- Final form of a proof of (∀x)(P(x)):
 Proof: Let x be arbitrary. (o∀)
 [Proof of P(x)]
 Since x was arbitrary, true for all such and (∀x)(P(x)) follows. (c∀) □
- 2. Final form of a direct proof of P → Q:
 Proof: Assume P (o→)
 [Proof of Q]
 We assumed P and proved Q so the implication follows. (c→) □
- 3. Final form of a proof by contrapositive of $P \to Q$:

Proof: Toward the contrapositive, assume $\neg Q$ (o \rightarrow) [Proof of $\neg P$]

We assumed $\neg Q$ and proved $\neg P$ so the implication follows. (c \rightarrow) Therefore by the contrapositive, P implies Q is true. \Box

4. Final form of a proof of $P \to Q$ by contradiction:

Proof: Assume toward a contradiction that $P \to Q$ is false. (o *) That is, assume P is true and Q is false.

[Proof of a contradiction, such as proving $\neg P$ and getting the contradiction $P \land \neg P$]

We assumed $P \rightarrow Q$ was false and reached a contradition, so our assumption was false and the original implication follows. (c *) \Box

5. Final form of a proof of $P \lor Q$ (informal cases):

Proof: If P is true, then of course $P \lor Q$ is true (case 1). So assume $\neg P$ is true.

[Proof of Q]

Since Q is true, it follows that $P \lor Q$ is true (case 2). Thus $P \lor Q$ is true since it is true whether P is true or false. (a cases)

6. Final form of a proof of $(\exists x)(P(x))$:

Proof: Let $x_0 = [$ the value you decided on].

[Proof of P(x)]

Thus $(\exists x)(P(x))$ since x_0 is a witness. $(p\exists)$

7. Final form of a proof of $P \wedge Q$:

Proof: [Proof of P] [Proof of Q] Thus $(P \land Q)$ since both P and Q are true. $(p \land) \square$ 8. Final form of a proof of P ↔ Q:
Proof:
[Proof of P → Q]
[Proof of Q → P]
Thus (P ↔ Q) since both P → Q and Q → P are true. (p↔) □

Additional Proof Strategies with Annotations

1. Use of $\neg P$:

We know $\neg P$.

[re-expression of $\neg P$ as a positive statement Q] (re-exp)

- Use of P ∨ Q when we know or can prove ¬Q:
 We know P ∨ Q and ¬Q, so P hold by disjunctive syllogism.(ds)
- 3. Use of knowing that one of H_1, H_2, \ldots, H_n is true to prove R:
- Since we know one of H_1, H_2, \ldots, H_n is true, we use cases to prove R. Case 1: H_1 is true [Proof of R] Case 2: H_2 is true [Proof of R] :

Case n: H_n is true [Proof of R]

Thus by exhaustive case analysis, R is true. (a cases)

4. Use of $(\exists x)(P(x))$:

We know $(\exists x)(P(x))$. Let x_0 be a witness; that is assume $P(x_0)$. (a \exists)

5. Use of $(\forall x)(P(x))$:

We know $(\forall x)(P(x))$.

[Let a be a value for which you decide it is useful to know P(a)]

Since $(\forall x)(P(x))$, we know that P(a). $(a\forall)$

- 6. Use of Modus Ponens, P and $P \rightarrow Q$: Since P and $P \rightarrow Q$, it follows that Q holds. (mp)
- 7. Use of $P \wedge Q$.

Since $P \wedge Q$ we know both P and Q are true. (a \wedge)

- 8. use of $P \leftrightarrow Q$. Since $P \leftrightarrow Q$, we know that $P \rightarrow Q$ and $Q \rightarrow P$ are both true. (definition of \leftrightarrow or $(a \leftrightarrow)$).
- Use of Modus Tollens, ¬Q, and P → Q:
 Since ¬Q and P → Q, it follows that ¬P holds. (mt)