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Not all infinities are created equal. In the nineteenth century, mathematician Georg
Cantor published his controversial findings on his new transfinite numbers, and it followed as a
logical consequence that some infinites are larger than others. Cantor’s work on transfinite
numbers sprung out of his development of set theory, which, thanks to the advocacy of David
Hilbert and other mathematicians, is widely considered the foundation of all mathematics. In the
heart of set theory lies the notion of cardinality, a quality corresponding to the size of a set.
Roughly, two sets have the same cardinality if there exists a one-to-one correspondence between
them. For finite sets, this works as expected. For infinite sets, however, common intuition breaks
down. Sets of numbers become equal in size to proper subsets of themselves, and multiple levels
of infinity arise. Flagged by peculiar implications, Cantor’s theory garnered ample criticism from
mathematicians, philosophers, and theologians alike. One central objection to Cantor’s results
emerged from Aristotelian philosophy. Ever since Aristotle, most philosophers have denied the
notion of a completed infinity—an actual infinity—as self-contradictory and impossible.
Moreover, many theologians reject that any actual infinity exists outside of God. Despite
overwhelming opposition, Cantor’s set theory, including his math on infinite sets, rose to such
great prominence as to become the widely accepted foundation for all of mathematics. How
could Cantor’s theory survive against the onslaught of criticism, and how did it rebut the
opposition? Cantor’s controversial ideas of the infinite overcame the opposition because many
contemporaries embraced an ontological separation of mathematical ideas from physical reality.
To see this, one must begin with the philosophical and theological tradition from which the

opposition arises.

Everything begins with the Greeks, and thoughts on the nature of the infinite are no

exception. The first assertion about the infinite comes from Anaximander of Miletus. He argued



that the infinite was the primal substance out of which all things were made, the boundless
source of everything.! For Anaximander, infinity did not belong to a specific field of study—it
was “at once scientific, philosophical, and ethical,” and even had a divine character.? Primarily a
matter of philosophical and religious consideration, infinity was not conceived of in a
mathematical or scientific way.? In contrast, the Pythagoreans abhorred the infinite, seeing it
opposing the order and harmony of the finite world. More importantly, though, they perceived
infinity in a quantitative and spatial way.* This quantitative view forms one of the two early
views. The other view, a metaphysical one, arises from Parmenides, who “believed that reality—
The One—must be autonomous and explicable in its own terms, a perfect unified self-subsistent
whole.” Reality was not infinite in some capacity of extant or quantity, it was boundless in
definition. It was infinite in that it had no boundary—nothing else but itself could define it.
Though Parmenides did not explicitly describe The One in this way, his student, Melissus of
Samos, did. Melissus declared that reality was infinite, but metaphysically and not in any
mathematical sense.® As a result of this view, Parmenides and his followers in the Eleatic school
embraced a separation of appearance and reality. Reality had no part, so change and motion
could not exist. To support these views, Zeno of Elea composed many paradoxes of change and
motion, such as the famous argument of Achilles and the tortoise.” Zeno’s paradoxes, though
designed to support Parmenides’ metaphysical view of infinity, cast doubt on the coherence of

any mathematical view of infinity. This is exemplified in his argument that reality is a unity, not
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a plurality: “If reality were a many (alternatively, if reality were how it appears to be—having
parts between any two of which there is a third), then it would have to have infinitely many parts.
But there cannot be infinitely many of anything. So reality must be a one.”® Plato, with his world
of eternal and timeless Ideas, likewise was primarily interested in the metaphysical, not the
mathematical. From its inception, the concept of infinity has been full of philosophical

assertions, theological implications, and mathematical paradoxes.

Of all the Greek philosophers, it was Aristotle who established the traditional view of
infinity. He rejected much of the primarily metaphysical views that came before him, instead
offering a more rational and mathematical conception.® In Book III of the Physics, Aristotle lays
out his approach to infinity. First, he argues that something unlimited seems to exist, because of
concepts such as time, divisibility of magnitude, and there being no end of counting numbers. '°
Second, he admits it produces paradoxes, implying it cannot exist: “Theoretical knowledge of the
unlimited, though, does give rise to a puzzle. For if we posit that it does not exist, many
impossibilities result, as they do if we posit that it does exist.”!'How does he resolve the
dilemma? Aristotle makes a distinction between the potentially infinite and the actually infinite.'?
In general, the infinite is defined “in virtue of one thing always being taken after another, and
each thing taken is always limited, but is always one thing followed by another.”'3 Put shortly,
the infinite is that to which something can always be added or taken. It is the capacity to continue

without an end. This is what Aristotle defines as potentially infinite—that which can always be
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more. He finds no contradiction in this conception, given that the infinite is not present all at
once.'* An infinite process that is present all at once is fundamentally impossible—this Aristotle
defines as actually infinite. Aristotle argues that something cannot be actually infinite, only
potentially infinite, such as a line that can continually be divided or a number that can be
increased by one as many times as necessary. To illustrate this, consider what it could mean to
say that a body is infinitely divisible.'® If the body’s divisibility is potentially infinite, then, given
any portion of it, one could always divide it into two. Aristotle argues this is consistent. If the
body’s divisibility is actually infinite, then the body itself must have infinitely many parts all at
once, which many, such as Zeno, would claim is absurd. By defining potential infinity and
rejecting actual infinity, Aristotle resolves most of the paradoxes of the unlimited, and

establishes the course of thought for the western tradition.

Though Aristotle’s view remained definitive, new theological views on the nature of
infinity began to develop. The Hebrew Scriptures connected God metaphorically with infinity,
and Christian theologians as early as Gregory of Nyssa were claiming God’s infinity.!® Plotinus
was the first influential thinker to claim God’s infinity from a nonbiblical, philosophical
standpoint.!” Plotinus departed from Aristotle for a more Platonic understanding of the infinite.
Despite this, he also rejected an actually infinite extent of number, but allowed for a potentially
infinite process of counting.!® Sharing a similar belief, St. Augustine argued that “God was both
actually infinite and transcendent.” '° Both the quantitative and metaphysical views are held of

God in St. John of Damascus’ An Exact Exposition of the Orthodox Faith: “God then is infinite
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and incomprehensible and all that is comprehensible about him is his infinity and
incomprehensibility.”?° Not only is infinity an attribute of God, but it is also used to argue God’s
existence. In Islamic philosopher al-Ghazali's cosmological argument, he supports his premise
that the world began to exist by saying there could not have been an infinite regress of events in
time.?! The idea of an infinite regress requires an actually infinite and completed series of causes.
In short, Aristotle’s distinction between actual and potential informs both the philosophical and

theological development in the early western tradition.

The most important theologian to combine Aristotle’s view of infinity with theology is
St. Thomas Aquinas. In his Summa Theologica, Part 1, Question 7, On the Infinity of God, he
discusses God’s infinity and its connections to other infinities. Aquinas first affirms that God is
infinite, citing St. John of Damascus.?? Since God is existence itself, he is both limitless and
perfect, not being limited by anything. Regarding other entities, Aquinas says, “things other than
God can be unlimited in some, but not in all, respects.”?? This distinction is that of the relatively
mfinite from that of the absolute infinite. This distinction, however, does not mean other entities
can be actually infinite. In his cosmological argument for God’s existence, he rejects an actually
infinite regress of causes, like the aforementioned argument by al-Ghazali. Similarly, he also
rejects the existence of an actually unlimited number of things.?* In fact, Aquinas denies that any

material body can be infinite, and likewise neither any mathematical object:

For the mathematical body things are no different. For if we imagine a mathematical
body in actual existence we shall have to imagine it with a form, for actuality requires
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form. Now the form of anything extended as such is its shape, so the body will have to
have a shape. And it will therefore be limited, because a shape must be contained within a
boundary or boundaries.?3

Adam Drozdek describes Aquinas’ view well: “Since all knowledge, except that stemming from
the light of grace, originates from the senses, so does mathematical knowledge. The object of
mathematics is not independent of the real world. It is extracted from the world by abstraction...
Moreover, since nothing in the world is infinite, no particular object of mathematics can be
infinite.”?® So, Aquinas affirms God’s unlimitedness, but denies that any actual infinity exists
apart from Him, even in the realm of number. This view spreads, solidifying the Aristotelian

denial of the actual infinite, but with an additional theological component.

This rejection of actual infinity, both philosophically and theologically, informed
mathematicians up to and through the time of Cantor, even as they employed mathematical
techniques using the infinite. For example, Rene Descartes asserted that only God is actually
infinite,?” clarifying that the size of his coordinate plane was only indefinite, or potentially
infinite.?® Additionally, the field of calculus raised many questions about the status of the
infinitely small. Isaac Newton introduced his concept of the fluxion, by which “is to be
understood the ratio of the quantities, not before they vanish, nor after, but that with which they
vanish.”?? That is, the fluxion is a ratio between two numbers smaller than any natural number,

but not quite g. Gottfried Leibniz, on the other hand, referred to “infinitely small quantities.”

Leibniz, however, did not consider these quantities very highly, saying of them, “it will be
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sufficient simply to make use of them as a tool that has advantages for the purpose of calculation,
just as the algebraists retain imaginary roots with great profit.”3° It is notable that Leibniz had
such a view of infinitesimals, considering he had a more sympathetic view of the actual infinite.
Though he denied actual infinite numbers and collections of numbers,?! he vigorously
championed a syncategorematic view of the actual infinite, insisting on an actual infinitude of
monads.3? These unclear concepts at the foundations of calculus unnerved many, captured in
Bishop George Berkeley’s famous comment, “May we not call [infinitesimals] the ghosts of
departed quantities?”*3 This unease was mostly abated when Augustin Louis Cauchy and Karl
Weierstrass formalized the notion of the limit,** so that the analytical techniques of calculus
rested comfortably within the potentially infinite. Support of Aristotle’s views echoed even until
Friedrich Gauss, who declared, “I protest against the use of infinite magnitude as something
completed, which is never permissible in mathematics. Infinity is merely a way of speaking.”>3>
Though there were a few exceptions, the actual infinite was firmly rejected up until the time of

Cantor.

Now that the historical opposition has been established, it is possible to analyze Cantor's
ideas that departed from such a longstanding tradition. Georg Cantor was born in Russia in 1845,
though his family quickly moved to Germany where he was raised. He completed his doctorate
in 1867, studying under the great Weierstrass, himself. Having inherited an interest in analysis,

Cantor began studying the existence and uniqueness of trigonometric functions. Noticing that
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problems involving singularities required a more rigorous theory of the real numbers, he began
examining the differences between separate sets of numbers, investigating in particular
comparisons of size between those sets. In his Contributions to the Founding of the Theory of
Transfinite Numbers, he lays out his refined, logical description of his theory of “aggregates” or
sets. A set is “any collection into a whole of definite and separate objects m of our intuition or
our thought. These objects are called the ‘elements’ of M .”3¢ Furthermore, he defines the

cardinality of a set to be the number of elements in that set, or more abstractly: “Since every

element m , if we abstract from its nature, becomes a ‘unit,” the cardinal number ﬁ is a definite
aggregate composed of units, and this number has existence in our mind as an intellectual image
or projection of the given aggregate M .37 Finally, he writes that two sets are equal in cardinality
“if it is possible to put them, by some law, in such a relation to one another that to every element
of each one of them corresponds one and only one element of the other.”3® In modern
mathematical terminology, two sets have the same cardinality if they can be put into a one-to-one
correspondence with each other. For example, the set {1,2,3,4,5} has the same cardinality as the
set {2,4,6,8,10}. This is because each element in the first set corresponds to the element in the

second set that is twice the original number. Cantor’s basic conception of cardinality underlies

his departure from the tradition surrounding the actually infinite.
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Though seemingly simple, this method for counting the size of a set has far-reaching
consequences. Consider the infinite set N of all natural numbers, that is, N = {1,2,3,4,5 ...}.
Likewise, consider the infinite set E of all even natural numbers, that is, E = {2,4,6,8,10...}.
Consider the correspondence given in the previous example, so that each element of N is mapped
to the element of E which is exactly twice as large. Then, 1 corresponds to 2, 2 corresponds to 4,
and so on. As a result, there is a one-to-one correspondence between the two sets. Therefore,
they have the same cardinality. A paradox immediately arises, however, because E is entirely
contained in N .3° Normally, the whole is greater than its part, but Cantor’s definition of
cardinality defies this. The consequences extend further. Consider the set of all integers, Z =
{..—3, -2, -1,0,1, 2, 3...}. Now, rearrange Z so that it begins with 0 and alternates between
increasing positive and negative integers: Z = {0,1,—1,2,—2,3, —3...}. Then, mapping N by this
rearrangement, 1 corresponds to 0, 2 to 1, 3 to —1, and so on. By snaking between negative and
positive numbers, the set of natural numbers has a one-to-one correspondence to the integers. As
aresult, Z, a set that extends to infinity in two directions, is the same size as N . For one last
example, consider the set of all rational numbers, Q . Georg Cantor, using the process of
diagonalization, was able to prove that Q , too, had the exact same cardinality as the natural
numbers.*? Cantor gave the name X, to this cardinal number representing the size of N, Z, and

Q . With his simple definition, Cantor showed that so many well-known infinite sets are equal.

However, not all infinities are created equal. Even before his work on set theory, he

showed, in his 1874 paper On a Property of the Collection of All Real Algebraic Numbers, that
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there was a set of even greater cardinality than X,.*! More technically, he proved the non-
denumerability of the continuum. The continuum is the set of all real numbers, and a set is
denumerable if it can be put in a one-to-one correspondence with the set of natural numbers. So,
Cantor proved that the real number line was a separate cardinality from X,. To do this, he used a
proof by contradiction, the informal idea of which is reproduced here. Suppose the continuum
between 0 and 1 were denumerable, that is, suppose that there existed a one-to-one
correspondence between the real number interval (0,1) and N . Then set up each real number in a

list next to the natural number it corresponds to:

N Real Numbers in (0,1)
0.5000000000...
0.3333333333...
0.1718281828...
0.7428571429...
0.1415326535...

()} BN RUS N I O]

n 0.aqa,a30405 ...a; ...

Now, define the real number b def'i.n-ed as follows. Let b = 0.bybyb3bybs ... b; ... such that b; = 7 if
a, = 3, otherwise b; = 3. In other words, for each successive digit of b, make it 3 unless the
corresponding digit of the corresponding natural number is 3. In that case, make the digit 7. In
this example, the first decimal digit of the first real number is 5, so that b; = 3. The second
decimal digit of the second real number is 3, so that b, = 7. In the end, b = 0.37337 ... . By
construction, at least one digit of b is different than every real number in the correspondence.
Thus, b does not have a corresponding natural number, which contradicts our assumption.
Therefore, the continuum is not denumerable. Furthermore, since the set of all real numbers

contains the set of natural numbers, it cannot have a smaller cardinality, and since it is neither
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smaller nor equal, it must have a greater cardinality. Cantor eventually called this greater

cardinality of the real numbers X,, which is the “next size”*? of infinity from X,.

Moreover, Cantor showed that there were greater cardinalities than X;. One essential tool
for doing so was the power set. The power set of a set M , denoted P(M), is the set of all possible
subsets of M . For example, let M = {1,2,3}. Then the power set is P(M) =
{@,{1}, {2},{3}, {1,2},{2,3},{1,3},{1,2,3}}, with @ being the empty set. Intuitively, M < P(M) for
any finite set M . In 1891, Cantor proved that the power set is strictly greater than the original set,
even for infinite sets.*3 As a result, 8; < P(X;), and P(R,) is the “next size” of infinity. This

process can be continued: P(X;) < P(P(Nl)) <P (P (P(Nl))) < ---. Furthermore, if the

consecutive power sets are renamed and several ancillary theorems are proven, the following
infinite, strictly increasing sequence is established: Xy < 8; <R, < N3 <+ <X, <---. Cantor
called the numbers in this sequence fransfinite numbers—numbers not equal to any finite
number—since adding a new element to them yields the same number.** The transfinite
numbers, described by some as “stepping stones to the throne of God,”*> extend much further

into infinities of larger and larger infinities.

Not only did Georg Cantor establish a whole new number system with his transfinite

numbers, he affirmed that they were actual infinities. In his Contributions to the Founding of the

42 Cantorwas notable to prove that X, was the inmediate next size of infinity up from X,. This infamous problem is
known asthe Continuum Hypothesis and was the first of Hilbert’s famous23 problems for mathematicians heading
into the 20" century. Later, Paul Cohen proved that the Continuum Hypothesis was independent of Zermelo -
Fraenkel axiomatizations of set theory, meaning it did not follow from set theoretic axioms as necessarily true or
false.
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Since A'is a set, P(A4) is also a set such that A < P(4). However, since P(A4) is a set, it is a subset of 4. So, P(4) <
A. But this implies A < A , a contradiction. The solution to this paradox is that there is no set of all cardinalities.
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Theory of Transfinite Numbers, he describes his theory as “the theory of the actually infinite or
transfinite cardinal numbers.”*® Before his work, the commonly accepted notion of the infinite
was that of the potentially infinite—a variable that could increase without bound. Joseph
Dauben, an expert on Georg Cantor, writes, “in contrast to these, Cantor distinguished proper or
actual infinities. The best examples of these, he suggested, were his new numbers, the transfinite
numbers.”*’ Cantor deliberately departed from the familiar notation of oo for infinity to reflect
the completed, number-like nature of his transfinites.*® In 1883, he published his Foundation of a
General Theory of Manifolds, which prefigured Contributions, establishing not only his
mathematics but also his philosophy. Dauben identifies that “one goal of [Foundation] was to
demonstrate that there was no reason to accept the old objections to completed, actual infinities
and that it was possible to answer mathematicians like Gauss, philosophers like Aristotle, and
theologians like Thomas Aquinas in terms they would find impossible to reject.”*® Cantor’s new

math was unmistakably poised against the prevailing philosophical tradition.

Now, set theory is widely accepted among mathematicians. For many, it has secured its
home as the foundation of all mathematical fields. The classic theorems of algebra, geometry,
and calculus are all translatable into set theory. How could Cantor’s ideas prevail against the
overwhelming opposition to the actual infinite? An examination of the philosophical history
reveals the answer. Cantor’s controversial ideas overcame the opposition because many
contemporaries embraced an ontological separation of mathematical ideas from physical reality.
Individual ontologies varied, yet the positions most commonly adopted after Cantor have all

incorporated one common agreement: mathematical objects need not reflect reality. This
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becomes evident when analyzing Cantor’s own philosophy, the past opposition to his ideas, and

the acceptance set theory eventually received.

To defend his transfinite numbers, Cantor had to find an explanation for the paradoxes of
the infinite besides the Aristotelian distinction between potential and actual. His solution, as
Dauben explains, was that “whatever mathematicians may have assumed in the past, finite
properties could not be predicated in all cases of the infinite.”>9 It is false that every property of
finite numbers must apply to infinite numbers in the exact same way. Infinite numbers form a
separate class than finite numbers. Consequently, it would be invalid to argue that infinite
numbers cannot exist merely because they do not satisfy every property of finite numbers. To
illustrate, consider the premise that the whole is greater than its part. Clearly, if a circle is cut in
half, the resulting half circle must be smaller than the whole. Likewise, if one is subtracted from
a number, the resulting number is, by definition, one less than the original number. This premise
is a common notion of reasoning easily accepted by rational thinkers. In terms of infinite sets,
however, this premise breaks down. As shown previously, the set E contains only every other
element of the set N, yet they have the same cardinality. In other words, N, the whole, is not
greater than E , its part. This is no contradiction. It only becomes one if it is assumed that the
starting premise applies to infinite sets as it does to finite sets. Why should a premise derived
from an intuition of finite numbers apply to infinite sets? Similarly, many argued that, during
addition, “finite numbers would be swallowed up by any infinite number or magnitude.”!
Consider two positive numbers a and b . Clearly, their sum must be strictly greater than either of

the two numbers: a + b > a and a + b > b . With infinite sets, however, this also breaks down. In
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general, adding one element to an infinite set does not change its cardinality: co + b = oo and a +
o = 00,52 Dauben writes that “Cantor condemned this kind of argument... on the grounds that it
was fallacious to assume that infinite numbers must exhibit the same arithmetical characteristics
as did finite numbers.”>* With this explanation, Cantor resolved many paradoxes of the infinite

by separating his new mathematical objects from material intuitions.

This separation, however, assumes that numbers can exist apart from material intuitions.
Cantor’s metaphysics support this. For Cantor, it was not material intuition that justified a

number’s existence, but the number’s logical consistency:

In particular, in introducing new numbers, mathematics is only obliged to give definitions
of them, by which such a definiteness and, circumstances permitting, such a relation to
the older numbers are conferred upon them that in given cases they can definitely be
distinguished from one another. As soon as a number satisfies all these conditions, it can
and must be regarded as existent and real in mathematics.>*

If a mathematical concept makes sense abstractly, it exists. As Dauben explains, “for
mathematicians, only one test was necessary: once the elements of any mathematical theory were
seen to be consistent, then they were mathematically acceptable.”> This view was not entirely
original to Cantor. Earlier in the century, non-Euclidean geometry rose as a prominent
mathematical theory. Non-Euclidean geometries were as logically consistent as Euclidean
geometry, and yet no more than one could be true in physical reality. Consequently, math had to
accept both and search for a new basis for truth—something more akin to logical consistency.

Cantor reinforced this methodology with an ontological separation between mathematical objects

32 Cantor did, in fact, design a way to “add one to infinity” and get a different number. This aspect of transfinite
arithmetic can be found in Contributions to the Founding of the Theory of Transfinite Numbers, and explained by
various authors, including Joseph Dauben. Here, however, I use 0 + a = o to mean something more akin to the
following. Let A be a set of finite cardinality a € N , and B a set of cardinality X,. Then the cardinality of theset A U
B is also N,.

53 Dauben, 122.

34 1bid., 128-129.

33 Ibid., 128.

15



and their instantiations in reality. Numbers can be considered in two ways: as immanent and
transient.>® The immanent reality of a number is its existence insofar as it is well-defined in the
mind. It is the number as a thought or ideal. In contrast, the transient reality of a number is that
which “numbers could assume concretely, manifest in objects of the physical world.”>” Both of
these realities exist for a number, so it is valid to study either the transient or immanent reality. In
particular, one can study the immanent reality of a number without knowing anything about its
transient reality. As a result, since math is the study of immanent number, mathematicians are
free to define and invent new mathematical concepts without worrying about their physical
manifestation. This argument culminates in Cantor’s declaration that “the essence of
mathematics lies entirely in its freedom.”® He elaborates in Foundations: “because of this
extraordinary position which distinguishes mathematics from all other sciences, and which
produces an explanation for the relatively free and easy way of pursuing it, it especially deserves
the name of free mathematics, a designation which I, if I had the choice, would prefer to the now
customary ‘pure’ mathematics.”® In his metaphysics, Cantor departs from the tradition that all

numbers must reflect their material instantiations.

In fact, the traditional rejection of the actual infinite hinges on this specific ontology. This
was true of Aristotle. In Book II of the Physics, Aristotle distinguishes the mathematician from

the natural philosopher. Speaking of mathematical objects and physics, he writes:

Now the mathematician too busies himself about these things, although not insofar as
each of them is the limit of a natural body, nor does he get a theoretical grasp on the
coincidents of natural bodies insofar as they are such. That is why he separates them. For
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they are separable in the understanding from movement, and so their being separated
makes no difference, nor does any falsehood result from it.%°

Aristotle noted how math, in some capacity, is separate from reality. This separation informs
Aristotle’s view of the actual infinite. Specifically, he believed that mathematical objects are
abstractions.®! Abstractions are inherently tied to and stem from reality. If, then, material things
are “the primary substance and source of reality,”®? any impossibility in reality must translate to
those things that arise from it. Thus, a mathematical actual infinity is impossible for Aristotle,
because an actual infinity is impossible in reality. For example, Aristotle believed that time was
potentially infinite, since it always kept on ticking. It could not, however, be actually infinite,
since that would require all of time to be completed, which is impossible in reality. As A. W.
Moore puts it, “for Aristotle, the infinite was the untraversable. But traversal takes time. So there
is no making sense of the claim that something is untraversable save with respect to the whole of
time.”®3 Moreover, Aristotle attributed many paradoxes of natural phenomena to the actual
infinite. It is absurd to say that Achilles has to run through infinitely many points to pass the
tortoise, and that is an actual infinity. With potential infinity, there is simply no end to how many
times the path he runs can be divided.®* These paradoxes motivate Aristotle to reject an actual
infinite, paradoxes leading to physical absurdities. Fundamentally, math was tied to physical
reality. It is this ontological understanding that underlies Aristotle’s rejection of a mathematical

actual infinite.

Similarly, Aquinas’ rejection of the actual infinite stems from an Aristotelian ontology of

math. In his rejection of material infinity, Aquinas says, “if we imagine a mathematical body in
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actual existence we shall have to imagine it with a form, for actuality requires form.”%> To
consider mathematical bodies, Aquinas immediately imagines them in actual existence. While a
geometer can invent his own shapes with which to reason, those shapes derive from reality.
Furthermore, “since the form of quantity as such is figure, such a body must have some figure,
and so would be finite; for figure is confined by a term or boundary.”®® Aquinas restricts
mathematical objects to the figure thought up to express them. They are abstractions from reality,
so they are tied to and limited by reality. Even the geometer’s infinite line is only as long as is
needed: “a geometrician does not need to assume a line actually infinite, but takes some actually
finite line, from which he subtracts whatever he finds necessary; which line he calls infinite.”¢”
As abstractions from matter, mathematical objects cannot be actually infinite, because “the
infinite of quantity... belongs to matter.”®® It is Aquinas’ mathematical ontology that fuels his

rejection of the actual infinite.

In contrast, Cantor’s metaphysics allows for a belief in a mathematical actual infinite.
Since a transient actual infinite is responsible for contradictions, it should instead be possible to
establish an immanent actual infinity. More specifically, according to Cantor, transfinite numbers
only depend on their own logical consistency for existence, not on their relationship to physical
reality. Therefore, if a logically consistent system of transfinite numbers can be established, then
they must exist. This is exactly what Cantor claimed he was developing. He supports his case by
comparing transfinite numbers to irrational numbers. For the Pythagoreans, irrationals were

problematic because they did not share all their properties with previously known numbers—

65 Aquinas, 103.

66 Thid.

67 Ibid. Aquinas, here, is arguably incorrect. Euclid’s Definition 23 requires that parallel lines be produced infinitely,
so that they never meet in either direction they extend. Aquinas' view was, however, in line with Aristotle’s view.

68 Tbid.

18



they were not expressible as a ratio of two integers. However, they arose as a natural
consequence of established theories, namely, the Pythagorean theorem. Though they had
somewhat different properties, they were eventually accepted as a natural consequence. In later
centuries, irrationals were formally defined using infinite sequences of rational numbers. %
Cantor pointed out that this definition presupposed a completed infinity. In order for a sequence
to keep producing rational numbers sufficiently close to the desired irrational, there had to be an
infinite set of rationals from which to draw. Potentially infinite sequences necessitated actually

infinite sets. Thus, transfinite numbers could be seen as an extension of irrational numbers:

The transfinite numbers themselves are in a certain sense new irrationals, and in fact I
think the best way to define the finife irrational numbers is entirely similar... One can
absolutely assert: the transfinite numbers stand or fall with the finite irrational numbers;
they are alike in their most intrinsic nature; for the former like these latter (numbers) are
definite, delineated forms or modifications of the actual infinite.%?

Though Cantor believed his transfinites had a material existence like irrationals,’® only their
logical consistency was necessary for existence. By his ontology and mathematics, Cantor

argued for a belief in a mathematical actual infinite.

Cantor’s metaphysics influenced each of the philosophical schools seeking to establish a
foundation for mathematics. The first school was logicism. The school of logicism began with
Bertrand Russel and Alfred North Whitehead in their effort to reduce all mathematics to logic.
Russel thought very highly of Cantor, considering him “as one of the greatest intellects of the
nineteenth century.”’! Whitehead, in Science and the Modern World, puts forward the logicist

thesis on the ontological status of math:
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The originality of mathematics consists in the fact that in mathematical science
connections between things are exhibited which, apart from the agency of human reason,
are extremely unobvious. Thus the ideas, now in the minds of contemporary
mathematicians, lie very remote from any notions which can be immediately derived by
perception through the senses; unless indeed it be perception stimulated and guided by
antecedent mathematical knowledge.”?

Whitehead, here, maintains that math derives from reality. He admits, though, that mathematical
objects are so separated from physical reality, that the connection between them has become
“extremely unobvious.” Math has been abstracted so far from reality that “the certainty of
mathematics depends upon its complete abstract generality,” and in its particular application,
“we can have no a priori certainty that we are right in believing that the observed entities in the
concrete universe form a particular instance of what falls under our general reasoning.””? In
short, math is only from reality in the sense that it is completely abstracted logic. This view
developed Gottlob Frege’s criticism of Cantor’s methods. Cantor claimed that the cardinality of a
set, no matter how big, could be simply “abstracted” from the set.” Frege, however, required a
more definite and logical process to determine cardinality. For him, vague abstraction was in no
way justifiable, because it lacked the logical rigor and complete generality required to justify
mathematical concepts.” He believed, like Cantor, that logical consistency justified existence,
but criticized Cantor for not being logical enough.’® Similarly, other logicists such as Guiseppe
Peano and Emst Zermelo sought to fix and improve Cantor’s theory, using logical axiomatic

systems to do so.”” In the end, the school of logicism adopted Cantor’s math, despite
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philosophical disagreements, because it held to Cantor’s metaphysic of how math derives

justification.

The second school of math is formalism, championed by David Hilbert. Hilbert had a
high view of Cantor, calling his theory of transfinite numbers “the finest product of mathematical
genius and one of the supreme achievements of purely intellectual human activity.”’® When
confronted with the infamous paradoxes found within set theory, Hilbert responds, “wherever
there is any hope of salvage, we will carefully investigate fruitful definitions and deductive
methods. We will nurse them, strengthen them, and make them useful. No one shall drive us out
of the paradise which Cantor has created for us.””® In short, he was committed to set theory.
Despite this, Hilbert did not share all of Cantor’s sentiments regarding the infinite. Whereas
Cantor believed transfinites existed materially, Hilbert asserted that “the infinite is nowhere to be
found in reality. It neither exists in nature nor provides a legitimate basis for rational thought.”89
Instead, he concludes that “the role that remains for the infinite to play is solely that of an
idea.”®! Modern science suggested everything was finite—non-Euclidean geometry provided
grounds to doubt the infinite extension of space, and the discovery of atoms and quanta of energy
threw doubt on infinite divisibility. Consequently, the infinite was not in reality, only in the
mind. This corresponded to Hilbert’s formalist view of mathematics. Instead of being reduced to
logic, math was abstracted away from any inherent meaning at all. Rather, math was the

manipulation of meaningless symbols that might coincidentally correspond to reality:
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In exact analogy to the transition from material number theory to formal algebra, we now
treat the signs and operation symbols of the logical calculus in abstraction from their
meaning. Thus we finally obtain, instead of material mathematical knowledge which is
communicated in ordinary language, just a set of formulas containing mathematical and
logical symbols which are generated successively, according to determinate rules.??

Since math was inherently conceptual, mathematical infinity was inherently conceptual. This fits
Cantor’s idea of immanent number. Numbers, as formal symbols, need not be instantiated in
reality. So, material paradoxes have no power to stop mathematicians from using concepts that
find success in the abstract. Therefore, it was a separation of math from reality that allowed

Hilbert to justify Cantor’s transfinite numbers.

Cantor’s work, however, was not without complete rejection—rejection found primarily
in the third school of intuitionism. Early intuitionist Henri Poincaré saw Cantor’s set theory as a
disease in need of a cure: “the important thing is never to introduce entities not completely
definable in a finite number of words. Whatever be the cure adopted, we may promise ourselves
the joy of the doctor called in to follow a beautiful pathological case.”®? The seeds of
intuitionism began with the bold finitist, Leopold Kronecker. Kronecker was Cantor’s largest
opponent, calling him “a scientific charlatan, a renegade, a ‘corrupter of youth’.”#* Kronecker
advocated that all numbers be constructable on the basis of the integers, having famously said,
“God made the integers, but all else is the work of man.”® E. J. Brouwer, a later mathematician,
formalized this philosophy into the school of intuitionism. As Morris Kline describe it, “Brouwer
conceived of mathematical thinking as a process of mental construction which builds its own

universe, independent of experience and restricted only insofar as it must be based upon the
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fundamental mathematical intuition.”®® Brouwer allowed for certain potentially infinite sets, so
long as things are not all present at once, as the mind abstracts from larger and larger finite sets
to create an infinite set.8” Intuitionism requires that all objects be constructible, not simply
described.®® It is for this reason that 7 is acceptable, since it can be calculated to any arbitrary
degree of accuracy. It is notable that, though intuitionism rejects Cantor’s transfinite numbers, it

still maintains a portion of his metaphysics. As James Nickel describes it,

Because of its Kantian underpinnings, this school presupposes that truth in mathematics
can be known explicitly in the intuitive capabilities of man’s mind. That mathematics
reflects and expresses the laws inherent in the pre-established and ordered patterns of the
universe is of no importance to the discussion. Hence, the question as to why
mathematics works, i.e., why it describes the workings of the physical world so
accurately, is left open and unanswered.”%’

Intuitionism, though in opposition to Cantor, does not reject a separation of mathematics from
reality. Intuitionists may still reject transfinite numbers, but the basis of that rejection is no

longer the philosophical notion of the actual infinite.

Mathematicians, however, were not the only ones to accept Cantor’s work by considering
his metaphysics—the Church itself had a significant collision with transfinite numbers. All
throughout Cantor’s life, religion was extremely important. William Dunham explains well why
Cantor would maintain a strong connection between his theology and his mathematics: “Cantor
had converted from Judaism to Protestantism, whereas his wife was born a Roman Catholic.
With such an eclectic mix of religious perspectives, it is no surprise that young Georg developed
a lifelong interest in theological matters.”? This lifelong interest would heavily influence his

later mathematical discoveries. As E. T. Bell remarks, Cantor had “acquired a singular taste for
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the endless hairsplitting of medieval theology. Had he not become a mathematician it is quite
possible that he would have left his mark on philosophy or theology.”®! Since religion was so
important, Cantor wanted the Roman Catholic Church to examine the implications of his
philosophy, to prevent him from falling into serious theological errors.’> Cantor believed that his
transfinite numbers existed as ideas in the mind of God,?3 and wanted to confirm he was not
contradicting established dogma. On the contrary, for this belief about the mind of God, Cantor
received approval from Catholic theologian Constantin Gutberlet. Gutberlet even used Cantor’s
math to defend his own use of actually infinite numbers.’* He did so by asserting that an infinite
sequence in God’s intellect cannot be continually revealed and thus potentially infinite. Instead,
it must exist all at once since God is unchanging: “in the absolute mind the entire sequence is
always in actual consciousness, without any possibility of increase in the knowledge or
contemplation of a new member of the sequence.”> In Gutberlet’s studies, Cantor found Church

approval for the immanent reality of transfinite numbers.

In the transient reality of number, however, Cantor was at odds with the Church.
Although Cantor and Gutberlet agreed that transfinite numbers actually existed in God’s mind,
they disagreed as to whether they existed in physical reality.?® Cantor held that his transfinite
numbers did have material existence, a position which Cardinal Johannes Franzelin called
dangerous. Franzelin asserted that any actual, physical infinity “could not be defended and in a

certain sense would involve the error of Pantheism.”®” It would be an attempt to equate God’s
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infinity with a temporal, physical infinity—if God’s infinity were the same as nature's infinity, it
would be the same as saying God was nature. To combat this danger, Cantor distinguished the
actual infinite from what he called the Absolute infinite. The former is the created infinity of his
transfinite numbers, applying to a quantity of objects in the universe, whereas the latter is
reserved entirely for God and his attributes.”® With this distinction between what is physically

created and what belongs immaterially to God, Franzelin approved of Cantor:

Thus the two concepts of the Absolute-Infinite and the Actual-infinite in the created
world or in the Transfinitum are essentially different, so that in comparing the two one
must only describe the former as properly infinite, the latter as improperly or equivocally
infinite. When conceived in this way, so far as | can see at present, there is no danger to
religious truths in your concept of the Transfinitum.®

With regard to the immanent existence of number, Cantor found acceptance only in separating
his transfinites from existence in physical reality. Moreover, with regard to transient existence,
he found acceptance only when he distinguished between what was physical and what was
supernatural. In both instances, Cantor reconciled his theories with the Church by separating

mathematical objects’ physical existence from their ideal existence.

This ontological separation is found not only in Cantor’s contemporaries, but in many
mathematicians, philosophers, and theologians ever since the advent of set theory. For example,
Christian apologist William Lane Craig makes such a distinction in Reasonable Faith. In his
defense of the cosmological argument, Craig argues against an infinite regress of causes by
arguing that an actually infinite number of things cannot exist. Craig acknowledges the work of
Cantor on the topic, but asserts that math holds a different sphere of influence. He argues that

many mathematicians “would simply insist that acceptance of the mathematical legitimacy of
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certain notions does not imply a commitment to the metaphysical reality of various objects.”!%0
He allows for Cantor’s work in a formalist, anti-realist sense, claiming, “one may consistently
hold that while the actual infinite is a fruitful and consistent concept within the postulated
universe of discourse, it cannot be transposed into the real world, for this would involve counter-
intuitive absurdities.”'%! As another example, mathematician G. H. Hardy presents his beliefs in
his essay, 4 Mathematician’s Apology. He first establishes that there is a physical reality, “the
material world, the world of day and night, earthquakes and eclipses, the world which physical
science tries to describe.”'%? In contrast, he acknowledges a mathematical reality, distinct from
the physical reality. Hardy describes how mathematicians disagree about the nature of this
mathematical reality, and that “a man who could give a convincing account of mathematical
reality would have solved very many of the most difficult problems of metaphysics. If he could
include physical reality in his account, he would have solved them all.”!%3 The separation of

mathematical objects from reality that allows many to accept Cantor’s set theory extends to

many.

Though many mathematicians, philosophers, and theologians have rejected an actual
infinity, and there are those even today who do not accept transfinite numbers, Cantor’s work has
staked a claim as one of the most influential theories in mathematics. Despite centuries of
opposition from a wide variety of thinkers, set theory has settled down firmly at the foundation
of the queen of the sciences. How did Cantor’s theory overcome the opposition? Mathematics
has come to accept set theory due to an understanding of an ontological separation between

mathematical objects and reality. This understanding takes different forms for different thinkers,
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even those who have opposed Cantor. Regardless of its flavors, the result is the same—math
need not reflect reality. This is not to say math cannot apply to reality. Indeed, math absolutely
has an “unreasonable effectiveness” in its applications. However, there is something to be gained
in seeing mathematics as possessing the nature of something else, something beyond the
material. When sets are considered beyond their material instantiation, they become counter-
intuitive. Infinite sets can be equal in size to proper subsets of themselves. The whole can be
equal to the part, and a limitless number of points can lie inside a bounded interval. Instead of
opposing these notions, mathematicians can use established logic to explore things beyond their
prior understanding. Is this not what philosophy and theology do as well? The doctrine of the
Trinity, for example, states that God is three persons, each equal in power and glory, unified in
one Godhead. How can man understand this? Perhaps Cantor can offer an analogy. With infinite
sets, it is perfectly logical that three sets be equal in cardinality yet unified in one set no greater
than any of the three. When dealing with the infinite, conclusions are counter-intuitive, but
thanks to Cantor, they need not be contradictory. Mathematicians, philosophers, and theologians
alike must recognize what lies beyond them. They must marvel at how the finite intersects the

infinite. They must wonder at the “stepping stones to the throne of God.”1%4
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