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1 Introduction

This document is a write-up describing the work done for my departmental
honors thesis with Dr. David Gaebler during my senior year at Hillsdale college.
The math presented here is not new. Most of my time spent researching involved
learning about dynamical systems, investigating related topics, and trying to
develop an understanding of the Koopman operator in how it is applied in
certain instances. As a result, this document will present material that has
already been proven by various sources. Also, while there were certain basic
results on related topics that I found with the help of Dr. Gaebler, we both
believe they have been proven elsewhere even though we could not find a source
for them. The positive results of this research are the working out of new
mathematical technology (the Koopman Operator) in a specific situation, as
well as a report of the various things I learned in the process of my departmental
honors research.

2 Dynamical Systems

2.1 Hamiltonian Mechanics

I did not know what exactly what a dynamical system was until I began research.
It helped to walk through an example of one. Consider a physical system such
as a mass on a spring. It can be useful to describe this situation in terms of
the Hamiltonian, an expression of the total energy of the system. For a case
as simple as a mass on a spring, we can express the Hamiltonian (H) simply as
the sum of potential and kinetic energies:

H = T + V (1)
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Figure 1: Parameterized Curve in Phase Space

In Hamiltonian mechanics, the system is described in terms of position (qi and
momentum (pi). Using the following differential equations, the entire movement
of the system can be described:

ṗi = −∂H

∂qi
(2)

q̇i =
∂H

∂pi
(3)

Not only are these equations sufficient to describe the evolution of the system, it
allows for a new way to represent the system. By plotting position and momen-
tum against each other, the system can be expressed as a curve parameterized
by time (Figure 1). This space is called phase space. For n particles in k
dimensions, this would be some kind of 2nk-dimensional manifold, since each
particle as k position coordinates and k momentum coordinates.

In the specific example of a mass on a spring, the phase space consists of 2
coordinates, one for the x-position and one for momentum in the x-direction.
The Hamiltonian for a harmonic oscillator is

H =
p2

2m
+

1

2
κx2 (4)

where m is mass and κ is the spring constant. This gives the following system
of differential equations:

ṗ = −2κx (5)

ẋ =
p

m
(6)

In phase space, the harmonic oscillator is depicted as an ellipse (Figure 2).

2.2 State Space

For a general dynamical system, a state space is needed. This is the general-
ization of phase space. A state space is a set of states of a system. For example,
a state of the harmonic oscillator is a point in time the oscillator exists, given
by the position and momentum of the mass attached to the spring.
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Figure 2: Harmonic Oscillator in Phase Space

2.3 Discrete Dynamical Systems

Let S ⊂ Rn be the state space of a dynamical system. Let T : S 7→ S be a
dynamic map. Let x ∈ S be a point, and let t ∈ Z be the discrete time index.
Then we say

xt+1 = T (xt). (7)

This equation describes a discrete-time dynamical system. If there is some
kind of additional structure on S, (like, if it is a vector space or topological
space), then that structure is respected. A single map T is equivalent to a
family of maps {T (n)}n∈N for which T (0) is the identity map and there exists a
semigroup of maps (indexed by the natural numbers) satisfying the property

T (a)T (b) = T (a+b) (8)

where T (a) is just T composed with itself a times. For example, consider a game
of Monopoly. Let the x be the probability vector that player one is on any given
board space. Then S is the set of all possible probability vectors. Start at GO
(x0), and let the dynamic map T be the role of two dice. Then T (4)(x0) is the
set of probable locations after 4 turns. This is a discrete dynamical system.

2.4 Continuous Dynamical Systems

A continuous-time dynamical system is a family {F t} of functions from
S 7→ S where F 0 is the identity and the semigroup property holds:

F sF t = F s+t (9)

We can make one of these families by first letting f be the function for some
dynamical system, such as ẋ = f(x). Then the flow map F t : S 7→ S is the
map from the initial state, x0, to the state at time t ∈ R, i.e.

F t(x0) = x0 +

∫ t

x0,t′=0

f(x(t′))dt′. (10)

An example of a continuous dynamical system is the x-position of a harmonic
oscillator.
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2.5 Points of Interest

For any initial state x0, the set {T (n)(x0)|n ∈ N} or {F t(x0)|t ∈ R} is called
the orbit or trajectory of x0. Fixed points are orbits that consist only
of themselves. Limit cycles are closed curves in state space that correspond
to periodic orbits. Invariant sets are sets whose points have trajectories that
always remain in that set. Attractors are invariant sets with a dense orbit that
many initial conditions converge to. Basically, identifying key characteristics of
certain orbits is extremely useful for understanding the evolution of a dynamical
system.

3 The Koopman Operator

3.1 Observables

An observable of a state space is a function g 7→ C (or sometimes just R). The
name observable comes from quantum mechanics. An observable is essentially
looking at one piece of data from a dynamical system instead of the whole
system. For example, an observable of the harmonic oscillator could be the
total potential energy of the system. For another example, an observable of a
fluid inside a box could be the pressure or velocity at a certain specified point.
The set of all observables form a linear vector space (linearity coming from the
Koopman Operator as shown later).

3.2 What is the Koopman Operator?

Definition 3.1 (Koopman Operator - Discrete Time System). Let g : S 7→ C
be a real-valued observable of some discrete-time dynamical system (7). The
collection of all such observables forms a linear vector space. The Koopman
Operator, denoted by U , is a linear transformation on this vector space given
by

Ug(x) = g ◦ T (x), (11)

where ◦ denotes the composition operator.

The linearity of the Koopman Operator follows from the linearity of the
composition operator:

U [g1(x) + g2(x)] = [g1(x) + g2(x)] ◦ T (x) (12)

= g1(x) ◦ T (x) + g2 ◦ T (x) = Ug1(x) + Ug2(x) (13)

Notice this definition applies to a discrete-time dynamical system. In practice,
this can refer to a discrete time sampling of a continuous-time dynamical system
given by a set of differential equations. However, an analogue to the Koopman
operator can also be defined for continuous-time systems.
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Figure 3: Lifting Dynamics from State to Observable Space

Definition 3.2 (“Koopman Operator” - Continuous Time System). Then {U t}t≥0

is a one-parameter semigroup of Koopman Operators, where each element
is given by

U tg(x) = g ◦ F t(x). (14)

U t is also linear, similarly to the discrete-time case. All these proofs and
definitions can be found in Introduction to Koopman operator theory of dynam-
ical systems. The Koopman operator is to observable space what T or F t is
for state space; it steps time forward (Figure 3). The Koopman operator, how-
ever, works under a space with different properties, i.e., observable is linear, but
also infinite-dimensional. As a result, there is a trade-off when using it. This
trade-off is similar to the trade-off in Hamiltonian mechanics when going from
physical space to phase space. Given the positive benefits from linearity, this
could be a worthwhile trade.

3.3 Eigenstuffs of the Koopman Operator

Definition 3.3 (Eigenfunction-Eigenvalue Pair). Let ϕj : S 7→ C be a complex-
valued observable of (1), and λj a complex number. Then (ϕj , λj) is an
eigenfunction-eigenvalue pair of the Koopman operator if it satisfies

U tϕj = eλjtϕj (15)

Since the Koopman Operator is linear, we can look at its eigenvalues and
eigenvectors to determine long term behavior. In particular, it might be useful
to look at the spectrum or the appropriate analogue of the Koopman Operator.
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Definition 3.4 (Spectrum). The resolvent set ρ(U) of U is the set of all scalars
λ in C such that the linear transformation λI −U has a densley defined contin-
uous inverse. Then the spectrum σ(U) of U is the complement of ρ(U) in C.
That is, σ(U) = {λ ∈ C : λI − U is not invertible}.

In line with this, looking at the spectral properties of the Koopman Operator
or the spectral theorem could give useful insights.

3.4 Related Ideas

For good record keeping, I will mention several things that I learned about and
that we discussed pursuing.

3.4.1 Relationship between Discrete and Continuous

Given a continuous-time system, one can derive a corresponding discrete-time
system by sampling at regular intervals. That is, for some F t, with t ∈ R,
define T (n) = Fn for n ∈ N. We examined the convergence of this discrete
sample to its corresponding continuous system. If you keep sampling in smaller
and more frequent intervals (i.e. T (n

τ ) for τ → ∞), then it is trivially true
that the discrete sample converges to its corresponding continuous system. A
more interesting question would be the convergence of the discrete sample if you
sampled at arbitrary times.

3.4.2 Miscellaneous Notes

Here I transcribe some notes about operator convergence (and how they involve
e, which I asked about). One thing Dr. Gaebler considered is some sort of
convergence between discrete and continuous Koopman Operators. Then, we
asked the question, for an operator T in a Banach space: is somehow Tϕ(t) =
lim?→? Tϕ? Well, we know Tn → T in the operator norm if limn→∞ ||T −
Tn||op = 0. This is sort of like the operator version of uniform convergence, and
it is often difficult to obtain. We also know of a strong operator convergence,
in which we say Tn → T if, for every vector v in that space, Tnv = Tv. We
considered these convergence definitions Also, just to note how e pops up, you

can define eT = I + T + T 2

2! + T 3

3! + ... by infinite series. Then, you can do
all sorts of things with operators and matrices by equating T t = etA, that
follow directly from rules of exponentiation and the infinite series. This led
us to consider pursuing questions relating to finding some sort of exponential
generator of the semigroup. Finally, we mentioned looking up Stone’s Theorem
or the Hille-Yosida Theorem.
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4 3-State Markov Chains

4.1 What Has Markov to Do with Koopman?

The first thing I tried to do, in an attempt to get a better grasp of Koopman
Operators, was to find and work out an example of one. This was hard. Maybe I
just needed to practice more with differential equations and dynamical systems,
or maybe it really was difficult. My best attempt was to use the harmonic
oscillator, but I found it hard to grasp what observable I should use on the
system, and then what to do with the Koopman Operator when I got there.
So, Dr. Gaebler suggested I moved to something more discrete, and I ended up
looking at Markov Chains.

Now, what about Markov Chains in 3 dimensions specifically was interesting?
Broadly speaking, we know a lot of analytical properties of the complex plane
because we can map it to the unit disk. Furthermore, since Markov Chains have
the probability requirement that every entry of a probability vector must add up
to 1, we can project 3-State Markov Chains, which exist in 3 dimensions, down
to 2 dimensions. Then we can map that to the complex plane using a Schwarz-
Cristoffel mapping and carry over analytical properties (and apply them to the
Koopman Operator). That was the idea that started me off on Markov chains,
even if what kept me on Markov chains was separate.

4.2 Markov Chains and Transition Matrices

Definition 4.1. A discrete-time Markov chain is a sequence of random
variables x1, x2, x3, ... with the Markov property, namely that the probability
of moving to the next state depends only on the present state and not on the
previous states. We will represent transitions in this sequence using a stochastic
matrix as a transition matrix.

Important Note: A Markov state is different than a dynamical system
state. A Markov state is a just a certain way the the object of the Markov chain
exists. Often Markov chains are expressed as graphs. In that case, Markov
states are the nodes that can be transitioned to. The dynamical system state
for a Markov chain, in contrast, is a probability vector of being at any of the
given Markov states. So, the state (of the Markov chain in terms of a dynamical
system) will be the probability vector at time t denoted xt.

Thus, for 3-states, we say xt+1 = T3xt, for the timestep operator T3 where
T3xt = Axt, with

A =

 a b c
d e f

1− (a+ d) 1− (b+ e) 1− (c+ f)

 , (16)

for xt being the probability vector at time t, and 0 ≤ a, b, c, d, e, f ≤ 1. Note
that the final entry of each column is determined by the previous two, since
each column must add up to 1.
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(a) 3-Dimensional Probabilities (b) 2-Dimensional Probabilities

Figure 4: Projection from 3 to 2 Dimensions

Now, we want to project this 3-dimensional transition matrix into 2 dimen-
sions (Figure 1). We will denote the 2-dimensional timestep operator with T .
Let the projection of x (which is essentially just erasing a dimension) be denoted
π(x). To find what T does, we must satisfy the following property:

π(T3xt) = Tπ(xt). (17)

That is, the projection of the timestep of xt is the projected timestep of the
projected xt (which we will also just refer to as xt). Since (17) is also equal to
π(Axt), we find that it is only satisfied when T is defined as follows:

Definition 4.2 (Projected Timestep T ). The projected timestep T is given
by

Txt =

[
a− c b− c
d− f e− f

]
xt +

[
c
f

]
. (18)

We also might refer to the matrix B and vector ζ such that Txt = Bxt + ζ.

4.3 Eigenvalues

We can examine the eigenvalues of A to understand the long-term behavior of T3,
especially if we consider the Perron-Frobenius theorem. We set det(A−λI) = 0
and solve for the characteristic polynomial of A. Let

α = a− c+ e− f (19)

β = ae− af − bd+ bf + cd− ce (20)

Then, the characteristic polynomial of A is

−λ3 + (1 + α)λ2 − (α+ β)λ+ β = (λ− 1)(−λ2 + αλ− β) = 0 (21)
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Thus the eigenvalues of A are λ1 = 1, λ2 =
α+

√
α2−4β

2 , and λ3 =
α−

√
α2−4β

2 .
The steady state eignevector corresponds to λ1. But what are the eigenvalues
of our projected timestep? Well, as it turns out, α = tr(B) and β = det(B),
so the eigenvalues of B are the same λ2 and λ3 as A. This is good because it
means that T3 and T have the same long-term effects, as desired.

4.4 Convex Geometry

With the 3-state Markov Chain projected down into 2 dimensions, it can be
plotted as a probability simplex. Intuitively, we saw that any set of all prob-
ability vectors would have to be a subset of the previous set of all probability
vectors. Geometrically, this meant that each triangle had to remain within the
one for the previous iteration, allowing us to use convex geometry and describe
the simplex in terms of barrycentric coordinates. In addition to learning
about convex geometry, I also proved that the limit point is constant under
barrycentric coordinates (likely already proven somewhere).

Proof. Let x⃗ be the limit point. The triangular points in the first iteration
are (0,0), (1,0), and (0,1). Let p, q, and r be the weights for a barrycentric
coordinate. Then

x⃗ = p

[
1
0

]
+ q

[
0
1

]
+ r

[
0
0

]
= p

[
1
0

]
+ q

[
0
1

]
(22)

since the corner is the zero vector. Then

x⃗ =

[
p
q

]
(23)

and the barrycentric coordinate weights are simply p = x1, q = x2, and r = 0.
This also satisfies x1 + x2 + 0 = 1. Consider

T x⃗ = Bx⃗+ ζ =

[
(a− c)x1 + (b− c)x2 + c
(d− f)x1 + (e− f)x2 + f

]
(24)

The barrycentric coordinates are weights of the iterations of the vertices of the
simplex:

T

[
0
0

]
=

[
c
f

]
(25)

T

[
1
0

]
=

[
a
d

]
(26)

T

[
0
1

]
=

[
b
e

]
(27)

These resulting vectors are the verticies of the probability triangle given after
one iteration. Since x1 + x2 = 1, (24) becomes

x1

[
a
d

]
+ x2

[
b
e

]
+

[
1− x1 − x2

1− x1 − x2

] [
c
f

]
= x1

[
a
d

]
+ x2

[
b
e

]
(28)
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This shows that, from the initial state to the next timestep, the limit point
maintains the same barrycentric coordinates (i.e., x1, x2, and 0). Additionally,

suppose x⃗ = r1α⃗+ r2β⃗ + r3γ⃗, where r1, r2, and r3 are the barrycentric weights
and α⃗, β⃗, and γ⃗ are the three vertices of any current set of all probabilities.
Then

T x⃗ = B(r1α⃗+ r2β⃗ + r3γ⃗) + ζ (29)

Since r1 + r2 + r3 = 1, (29) becomes

Br1α⃗+Br2β⃗ +Br3γ⃗ + (r1 + r2 + r3)ζ (30)

= r1(Bα⃗+ ζ) + r2(Bβ⃗ + ζ) + r3(Bγ⃗ + ζ) (31)

= r1T α⃗+ r2T β⃗ + r3T γ⃗ (32)

This shows that the next iteration of an arbitrary set has the same barrycentric
coordinates (r1, r2, and r3). Therefore, by induction, the limit point has the
same barrycentric coordinates each iteration.

4.5 Decomposition of A

In an attempt to understand how the transition matrix A evolved over time and
what that looked like geometrically, I researched ways to decompose A. First, I
began with an singular value decomposition and then an eigenvalue decomposi-
tion. Both of these placed certain restrictions on the type of stochastic matrix
A which could be productive to look into (e.g. is A always diagonalizable). The
main purpose of this decomposition was to determine, given a certain matrix A,
how it could be made up of translations, rotations, shears, and reflections. This
served the greater purpose of understanding what A (or really B) was doing
geometrically. Things we considered were: does T rotate the triangle the same
amount each time, does the triangle shrink the same each time, are angle mea-
surements preserved under iterations, and are there families of similar stochastic
matrices? One basic result I found was that, if you permuted A, then the result-
ing triangle would cover the exact same area but have its vertices reassigned.
That is, each triangle corresponded to a matrix family of 3! = 6 permutations.
Also, we considered the question of what kind of matrix M could multiply A
such that AM was still stochastic. By assuming both A and M are stochastic
and multiplying them out, it was clear it would always yield a stochastic matrix.
In the other direction, if A and AM were stochastic, then the columns of M
had to add up to 1, but did not necessarily have to have entries lying between
0 and 1. That is, it implied a slightly weaker condition than being stochastic.

4.6 Rock-Paper-Scissors, an Example

Let’s get back to the Koopman Operator. To calculate an example, consider a
Rock-Paper-Scissors tournament. By analyzing how a certain player’s strategy
evolves over time, we can determine a Markov chain (Figure 5) with probabilities
reflecting what that player is likely to throw giving what they just threw.
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Figure 5: A Rock-Paper-Scissors Strategy Probability

4.6.1 Markov Chain

Let rt, pt, and st be the probabilities at time t of throwing rock, paper, and scis-
sors respectively. Given these probabilities, we can write the transition matrix
A such that,

xt+1 = Axt becomes

rt+1

pt+1

st+1

 =

0.8 0.3 0.4
0.1 0.4 0.1
0.1 0.3 0.5

rtpt
st

 (33)

Projecting down, we derive that

Txt =

[
0.4 −0.1
0 0.3

]
xt +

[
0.4
0.1

]
(34)

Since α = tr(B) = 0.7 and β = det(B) = 0.12, the eigenvalues are

λ2 ≈ 0.842443 and λ3 ≈ −0.142443 (35)

We can plot the state of all possible probabilities as it evolves over time (Figure
6). As can be seen, the probabilities converge to a limit point, which is the
steady state eigenvector (fixed point) corresponding the the eigenvalue of A,
λ1 = 1. This eigenvector is approximately

v1 ≈

0.6428570.142857
0.214286

 (36)

showing that this player will settle into a strategy that involves using rock about
64% of the time.
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Figure 6: Evolution of Rock-Paper-Scissors Probabilities

4.6.2 Koopman Operator

In order to set up a Koopman Operator, we need an observable. For this reason,
imagine that, every round of the game, you need to purchase the option that
you choose. Say, Scissors are $2.00, Paper is $0.50, and Rocks are $0.01. Then
we can define the expected marginal cost as g(xt) = 0.01rt + 0.5pt + 2st.
We can choose a function such as this to be our observable. Following this, the
Koopman Operator (with respect to g) is

Ug(xt) = g ◦ T (xt) = g(Axt) = 0.01rt+1 + 0.5pt+1 + 2st+1 (37)

= 0.258rt + 0.803pt + 1.054st, or (38)

=
[
0.258 0.803 1.054

]
· xt (39)

Note this is the same as AT

0.010.5
2

. As it turns out, in Markov Chains, expected

value lends itself very readily as an observable for the Koopman Operator. If
we restrict observables to linear combinations within the state,

[g(xt) = E[C] = c1x1 + c2x2 + c3x3 = (40)[
c1 c2 c3

]
· xt = C⃗ · xt (41)

Then, because the transpose AT is the adjoint for the real-valued finite dimen-
sional space (Markov Chain state space),

Ug(xt) = g(Axt) = (Axt) · C⃗ = xt · (AT C⃗) (42)

In this application, we see that the Koopman Operator is fundamentally tied to
the adjoint. This enables us to find the desired observable for the next timestep
without knowing the state after the next timestep.

4.7 Miscellaneous Remarks

4.7.1 Hidden Markov Model

It seems there is a connection between a hidden Markov model and using the
Koopman operator on a Markov model. That is, if the chain is hidden and the
observable is all that is known, is the Koopman Operator just a way to operate
with a hidden Markov model?
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4.7.2 Literature Crawl

In trying to find sources that had described what we found as basic results,
I stumbled across several papers with relevant terms and information. Dy-
namic Mode Decomposition (DMD) can be thought of as an algorithm
for finding Koopman modes (and might use dimensional reduction). Linear
Inverse Modelling is a kind of DMD that uses empirical orthogonal func-
tions (EOF) from a stochastic linear Markov system. I also read briefly about
the Ulam Matrix/Ulam Method, which is a technique to approximate the
Perron-Frobenius operator by a stochastic matrix. The Stochastic Koopman
Operator is a composition of a skew-flow map. I read about it in connection
with Markovian random dynamical systems, which I thought might be relevant.
It was in reading about a Markovian Dynamical System that we found
the information pertaining expected value and the adjoint. Finally, I found a
tool called a Koopman matrix, which is an extended DMD that evaluates an
approximation for the Koopman Operator.

5 Future Work

Since much of the project was learning various topics, there are many specific
questions to dive into and investigate. Some of these ideas include:

• Analyze differences and/or convergence properties of the discrete Koop-
man Operator with the semigroup of continuous Koopman Operators.

• Analyze the implications of certain functional space requirements (Hilbert
Space, Banach Space, L2 Space, etc.).

• Perform Spectrum analysis on an eigenbasis expansion of the Koopman
Operator.

• Calculate the Koopman Operator for more complicated dynamical sys-
tems.

• Compare properties of the Koopman Operator with geometric properties
of the 3-state Markov Chain (map to the complex unit disc, convex geom-
etry, etc.)

In the end, I am very thankful for the opportunity to do this research.
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