Spotted Beebalm
Cantor-Schröder-Bernstein Theorem, Part 2

Jean A. Larson and Christopher C. Porter

MHF 3202

December 4, 2015
Theorem (Cantor-Schröder-Bernstein Theorem)

Suppose A and B are sets. If $A \preceq B$ and $B \preceq A$, then $A \sim B$.
Opening of the Proof:

Recall that for any function $F : U \rightarrow V$ and any subset $D \subseteq U$, the image of D under a F is the set $F(D) := \{ F(d) \mid d \in D \}$.

Assume $A \preceq B$ and $B \preceq A$ (\preceq).

Let $f : A \rightarrow B$ and $g : B \rightarrow A$ be one-to-one functions that witness the above relations (\exists).

Case 1: One of f and g is onto.
Then one of f and g is a witness that $A \sim B$.

Case 2: Neither f nor g is onto
Plan of the proof for Case 2:

- Define a set $X \subseteq A$ by recursion
- Set $W := f(X) = \{ f(x) \mid x \in X \}$ and show $f \cap (X \times W) : X \to W$ is one-to-one and onto.
- Set $Z = B \setminus W$, $Y = g(Z)$, and prove that $Y = g(Z) = A \setminus X$.
- Show $g \cap (Z \times Y)$ is one-to-one and onto, so $(g \cap (Z \times Y))^{-1} = (g \cap (Y \times Z))^{-1}$ is also one-to-one and onto.
- Show that $h = (f \cap (X \times W)) \cup (g \cap (Y \times Z))^{-1} : A \to B$ is the witness that $A \sim B$.
Definitions of R, A and W:

- Let $R = \text{Ran}(g) \subseteq A$.

- Define X by recursion:
 - $A_1 := A \setminus R$;
 - for every $n \in \mathbb{Z}^+$, $A_{n+1} := g(f(A_n)) = \{g(f(a)) \mid a \in A_n\}$.

 Then $X := \bigcup\{A_n \mid n \in \mathbb{Z}^+\}$.

- Set $W := f(X) = \{f(x) \mid x \in X\} = \text{Ran}(f\mid_X)$.
Claim 1: The function $f \cap (X \times W) : X \to W$ is one-to-one and onto.

Proof.
Since f is one-to-one and $f \cap (X \times W)$ is a restriction of f, it follows from Exercise 5.2: 10a, that $f \cap (X \times W)$ is one-to-one.

Since $f(X) = W$ and f and $f \cap (X \times W)$ agree with f on X by Exercise 5.1: 7a, it follows that $\text{Ran}(f \cap (X \times W)) = f(X) = W$.
Thus by Theorem 5.2.3, $f \cap (X \times W)$ is onto. \square
Claim 2: \(Y = g(Z) = \{g(z) | z \in Z\} \subseteq A \setminus X \) where \(Z := B \setminus W \).

Proof.
Assume toward a contradiction that \(Y = g(Z) \not\subseteq A \setminus X \) (o*).

Let \(g(z_0) \in g(Z) \subseteq A \) be a witness, i.e. assume \(z_0 \in Z \) and \(g(z_0) \not\in A \setminus X \) (a∃).

Since \(g(z_0) \not\in A \setminus X \), it follows that \(g(z_0) \in X \) (def set difference).

Since \(g(z_0) \) is in the range of \(g \), it is not in \(A_1 = Z \setminus \text{Ran}(g) \).

Since \(X = \bigcup \{A_n | n \in \mathbb{Z}^+\} \) and \(g(z_0) \not\in A_1 \), we can find a witness \(n_0 \in \mathbb{Z}^+ \) with \(g(z_0) \in A_{n_0+1} \) (a∃).
Claim 2 (proof continued)

Since $g(z_0) \in A_{n_0+1}$ and $A_{n_0+1} = g(f(A_{n_0}))$, we know $g(z_0) \in g(f(A_{n_0})) = \{g(f(x)) \mid x \in A_{n_0}\}$.
Let x_0 be a witness, i.e. assume $g(z_0) = g(f(x_0))$.

Since g is one-to-one, it follows that $z_0 = f(x_0) \in W$, by the definition of W. Thus $z_0 \in Z = B \setminus W$ and $z_0 \in W$, which is a contradiction, since these two sets are disjoint ($c\ast$).

Thus our assumption was false and Claim 2 follows.
Claim 3: $A \setminus X \subseteq Y = g(Z) = \{g(z) \mid z \in Z\}$.

Assume toward a contradiction that $A \setminus X \not\subseteq g(Z)$ (o*).

Let $a_0 \in A \setminus X$ be a witness, i.e. assume $a_0 \notin g(Z)$ (a∃).

Since $y_0 \in A \setminus X$, it follows that $y_0 \notin X$ and in particular, $y_0 \notin A_1 = A \setminus \text{Ran}(g)$, so $y_0 \in \text{Ran}(g)$.

Let $b_0 \in B$ be a witness, i.e. $g(b_0) = y_0$ (a∃).

Since $y_0 \notin g(Z)$, it follows that $b_0 \notin Z = B \setminus W$, so $b_0 \in W = f(X)$. Let $x_0 \in X$ be a witness, i.e. assume $f(x_0) = b_0$ and let m_0 be such that $x_0 \in A_{m_0}$ (a∃).

Thus $a_0 = g(b_0) = g(f(x_0)) \in g(f(A_{m_0})) = A_{m_0+1} \subseteq X$, so a_0 is in both X and $A \setminus X$ which is a contradiction since these sets are disjoint (c*). So our assumption was false and Claim 3 follows.
Claim 4: The function \(g \cap (Z \times Y) : Z \to Y \) is one-to-one and onto and so is its inverse, \(g^{-1} \cap (Y \times Z) : Y \to Z \).

Proof.
By Claims 2 and 3, \(Y = g(Z) = A \setminus X \).
Since \(g \) is one-to-one and \(g \cap (Z \times Y) \) is a restriction of \(g \), it follows from Exercise 5.2: 10a, that \(g \cap (Z \times Y) \) is one-to-one.

Since \(g(Z) = Y \) and, by Exercise 5.1: 7a, \(g \) and \(g \cap (Z \times Y) \) agree with \(g \) on \(Z \), it follows that \(\text{Ran}(g \cap (Z \times Y)) = g(Z) = Y \), so \(g \cap (Z \times Y) \) is onto by Theorem 5.2.3.

Since \(g \cap (Z \times Y) \) is one-to-one and onto, its inverse is a function, \((g \cap (Z \times Y))^{-1} : Y \to Z \), and it is one-to-one and onto, by Theorem 5.3.4. \(\square \)
Claim 5: \((f \cap (X \times W)) \cup (g \cap (Y \times Z))^{-1}: A \to B\) is one-to-one and onto.

Proof.

By Claims 2 and 4, the functions \(f \cap (X \times W)\) and \((g \cap (Y \times Z))^{-1}\) are one-to-one and onto.

Note that \(X\) and \(Y = A \setminus X\) are disjoint, as are \(\text{Ran}(f \cap (X \times W)) = W\) and \(\text{Ran}(g^{-1} \cap (Y \times Z)) = Z\).

By Exercises 5.1: 9a and 5.2:12, \((f \cap (X \times W)) \cup (g \cap (Y \times Z))^{-1}\) is a one-to-one function from \(A = X \cup Y\) to \(B = W \cup Z\).

Since the range of \((f \cap (X \times W)) \cup (g^{-1} \cap (Y \times Z))\) is \(W \cup Z = B\), by Theorem 5.2.3, it is onto and Claim 5 follows.

\(\square\)
Claim 6: The function $h : A \rightarrow B$ defined for all $a \in A$ by $h(a) = f(a)$ and if $a \in X$ and $h(a) = g^{-1}(a)$ if $a \in A \setminus X$ is one-to-one and onto.

Proof.

By Claim 5, $(f \cap (X \times W)) \cup (g^{-1} \cap (Y \times Z))$ has the same domain and codomain as h.

Note that h, f, and $f \cap (X \times W)$ agree on X. Also h, g^{-1} and $g^{-1} \cap (Y \times Z)$ agree on Y.

Thus h and $(f \cap (X \times W)) \cup (g^{-1} \cap (Y \times Z))$ agree on $A = X \cup Y$, so $h = (f \cap (X \times W)) \cup (g^{-1} \cap (Y \times Z))$, by Theorem 5.1.4. \qed
Closing of the Proof:

By Claim 6, \(h : A \rightarrow B \) is one-to-one and onto, so it witnesses that \(A \sim B \) \((p\exists) \). This assertion completes Case 2.

By exhaustive case analysis, \(A \sim B \).

We assumed \(A \preceq B \) and \(B \preceq A \) and proved \(A \sim B \), so the implication and the theorem follow \((c\rightarrow) \).