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Proving Equinumerousity

Up to this point, the main method we have had for proving that
two sets A and B are equinumerous is to show that there is a
function

f : A→ B

that is one-to-one and onto.
In some cases, finding such a bijection can be rather difficult.
Today we will prove a theorem that will provide a new and simpler
method for showing that two sets are equinumerous.
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Theorem (Cantor-Schröder-Bernstein Theorem)

Suppose A and B are sets. If A - B and B - A, then A ∼ B.
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A preliminary definition

Let A and B be sets. We say A is dominated by B, in symbols
A - B, if there is a one-to-one function f : A→ B.

A few examples:

I If A ∼ B, then A - B

I If A ⊆ B, then A - B

I P(Z+) - R
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Question: Is - a partial order?

It is not too hard to show that - is reflexive and transitive.

Is - antisymmetric?

That is, if A - B and B - A, then does it follow that A = B?
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A counter-example

Consider A = Z+ and B = Q.

I Z+ - Q and

I Q - Z+, but

I Z+ 6= Q.

Note however that Z+ ∼ Q.

Is this an instance of a more general fact? Yes!
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The Cantor-Schröder-Bernstein Theorem

Theorem
Let A and B be sets. If A - B and B - A, then A ∼ B.
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Our Approach
To help us understand the general strategy of the proof, we will
make use of a series of diagrams.

First, we will represent the sets A and B as follows.

A B
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Our Approach
Next, let
I f : A→ B be a one-to-one function witnessing A - B and
I g : B → A be a one-to-one function witnessing B - A.

f

g

A B
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Our Approach
Note that if either f or g is onto, it immediately follows that
A ∼ B.

So need to consider the possibility that neither f nor g are onto.

f

g

A B
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The plan

Our goal is to use f and g−1 to define a one-to-one and onto
function h : A→ B:

To do so, we will

1. split A into two pieces X and Y ;

2. split B into two pieces W and Z ;

3. X will be matched up with W by f ; and

4. Y will be matched up with Z by g .
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The plan

Here is a schematic diagram in which the splits have been made
the functions map in their usual directions.

f

g

A B

X W

Y Z
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The plan

If we know what X is, we let W = f (X ) = {f (x) | x ∈ X}.
Then we let Z = B \W .
We know what Z is, so we let Y = g(Z ) = {g(z) | z ∈ Z}.

f

g

A B

X W

Y Z
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The plan

It follows that
I f �X : X →W is one-to-one and onto and
I g�Z : Z → Y is one-to-one and onto.

f

g

A B

X W = f(X)

Y = g(Z) Z

1-1 and onto

1-1 and onto
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The plan

Consequently,
I f �X : X →W is one-to-one and onto and
I (g�Z )−1 : Y → Z is one-to-one and onto.

f

g-1

A B

X W = f(X)

Y = g(Z) Z

1-1 and onto

1-1 and onto
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The desired function h
Therefore
I h = f �X ∪ (g�Z )−1 : X ∪ Y →W ∪ Z is one-to-one and onto.
I We know W ∪ Z = B, so
I if X ∪ Y = A, then h is our witnessing function.

f

g-1

A B

X W = f(X)

Y = g(Z) Z

1-1 and onto

1-1 and onto

h
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Choosing the sets X , Y , W , and Z
First we recall that we assumed g is not onto, since otherwise g ia
a witness that A ∼ B.

A B

g(B) = Ran(g)

g
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Choosing the sets X , Y , W , and Z
We want Y ⊆ Ran(g).

A B

g(B)

X W = f(X)

Y = g(Z) Z

g(B) = Ran(g)

g
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Choosing the sets X , Y , W , and Z
If we let A1 = A \ Ran(g), then we must have A1 ⊆ X .

A B

g(B)

X W = f(X)

Y = g(Z) Z

g(B) = Ran(g)

A1 = A \ Ran(g) 
g
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Choosing the sets X , Y , W , and Z
Given an arbitrary a ∈ A1, since a ∈ X , it follows that f (a) ∈W .

A B

g(B)

X W = f(X)

Y = g(Z) Z

g(B) = Ran(g)

A1 = A \ Ran(g) 
a

f(a)
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Choosing the sets X , Y , W , and Z
I For every z ∈ Z = B \W , z 6= f (a) ∈W .
I So, since g is one-to-one, for all z ∈ Z , g(f (a)) 6= g(z).
I Thus g(f (a)) ∈ X .

A B

g(B)

X W = f(X)

Y = g(Z) Z

g(B) = Ran(g)

A1 = A \ Ran(g) 
a

g
g(f(a))

f(a)
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Choosing the sets X , Y , W , and Z
I Since a was arbitrary, we have f (a) ∈W and g(f (a)) ∈ X for

all a ∈ A1.
I That is, f (A1) ⊆W and g(f (A1)) ⊆ X .

A B

g(B)

X W = f(X)

Y = g(Z) Z

g(B) = Ran(g)

A1 = A \ Ran(g) f(A1)

g
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Using Recursion
A1 = A \ Ran(g); An+1 = g(f (An)).

A B

g(B)

W = f(X)

Y = g(Z) Z

g(B) = Ran(g)

A1 = A \ Ran(g) f(A1)

A2 = g(f(A1))
f(A2)

f

X
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Using Recursion
A1 = A \ Ran(g); An+1 = g(f (An)).

A B

g(B)

W = f(X)

Y = g(Z) Z

g(B) = Ran(g)

A1 = A \ Ran(g) f(A1)

A2 = g(f(A1))
f(A2)

g(f(A2))

X
g
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Using Recursion
A1 = A \ Ran(g); An+1 = g(f (An)).

A B

g(B)Y = g(Z) Z

g(B) = Ran(g)

A1 = A \ Ran(g) f(A1)

A2 = g(f(A1))
f(A2)

A3 = g(f(A2))
f(A3)f
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Using Recursion
A1 = A \ Ran(g); An+1 = g(f (An)).

A B

g(B)Y = g(Z) Z

g(B) = Ran(g)

A1 = A \ Ran(g) f(A1)

A2 = g(f(A1))
f(A2)

A3 = g(f(A2))
f(A3)

A4 = g(f(A3)) g
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Using Recursion
A1 = A \ Ran(g); An+1 = g(f (An)).

A B

g(B)Y = g(Z) Z

g(B) = Ran(g)

A1 = A \ Ran(g) f(A1)

A2 = g(f(A1))
f(A2)

A3 = g(f(A2))
A4 = g(f(A3))

f(A3)f
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Using Recursion
A1 = A \ Ran(g); An+1 = g(f (An)).

A B

g(B)Y = g(Z) Z

g(B) = Ran(g)

A1 = A \ Ran(g) f(A1)

A2 = g(f(A1))
f(A2)

A3 = g(f(A2))
A4 = g(f(A3))

f(A3)

g
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Using Recursion
A1 = A \ Ran(g); An+1 = g(f (An)).

A B

g(B)Y = g(Z) Z

g(B) = Ran(g)
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f(A2)
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A4 = g(f(A3))
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Using Recursion
A1 = A \ Ran(g); An+1 = g(f (An)).

A B

g(B)Y = g(Z) Z

g(B) = Ran(g)

A1 = A \ Ran(g) f(A1)

A2 = g(f(A1))
f(A2)

A3 = g(f(A2))

g

f(A3)

A4 = g(f(A3))

CBS Theorem J. Larson, C. Porter UF



Using Recursion
A1 = A \ Ran(g); An+1 = g(f (An)).

A B

g(B)Y = g(Z) Z

g(B) = Ran(g)

A1 = A \ Ran(g) f(A1)
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Using Recursion
A1 = A \ Ran(g); An+1 = g(f (An)); and X =

⋃
{An | n ∈ Z+}

A B

g(B)Y = g(Z) Z

g(B) = Ran(g)

A1 = A \ Ran(g) f(A1)

A2 = g(f(A1))
f(A2)

A3 = g(f(A2))

g

f(A3)

A4 = g(f(A3))
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Taking the union of the family
X =

⋃
{An | n ∈ Z+}

A

X

Y = g(Z)

CBS Theorem J. Larson, C. Porter UF


