of the continuum.

Related papers include [18], which studies the 1-dimensional persistence of Čech and Vietoris–Rips com-

plexes of metric graphs, [40] which extends this to geodesic spaces, [41] which studies approximations of

Vietoris–Rips complexes by finite samples even at higher scale parameters, and [43] which applies Bestvina–

Brady discrete Morse theory to Vietoris–Rips complexes.

2.3. Metric thickenings and optimal transport. When a metric space X is not finite, it is often impos-

sible1 to equip VR(X; r) with a metric without changing the homeomorphism type. In such instances the

simplicial complex VR(X; r) destroys the metric information about the underlying space X. This motivates

the consideration of the Vietoris–Rips metric thickening, VRm(X; r), which preserves metric information

(the superscript m denotes “metric”).

Let δx denote the Dirac delta mass at a point x ∈ X.

Definition 4 ([3]). Let X be a metric space and let r ≥ 0. The Vietoris–Rips thickening is the set

VRm(X; r) =

{
k∑
i=0

λiδxi

∣∣∣∣ k ∈ N, xi ∈ X, diam({x0, . . . , xk}) ≤ r, λi ≥ 0,
∑

λi = 1

}
,

equipped with the 1-Wasserstein metric.

1A simplicial complex (for example, VR(X; r)) is metrizable if and only if it is locally finite [32, Proposition 4.2.16(2)].
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This metric is also called the Kantorovich, optimal transport, or earth mover’s metric [36, 37, 38]; it

provides a notion of distance between probability measures defined on a metric space. Although it exists

much more generally [16, 24, 25], the 1-Wasserstein metric on VRm(X; r) can be defined as follows. Given

µ, µ′ ∈ VRm(X; r) with µ =
∑k
i=0 λiδxi and µ′ =

∑k′

j=0 λ
′
jδx′

j
, define a matching p between µ and µ′ to be

any collection of non-negative real numbers {pi,j}i,j such that
∑k′

j=0 pi,j = λi and
∑k
i=0 pi,j = λ′j . Define

the cost of the matching p to be
∑
i,j pi,jd(xi, x

′
j). The 1-Wasserstein distance between µ, µ′ ∈ VRm(X; r)

is then the infimum, varying over all matchings p between µ and µ′, of the cost of p.

Note that VRm(X; 0) is isometric to X. Contrary to the situation for an arbitrary Vietoris–Rips complex,

the embedding X ↪→ VRm(X; r) into the Vietoris–Rips metric thickening given by x 7→ δx is continuous. In

fact, more is true: VRm(X; r) is an r-thickening of X [20, 3]. For this reason, we identify x ∈ X with the

measure δx ∈ VRm(X; r) in the image of this embedding. Given a measure µ =
∑k
i=0 λiδxi with λi > 0 for

all i, we denote the support of µ by supp(µ) = {x0, . . . , xk}.
If M is a complete Riemannian manifold with curvature bounded from above and below, then VRm(M ; r)

is homotopy equivalent to M for r sufficiently small [3, 7]. This property provides an analogue of Hausmann’s

theorem [21] for metric thickenings.

In the obvious way, there is an analogous definition of the Čech metric thickening of X at scale r, denoted

Čm(X; r). Similar results hold for Čech metric thickenings, including continuity of the inclusion (which is

an isometry onto its image) and an analogue of Hausmann’s theorem. Throughout, we simply write metric

thickening when the distinction is unimportant, or if the underlying simplicial complex is clear through

context. For convenience, we make the following definition.

Definition 5. Given a complete Riemannian manifold M, define the first critical scale of the metric thick-

ening VRm(M ; t) of M to be

r0 = sup{t ∈ [0,∞] | VRm(M ; t) 'M for all r < t}.

This supremum is well-defined because Km(M ; 0) is isometric (and hence homeomorphic) to M . We say a

scale parameter r is large if r0 ≤ r.

To date, the homotopy type of the Vietoris–Rips metric thickening of a sphere Sn is known only up to

and including the first critical scale. In fact, for the sphere Sn, we have r0 = π− arccos
(

1
n+1

)
, which is the

diameter of an inscribed (n+ 1)-simplex in Sn.

Theorem 6 ([3, Proposition 5.3 and Theorem 5.4]). There are homotopy equivalences

VRm(Sn; r) '

S
n if 0 ≤ r < π − arccos

(
1

n+1

)
∑n+1 SO(n+1)

An+2
if r = π − arccos

(
1

n+1

)
,

where SO(n+1)
An+2

is a finite quotient of a special orthogonal group, as described in [3].

2.4. Convex geometry. Convex geometry is the study of convex sets, especially polytopes and their facial

structures [44]. Given an arbitrary subset Y ⊆ Rn, we let

conv(Y ) =

{
k∑
i=1

λivi

∣∣∣∣ k ∈ N, vi ∈ Y, λi ≥ 0,

k∑
i=1

λi = 1

}
denote the convex hull of Y . For example, Figure 2 shows the convex hull of the image of the map f : S1 → R3

defined by f(t) = (cos(t), sin(t), cos(3t)). Given any finite set {λ1, . . . , λk} ⊂ Rn such that λi ≥ 0 for all i

and
∑
λi = 1, we say λ1, . . . , λk are a collection of convex coefficients.
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Let Y ⊆ Rn be convex. Define a face of Y to be any convex set F ⊆ Y such that, given x ∈ F , if

x = λy+ (1−λ)z for some 0 < λ < 1 and y, z ∈ Y , then y, z ∈ F . If F is a face of Y and F 6= ∅ and F 6= Y,

we say F is a proper face of Y . Let Y ⊆ Rk be a set in Euclidean space. Carathéodory’s theorem states that

if the convex hull of Y contains the origin, then there is a subset of Y of at most k+ 1 points whose convex

hull also contains the origin.

Definition 7. Given Y ⊆ Rn, we say Y ′ ⊆ Y is a Carathéodory subset of Y if the convex hull of Y ′ contains

the origin.

2.5. Trigonometric polynomials. A trigonometric polynomial is an expression of the form

p(t) = c+

n∑
k=1

(ak cos(kt) + bk sin(kt)) ,

inducing a map S1 → R. Throughout, we assume all coefficients are real. In the case that c = 0, we call

p a homogeneous trigonometric polynomial. The set S ⊆ {1, . . . , n} of integers k with ak 6= 0 or bk 6= 0 is

called the spectrum of p, and the largest integer in S is the degree of p. The spectrum of p constrains the

set of roots of p; for example, if p is homogeneous of degree n then it has a root on any closed circular arc

of length 2πn
n+1 ; see [8, 19]. Kozma and Oravecz in [26] give upper bounds on the length of an arc where a

trigonometric polynomial with spectrum bounded away from zero (that is, S ⊆ [k, n]) is non-zero. If the

spectrum of p consists only of odd integers, then p is called a raked trigonometric polynomial.

2.6. The trigonometric moment curve.

Definition 8. For k ∈ N, the trigonometric moment curve M2k : S1 → R2k is defined by

M2k(t) = (cos(t), sin(t), cos(2t), sin(2t), . . . , cos(kt), sin(kt))
ᵀ
.

Here, we identify the domain S1 with R/2πZ. A related map is the moment curve γk : R → Rk, which

is defined by γk(t) = (t, t2, . . . , tk)ᵀ. In [17], Gale shows that the facial lattices of the convex bodies

conv(γ2k(R)) and conv(M2k(S1)) are equivalent for all k ≥ 1.

2.7. Carathéodory orbitopes. The Carathéodory orbitope is defined by C2k = conv(M2k(S1)) ⊆ R2k.

Remark 9. We note that {t1, . . . , tn} ⊂ S1 defines a proper face conv({M2k(t1), . . . ,M2k(tn)}) of C2k if and

only if there exists a trigonometric polynomial p 6≡ 0 of degree at most k such that p is non-negative on S1

and p(ti) = 0 for all 1 ≤ i ≤ n.

This convex body is not the convex hull of a finite set of points; it is an orbitope instead of a polytope [33].

Theorem 10 ([33, Corollary 5.4]). The faces of C2k are in inclusion-preserving bijection with sets of at most

k points in S1.

In particular, any point in ∂C2k can be expressed as a convex combination
∑m
i=1 λiM2k(ti) with ti ∈ S1

and m ≤ k. Note that any {t1, . . . , tm} ⊂ S1 with m ≤ k must be disjoint from some open arc of length at

least 2π
k , and hence in some ball of S1 of radius r ≥ (k−1)π

k . In this way, the facial structure of Carathédory

orbitopes is related to Čech simplicial complexes defined on S1 at scale r ≥ (k−1)π
k .

2.8. The centrally symmetric trigonometric moment curve. The centrally symmetric moment curve

is analogous to the trigonometric moment curve, with the additional property that it is symmetric under the

involution x 7→ −x.
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Definition 11. For k ∈ N, the centrally symmetric moment curve SM2k : S1 → R2k is defined by

SM2k(t) =
(
cos t, sin t, cos 3t, sin 3t, . . . , cos(2k − 1)t, sin(2k − 1)t

)ᵀ
.

Again, we identify the domain S1 with R/2πZ. Since SM2k(t + π) = −SM2k(t), we say that SM2k is

centrally symmetric about the origin. Interestingly, this curve is closely related to the multidimensional

scaling (MDS) embedding S1 ↪→ R2k of the geodesic circle [5, 11, 23, 42]; multidimensional scaling is a way

to map a metric space into Euclidean space in a way that distorts the metric (in some sense) as little as

possible.

Given a vector z ∈ R2k, observe that the inner product of z and SM2k(t) is a raked homogeneous

trigonometric polynomial of degree 2k − 1.

2.9. Barvinok–Novik orbitopes. The Barvinok–Novik orbitope is defined by B2k = conv(SM2k(S1)) ⊆
R2k [10] for k ≥ 1. Note that the boundary of B2k is homeomorphic to the sphere S2k−1.

Remark 12. We note that {t1, . . . , tn} ⊂ S1 defines a proper face conv({SM2k(t1), . . . ,SM2k(tn)}) of B2k

if and only if there exists a raked trigonometric polynomial p 6≡ 0 of degree at most 2k − 1 such that p is

non-negative on S1 and p(ti) = 0 for all 1 ≤ i ≤ n.

The faces of B2k are known for k = 2; a subset of these faces are visible in Figure 2 (which is in R3 instead

of R4).

Theorem 13 ([10, 35]). The proper faces of B4 are

• the 0-dimensional faces (vertices) SM4(t) for t ∈ S1,

• the 1-dimensional faces (edges) conv(SM4({t1, t2})) where t1 6= t2 are the edges of an arc of S1 of

length at most 2π
3 , and

• the 2-dimensional faces (triangles) conv(SM4({t, t+ 2π
3 , t+ 4π

3 })) for t ∈ S1.

Figure 2. The convex hull of the map f : S1 → R3 defined by f(t) = (cos(t), sin(t), cos(3t)).

Though the facial structure of the Barvinok–Novik orbitopes B2k is not known for k > 2, certain neigh-

borliness results have been established [9]. Sinn has shown that the orbitopes are simplicial [34]. Ad-

ditionally, Vinzant proved that the edges of ∂B2k consist of all line segments conv (SM2k({t0, t1})) with

|t0 − t1| ≤ 2π(k−1)
2k−1 [39]. In other words, the edges of B2k are the same as the edges of VR(S1; 2π(k−1)

2k−1 ). The

following is an immediate corollary of the work of Sinn and Vinzant.

Corollary 14 ([34, 39]). Every face of the Barvinok–Novik orbitope B2k is a simplex whose diameter in S1

(not in R2k) is at most 2π(k−1)
2k−1 .

In this way, the facial structure of Barvinok–Novik orbitopes is related to Vietoris–Rips simplicial com-

plexes defined on S1 at scale 2π(k−1)
2k−1 ≤ r.

6



2.10. The Vandermonde matrices. A recurring computational tool in our study of the Carathéodory and

Barvinok–Novik orbitopes is the Vandermonde matrix. This matrix has a particularly simple determinant,

and by converting trigonometric functions into complex exponential form, we are able to reduce certain

matrices to Vandermonde (or near-Vandermonde) matrices in order to compute their determinants.

Definition 15. A Vandermonde matrix is an n× n matrix of the form

V =


1 a1 a2

1 · · · an−1
1

1 a2 a2
2 · · · an−1

2
...

...
...

. . .
...

1 an a2
n · · · an−1

n

 .

The determinant of the above matrix is det(V ) =
∏

1≤i<j≤n(aj − ai); see for example [30, Section 2.8.1].

2.11. The Borsuk–Ulam theorem and Z/2Z-equivariant maps. The classical Borsuk–Ulam theorem

is typically stated as follows.

Theorem 16 ([29, Theorem 2.1.1]). Given a continuous map f : Sn → Rn, there exists x0 ∈ Sn such that

f(x0) = f(−x0).

We say a map f : Sn → Rk is odd or centrally-symmetric if f(−x) = −f(x) for all x ∈ Sn. An equivalent

formulation of the Borsuk–Ulam states that given a continuous and odd map f : Sn → Rn, there exists a

point x ∈ Sn with f(x) = ~0.

More generally, given topological spaces X and Y equipped with Z/2Z-actions µ and ν respectively, we

say a map f : X → Y is odd or Z/2Z-equivariant if f ◦ µ = ν ◦ f . Throughout, we always equip Rn and Sn

with the standard antipodal Z/2Z-action specified by x 7→ −x.

The following theorem characterizes odd maps into Sn. We say a nonempty topological space is n-

connected if it is nonempty, path connected, and its homotopy groups vanish up to and including dimension

n.

Theorem 17 ([29, Proposition 5.3.2(iv)]). Let X be a topological space equipped with a Z/2Z-action. If X

is (n− 1)-connected, then

n ≤ min{m ∈ {0, 1, . . . } | there exists an odd map X → Sm}.

In particular, this implies a generalization of the Borsuk–Ulam theorem in which the domain of interest

is not necessarily a geometric sphere.

Corollary 18. Let X be a (n − 1)-connected topological space equipped with a Z/2Z-action. Given an odd

map f : X → Rn, there exists x0 ∈ X such that f(x0) = ~0.

Proof. Theorem 17 implies that there is no Z/2Z-equivariant map from X into Sn−1. Hence, any odd map

f : X → Rn must hit the origin, because otherwise we would obtain an odd map f
|f | : X → Sn−1. �

3. Problem statement

Broadly speaking, the primary motivating question for this research is the following.

Question 19. What can be said about the topology (e.g., the homotopy type, the homology, the connectivity,

etc.) of metric thickenings of spheres at large scales?
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Specifically, we intend to investigate the quantitative and qualitative aspects of the topology of metric

thickenings of spheres that may be revealed through connections to convex geometry and Borsuk–Ulam type

results. Along these lines, we ask the following related questions.

Question 20. Let f : Sn → Rk be odd and continuous for some integers n, k ≥ 1. By Proposition 28,

proved in Subsection 4.2, there exists a number sn,k ∈ [0, π) such that ~0 ∈ conv(f(X)) for some X ⊆ Sn

with diam(X) ≤ sn,k, and this bound is sharp. Given integers n, k ≥ 1, what is the value of sn,k?

Question 21. Loosely speaking, we can use linear algebra and determinants to translate the problem of

identifying the faces of the Barvinok–Novik orbitopes to a combinatorial problem related to Schur polyno-

mials. Is it possible to make this translation precise enough so that we may obtain new results about the

facial structure of these orbitopes?

In Section 4, we present some common threads between metric thickenings of spheres, convex geometry

and orbitopes, and Borsuk–Ulam theorems. More precisely, we describe how full or partial answers to any

one of the above questions may inform our understanding of (and provide partial answers to) the others.

4. Methods and preliminary results

We describe our methods and review some preliminary results and partial answers to Questions 19, 21,

and 20.

4.1. The homotopy type of the Vietoris–Rips thickening of S1 at the first critical scale. As

described in Subsection 2.3, the homotopy type of VRm(Sn; r) is known at scales up to and including the first

critical scale r0, which is the diameter of a regular (n+1)-simplex inscribed in Sn. The proof technique used to

obtain this result does not immediately generalize to larger scales. In [6], we take a more geometric approach

and exhibit a homotopy equivalence VRm(S1; 2π
3 ) → S3 factoring through Euclidean space. While not

immediately applicable to higher-dimensional spheres, this technique has the additional benefit of revealing

connections between VRm(S1; r), the Barvinok–Novik orbitopes, trigonometric polynomials, and Borsuk–

Ulam type theorems. We now recall the main intermediate steps and results of this geometric approach.

First, we make the following conjecture based on the known homotopy type of VR(S1; r) at all scales (cf.

Theorem 3).

Conjecture 22. As r increases, VRm(S1; r) obtains the homotopy type of odd dimensional spheres until

becoming contractible at r = π. Specifically, for all integers k ≥ 1,

VRm(S1; r) ' S2k−1 if
2π(k − 1)

2k − 1
≤ r < 2πk

2k + 1

As partial evidence for Conjecture 22, we observe that the facial structure of the Barvinok–Novik or-

bitopes closely resembles the structure of Vietoris–Rips complexes defined on S1 at the appropriate scales.

Specifically, while the exact facial structure of B2k remains unknown for k > 2, Corollary 14 implies that

there exists a well-defined inclusion ιk : ∂B2k ↪→ VRm(S1; r) for 2π(k−1)
2k−1 ≤ r. Further, in [6], we determine

sharp lower bounds on the diameter of the preimage of any Carathéodory subset of the symmetric moment

curve in R2k.

Theorem 23 ([6, Theorem 5]). Let X ⊆ S1 be any set such that ~0 ∈ SM2k(X). Then, diam(X) ≥ 2π(k−1)
2k−1 .

Further, if Y denotes any set of 2k − 1 equally-spaced points in S1, then diam(Y ) = 2π(k−1)
2k−1 and ~0 ∈

conv(SM2k(Y )), i.e., this diameter bound is sharp.
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In turn, this implies that SM2k induces a continuous map SM2k : VRm(S1; r) → B2k \ {~0} exactly when

r < 2πk
2k+1 . Putting this all together, we define a continuous sequence of maps

VRm(S1; r)
SM2k−−−→ R2k \ {~0} p−→ ∂B2k

ι−→ VRm(S1; r),

for 2π(k−1)
2k−1 ≤ r < 2πk

2k+1 , where p denotes the radial projection map and ι denotes the well-defined inclusion.

VRm(S1; r) R2k \ {~0} ∂B2k

SM2k
p

Figure 3. The composition of maps VRm(S1; r)
SM2k−−−→ R2k \ {~0} p−→ ∂B2k, drawn in the

case k = 1.

One may easily verify that the map (p ◦ SM2k) ◦ ι is the identity map on ∂B2k, i.e. that the space

∂B2k
∼= S2k−1 is a retract of VRm(S1; r). Hence, as a consequence of this geometric proof technique, we

obtain the following corollary.

Corollary 24. For 2π(k−1)
2k−1 ≤ r < 2πk

2k+1 , the (2k − 1)-dimensional homology, cohomology, and homotopy

groups of VRm(S1; r) are nontrivial.

Finally, for r = 2π
3 , we prove (ι ◦ p) ◦ SM4 ' idVRm(S1; 2π3 ). Consequently, VRm(S1; 2π

3 ) ' ∂B4
∼= S3.

While we are unable to prove the analogous homotopy equivalence for scales beyond r = 2π
3 , we make the

following conjecture.

Conjecture 25. For 2π(k−1)
2k−1 ≤ r < 2πk

2k+1 , we have (ι ◦ p) ◦ SM2k ' idVRm(S1;r).

Note that Conjecture 25, together with the fact that (p ◦ SM2k) ◦ ι = id∂B2k
for this range of r values,

would imply Conjecture 22.

We remark that an analogous technique for determining the homotopy type of the Čech metric thickenings

of S1, using the trigonometric moment curve and the Carathéodory orbitopes, has been considered. We are

currently unable to prove the analogous homotopy (ι ◦ p) ◦M2k ' idČm(S1;r) in that case.

4.2. A generalization of the Borsuk–Ulam theorem. Given an odd map f : Sn → Rk such that k ≤ n,

the classical Borsuk–Ulam theorem guarantees the existence of a point x0 ∈ Sn such that f(x0) = ~0. On

the other hand, if k > n, this is far from the truth: just the standard inclusion ι : Sn ↪→ Rn+1 is an odd

map that misses the origin. However, it is clear that the origin is contained in the convex hull of some

number of points in the image of the inclusion. In the language of Subsection 2.4, ι(Sn) always contains

a Carathéodory subset. In fact, this is trivially true for any k > n and any odd map f : Sn → Rk, since
~0 = 1

2f(x0) + 1
2f(−x0) for all points x0 ∈ Sn.

In the case of the inclusion ι : S1 ↪→ R2, however, we can do better: the origin is contained in the convex

hull of the image of any set of three equally-spaced points {t0, t0 + 2π
3 , t0 + 4π

3 } in S1. These points are “far
9



from antipodal” in the sense that diam({t0, t0 + 2π
3 , t0 + 4π

3 }) = 2π
3 < π. Furthermore, the preimage of any

other Carathéodory subset has diameter strictly greater than 2π
3 .

Somewhat surprisingly, this is always true. It follows from [6, Theorem 2] that, given any integers k, n ≥ 1

and any odd map f : Sn → Rk, there exists a subset X ⊆ Sn of diameter strictly less than π such that f(X)

is a Carathéodory subset, i.e., such that ~0 ∈ conv(f(X)). The proof of this theorem follows from facts

about Vietoris–Rips metric thickenings of spheres. In this section, we explain the relationship between the

homotopy connectivity of these metric thickenings and Borsuk–Ulam type theorems.

For notational convenience, we make the following definition.

Definition 26. Fix integers n, k ≥ 1. We say t ∈ [0, π] satisfies Condition (∗) if and only if, given any odd

and continuous map f : Sn → Rk, there exists a subset X ⊆ Sn with diam(X) ≤ t such that ~0 ∈ conv(f(X)).

We observe that t ∈ [0, π] does not satisfy Condition (∗) if and only if there exists an odd continuous map

g : Sn → Rk such that, if X ⊆ Sn with diam(X) ≤ t, then ~0 /∈ conv(g(X)).

Definition 27. We define

sn,k = min{t ∈ [0, π) | t satisfies Condition (∗)}.

We prove in the following proposition that sn,k is well-defined, i.e., that the minimum is attained. Because

this number bounds the diameter of the preimage of any Carathéodory subset of f(Sn), we call sn,k the

spherical Carathéodory diameter for this choice of n and k.

Proposition 28. For all integers n, k ≥ 1, the spherical Carathéodory diameter sn,k is a well-defined real

number.

Proof. As an intermediate step, define

s̃n,k = inf{t ∈ [0, π] | t satisfies Condition (∗)}.

It follows from [6, Theorem 2] that there exists a number t ∈ [0, π) satisfying Condition (∗). Hence,

0 ≤ s̃n,k < π.

It remains to prove that the infimum in the definition of s̃n,k is obtained. Toward that end, let an odd

and continuous map f : Sn → Rk and ε > 0 be given. Then, for each integer m ≥ 1, there exists a subset

Xm ⊆ Sn of diameter at most sn,k + ε
m such that ~0 ∈ f(Xm). Further, by Carathéodory’s Theorem, we

may assume |Xm| ≤ k + 1. If |Xm| < k + 1, duplicate an arbitrary point in Xm to obtain a multi-set

of size exactly k + 1. Arbitrarily order these points so that Xm can be thought of as a point in (Sn)k+1.

By compactness of this product of spheres, the sequence {Xm} has a subsequence converging to a limit

configuration X ∈ (Sn)k+1 of diameter at most sn,k and with ~0 ∈ conv(f(X)). Removing duplicate points

(and ignoring the ordering) gives us the desired subset X ⊆ Sn. �

Corollary 29. Fix integers n, k ≥ 1. Let A ⊆ [0, π] denote the set of numbers satisfying Condition (∗),

and let B ⊆ [0, π] denote the set of numbers that do not satisfy Condition (∗). Then, A = [sn,k, π] and

B = [0, sn,k).

The proof follows from the fact that A ∩B = ∅, and, if t0 ∈ A and t0 < t1 < π, then t1 ∈ A.

Next, we relate spherical Carathéodory numbers to statements about the topology of metric thickenings

of spheres. We will make use of Theorem 17, which requires an assumption about the homotopy connectivity

of the domain of certain maps. For that reason, we make the following definition.
10



Definition 30. Fix integers n, k ≥ 1. Define

rn,k = inf {0 ≤ t | VRm(Sn; t) is (k − 1)-connected} .

Note that rn,k ∈ [0, π] because VRm(Sn;π) ' {·}.

Remark 31. In all known cases, the homotopy type of VRm(Sn; r) is right continuous. If this is true in

general, it would be more convenient to work with the definition

rn,k = min {0 ≤ t | VRm(Sn; t) is (k − 1)-connected} .

Theorem 32. Fix integers n, k ≥ 1. Given a continuous and odd map f : Sn → Rk, there exists a subset

X ⊆ Sn of diameter at most rn,k such that ~0 ∈ conv(f(X)).

Proof. If rn,k = π, the result holds trivially, since ~0 ∈ conv(f({x0,−x0})) for any x0 ∈ Sn.

Now, suppose rn,k < π. The space VRm(Sn; rn,k) has a free Z/2Z-action that maps the convex combina-

tion
∑j
i=1 λiδxi of Dirac measures for points x1, . . . , xj on Sn to

∑j
i=1 λiδ−xi , that is, to the measure that

is supported on the antipodal point sets with the same weights λi. This action is free since antipodal points

on Sn are farther than rn,k apart.

Let f : Sn → Rk be odd and continuous. By [3, Lem. 5.2], f induces a continuous map F : VRm(Sn; rn,k)→
Rk defined by F (

∑j
i=1 λiδxi) =

∑j
i=1 λif(xi). Notice that F commutes with the antipodal action on

VRm(Sn; rn,k) and Sn:

F

(
j∑
i=1

λiδ−xi

)
=

j∑
i=1

λif(−xi) = −
j∑
i=1

λif(xi) = −F

(
j∑
i=1

λiδxi

)
.

Thus, the map F , as a Z/2Z-equivariant map from an (k − 1)-connected space to Rk, has a zero by Theo-

rem 17. That is, there are points x1, . . . , xj ∈ Sn that are pairwise at distance at most rn,k and such that∑j
i=1 λif(xi) = ~0 for some λ1, . . . , λj ≥ 0 with

∑j
i=1 λi = 1. �

Note that Theorem 32 and Proposition 28 together imply that sn,k ≤ rn,k for all integers n, k ≥ 1.

Conjecture 33. For all integers n, k ≥ 1, sn,k = rn,k.

Conjecture 33 is true in all cases for which the values of rn,k and sn,k are known. Specifically, for each

known value of rn,k, there exists a continuous odd map f : Sn → Rk such that all Carathéodory subsets of

f(Sn) have diameter greater than or equal to rn,k.

The following table lists some of the known values of rn,k, where Dn = π − arccos
(

1
n+1

)
denotes the

diameter of a regular inscribed (n+ 1)-simplex in Sn.

Known values of rn,k for k ≤ 9 and n ≤ 6

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

n = 1 0 D1 = 2π
3 D1 = 2π

3
4π
5

4π
5

6π
7

6π
7

8π
9

8π
9

n = 2 0 0 D2 D2

n = 3 0 0 0 D3 D3

n = 4 0 0 0 0 D4 D4

n = 5 0 0 0 0 0 D5 D5

n = 6 0 0 0 0 0 0 D6 D6

11



The values of rn,k appearing in this table follow from the known homotopy type of Vietoris–Rips metric

thickenings of spheres at the first critical scale (and, in the case of n = 1, by considering the known homotopy

type of all Vietoris–Rips complexes defined on S1).

Here, we present an alternative proof of the values s1,k using Theorem 23. Notably, this proof does not

depend upon prior knowledge of the connectivity of metric thickenings of the circle.

Theorem 34. Let f : S1 → R2k+1 be odd and continuous for any positive integer k. Then, there exists a set

X ⊆ Sn such that |X| ≤ 2k + 1, diam(X) ≤ 2πk
2k+1 and ~0 ∈ conv(X). Furthermore, this diameter bound is

optimal.

Proof. Consider the inclusion ι : ∂B2k+2 → VRm(S1; 2πk
2k+1 ) defined by

∑
λiSM2k+2(ti) 7→

∑
λiti. This map

is well-defined by Corollary 14 and continuous by [6, Lemma 20]. Furthermore, as the composition of odd

maps, observe that the induced map f̃ = F ◦ ι : ∂B2k+2 → R2k+1 is odd. Hence, because ∂B2k+2 ' S2k+1,

Corollary 18 implies that there exists x0 ∈ ∂B2k+2 such that f̃(x0) = ~0. Further because the Barvinok–Novik

orbitopes are simplicial, we may write x0 =
∑2k+1
i=1 λiSM2k+2(ti) for some convex coefficients λi.

Last, to see that this diameter bound is optimal, observe that SM2k : S1 → R2k ⊂ R2k+1 is an odd map

such that all Carathéodory subsets of SM2k(S1) have diameter at least 2πk
2k+1 by Theorem 23. �

In a similar manner, we can use known facts about the facial structure of B2k and Theorem 34 obtain

additional nontrivial upper bounds for the numbers sn,k. Proofs are omitted for brevity.

Theorem 35. Let X ⊂ S1 denote any set of 2k + 1 evenly-spaced points. If f : S2n−1 → R2k+1 is odd and

continuous, then there is a subset X ⊆ S2n−1 of diameter at most diam(SM2k(X)) < π such that conv(f(X))

contains the origin.

Theorem 36 ([6, Theorem 2]). If f : S2n−1 → R2kn+2n−1 is odd and continuous, then there is a subset

X ⊆ S2n−1 of diameter at most 2πk
2k+1 such that conv(f(X)) contains the origin.

Preliminary experimental evidence suggests that the diameter bound in Theorem 35 improves on the

bound given in Theorem 36 for sufficiently large values of k.

We conclude this section by describing a new and exciting potential direction for this research. In a

personal communication, Dr. Michael Crabb, from the University of Aberdeen, provided the authors of [6]

with an alternative proof of certain values of sn,k using principal bundles and characteristic classes in

cohomology. Whereas all previously known values of sn,k were determined using the topology of metric

thickenings, Dr. Crabb’s approach does not depend on this prior knowledge. In fact, he is able to precisely

determine additional values of sn,k which were previously unknown. As an example, Dr. Crabb shows that

s3,4 = s3,5 = s3,6 = s3,7; previously, only the first equality was known.

We hope to gain a more thorough understanding of Dr. Crabb’s proof techniques with an eye toward

adapting them to prove new results about the topology of metric thickenings. Additionally, we note that a

proof of Conjecture 33, together with Dr. Crabb’s results, would imply previously unknown results about

the homotopy connectivity of metric thickenings of spheres.

4.3. A connection to trigonometric polynomials and convex geometry. A key property of the

symmetric moment curve SM2k is that the preimage of any of its Carathéodry subsets is bounded below by

the diameter of 2k − 1 equally-spaced points in S1 (as stated in Theorem 23).

In particular, this theorem implies that the composition VRm(S1; r)
SM2k−−−→ R2k \ {~0} p−→ ∂B2k is well-

defined for r < 2πk
2k+1 . However, it also allows us to prove theorems about raked trigonometric polynomials,

12



and the proof technique of Theorem 23 suggests applications to the ordinary trigonometric moment curve

and faces of the related orbitopes.

First, we describe results about the roots of trigonometric polynomials. Then, we summarize the proof

technique of Theorem 23 and discuss potential applications to other convex bodies in Euclidean space.

4.3.1. Roots of trigonometric polynomials. Our primary result in [6] regarding the structure of roots of

certain trigonometric polynomials is as follows. The proof of the first part of this theorem follows from

Theorem 23, and the proof of the second part follows from Theorem 34.

Theorem 37. Let X ⊆ S1 be such that diam(X) < 2πk
2k+1 . Then there is a raked homogeneous trigonometric

polynomial of degree 2k − 1 that is positive on X. Moreover, there is a set X ⊆ S1 of diameter 2πk
2k+1 such

that no raked homogeneous trigonometric polynomial of degree 2k − 1 is positive on X.

As an intermediate step in proving Theorem 37, we also show the following.

Corollary 38. Fix a list of odd degrees di for 1 ≤ i ≤ 2k + 1, and fix a list of trigonometric functions

fi(t) = sin(t) or fi(t) = cos(t). Let P be the set of all polynomials of the form p(t) =
∑2k+1
j=1 zjfj(djt) with

zj ∈ R. Then there is a subset X ⊆ S1 of diameter at most 2πk
2k+1 such that no polynomial in P is positive

on X.

For example, the above corollary applies if P is the set of all raked homogeneous trigonometric polynomials

of degree at most 2k − 1, namely

p(t) =

k∑
j=1

aj cos
(
(2j − 1)t

)
+

k∑
j=1

bj sin
(
(2j − 1)t

)
,

after noting that we are considering the special case in which one of the constants zj defining p(t) =∑2k+1
j=1 zjfj(djt) is zero.

4.3.2. Some interesting matrices and applications to convex bodies. Next, we summarize the proof of

Theorem 23 and consider applications of this proof technique to, e.g., the faces of Carathéodory orbitopes

and Question 21. For notational convenience, we make the following definition.

Definition 39. Fix ~t = (t0, . . . , t2k) ∈ (S1)2k+1. For k ∈ N, define the (2k + 1)× (2k + 1) matrices

M2k

(
~t
)

=

[
1 1 . . . 1

M2k(t0) M2k(t1) . . . M2k(t2k)

]
and

SM2k

(
~t
)

=

[
1 1 . . . 1

SM2k(t0) SM2k(t1) . . . SM2k(t2k)

]
.

Similarly, define the 2k × (2k + 1) matrices

M̃2k

(
~t
)

=
[
M2k(t0) M2k(t1) . . . M2k(t2k)

]
and

S̃M2k

(
~t
)

=
[
SM2k(t0) SM2k(t1) . . . SM2k(t2k)

]
.

Throughout this section, we will make repeated use of the determinants of these matrices (or their sub-

matrices). The expressions for these determinants, which are always a product of trigonometric functions,

may be proved by rewriting each entry of the matrix as a complex exponential, using elementary row and
13



column operations to reduce the matrix to a Vandermonde matrix, then rewriting the resulting product of

complex exponentials in terms of trigonometric functions.

While all four of these matrices have applications to the Carathéodory and Barvinok–Novik orbitopes,

exactly two of them have determinants with nice expressions as a product of trigonometric functions, while

the other two are more difficult to factor. First, we describe applications of the “nice” determinants. Then,

we consider the other two matrices and their desired applications.

The matrices S̃M2k

(
~t
)

and M2k

(
~t
)
. In [6], we characterize the nullspace of S̃M2k

(
~t
)

as follows. Compare

this expression with det(V ) in Definition 15.

Lemma 40. If no two points t0, . . . , t2k ∈ S1 are equal or antipodal, then the nullspace of S̃M2k

(
~t
)

is

one-dimensional and is spanned by ~λ = (λ0, λ1, . . . , λ2k)ᵀ, where

λi = (−1)i
∏

0≤j<l≤2k
j,l 6=i

sin(tl − tj).

Now, toward proving Theorem 23, suppose there exists X ⊆ S1 such that ~0 ∈ conv(SM2k(X)). By

Carathéodory’s theorem, we may assume |X| ≤ 2k + 1. Then, by definition, there exist convex coefficients

λ0, . . . , λ2k and ti ∈ X such that ~0 =
∑2k
i=0 λiSM2k(ti). It follows that ~0 ∈ conv(SM2k(X)) if and only if

each λi in Lemma 40 has the same sign. Hence, because the sign of each λi depends only on the relative

positions of the points t0, . . . , t2k by Lemma 40, we reduce the problem of proving ~0 /∈ conv(SM2k(X)) to a

combinatorial problem about configurations of points in S1.

With that in mind, we are able to use straightforward combinatorial arguments about the relative con-

figuration of points in S1 to prove that, given X = {t0, . . . , t2k}, we have ~0 /∈ conv(SM2k(X)) whenever

diam({t0, . . . , t2k) < 2πk
2k+1 . This proves the first part of Theorem 23. To see that this bound is sharp,

one checks that the image of 2k + 1 equally-spaced points in S1 (which has diameter exactly 2πk
2k+1 ) always

contains ~0.

In fact, the (signs of the) determinants of certain submatrices of S̃M2k(~x) play a key role in the proof that

(ι ◦ p) ◦ SM4 ' idVRm(S1; 2π3 ). Again, we have a nice description of these numbers in terms of a product of

trigonometric functions.

Corollary 41. For 0 ≤ i ≤ 2k, let S̃M
i

2k

(
~t
)

denote the 2k×2k matrix obtained by removing the i-th column

of S̃M2k

(
~t
)
. Then

det(S̃M
i

2k

(
~t
)
) = κ

∏
0≤j<l≤2k
j,l 6=i

sin(tl − tj),

for some nonzero constant κ depending only on k.

As before, we are able to determine the sign of these numbers based on the configuration of the set of

points {t0, . . . , t2k}. Hence, because both the nullspace of S̃M2k

(
~t
)

and the determinants of some of its

submatrices have a nice description in terms of products of trigonometric functions, we suggest the following

general approach to the study of the Carathéodory and Barvinok–Novik orbitopes.

Remark 42. If a geometric statement about the Carathéodory or Barvinok–Novik orbitopes can be ex-

pressed in terms of the determinant of one of the above matrices, it may be possible to use the expressions

for these determinants, which are often a product of trigonometric functions, to rephrase the original state-

ment as an equivalent combinatorial statement about points in S1.
14



As another example of the utility of this approach, we show how the determinant of the matrix M2k

(
~t
)

may be used to easily determine a subset of the faces of the Carathéodory orbitope C2k as follows.

Proposition 43. For k ≥ 1,

det(M2k

(
~t
)
) = κ

∏
0≤j<l≤2k

sin

(
tl − tj

2

)
for some nonzero constant κ depending on k.

Now, fix numbers s1, . . . , s2k ∈ S1 and define ~s = (s1, . . . , s2k)ᵀ. By considering the cofactor expansion of

the determinant of M2k(t, ~s) along the first column, observe that det(M2k(t, ~s)) is a degree k trigonometric

polynomial in t. Writing

f~s(t) =
∏

1≤j≤2k

sin

(
sj − t

2

)
,

it follows that

det(M2k(t, ~s)) =

κ ∏
1≤j<l≤2k

sin

(
sl − sj

2

) f~s(t) = κ̃f~s(t)

for some constant κ̃. This proves the following.

Proposition 44. For any vector ~s = (s1, . . . , s2k)ᵀ ∈ (S1)2k,

f~s(t) =
∏

1≤j≤2k

sin

(
sj − t

2

)
is a degree k trigonometric polynomial in t.

Note that the roots of f~s(t) are precisely the numbers s1, . . . , s2k. Now, choose k distinct points s1, s3, . . . , s2k−1 ∈
S1 and define si+1 = si for i = 1, 3, 5, . . . , 2k − 1. Then, for this choice of vector ~s observe that f~s(t) is a

degree k trigonometric polynomial with k distinct roots s1, s3, . . . , s2k−1 such that f~s(t) ≥ 0 on S1. Hence,

because the faces of the Carathéodory orbitope C2k are in bijection with degree k trigonometric polynomials

that are non-negative on S1, these polynomials f~s(t) recover the maximal-dimensional faces of C2k. In a

similar way, we may obtain all lower-dimensional faces, e.g., by choosing s1 = s2 = s3 = s4, s5 = s6, s7 = s8,

etc.

In fact, because the faces of the Carathéodory orbitopes are already known (see Theorem 10), all faces of

C2k arise in this way (and, conversely, the polynomials f~s(t) are precisely those defining each face for these

particular choices of ~s).

Again, we are able to exploit the form of these determinants, a product of trigonometric functions, to

reduce the problem of finding faces of C2k to a combinatorial problem about points in S1. In this case, the

combinatorial problem is to find vectors ~s ∈ (S1)2k giving rise to trigonometric polynomials f~s(t) that are

non-negative on S1, and the solutions are easy to read off directly from the expression of the polynomial.

While a priori this approach may reveal only a subset of faces of C2k, it is nonetheless sufficient to determine

all faces in this case.

The matrices SM2k

(
~t
)

and M̃2k

(
~t
)
. Because the precise facial structure of the Barvinok–Novik orbitope

B2k is currently unknown for k ≥ 3, we attempt to use this technique to obtain raked trigonometric poly-

nomials defining faces of B2k. In this case, for a fixed vector ~s ∈ (S1)2k, it follows from Corollary 41

that

det(SM2k(t, ~s)) = κ
∏

1≤j<l≤2k
j,l 6=i

sin(sl − sj) + κ

2k∑
i=1

(−1)i
∏

1≤l≤2k
l 6=i

sin(sl − t)
∏

1≤j<l≤2k
j,l 6=i

sin(sl − sj)
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for some nonzero constant κ depending only on k. By considering the cofactor expansion of SM2k(t, ~s) along

the first column, we see that det(SM2k(t, ~s)) is a raked trigonometric polynomial of degree 2k − 1 in t.

Unfortunately, the problem of finding vectors ~s such that det(SM4(t, ~s)) is non-negative on S1 is much more

difficult in this case, and the roots of this expression for a given vector ~s are not obvious.

In a similar way, the determinants of submatrices of M̃2k (t, ~s ) are relevant for proving the homotopy type

of Čech metric thickenings of S1 at large scales (as described at the end of Subsection 2.1), but, again, it is

difficult to control the sign and roots of the resulting trigonometric polynomials.

However, we are still optimistic that this approach may yield results. In the case k = 2, Mathematica

simplifies the above determinant as

det(SM4(t, ~s)) = κ

 ∏
1≤l≤4

sin

(
sl − t

2

) ∏
1≤j<l≤4

sin

(
sl − sj

2

)2 +
∑

1≤j≤4

cos (sl − t) +
∑

1≤j<l≤4

cos (sl − sj)

 .

As before, factoring out the constant κ
∏

1≤j<l≤4 sin
(
sl−sj

2

)
from this expression proves that

g~v(t) =

 ∏
1≤l≤4

sin

(
sl − t

2

)2 +
∑

1≤j≤4

cos (sl − t) +
∑

1≤j<l≤4

cos (sl − sj)


is a raked trigonometric polynomial of degree 2k − 1 = 3 in t. Because of the product of sine functions, we

note that g~s(t) has a root at each si. However, the sum of cosines makes it difficult to ensure g~s(t) ≥ 0 on

S1.

We are hopeful that the higher-dimensional analogues of these polynomials will have similar factorizations.

Ultimately, we hope to develop techniques for identifying vectors ~s such that g~s(t) ≥ 0 on S1, which would,

in turn, allow us to identify faces of the Barvinok–Novik orbitopes.

To conclude this section, we describe how the problem of identifying these vectors ~s may be related to

existing objects of study in representation theory. Specifically, we encounter Schur functions, which are sym-

metric polynomials forming a basis for the space of all symmetric polynomials [28, Theorem 3.3] and which

arise in the context of representation theory as linear combinations of symmetric group representations [31,

Theorem 4.6.4]. A straightforward computation shows

det(SM2k(t, ~s0) = ek
ik

2k
ω det


1 e2it e4it · · · e(2k−2)it e(2k−1)it e(2k)it · · · e(2(2k−1))it

1 e2is1 e4is1 · · · e(2k−2)is1 e(2k−1)is1 e(2k)is1 · · · e(2(2k−1))is1

...
...

...
. . .

...
...

...
. . .

...

1 e2is2k e4is2k · · · e(2k−2)is2k e(2k−1)is2k e(2k)is2k · · · e(2(2k−1))is2k

 ,

where ek ∈ {−1,+1} and ω = e−(2k−1)i(t+s1+s2+···+s2k). The matrix in this expression is almost a Van-

dermonde matrix: it has an additional column, and is referred to as a generalized Vandermonde matrix.

It is known (see [22, 12]) that the determinant of a generalized Vandermonde matrix factors as a product

of an ordinary Vandermonde determinant and a Schur polynomial. In fact, the trio of papers [12, 13, 14]

present algorithms for computing the coefficients in these polynomials and formulas for approximating their

roots. Along these lines, we hope to gain better control over the roots and signs of the particular family of

Schur polynomials arising as factors in the determinants det(SM2k(t, ~s0) (interpreted as raked trigonomet-

ric polynomials), consequently improving our understanding of the facial structure of the Barvinok–Novik

orbitopes.
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5. Conclusion

We demonstrate how the topology of metric thickenings of spheres implies Borsuk–Ulam type theorems

and results about convex bodies and trigonometric polynomials, and how these geometric results, in turn,

inform our understanding of metric thickenings at large scales. However, many conjectures remain open,

and certain connections have not yet been fully explored. Preliminary results suggest that the intersection

of these areas form a fertile landscape for both discovering new conjectures and proving new results.
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[40] Žiga Virk. 1-dimensional intrinsic persistence of geodesic spaces. Topology and Analysis, 2019.
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