

・ロト ・日 ・ モー・ モー・ つくぐ

Cantor-Schröder-Bernstein Theorem, Part 1

Jean A. Larson and Christopher C. Porter

MHF 3202

December 4, 2015

J. Larson, C. Porter UF

A B > A B >

Proving Equinumerousity

Up to this point, the main method we have had for proving that two sets A and B are equinumerous is to show that there is a function

$$f: A \to B$$

that is one-to-one and onto.

In some cases, finding such a bijection can be rather difficult. Today we will prove a theorem that will provide a new and simpler method for showing that two sets are equinumerous.

Theorem (Cantor-Schröder-Bernstein Theorem) Suppose A and B are sets. If $A \preceq B$ and $B \preceq A$, then $A \sim B$.

・ 「 ・ ・ ヨ ・ ・ ヨ ・

A preliminary definition

Let A and B be sets. We say A is dominated by B, in symbols $A \preceq B$, if there is a one-to-one function $f : A \rightarrow B$.

A few examples:

- If $A \sim B$, then $A \preceq B$
- If $A \subseteq B$, then $A \preceq B$
- $\mathcal{P}(\mathbb{Z}^+) \precsim \mathbb{R}$

・ 「 ・ ・ ヨ ・ ・ ヨ ・

Question: Is \preceq a partial order?

It is not too hard to show that \precsim is reflexive and transitive.

Is \preceq antisymmetric?

That is, if $A \preceq B$ and $B \preceq A$, then does it follow that A = B?

(人間) (人) (人) (人) (人) (人)

A counter-example

Consider $A = \mathbb{Z}^+$ and $B = \mathbb{Q}$.

- $\mathbb{Z}^+ \precsim \mathbb{Q}$ and
- ▶ $\mathbb{Q} \preceq \mathbb{Z}^+$, but
- ▶ $\mathbb{Z}^+ \neq \mathbb{Q}$.

Note however that $\mathbb{Z}^+ \sim \mathbb{Q}$.

Is this an instance of a more general fact? Yes!

・ 同 ト ・ ヨ ト ・ ヨ ト

The Cantor-Schröder-Bernstein Theorem

Theorem Let A and B be sets. If $A \preceq B$ and $B \preceq A$, then $A \sim B$.

J. Larson, C. Porter UF

・ 同 ト ・ ヨ ト ・ ヨ ト

Our Approach

To help us understand the general strategy of the proof, we will make use of a series of diagrams.

First, we will represent the sets A and B as follows.

Our Approach

Next, let

- ▶ $f : A \rightarrow B$ be a one-to-one function witnessing $A \preceq B$ and
- $g: B \to A$ be a one-to-one function witnessing $B \preceq A$.

J. Larson, C. Porter UF

Our Approach

Note that if either f or g is onto, it immediately follows that $A \sim B$.

So need to consider the possibility that neither f nor g are onto.

Our goal is to use f and g^{-1} to define a one-to-one and onto function $h: A \rightarrow B$:

To do so, we will

- 1. split A into two pieces X and Y;
- 2. split B into two pieces W and Z;
- 3. X will be matched up with W by f; and
- 4. Y will be matched up with Z by g.

Here is a schematic diagram in which the splits have been made the functions map in their usual directions.

If we know what X is, we let $W = f(X) = \{f(x) \mid x \in X\}$. Then we let $Z = B \setminus W$. We know what Z is, so we let $Y = g(Z) = \{g(z) \mid z \in Z\}$.

CBS Theorem

It follows that

- $f \upharpoonright_X : X \to W$ is one-to-one and onto and
- $g \upharpoonright_Z : Z \to Y$ is one-to-one and onto.

CBS Theorem

Consequently,

- $f \upharpoonright_X : X \to W$ is one-to-one and onto and
- $(g \upharpoonright_Z)^{-1} : Y \to Z$ is one-to-one and onto.

CBS Theorem

The desired function h

Therefore

- ▶ $h = f \upharpoonright_X \cup (g \upharpoonright_Z)^{-1} : X \cup Y \to W \cup Z$ is one-to-one and onto.
- We know $W \cup Z = B$, so
- if $X \cup Y = A$, then *h* is our witnessing function.

CBS Theorem

First we recall that we assumed g is not onto, since otherwise g ia a witness that $A \sim B$.

J. Larson, C. Porter UF

Choosing the sets X, Y, W, and Z We want $Y \subseteq \text{Ran}(g)$.

J. Larson, C. Porter UF

・ 同 ト ・ ヨ ト ・ ヨ ト

Choosing the sets X, Y, W, and Z If we let $A_1 = A \setminus \text{Ran}(g)$, then we must have $A_1 \subseteq X$.

・ 4回・ 4回・ 4回・ 4回・ 4

CBS Theorem

Given an arbitrary $a \in A_1$, since $a \in X$, it follows that $f(a) \in W$.

J. Larson, C. Porter UF

回 と く ヨ と く ヨ と

- For every $z \in Z = B \setminus W$, $z \neq f(a) \in W$.
- ▶ So, since g is one-to-one, for all $z \in Z$, $g(f(a)) \neq g(z)$.
- Thus $g(f(a)) \in X$.

J. Larson, C. Porter UF

- Since a was arbitrary, we have f(a) ∈ W and g(f(a)) ∈ X for all a ∈ A₁.
- That is, $f(A_1) \subseteq W$ and $g(f(A_1)) \subseteq X$.

CBS Theorem

ৰ≣> ≣ পিথ J. Larson, C. Porter UF

Using Recursion

$$A_1 = A \setminus \text{Ran}(g); A_{n+1} = g(f(A_n)).$$

J. Larson, C. Porter UF

э

J. Larson, C. Porter UF

ৰ≣> ≣ পিথ J. Larson, C. Porter UF

ৰ≣> ≣ পিথ J. Larson, C. Porter UF

ৰ≣ ≥ ≣ ৩৫০ J. Larson, C. Porter UF

ৰ≣> ≣ পিথ J. Larson, C. Porter UF

ৰ≣> ≣ পিথ J. Larson, C. Porter UF

ৰ≣> ≣ পিথ J. Larson, C. Porter UF

Using Recursion $A_1 = A \setminus \text{Ran}(g); A_{n+1} = g(f(A_n)); \text{ and } X = \bigcup \{A_n \mid n \in \mathbb{Z}^+\}$

ৰ≣> ≣ পিথ J. Larson, C. Porter UF

Taking the union of the family $X = \bigcup \{A_n \mid n \in \mathbb{Z}^+\}$

J. Larson, C. Porter UF

ъ