MAS 4105

1.2 Definition of Vector Space

Definition: A vector space over a field F is a quadruple $(V, F, +, \cdot, O)$ where V is the set of vectors, + is vector addition (a function from $V \times V$ to V), \cdot is scalar multiplication (a function from $F \times V$ to V), and O is an element of V, such that the following properties hold:

- VS1 (Commutative +): $(\forall x \in V)(\forall y \in V)(x + y = y + x).$
- VS2 (Associative +): $(\forall x \in V)(\forall y \in V)(\forall z \in V)[(x + y) + z = x + (y + z)].$
- VS3 (**Identity** +): There is some element in V, denoted O, such that $(\forall x)(x + O = x)$.
- VS4 (**Inverses** +): $(\forall x \in V)(\exists y \in V)(x + y = O).$
- VS5 (Scalar Identity): $(\forall x)(1x = x)$.
- VS6 (Associative Scalar): $(\forall a \in F)(\forall b \in F)(\forall x \in V)[(ab)x = a(bx)].$
- VS7 (Distributive Scalar over vector sum): $(\forall a \in F)(\forall x \in V)(\forall y \in V)(a(x + y) = ax + ay).$
- VS8 (Distributive Vector over scalar sum): $(\forall a \in F)(\forall b \in F)(\forall x \in V)[(a + b)x = ax + bx).$

Sample Vector Spaces

- 1. (Column vectors): for every field F and positive integer n, $(F^n, F, +, \cdot, \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix})$ is a vector space with pointwise operations.
- 2. (Matrices): for every field F, and all positive integers m, n, $(M_{m \times n}(F), F, +, \cdot, O)$ is a vector space with pointwise operations where

$$O = \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \cdots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}$$

- 3. (Functions from S to F): for every field F and every set S, $(\mathcal{F}(S, F), F, +, \cdot, O)$ is a vector space with usual function operations and O the constantly 0 function.
- 4. (**Polynomials in** x): for every field F, $(P(F), F, +, \cdot, O)$ is a vector space with the usual function operations and O the constant polynomial 0.
- 5. (Sequences in F): for every field F $(\mathcal{F}(Z^+, F), F, +, \cdot, O)$ is a vector space with usual function operations and O the constantly 0 sequence.