

Cantor-Schröder-Bernstein Theorem, Part 1

Jean A. Larson and Christopher C. Porter

MHF 3202
December 4, 2015

Proving Equinumerousity

Up to this point, the main method we have had for proving that two sets A and B are equinumerous is to show that there is a function

$$
f: A \rightarrow B
$$

that is one-to-one and onto.
In some cases, finding such a bijection can be rather difficult.
Today we will prove a theorem that will provide a new and simpler method for showing that two sets are equinumerous.

Theorem (Cantor-Schröder-Bernstein Theorem)
Suppose A and B are sets. If $A \precsim B$ and $B \precsim A$, then $A \sim B$.

A preliminary definition

Let A and B be sets. We say A is dominated by B, in symbols $A \precsim B$, if there is a one-to-one function $f: A \rightarrow B$.

A few examples:

- If $A \sim B$, then $A \precsim B$
- If $A \subseteq B$, then $A \precsim B$
- $\mathcal{P}\left(\mathbb{Z}^{+}\right) \precsim \mathbb{R}$

Question: Is \precsim a partial order?

It is not too hard to show that \precsim is reflexive and transitive.
Is \precsim antisymmetric?
That is, if $A \precsim B$ and $B \precsim A$, then does it follow that $A=B$?

A counter-example

Consider $A=\mathbb{Z}^{+}$and $B=\mathbb{Q}$.

- $\mathbb{Z}^{+} \precsim \mathbb{Q}$ and
- $\mathbb{Q} \precsim \mathbb{Z}^{+}$, but
- $\mathbb{Z}^{+} \neq \mathbb{Q}$.

Note however that $\mathbb{Z}^{+} \sim \mathbb{Q}$.
Is this an instance of a more general fact? Yes!

The Cantor-Schröder-Bernstein Theorem

Theorem
Let A and B be sets. If $A \precsim B$ and $B \precsim A$, then $A \sim B$.

Our Approach

To help us understand the general strategy of the proof, we will make use of a series of diagrams.
First, we will represent the sets A and B as follows.

A

B

Our Approach

Next, let

- $f: A \rightarrow B$ be a one-to-one function witnessing $A \precsim B$ and
- $g: B \rightarrow A$ be a one-to-one function witnessing $B \precsim A$.

Our Approach

Note that if either f or g is onto, it immediately follows that $A \sim B$.

So need to consider the possibility that neither f nor g are onto.

The plan

Our goal is to use f and g^{-1} to define a one-to-one and onto function $h: A \rightarrow B$:

To do so, we will

1. split A into two pieces X and Y;
2. split B into two pieces W and Z;
3. X will be matched up with W by f; and
4. Y will be matched up with Z by g.

The plan

Here is a schematic diagram in which the splits have been made the functions map in their usual directions.

The plan

If we know what X is, we let $W=f(X)=\{f(x) \mid x \in X\}$. Then we let $Z=B \backslash W$. We know what Z is, so we let $Y=g(Z)=\{g(z) \mid z \in Z\}$.

The plan

It follows that

- $f \upharpoonright_{X}: X \rightarrow W$ is one-to-one and onto and
- $g \upharpoonright_{Z}: Z \rightarrow Y$ is one-to-one and onto.

The plan

Consequently,

- $f \upharpoonright_{X}: X \rightarrow W$ is one-to-one and onto and
- $\left(g \upharpoonright_{Z}\right)^{-1}: Y \rightarrow Z$ is one-to-one and onto.

The desired function h

Therefore

- $h=f \upharpoonright_{X} \cup\left(g \upharpoonright_{Z}\right)^{-1}: X \cup Y \rightarrow W \cup Z$ is one-to-one and onto.
- We know $W \cup Z=B$, so
- if $X \cup Y=A$, then h is our witnessing function.

Choosing the sets X, Y, W, and Z

First we recall that we assumed g is not onto, since otherwise g ia a witness that $A \sim B$.

Choosing the sets X, Y, W, and Z We want $Y \subseteq \operatorname{Ran}(g)$.

Choosing the sets X, Y, W, and Z

 If we let $A_{1}=A \backslash \operatorname{Ran}(g)$, then we must have $A_{1} \subseteq X$.| $A_{1}=A \mid \operatorname{Ran}(g)$ | $W=f(X)$ |
| :---: | :---: |
| X | |
| $g(B)=\operatorname{Ran}(g)$ | |
| $Y=g(Z)$ | Z |
| A | B |

Choosing the sets X, Y, W, and Z

Given an arbitrary $a \in A_{1}$, since $a \in X$, it follows that $f(a) \in W$.

Choosing the sets X, Y, W, and Z

- For every $z \in Z=B \backslash W, z \neq f(a) \in W$.
- So, since g is one-to-one, for all $z \in Z, g(f(a)) \neq g(z)$.
- Thus $g(f(a)) \in X$.

Choosing the sets X, Y, W, and Z

- Since a was arbitrary, we have $f(a) \in W$ and $g(f(a)) \in X$ for all $a \in A_{1}$.
- That is, $f\left(A_{1}\right) \subseteq W$ and $g\left(f\left(A_{1}\right)\right) \subseteq X$.

Using Recursion

$$
A_{1}=A \backslash \operatorname{Ran}(g) ; A_{n+1}=g\left(f\left(A_{n}\right)\right)
$$

Using Recursion

$$
A_{1}=A \backslash \operatorname{Ran}(g) ; A_{n+1}=g\left(f\left(A_{n}\right)\right)
$$

Using Recursion

$$
A_{1}=A \backslash \operatorname{Ran}(g) ; A_{n+1}=g\left(f\left(A_{n}\right)\right)
$$

Using Recursion

$$
A_{1}=A \backslash \operatorname{Ran}(g) ; A_{n+1}=g\left(f\left(A_{n}\right)\right)
$$

Using Recursion

$$
A_{1}=A \backslash \operatorname{Ran}(g) ; A_{n+1}=g\left(f\left(A_{n}\right)\right)
$$

Using Recursion

$$
A_{1}=A \backslash \operatorname{Ran}(g) ; A_{n+1}=g\left(f\left(A_{n}\right)\right)
$$

Using Recursion

$$
A_{1}=A \backslash \operatorname{Ran}(g) ; A_{n+1}=g\left(f\left(A_{n}\right)\right)
$$

Using Recursion

$$
A_{1}=A \backslash \operatorname{Ran}(g) ; A_{n+1}=g\left(f\left(A_{n}\right)\right)
$$

Using Recursion

$$
A_{1}=A \backslash \operatorname{Ran}(g) ; A_{n+1}=g\left(f\left(A_{n}\right)\right)
$$

Using Recursion

$$
A_{1}=A \backslash \operatorname{Ran}(g) ; A_{n+1}=g\left(f\left(A_{n}\right)\right) ; \text { and } X=\bigcup\left\{A_{n} \mid n \in \mathbb{Z}^{+}\right\}
$$

Taking the union of the family

$$
X=\bigcup\left\{A_{n} \mid n \in \mathbb{Z}^{+}\right\}
$$

