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I. Partition RelationsAndr�as Hajnal and Jean A. LarsonResearh partially supported by NSF grants DMS-0072560 (Hajnal) andDMS-9970536 (Larson)1. IntrodutionThe study of partition relations dates bak to 1930, when F. P. Ramsey [50℄proved his oft-ited theorem.1.1 Theorem (Ramsey's Theorem). Assume 1 � r; k < ! and f : [!℄r ! kis a partition of the r element subsets of ! to k piees. Then there is anin�nite subset X � ! homogeneous with respet to this partition. That is,for some i < k; f\ [X ℄r = fig :In 1941, B. Dushnik and E.W. Miller [9℄ looked at partitions of the set ofall pairs of elements of an unountable set, involving P. Erd}os in solving oneof their more diÆult problems (see Theorem 7.4). In 1942, P. Erd}os [10℄proved some basi generalizations of Ramsey's Theorem, inluding amongothers the theorem generally alled the Erd}os-Rado Theorem for pairs. Inthe early �fties, P. Erd}os and R. Rado [17℄, [19℄ initiated a systematiinvestigation of quantitative generalizations of this result. They alled itthe partition alulus. There are ases in mathematial history when awell-hosen notation an enormously enhane the development of a branhof mathematis and a ase in point is the ordinary partition symbol (seeDe�nition 1.3) �! (��)r�<invented by Rihard Rado [18℄, reduing Ramsey's Theorem to ! ! (!)rfor 1 � r;  < !. It beame lear that a areful analysis of the problemsaording to the size and nature of the parameters leads to an inexhaustablearray of problems, eah seemingly simple and natural. These lassial in-vestigations were ompleted in the 1965 paper [15℄ of Erd}os, Hajnal andRado, and were extended in the book [14℄ written jointly with Attila M�at�e.5



6 I. Partition RelationsIn 1967, after the �rst post Cohen set theory onferene, held in LosAngeles, Erd}os and Hajnal wrote a list of unsolved problems for the ordinarypartition symbol and related topis. This paper [12℄ appeared in print fouryears later.A great many new results were proved by the then young researhers.However, unlike many other lassial problems, these problems yielded somebut ontinued to resist. The introdution of new methods and the disoveryof new ideas usually has given only inremental progress, and objetively,we are as far as ever from omplete answers. However, small steps requiringnew methods have been ontinuously made, quite a few of them during thewriting of this paper, and we will onentrate on them.For easy referene, in the ordinary partition relation � ! (��)r , we all� the resoure, �� the goals, and  the set of olors. We will be fousing ontwo main subjets:1. New ZFC theorems obtained via the elementary submodelmethod both for ordinary partition relations and for polarizedpartition relations (see De�nition 1.5).2. The new results obtained in the late nineties for partitionrelations with a ountable resoure.Setion 2 desribes the lassial proofs of the (balaned) form of theErd}os-Rado Theorem and the Positive Stepping Up Lemma. These are theresults where the resoure is regular and the goals are equal and of the form� , or � +1 for some ardinal � . In subsetion 2.3 we state but do not provethe Negative Stepping Up Lemma omplementing these results.In Setion 3, we desribe the elementary submodel method and in par-tiular, the use of nonreeting ideals �rst introdued in [4℄. We give analternate proof of the balaned Erd}os-Rado Theorem, and give a proof ofthe unbalaned form of it using the new method.In Setion 4, espeially in subsetion 4.2, we fully develop the method ofelementary submodels. We give streamlined proofs of both the balaned andunbalaned forms of the Baumgartner-Hajnal-Todorevi Theorems [4℄ insubsetions 4.3 and 4.4. These results generalize the Erd}os-Rado Theoremto allow goals whih are ordinals more omplex than ardinals � and theirordinal suessors, � + 1. We state a result of Foreman and Hajnal [20℄ forthe suessors of measurable ardinals. Using the methods of the Foreman-Hajnal proof, in subsetion 4.5, we give a diret proof of a speial ase ofthe Baumgartner-Hajnal Theorem [2℄.In Setion 5, we disuss the Milner-Rado Paradox and the new ordinal
(�) < �+ introdued in the Foreman-Hajnal result [20℄, whih is relatedto a form of the Milner-Rado Paradox.In Setion 6, we disuss a new development, the �rst in the twenty-�rstentury. Solving a problem of Foreman and Hajnal, Shelah [56℄ proved that



1. Introdution 7if there is a strongly ompat ardinal, then there are ardinals � suh that�+ ! (�+ 2)2!.In Setion 7, we briey disuss the ase of singular resoures. We statebut do not prove a ompilation of theorems on this subjet from the 1965Erd}os, Hajnal and Rado paper [15℄ and the 1975 Shelah paper [58℄.In Setion 8, we desribe a new variant of the elementary submodelmethod alled double rami�ation, whih was invented by Baumgartner andHajnal in 8.2.In subsetion 8.1, we use it for the proof of(�) � �+� �! � �� �1;1where � is weakly ompat and  < �. Result (�) was previously knownonly if  < ! (see the disussion before Theorem 8.2). In subsetion 8.2,we use the method for the proof of Shelah's Theorem [60℄ stating that (�)holds for � a singular strong limit ardinal (of unountable o�nality) whihsatis�es 2� > �+ and for  < f(�).In Setion 9, we disuss the spetaular progress by Carl Darby [7℄, [8℄ andRene Shipperus [54℄, [52℄ on the ases where the resoure � is a ountableordinal, listing their negative partition results in Theorem 9.9, and give asample ounterexample, !!2 9 (!!2 ; 6)2. This example is not optimal, butwas hosen to illustrate the methods of Darby without all the ompliatingdetail.In Setion 10, we outline a proof of a speial ase of the positive resultsby Shipperus that !!� ! (!!� ; 3)2 for � � 2 the sum of one or twoindeomposable ordinals (Darby independently proved the result for � = 2).We lose this setion with some bakground de�nitions.1.1. Basi De�nitions1.2 De�nition. Let X be a set, r < ! and �;  be ordinals.1. A map f : [X ℄r !  is alled an r-partition of X with  olors.2. For � < , a subset Y � X is alled homogeneous for f in olor � iff\ [Y ℄r = f�g :3. The set Y � X is homogeneous for f if it is homogeneous for f insome olor � < .4. A linearly ordered set X has order type �, in symbols, otX = �, if itis order isomorphi to �.



8 I. Partition Relations1.3 De�nition. Let �, �� for � < , and  be ordinals and suppose 1 �r < !. The ordinary partition symbol�! (��)rmeans that the following statement is true.For every r-partition of � with  olors, f : [�℄r ! , there exist� <  and X � � suh that otX = �� and X is homogeneousfor f in olor �.We write � 6! (��)rto indiate that the negation of this statement is true. If all �� equal �,then we write �! (�)r (or � 6! (�)r):A further more or less self explanatory abbreviation is � ! (�0; (�))2 inase �� = � for 1 � � < :1.4 Remark. Note that the notation of De�nition 1.3 is so devised thatif we start with a positive partition relation � ! (��)r , then the truth ofthe assertion is preserved under inreasing the resoure ordinal � on thelefthand side of the arrow (!) and dereasing the ordinal goals ��, or theolors  on the righthand side of the arrow. And this latter statement holds,with some exeptions, for the exponent r as well (see [14℄).We stated De�nition 1.3 in this generality, beause it will suÆe for mostof what we will prove. It should be lear that further generalizations anbe made. For example, a similar symbol � ! (��)Æ an be de�ned where�;��; Æ are order types, by starting with an arbitrary ordered set hX;�ifor whih ot(X;�) = �, partitioning its subsets of order type Æ,[X ℄Æ = fY � X : ot(Y;�) = Æ g ;into  olor lasses, and as above, looking for homogeneous subsets of thepresribed olor and order type. As general Ramsey theory developed inboth �nite and in�nite ombinatoris, problems were onsidered in whihthe set partitioned was a subset of [X ℄Æ rather than all of [X ℄Æ, and thehomogeneous sets onsisted of possibly other kind of subsets of [X ℄Æ. Par-tition relations proliferated. For a review of some of them we refer to [14℄,sine we an not try to over all of them in the limit spae of this hapter.In [15℄, among other generalizations, polarized partitions were intro-dued. In fat, this paper is the only plae in the published literaturewhere these relations are systematially disussed.



2. Basi Partition Relations 91.5 De�nition. Let �, � be ordinals and suppose that �0; �1 � � and�0; �1 � �. The polarized partition relation� �� �! � �0 �1�0 �1 �means that the following statement is true.For all ordered sets A and B of order type �, � respetively, andall partitions f : A�B ! 2, there is an i < 2 and sets Ai � A,Bi � B suh that otAi = �i, otBi = �1 and f\Ai �Bi = fig.2. Basi Partition Relations2.1. Ramsey's theorem2.1 De�nition. Assume hX;�i is an ordered set and f : [X ℄r !  is anr-partition of length  of X , 1 � r < !.1. For V 2 [X ℄r�1, de�ne fV : X r V !  byfV (u) = f(V [ fug)2. f is endhomogeneous on X if for every V 2 [X ℄r�1, the funtion fVis homogeneous on X j � V = fu 2 X : V � u g.3. Let X� = (X � fmg if X has a maximal element mX otherwise4. Assume f is endhomogeneous on X . De�ne f� : [X�℄r�1 !  byf�(V ) = � i� 8u 2 X j � V (fV (u) = �) for V 2 [X�℄r�1.The next lemma follows immediately from the de�nitions.2.2 Lemma. Using the above notation, if f is endhomogeneous on X; Y �X� and f� is homogeneous on Y then f is homogeneous on Y and onY [ fmg if m is the maximal element of X.We �rst give a diret proof of the well-known Ramsey's Theorem us-ing non-prinipal ultra�lters and postponing the more natural rami�ationmethod to the next setion for two reasons. First, Erd}os and Rado on-sidered this approah part of their \ombinatoris", (Erd}os alled the ul-tra�lters \measures"). Seond, having given a proof here, we do not haveto adapt the forumulation of the rami�ation to over the ase when theresoure is a regular limit ardinal.



10 I. Partition Relations2.3 Theorem (Ramsey's Theorem).! ! (!)rk for 1 � r; k < !Proof. By indution on r. For r = 1 the laim is obvious. Assume r > 1and f : [!℄r ! k: Let U be a non-prinipal ultra�lter on ! and V 2 [!℄r�1:De�ne ~f(V ) and A(V ) as follows: let ~f(V ) = i for the unique i < k forwhih the set A(V; i) := fu 2 ! � V : fV (u) = i g is in U , and set A(V ) :=A(V; ~f(V )).We an hoose by indution on n an inreasing sequene hxn : n < ! iof integers satisfying xn 2 T fA(V ) : V 2 [fxj : j < n g℄r g for n < !. LetX = fxn : n < ! g : Then f�j[X ℄r�1 = ~f j[X ℄r�1 and f is endhomogeneouson X . By the indution hypothesis, there is a Y � X with ot(Y ) = ! sothat Y is homogeneous for f�. Finally, by Lemma 2.2, Y is the desired sethomogeneous for f . a2.2. Rami�ation Arguments2.4 Remark (A brief history). The �rst trans�nite generalization of Ram-sey's theorem appeared in the paper [9℄ of Dushnik and Miller. They proved�! (�; !)2 for regular � and Erd}os proved this for singular � as well. Hisproof was inluded in [9℄. This theorem, unique of its kind, logially belongsto Setion 7 where we will disuss it briey.The basi theorems about partition relations with exponent r = 2 were�rst stated and proved in 1942 in an almost forgotten paper of Erd}os [10℄.There he proved (2�)+ ! (�+)2� for � � !; he indiated the ounterexam-ples 2� 6! (3)2� and 2� 6! (�+)22; and he proved !2 ! (!2; !1)2 assumingCH. The Erd}os-Rado Theorem for exponent larger than 2 was proved laterin [19℄. (See Corollary 2.10.) Kurepa also worked on related questions quiteearly (see the disussion by Todorevi in Setion C of [38℄).Few theorems had so many simpli�ed proofs as (2�)+ ! (�+)2�, theErd}os-Rado Theorem. Erd}os and Rado used the so alled \rami�ationmethod". We will present this method in the proof of the next theorem.After some \streamlining," it still seems to be the simplest way for obtainingbalaned partition relations for ardinals, ones in whih all the goals are thesame ardinal. For the unbalaned ase, we will present a method workedout in [4℄. This method will be used in the proofs of a number of morereent results whih will be presented in later setions. Given limitations oftime and energy, and a desire for oherene, we deided to fous on resultsamenable to this method.2.5 Theorem. Assume 2 � r < !; � � !;  < �; � = 2<� andf : [�+℄r ! :



2. Basi Partition Relations 11Then there exists an X � �+ with ot(X) = �+ 1 suh that f is endhomo-geneous on X.Proof. For � < �+, de�ne an inreasing sequene �� = h��� : � < '� i ofordinals less then � and an ordinal '� by trans�nite reursion on �. For� = 0, set '0 = 0 and let �0 be the empty sequene. For positive �, tostart the reursion, let ��q := q for q < max f�; r � 1 g, and for � < r � 1,let '� = �. To ontinue the reursion, assume r � 2 < � and ��� is de�nedfor � < �. Let �̂�� = supn��� + 1 : � < � o, and de�ne setsB�� := n��� : � < � oA�� := n� < � : �̂�� � � ^ (8V 2 [B�� ℄r�1)(fV (�) = fV (�))o :Let ��� := minA�� if A�� 6= ;: If A�� = ;, put '� = �. Clearly for eah� < �+, the set B�'� [ f�g is an endhomogeneous set of order type '� + 1,and we may de�ne f�� on [B�'� ℄r�1 as in De�nition 2.1. If � 2 B�'� , thenit is easy to show by indution on � < '� that ��� = ��� . Thus if � 2 B�'� ,then f�� agrees with f�� on [B�'� ℄r�1.De�ne a relation � on �+ by � � � i� � 2 B�'� . It is easy to verifythat T := h�+;�i is a tree on �+ and rankT (�) = '� for � < �+. T isalled the anonial partition tree of f on �+, and T', as usual, denotes thef� < �+ : rankT (�) = ' g.For � < �+, let C� : ['�℄r�1 !  be de�ned by C�(U) = f�� (V ) whereV = n��� : � 2 U o. It follows by trans�nite indution on ' that for �; � 2T', if C� = C� , then � = �. Hene jT'j � jjj'j � � for ' < �. Then���S'<� T'��� � �, T� 6= ; and for all � 2 T�, B�� [ f�g is a set of order type�+ 1 whih is endhomogeneous for f . a2.6 Remark. Note that (2<�)<� = 2<� an hold for singular �. Indeedit is easy to see that either (2<�)<� = 2<� or f (2<�)<� = f(�) and2<� = sup f (2� )+ : � < � g. The proof desribed above gives Theorem 2.5under the ondition  � � provided �<� = �.2.7 Theorem (The Stepping Up Lemma). Assume � � !, 1 � r < !, < � and �! (��)r . Then�2<��+ ! (�� + 1)r+1 :This is an immediate onsequene of Lemma 2.2 and Theorem 2.5.2.8 De�nition. De�ne expi(�) by reursion on i < !:exp0(�) = �;expi+1(�) = 2expi(�):



12 I. Partition Relations2.9 Theorem (The Erd}os-Rado Theorem). Assume � � !,  < f(�).Then for all 2 � r < !,expr�2 �2<��+ ! (�+ (r � 1))r :Proof. Starting from the trivial relation � ! (�)1 for  < f �, we get(2<�)+ ! (�+1)2 , by Theorem 2.7. This is the ase r = 2 of the theorem.The result follows by indution on r with repeated appliations of Theorem2.7. aA better known but weaker form of the theorem is the following.2.10 Corollary. Assume � � !. Then for all 1 � r < !,expr�1 (�)+ ! ��+ + (r � 1)�r� :Note that while Theorem 2.9 guarantees for example that �+ ! (�+1)2holds for  < f(�) for a singular strong limit ardinal �, Corollary 2.10does not say anything about this ase.2.3. Negative Stepping Up Lemma2.11 Theorem (The Negative Stepping Up Lemma). Assume � > 0 is aardinal, 2 � r < !, 1 �  and �9 (��)r , where eah �� > 0 is a ardinal.Then 2� 9 (1 + ��)r+1 , provided at least one of the following onditionshold:1.  � 2, �; �0; �1 � ! and �0 is a regular ardinal;2.  � 2, �; �0 � !, �0 is a regular ardinal, and r � 4;3.  � 2, �; �0; �1 � !, and r � 4;4. � � ! and �� < ! for all � < .For a proof, we refer the reader to the ompendium by Erd}os, Hajnal,M�at�e and Rado [14℄, whih inludes additional negative stepping up results.We do quote one open problem from that referene.2.12 Question (Problem 25.8 in [14℄). Assume GCH. Does�!!+1+1 9 ��!!+1+1; (4)!�3?The following theorem provides a ontext for this question.2.13 Theorem. Assume GCH. Then1. �!+1 9 (�!+1; (3)!)2 and2. �!!+1 9 ��!!+1 ; (3)!�2.



3. Partition relations and submodels 133. Partition relations and submodelsFor the rest of this paper we will adopt the following onventions. Wheneverwe write \H(�)", � will be a regular ardinal, and \H(�)" will stand for astruture A with domain the olletion of sets H(�) whih are of hereditaryardinality < � . The struture A will be an expansion of hH(�);2;4i,where 4 is a �xed well ordering of H(�). The expansion will depend onontext, and will usually inlude all of the relevant \data" for the proof athand. Note that the well ordering 4 yields well de�ned Skolem hulls for allsets X � H(�).3.1 De�nition. Assume � � !, 2<� = �. Let H := H(�++). A set N issaid to be suitable for � if it satis�es the following onditions: hN;2i � H ,jN j = �, [N ℄<f(�) � N , [N ℄<� � N if �<� = �, �+ 1 � N , � := N \ �+ 2�+, f(�) = f(�). The ordinal �(N) = � will be alled the ritial ordinalof N . Note that � � N by assumption.We assume that the reader is familiar with the theory of stationary sub-sets of an ordinal. To make our terminology de�nite, for a limit ordinal �,a subset B � � is a lub if B is o�nal (unbounded) and losed in the ordertopology of �. A set S � � is stationary if B \ S 6= ; for every lub subsetof �. The notation Stat(�) will denote the set of stationary subsets of �.We will make use of the following fats about elementary submodels.3.2 Fats. Let � = 2<�. For every set A with jAj � � and A 2 H(�++),there is an elementary hain hN0;2i � � � � � hN�;2i � � � � � H , withA � N0, indexed by � < �+ that is ontinuous, and internally approahable(i.e. N� 2 N�+1 for all � � �), and the setS0 = �� < �+ : �(N�) = � and N� is suitable for �	the intersetion of a lub in �+ with Sf(�);�+ = f� < �+ : f(�) = f(�) g.3.3 De�nition. A subset S � H(�++) is amenable for this sequene ifS \ � 2 N�+1 for � 2 S0. A funtion g is amenable if gj� 2 N�+1 for all� 2 S0.Note that S0 itself may be assumed to be amenable.In this setion we will only use the existene of one N suitable for �. Theideals de�ned below were introdued in [4℄ for regular �. In most of thelater appliations we will only onsider the regular ase.3.4 De�nition. Let N be suitable for � � !, � = 2<�, �(N) = �. Wede�ne a set I = I� = I(N) � P(�) as follows. For X � �,X 2 I , (9Y )(Y � �+ ^ Y 2 N ^ � =2 Y ^ jX � Y j < �):



14 I. Partition RelationsNote that for regular �, the last lause an be replaed by X � Y .3.5 Lemma. Let N be suitable for � � !, � = 2<�, �(N) = �. We de�nea set F = F� as follows:F� := �Z 2 N : Z � �+ ^ � 2 Z 	 :Then (i) X =2 I = I� if and only if jX \Zj � � for all Z 2 F�; and (ii) theelements Z of F� are stationary subsets of �+.Proof. Part (i) follows diretly from De�nition 3.4. To see that part (ii)also holds, we verify that � 2 Z � �+, Z 2 N imply that Z is stationary.Otherwise Z \ � = ; for some lub B 2 N . Then B \ � is o�nal in �, byelementarity and � 2 B sine B is losed. a3.6 Lemma. If N is suitable for �, then I = I(N) is a f(�)-ompleteproper ideal on � = �(N). Moreover, if �<� = �, then I is �-omplete.Proof. The ompleteness learly follows from [N ℄<f(�) � N and [N ℄<� � Nrespetively. To see that � =2 I , let Z 2 N be a subset of �+ with � 2 Z.It is enough to show that jZ \ �j = �. Sine Z 2 N , also sup(Z) 2 N . As� 2 Z and N \ �+ = �, it follows that sup(Z) = �+. Then a fortiori thereis a one-to-one funtion g : � ! Z: Hene there is a g 2 N like this. Using�+ 1 � N , we get that ran(g) � N \ �+ = �. aIn what follows we will often suppress details like those given above.3.7 De�nition. Assume N is suitable for �, � = 2<� and � = �(N). ForX � �, we say X reets the properties of � if X \ Z 6= ; for all Z 2 F�.3.8 Lemma. Assume N is suitable for �, � = 2<� and � = �(N). IfX � � and X 2 I+, then X reets the properties of �, so we all I = I�the non-reeting ideal on � (indued by N).Notation. Assume f : [X ℄2 !  is a funtion, � <  and � 2 X . Forsimpliity, we often write f(�; �) for f(f�; � g), speifying whih of theordinals �, � is smaller, if neessary. Denote the set f� < � : f(�; �) = � gby f(�; �).3.9 Lemma (Connetion Lemma). Assume � � ! and � = 2<�. Furthersuppose that N is suitable for � with �(N) = �, f 2 N is a 2-partition of�+ with  < f(�) olors, and X � f(�; �) \ � for some � <  is suh thatX =2 I = I(N). Then there is some Y � X with ot(Y ) = f(�) so thatY [ f�g is homogeneous for f in olor �.Proof. Let Z be a subset of X [ f�g maximal with respet to the followingproperties: � 2 Z and Z is homogeneous for f in olor �. If jZj � f(�),then we are done. Assume by way of ontradition that jZj < f(�). Then



3. Partition relations and submodels 15sup(Z \ �) < � and Z \ � 2 N . Let A = T f f(u; �) : u 2 Z \ � g. ThenA 2 N and � 2 A. Hene, by the reetion property, A\(X�sup(Z\�)) 6=;. If y 2 A \ (X � sup(Z \ �)), then fyg [Z is homogeneous for f in olor�, ontraditing the maximality of Z. a3.10 Theorem (Erd}os-Rado Theorem (unbalaned form)). Let � be anin�nite ardinal and  < f(�). Then�2<��+ ! ��2<��+ ; (f(�) + 1)�2 :Proof. Let � = 2<�, and suppose f : [�+℄2 !  is a 2-partition of �+into  olors. Use Fats 3.2 to hoose N suitable for � with f 2 N . Fornotational simpliity, let � = �(N) and I = I(N). If f(�; �) \ � =2 I forsome 1 � � < , then we are done by Lemma 3.9. By Lemma 3.6, we mayassume that � � f(�; 0) � S f f(�; �) \ � : 1 � � <  g 2 I . By De�nition3.4, there is a set Z 2 N with Z � �+ and � 2 Z for whih jZ�f(�; 0)j < �.De�ne a set W in H(�++) as follows:W := f� 2 Z : jZ � f(�; 0)j < � g :Then W 2 N and � 2W . Then by Lemma 3.5 we infer that W 2 Stat(�+)and for g(Æ) := f� < Æ : f(�; Æ) 6= 0 g, we have jg(Æ)j < � for all Æ 2W . ByFodor's Set Mapping Theorem [14℄, there is a stationary subset S �W freefor g (i.e.  =2 g(Æ) for all Æ 6=  2 S), and S is homogeneous for f in olor0. aNote that with some abuse of notation we have proved the followingstronger result.3.11 Theorem. Let � � !, � = 2<� and suppose  < f(�). Then�+ ! (Stat(�+); (f(�) + 1))2:This theorem should be ompared with the ase r = 2 of Theorem 2.9and it should be observed that while for regular �, the above theorem is astrengthening of Corollary 2.10, for singular � the results are inomparable.It should also be noted that using Theorem 2.7, the above result an bestepped up to the following.3.12 Corollary. Assume � � ! and  < f(�). Then for all 1 � r < !,expr�2 �2<��+ ! ��2<��+ ; (�+ (r � 1))�r :Finally it should be remarked that we did not try to state the strongestpossible forms of the Erd}os-Rado theorems. Clearly the methods give simi-lar results in ases where the resoure ardinal � is a regular limit ardinal.For a detailed disussion we refer to [14℄.



16 I. Partition Relations4. Generalizations of the Erd}os-Rado Theorem4.1. OverviewIn this setion we fous on the problem of what positive relations of theform �2<��+ ! (��)2an be proved for regular � and  < � in ZFC. The ase for singular � willbe almost entirely omitted beause of limitations of spae. Many problemsremain unsolved, and the simplest of these will be stated at the end of thissubsetion. We start by disussing limitations, the �rst of whih omes fromthe next theorem.4.1 Theorem (Hajnal[25℄, Todorevi). If 2� = �+, then�+ 6! (�+; �+ 2)2:Proof Outline. We only sketh the proof given in [25℄, omitting Todorevi'sproof for singular �, whih has been irulated in unpublished notes. LetfA� : � < �+ g be a well-ordering of [�℄�. De�ne a sequene of sets B� 2[�+℄� for � < �+ by trans�nite reursion on �, in suh a way that thefollowing two onditions are satis�ed:1. jB� \ B� j < � for all � < �;2. B� \ A� 6= ; for all � < � for whih jA� �S fB :  2 F g j = � forall F 2 [�℄<�.To omplete the proof, for � < � < �+, set f(�; �) = 1 if and only if� 2 B�.The onstraint that jB� \B� j < � for all � < � < �+ implies that f hasno homogeneous subsets of order type �+2 for olor 1. The assertion thatit has no homogeneous subsets of order type �+ for olor 0 follows from thelaim below.4.2 Claim. Assume A is a subset of size �+. Then there is a subset B of Aof size � whih is not almost ontained in the union of fewer than � manyB�'s.On the one hand, if fewer than � many B� 's meet A in a set of size �, thenany subset B � A of size � in the omplement of the union of these B�'sproves the laim. Otherwise, hoose a sequene B�(�) indexed by � < � of� many sets whose intersetion with A has ardinality �, and let B be theunion of the intersetions A \ B�(�). aHeneforth we will assume that the goals, ��, are all ordinals, �� < �+for � < .



4. Generalizations of the Erd}os-Rado Theorem 17For � = !, the best possible result, !1 ! (�)2k for all � < !1 andk �nite was onjetured by Erd}os and Rado [17℄ in 1952 and proved byBaumgartner and Hajnal [2℄ in 1971, already in a more general form. Usinga self-explanatory extension of the ordinary partition relation for linearorder types, it says�! (!)1! implies �! (�)2k for all � < !1, k < !.Soon after it was generalized (also in a self-explanatory way) by Todorevito partial orders [64℄. Shipperus [53℄ proved a topologial version. TheBaumgartner-Hajnal proof used \Martin's Axiom + absoluteness". An el-ementary proof not using this kind of argument was given by Fred Galvin[21℄ in 1975. We will treat this theorem later in Setion 4.5, where we willalso give a brief history of earlier work on this onjeture, beause some ofthese approahes served as starting points for other investigations.We will treat �rst the ase � = f(�) > !. The reason for this strangeorder is really tehnial. The results to be presented for the ase � > !were proved later and muh of the method of using elementary substru-tures was worked out while proving them. We will give a new proof of theBaumgartner-Hajnal Theorem whih an be extended to suessors of mea-surable ardinals and uses the methods developed for the treatment of theases � > !.For the ases � > !, there are further limitations.4.3 Theorem. Assume that � = �+ � !1 and GCH holds. Then there are�-omplete, �+- foring onditions showing the onsisteny of the follow-ing negative partition relations:�+ 6! (� : �)22 and �+ 6! (� : 2)2� :Here the relations mean that there are no homogeneous sets of the form[A;B℄ := f f�; �g : � 2 A ^ � 2 B g where A < B, ot(A) = �, and ot(B) =� or ot(B) = 2 respetively. The foring results are due to Hajnal and statedin [13℄. The �rst result, �+ 6! (� : �)22, was shown by Rebholz [51℄ to betrue in L. It is interesting to remark that while the proofs of Theorem 4.1really give �+ 9 (�+; (� : 2))2 in the relevant ases, these two statementsare really not equivalent. In [35℄, Komj�ath proves it onsistent with ZFCthat !1 9 (!1; ! + 2)2 and !1 ! (!1; (! : 2))2 hold.In view of the limitations above, the following result of Baumgartner,Hajnal and Todorevi [4℄, whih we prove in Subsetion 4.3 (see Theorem4.12), is the best possible balaned generalization of the Erd}os-Rado The-orem for �nitely many olors to ordinal goals: for all regular unountableardinals � and �nite , if � < � is an ordinal with 2j�j < �, then�2<��+ ! (�+ �)2 :



18 I. Partition RelationsNote that for  = 2, this result was proved muh earlier by Shelah insetion 6 of [57℄.As a generalization of the unbalaned form, we prove in Subsetion 4.4(see Theorem 4.18) that for all regular unountable ardinals � and all �nitem, , �2<��+ ! (�!+2 + 1; (�+m))2:In this disussion we have restrited ourselves to 2-partitions, sine thesituation is di�erent for larger tuples. For example, Jones [28℄, [31℄ hasshown that for all �nite m;n, !1 ! (! +m;n)3, omplementing the resultof Erd}os and Rado [19℄ who showed !1 9 (! + 2; !)3. Milner and Prikry[44℄ proved that !1 ! (! + ! + 1; 4)3.We onlude this subsetion with some open questions.4.4 Question. For whih � < !1 and whih n < ! does the partitionrelation !1 ! (�; n)3 hold?4.5 Question. Are the following statements provable in ZFC + GCH?1. !3 ! (!2 + !; !2 + !1)2?2. !3 ! (!2 + 2)2!?Though there are additional limitations for  � !, whih we will disussin Setion 5, both theorems may atually generalize for in�nite  with 2jj <�, but nothing like this is known with the exeption of the following veryreent result a proof of whih will be given in Setion 6.4.6 Theorem (Shelah [56℄). If 2<� = �, � < � � �, and � is stronglyompat, then �+ ! (�+ �)2�:4.2. More elementary submodelsIn this subsetion we prove a generalization of Connetion Lemma 3.9 forregular �. Let � = 2<� and assume that h hN�;2i : � < �+ i is a sequeneof submodels of H := H(�++) satisfying the requirements outlined in 3.2,with A = ffg where f : [�+℄2 !  is a given 2-partition of �+ with  olors.For notational onveniene, we will letS0 := �� < �+ : � \N� = � and N� is suitable for �	 :For � 2 S0, we will write I� for the ideal I(N�) of De�nition 3.4.4.7 Lemma (Set Mapping Lemma). Assume that S � S0 is stationary andg : S ! P(�+) is a set mapping so that g(�) � � and g(�) \ S 2 I� for all� 2 S. Then there is a stationary set S0 � S whih is free for g. That is,g(�) \ S0 = ; for all � 2 S0. Moreover, if S and g are amenable, then so isS0.



4. Generalizations of the Erd}os-Rado Theorem 19Proof. Sine S is a set of limit ordinals, for eah � 2 S, we an hoose�� < � and Y� � �+ so that � =2 Y� 2 N�� and g(�) � Y�. By Fodor'sTheorem, �rst �� and then Y� stabilize on a stationary set. That is, forsome stationary S0 � S and some Y � �+, we have � =2 Y and g(�) � Yfor all � 2 S0. a4.8 Corollary. Suppose S � S0. An element � 2 S is a reetion point ofS if S \ � =2 I�. Then the set S � ~S is non-stationary, where ~S denotes theset of reetion points of S. Moreover, if S is amenable, then so is S0.Proof. Assume by way of ontradition that S0 := S � ~S is stationary, andde�ne g(�) := S0 \ � for � 2 S0. By the Set Mapping Lemma 4.7, there isa stationary subset S00 � S0 so that S00 is free for g. On the other hand,if � < � are both in S00 � S0, then � 2 g(�) := S0 \ �, ontraditing thefreeness of S00 for g. a4.9 De�nition. For � < �+ and � 2 <!, we de�ne ideals I(�; �) byreursion on j�j. To start the reursion, we setI(�; ;) := (P(�) if � =2 S0, andI� if � 2 S0.If � = �_ h i i and I(�; �) has been de�ned, then for all X � �,X 2 I(�; �) , f� < � : X \ � \ f(�; i) =2 I(�; �) g 2 I(�; ;):4.10 Lemma. Suppose � < �+ and � 2 <!.1. I(�; �) is a �-omplete ideal;2. if � =2 S0, then I(�; �) = P(�);3. I(�; ;) � I(�; �).Proof. In the speial ase of � = ;, item (1) follows either from Lemma 3.6or the triviality that P(�) is �-omplete. Use reursion on j�j to ompletethe proof of (1), sine at eah suessor stage, I(�; �_ h i i) is gotten byaveraging �-omplete ideals aording to a �-omplete ideal.Note that (2) follows immediately from the de�nition of I(�; �).Item (3) is also proved by indution on j�j simultaneously for all � < �+.For � =2 S0, it follows from the seond item, so assume � 2 S0. It istrivial for � = ;, so assume it is true for I(�; �) where � = �_ h i i, andlet X 2 I(�; ;) = I� = I(N�) be arbitrary. By de�nition of I(N�), thereis some Y � �+ so that � =2 Y 2 N� and X � Y . Sine � is limit, thereis �0 < � with Y 2 N�0 . Sine the sequene of submodels is ontinuous,Y 2 N� for all � with �0 < � < �, and for � =2 Y , we either have X\� 2 I�if � 2 S0 or have X \ � 2 I(�; 0) otherwise. Hene by the indution



20 I. Partition Relationshypothesis, X \ � 2 I(�; �) for � =2 Y with �0 < � < �. That is, if� < � and X \ � =2 I(�; �), then � 2 Y [ (�0 + 1). So X 2 I(�; �), sine� =2 Y � (�0 + 1) 2 N�. aWe postpone the proof that some of these ideals are proper.4.11 Lemma (Seond Connetion Lemma). Suppose X � �, X =2 I(�; �)and suppose i 2 ran(�). Then there is a subset Y � X [ f�g with ot(Y ) =�+ 1 homogeneous for f in olor i.Proof. The proof is by indution on j�j. If � = ;, then there is nothingto prove. Next suppose � = �_ h j i for some j < . By Lemma 4.10, weknow that X \ � =2 I(�; �) for some � < � with � 2 X . Thus the indutionhypothesis gives the statement for i 2 ran(�). Next assume i = j. Then byLemma 4.10(3), we know that X =2 I� and Connetion Lemma 3.9 yieldsthe desired result. a4.3. The Balaned GeneralizationIn this subsetion we will prove, as announed earlier, the following balanedgeneralization of the Erd}os-Rado Theorem.4.12 Theorem (Baumgartner, Hajnal, Todorevi [4℄). Suppose � is aregular unountable ardinal,  is �nite and � < � is an ordinal with 2j�j <�. Then �2<��+ ! (�+ �)2 :For notational simpliity, we are �xing �, � = 2<�, a 2-partition f :[�+℄2 ! , and � as in the statement of the theorem throughout this sub-setion, and we ontinue the notation introdued in subsetions 4.1 and 4.2.In what follows, it will be onvenient to look at the least indeomposableordinal � � �, rather than � diretly. In preparation for the proof, we giveseveral preliminary fats about ideals.4.13 De�nition. For ordinals �, sets x � �+ and sequenes � 2 <!, de�nex is (�; �)-anonial for f by reursion on j�j. To begin the reursion, wesay x is (�; ;)-anonial for f if x = f�g for some � < �+. For � = �_ h i i,we say x is (�; �)-anonial for f if x is the union of a <-inreasing sequenehx� : � < � i so that eah x� is (�; �)-anonial for � < � and f(u; v) = i forall u 2 x� and v 2 x� with � < � < �.The following lemma is left to the reader as an exerise.4.14 Lemma. Assume that � is an indeomposable ordinal and � 2 n forsome n < !. Then1. ot(x) = �n for all x whih are (�; �)-anonial for f ;



4. Generalizations of the Erd}os-Rado Theorem 212. if x is (�; �)-anonial for f , then every y � x with ot(y) = �n, is also(�; �)-anonial for f and J := f z � y : ot(z) < �n g is a proper ideal;3. if x is (�; �)-anonial for f , then for every i 2 ran(�), there is somey � x with ot(y) = � whih is homogeneous for f in olor i.4.15 Lemma (Reetion Lemma). Assume X 62 I(�; �) for some � < �+,� 2 <!, and further suppose that � < � is indeomposable. Then there isa set x � X whih is (�; �)-anonial for f .Proof. The proof is by indution on j�j. To start, notie the lemma isvauously true for � = ;. Next suppose � = �_ h i i. Construt a se-quene hx� : � < � i by reursion on � < �. Assume that � < � and thatthe sets x� � X \ f(�; i) are (�; �)-anonial for f for � < �. Let Z =f� < �+ : (8� < �)(8Æ 2 x�)(f(Æ; �) = i) g. Sine hx� : � < � i 2 N�, wehave Z 2 N� and � 2 Z. Sine f� < � : X \ � \ f(�; i) =2 I(�; �) g 62 I�,we an hoose � < � so that � 2 Z 2 N� , X \ � \ f(�; i) =2 I(�; �) andsup(S fx� < � g) < �. By the indution hypothesis, we an hoose a setx� � X \ Z whih is (�; �)-anonial for f with x� < x� for all � < �.This reursion de�nes hx� : � < � i, and x = S fx� : � < � g is the re-quired set (�; �)-anonial for f . aWe need one more lemma whih will be used in the proof of the unbal-aned version (Theorem 4.18) as well.4.16 Lemma. Assume S � S0 is stationary and � �  is non-empty. Thenthere are S0 � S stationary and � 2 <!� with � one-to-one suh that1. S \ � \ f(�; j) 2 I(�; �), for every �; � 2 S0 with � < � and everyj 2 �� ran(�), but2. S \ � =2 I(�; �) for � 2 S0.Moreover, if S is amenable, then so is S0.Proof. Let � be of maximal length so that ran(�) � �, � is one-to-one, andS00 := f� 2 S : S \ � =2 I(�; �) g is stationary.For j 2 �� ran(�), letgj(�) := f� < � : S \ � \ f(�; j) =2 I(�; �) g :By the maximality of �, it follows that gj(�) \ S00 2 I� for all but non-stationarily many � 2 S. By Lemma 4.7, there is a stationary subsetS0 � S00 whih is free for gj . a



22 I. Partition RelationsLet S := f� 2 <! : � is one-to-oneg.For � < �+ and � 2 S, say (X;Y ) �ts (�; �) if X � �, X =2 I(�; �) andf(�; j) \X 2 I(�; �) for all � 2 Y and j =2 ran(�).From Lemma 4.16 we get the following orollary by applying the lemmawith � = .4.17 Corollary. For every stationary set S � S0, there are � 2 S, � 2 Sand a stationary subset S0 � S so that (S \ �; S0) �ts (�; �).With these lemmas in hand, we turn to the proof of the main theorem ofthis subsetion.Proof of Theorem 4.12. Using Corollary 4.17, we de�ne �m 2 S0, �m 2 S,and stationary Zm � S0 by reursion on m so that the following onditionsare satis�ed:1. �0 < � � � < �m < : : : ; Z0 � � � � � Zm � : : : ; and2. (Zm \ �m; Zm+1) �ts (�m; �m).Sine S is �nite, �k = �n for some k < n < !. We onlude that there area sequene � 2 S, ordinals �0 < �1, and sets X0, X1 suh that the followingstatement is true:(*) X0 < X1, Xi =2 I(�i; �) for i < 2, and f(�; j)\X0 2 I(�0; �)for every j =2 ran(�) and every � 2 X1.Let � be the least indeomposable ordinal with � � �. By the ReetionLemma 4.15, there is a y � X1 suh that y is (�; �)-anonial for f .We shrink X0 to X = X0 � S f f(Æ; j) : j =2 ran(�) and Æ 2 y g. ThenX =2 I(�0; �) sine I(�0; �) is �-omplete, jyj < � and f(Æ; j) 2 I(�0; �) forj =2 ran(�), Æ 2 y � X1.Let J = fZ � y : Z is not (�; �)-anonial for f g. By Lemma 4.14, J isa proper ideal on y.For every Æ 2 X , there is an i(Æ) 2 ran(�) so that f(Æ; i) \ y =2 J . Thusfor every Æ 2 X , by Lemma 4.14(3), there is a y(Æ) � y of order type � suhthat fÆg [ y(Æ) is homogeneous for f in olor i(Æ).Using the fat that !j�j = 2j�j � ! < �, we now obtain i0 2 ran(�), y0 � yand X 0 � X with X 0 =2 I(�; �) so that i(Æ) = i0 and y(Æ) = y0 for all Æ 2 X 0.Thus f(Æ0; Æ1) = i0 for all Æ0 2 X 0 and Æ1 2 y0.By the Seond Connetion Lemma 4.11, we get an X 00 � X 0 of ordertype � homogeneous for f in olor i0. Finally X 00 [ y0 is the required set oforder type �+ � homogeneous for f in olor i0. a



4. Generalizations of the Erd}os-Rado Theorem 234.4. The Unbalaned Generalization4.18 Theorem (Baumgartner, Hajnal, Todorevi [4℄). Suppose � is aregular unountable ardinal, and m,  are �nite. Then�2<��+ ! (�!+2 + 1; (�+m))2:This subsetion is devoted to the proof of this theorem, and for notationalonveniene we set � = 2<� throughout. Also, �x a partition f : [�+℄2 !1 + . We also ontinue to use the notation introdued in subsetions 4.1,4.2 and 4.3.The strategy of the proof is to derive Theorem 4.18 from the followingauxiliary assumption:Q(�) : 2<� = � and 8 
 f� : � < �+ � � �� 9g 2 �� ( f� � g );where � is the relation of eventual domination on ��.Then as in the original proof of the Baumgartner-Hajnal Theorem [2℄,we observe that the assumption Q(�) is unneessary, and therefore thatTheorem 4.18 holds in ZFC.Let us justify this observation before going on to prove the theorem fromthe assumption of Q(�).Let P0 be the natural �-losed foring for ollapsing 2<� onto �. Then inV P0 we have � = �. Working in V P0 and using a standard iterated foringargument (as in [1℄) we an fore every sequene of funtions in �� of length� to be eventually dominated via a partial ordering P1 that is �-losed andhas the �+-hain ondition. Let P = P0 � P1. Then P is �-losed and inV P , both � = � and Q(�) hold. Note that in V P , we will have 2� > �+,sine this inequality is implied by Q(�).Assuming we have proved Theorem 4.18 under the assumption of Q(�),we may assume it holds in V P . Suppose that f : [�+℄2 !  + 1 is a 2-partition in V . Then in V P , there is some A � �+ suh that either (a) A ishomogeneous for f in olor 0 and otA = �!+2+1, or (b) A is homogeneousfor f in olor i > 0 and otA = �+m. Suppose (a) holds. Note that �!+2+1is the same whether omputed in V or in V P . Let h : � ! �!+2 + 1 be abijetion with h 2 V . In V P , �x an order-isomorphism j : �!+2 + 1 ! A.Now, working in V , �nd a dereasing sequene h p� : � < � i of elementsof P and a sequene h�� : � < � i of elements of �+ suh that for all �,p�  j(h(�)) = ��. This is easy to do by reursion on �, using the fat thatP is �-losed. But now it is lear that f�� : � < � g 2 V has order type�!+2+1 and is homogeneous for f in olor 0. Case (b) may be handled thesame way.For the rest of this subsetion, assume Q(�) holds. We may also assumethat � > ! sine for � = ! we have the muh stronger result Theorem 4.30.First we prove a onsequene of Q(�).



24 I. Partition Relations4.19 Lemma. Assume Q(�). For all positive ` < ! and every sequene
X� � �` : � < �+ � with otX� < �` for � < �+, there is a sequene
Z� � �` : � < � � with otZ� < �` for � < � suh that every X� is asubset of some Z� .Proof. Use indution on `. For ` = 1, the sets X� � �1 = � are boundedand we may de�ne Z� := �.For the indution step, assume 
X� � �k+1 : � < �+ � is a given sequenewith otX� < �k+1. Write �k+1 = S�<� U� as the union of an inreasingsequene U0 < � � � < U� < : : : in whih otU� = �k. For eah � < �+ and� < �, de�ne Y�;� := (X� \ U�; if otX� \ U� < �k;; otherwise.Sine eah U� is isomorphi to �k, we may apply the indution hypothesisto eah sequene h Y�;� � U� : � < �+ i to get hW�;� � U� : � < � i, so thatevery Y�;� is a subset of some W�;�.For eah � < �+, de�ne g� : � ! � by g�(�) is the least � so thatY�;� �W�;�. Choose an inreasing g : �! � eventually dominating all theg� for � < �. De�neZ� := [�<� [[ fW�;� : � � � ^ � � g(�) g :Then 
Z� � �k+1 : � < � � satis�es the requirements of the lemma for ` =k + 1.Therefore by indution, the lemma follows. aFrom this point forward in the subsetion, we assume that there is nohomogeneous set for olor 0 of the order type required. We may also assumethat the result is true for 0 < .4.20 Lemma. Assume S � S0 is stationary. For all � � [1; ℄ with � 6= ;,there are a stationary set S0 � S and a one-to-one funtion � 2 <!� suhthat the following two properties hold:1. for every stationary S00 � S0 there is some � 2 S00 with S00 \ � =2I(�; �);2. for all j 2 �� ran� and all �; � 2 S0, if � < �, then f(�; j)\�\S0 2I(�; �).Proof. By indution on j�j. For the basis ase of j�j = 1, suppose � = figfor some postive i � . Then either ran� = fig, the �rst property holdswith S0 = S and the seond holds vauously, or by the Set Mapping Lemma4.7, there is a stationary subset S0 � S free for olor i.



4. Generalizations of the Erd}os-Rado Theorem 25For the indution step, assume the lemma is true for some non-emptyproper subset T � [1; ℄ and let i 2 [1; ℄�T . We must show the statementis also true for � = T [ fig. Let ST � S and � witness that the lemma istrue for T . Consider two ases depending on whether or not the followingstatement is true, where Stat(ST ) := Stat(�+) \ P(ST ):(�) 8S� 2 Stat(ST ) 9� 2 S� ( f� < � : S� \ � \ f(�; i) =2 I(�; �) g =2 I� ):For the �rst ase, assume that (�) holds. Then we an hoose S� = STand � = �_(i), sine the �rst item holds by (�) and the seond remainstrue sine no new j omes into play.For the seond ase, assume that (�) fails and hoose a stationary S� � STshowing the failure. De�neg(�) := f� < � : S� \ � \ f(�; i) =2 I(�; �) g :Applying the Set Mapping Lemma 4.7 to g and S�, we get a stationaryS� � S� free for g whih together with � = � satisfy the required twoonditions. aOur next lemma uses the fat that by Q(�), we have 2<� = �. Fornotational onveniene, for eah � 2 S0, de�neF� := �Z 2 N� : Z � �+ ^ � 2 Z 	 :Also, for any 0 < ` �  and any one-to-one funtion � 2 `�1[1; ℄, all a setY (�; �)-slim if Y � S0, otY = �`, Y =2 I(�; �), and for all W � Y , theequivalene W =2 I(�; �) if and only if otW = �` holds.4.21 Lemma. For all one-to-one funtions � 2 <! [1; ℄, for all X � S0with X =2 I(�; �), if `� 1 is the length of �, then there exists Y � X suhthat Y is (�; �)-slim.Proof. To start the indution, note that ifX =2 I(�; ;) = I� for some � 2 S0,then there is some Y � X with otY = � so that Y =2 I�. This impliationis true beause F� has ardinality at most � and an be diagonalized inX . Then Y is (�; ;)-slim, by the �-ompleteness of I�. The rest follows byindution on the length of �. aThe following orollary is immediate from the previous two lemmas.4.22 Corollary. There are a stationary set S1 � S0, a nonempty subset� � [1; ℄ and a one-to-one funtion � 2 `�1� suh that the following twoonditions hold:1. for all stationary S � S1, there are � 2 S and X � � of order type�` so that X =2 I(�; �);



26 I. Partition Relations2. for all � < � 2 S1 and all j 2 [1; ℄��, one has f(�; j)\� 2 I(�; �).For notational onveniene, write X = ��<�X� to indiate that X0 <� � � < X� < : : : and X = S�<�X� . For the remainder of this setion, letS1 � S0, � and ` as in the previous orollary be �xed.4.23 De�nition. For � 2 S0, de�ne H(�; n) by reursion on n < !. Tostart the reursion, de�neH(�; 0) := fX � S1 : X is (�; �)-slim g :If H(�; n) has been de�ned, then X 2 H(�; n+1) if and only if the followingonditions are satis�ed:1. X � S1 and there exists hX� 2 H(�; n) : � < � i with X = ��<�X� ;2. for all F 2 F�, there exists �F so that X� � F for all � > �F ;3. for all � < � 0 < � and x 2 X� , y 2 X� 0 , one has f(x; y) = 0.Note that every X 2 H(�; n) has otX = �`+n and X ontains a subsetof order �n homogeneous for f in olor 0. Furthermore, every Y � X oforder type �`+n has a subset in H(�; n).We now prove the lemma ontaining the main idea of the proof.4.24 Lemma (Key Lemma). Suppose � 2 S1, n < ! and X � S1 withX 2 H(�; n). Then there are �0 2 S1 with �0 > � and hT� � X : � < � iwith otT� = �`+n so that for all � 2 S1 with � > �0, there is some � < �suh that ot(T� � f(�; 0)) < �`+n.Proof. Let M be a maximal subset of S1 with the property that for allV 2 [M ℄<!, otT fX � f(�; 0) : � 2 V g = �`+n. We laim that jM j � �and then we are done, by the maximality of M .Assume for the sake of a ontradition that jM j = �+, and let� := 8<: \�2V X � f(�; 0) : V 2 [M ℄<!9=; :Extend � [ �X � Y : Y � X ^ otX < �`+n 	 to an ultra�lter U on X .Then for every � 2 M , there is a j(�) 2 � so that X \ f(�; j(�)) 2 U .Hene there is some j 2 � so that the set Mj := f� 2M : j(�) = j g hasardinality �+. By �+ ! (�+; n)2, there is a set H � Mj of size n whihis homogeneous for f in olor j. Now X \ T f f(�; j) : � 2 H g is in U , soit must have order type �`+n. By Lemma 4.11 it ontains a set W of type� homogeneous for f in olor j. This is the ontradition that proves thelemma. a



4. Generalizations of the Erd}os-Rado Theorem 274.25 Lemma. Assume S � S1 is stationary. Then for all n < !, there are� 2 S and X � S so that X 2 H(�; n).Proof. Work by indution on n. For the basis ase, n = 0, the statementfollows from Corollary 4.22 and Lemma 4.21.For the indution step, a standard rami�ation argument gives the result.Assume the laim is true for some n. Let � 2 S be arbitrary. We de�ne asequene fX� : � < � g � H(�� ; n)by reursion on � < �. Assume that X� 2 H(�� ; n), X� � S \ f(�; 0) arede�ned for � < �. Let S� = f� 2 S : S fX� : � < � g � f(�; 0) g. Then� 2 S� and S� 2 N�. Then S� is stationary, and so by the indutionhypothesis it ontains a subset X 2 H(�� ; n) for some �� 2 � \ S�. Byelementarity, we may assume X 2 N�. By the Key Lemma, there areT� � X for � < � suh that ot(T�) = �`+n and jS �S�<� Z� j � � whereZ� = �� < � : ot(T� � f(�; 0)) < �`+n 	 :Then, by elementarity S �S�<� Z� � �, hene � 2 Z� for some � < � andX� = T� \ f(�; 0) satis�es the requirement. S�<�X� 2 H(�; n+ 1) and asa bonus we have that S�<�X� � f(�; 0). aThe same rami�ation argument gives the next lemma as well.4.26 Lemma. Assume S � S1 is stationary. Then there exist an inreasingsequene h�� 2 S : � < � i and a family hX�;n � S : � < � ^ n < ! i witheah X�;n 2 H(�� ; n) so that if either � < � or � = � and k < `, thenX�;k < X�;` and f(x; y) = 0 for all x 2 X�;k, y 2 X�;`.The above lemma gives the result for �!+1, sine the setX :=[ fX�;n : � < � ^ n < ! gis homogeneous for f in olor 0.To �nish the proof, we use yet another rami�ation argument.4.27 Lemma. Let X be a set of order type �!+1 as desribed above, andlet Xn := S fX�;n : � < � g. Note that otXn = �`+n+1. LetJ := � Y � X : 9n0 < ! 8n > n0 (otY \Xn < �`+n)	 :Then J is an ideal and there are fT� 2 J+ : � < � g and �0 2 S1 suh thatfor all � 2 S1 with � > �0, the set T� � f(�; 0) is in J .Let M be a maximal subset of S1 so that T�2V X�f(�; 0) =2 J for �niteV �M .



28 I. Partition RelationsTo see that jM j = �, we proeed just like in the proof of Lemma 4.24.We only need the fat that if Z � X and Z =2 J , then for all j 2 �, the setZ ontains a subset of type � homogeneous for f in olor j.Sine jM j = �, the set � := nT�2V X � f(�; 0) : V 2 [M ℄<! o is afamily of size � suh that for all � =2 M , there is some Z 2 � so thatZ � f(�; 0) � Y for some Y 2 �.The next lemma is the �nal tool we need.4.28 Lemma. Assume T 2 J+. Then there is a J � J with jJ j � �suh that for all � 2 S1 with T � f(�; 0) 2 J , there is a Y 2 J so thatT � f(�; 0) � Y .Proof. Choose Jn � [Xn℄`+n+1 with jJnj � � so that for all � 2 S1 withot(Xn � f(�; 0)) < �`+n+1 there is a Yn 2 Jn with T � f(�; 0) � Yn. LetJ0 := ( [n<! Yn : 8n < ! Yn 2 Jn) :Note that jJ0j = �! = �. Finally, setJ := nA [ B : A 2 J0 and B =[ fXi : i � n g for some n < !o :Then J will do the job. a4.5. The Baumgartner-Hajnal TheoremHere is a brief overview of the history of the Baumgartner-Hajnal Theoremand some of its generalizations. Erd}os and Rado onjetured that !1 ! (�)2kand �0 ! (�)2k , for �0 the order type of the reals, and for all k < !, � < !1.Fred Galvin �gured out, for order types �, that �! (!)1! would be theright neessary and suÆient ondition for �! (�)2k to hold for all � < !1.Hajnal [25℄ proved in 1960 that �0 ! (�0; � _ ��)2 where �0 is the ordertype of the rationals. More signi�antly, Galvin proved �0 ! (�)22, for � <!1, but ontrary to the �rst expetations, this proof provided no lues forthe general ase. For the resoure !1, Galvin ould only prove !1 ! (!2; �)2for � < !1.Another result of Prikry [49℄ said !1 ! (�; (! : !1))2. This result waslater generalized by Todorevi [65℄ to!1 ! ((�)k ; (� : !1))2 for all � < !1.Finally we mention a very signi�ant onsisteny result of Todorevi [64℄that PFA (Proper Foring Axiom) implies!1 ! (!1; �)2 for all � < !1.



4. Generalizations of the Erd}os-Rado Theorem 29(For ontext, reall that PFA implies that  = !2.)Before going bak to the main line of disussion, we make another de-tour. It was already asked in the Erd}os-Hajnal problem lists [12℄, [13℄ if thepartition relations !2 ! (�)22 were onsistent for � < !2. Though thereis nothing to refute suh onsisteny, the results going in this diretion areweak and rare.The �rst onsisteny result was obtained by R. Laver [41℄ in 1982, andindependently disovered by A. Kanamori [33℄, using what is now alled aLaver ideal I on � (a non-trivial, �-omplete ideal with the strong saturationproperty that given �+ sets not in the ideal, there are �+ of them so thatthe intersetion of any < � of these is also not in the ideal). He proved thatif there is a Laver ideal on �, then�+ ! (� � 2 + 1; �)2 holds for all � < �+.Laver also proved the onsisteny of the hypothesis that there is a Laverideal on !1 and derived as a orollary the onsisteny (relative to a largeardinal, of ourse) of!2 ! (!1 � 2 + 1; �)2 holds for all � < !2.Foreman and Hajnal [20℄ tried to get a stronger onsisteny result for!2 from the stronger assumption that !1 arries a dense ideal, and indeed,they proved that in this ase!2 ! (!12 + 1; �)2 holds for all � < !2.They however disovered that their proof gives a muh stronger result forsuessors.4.29 Theorem (Foreman and Hajnal [20℄). Suppose � > ! is measurableand m < !. Then �+ ! (�)2m for all � < 
(�).Here � < 
(�) < �+ is a rather large ordinal. We will omment aboutthese results in detail in Setion 5, but for lak of spae and energy we willnot inlude proofs.4.30 Theorem (Baumgartner and Hajnal [2℄). If an order type � satis�es�! (!)1!, then it also satis�es �! (�)2k for all � < !1 and �nite k.4.31 Corollary. For all � < !1 and m < !,!1 ! (�)2m:So we deided to give a proof of Corollary 4.31 using the ideas of theForeman-Hajnal proof. This will serve two purposes. It will make thetext almost omplete as far as the old results are onerned, and it willommuniate most of the ideas of the new Foreman-Hajnal proof.



30 I. Partition RelationsNotation. Let h hN�;2i : � < !1 i be a sequene of elementary submodelsof H(!2) satisfying 3.2 with � = � = !, A = ffg where f : [!1℄2 ! m, andS0 := f� < !1 : !1 \N� = � and N� is suitable for ! g :Here S0 is a lub set in !1. We may assume S0 is amenable.4.32 De�nition. We de�ne S� by trans�nite reursion on � < !1: S0 hasalready been de�ned; S�+1 := ~S�, the set of reetion points of S� (see 4.8);and S� := T�<� S� if � limit.4.33 Lemma. For all � < !1, the set S� is amenable.Proof. Use indution on � and 4.8 to prove that hS� : � < � i � N�+1 for� 2 S�. The details and the remainder of the proof are left to the reader. aNext we are going to de�ne diagonal sets, ross sets, and ross systems.4.34 De�nition. For � 2 S0, for the sake of brevity, we putF� := fZ 2 N� : Z � !1 ^ � 2 Z g :(Note that for X � �, we have X =2 I� if and only if X \ Z 6= ; for allZ 2 F�; see the disussion of notation after Lemma 3.6.)Call D � � a diagonal set for � 2 S0 if supD = � and jD � Zj < ! forall Z 2 F�.Clearly every diagonal set D for � has order type !, and every o�nalsubset of it is also diagonal. Moreover, a diagonal set D for � is reetingfor � in the sense desribed after Lemma 3.6.4.35 Lemma. For all � 2 S0 and X � � with X =2 I�, there is a diagonalset D � X for �. If X 2 N�+1, then D an be hosen in N�+1.Proof. Sine jF�j = !, we an diagonalize it. aNotation. Assume that hDn : n < !i is a sequene of sets of ordinals and� 2 S0. Then the sequene onverges to � in N�, in symbols, Dn =) �,if and only if for every Z 2 F� there is some n0 so that for all n > n0,Dn � Z.For a set D � ON, we denote by D its losure in the ordinal topology.4.36 De�nition. By trans�nite reursion on � < !1, we de�ne, for � 2 S�,the onept D is a ross set of rank � for � as follows:1. For � 2 S0, the set f�g is ross set of rank 0 for �.2. For � > 0, the set D is ross set of rank � for � if � 2 S� and there is awitnessing sequene hDn : n < !i satisfying the following onditions:



4. Generalizations of the Erd}os-Rado Theorem 31(a) eah Dn is a ross set of rank �n for �n for some �n < � and for�n := supDn;(b) D0 [ f�0g < � � � < Dn [ f�ng < : : : ;() Dn =) �;(d) if � = � + 1, then �n = � for all n < !; if � is a limit, then� = sup �n;(e) D = Sn<!Dn.4.37 Remark. Note that a ross set D of rank 1 for � is a diagonal set for�, and if f�n : n < ! g is the set of �n := supDn for a witnessing sequenefor D, then f�n : n < ! g is also a diagonal set for �.The next lemma is proved by indution on �.4.38 Lemma. If D is a ross set for � of rank �, then otD = !�.We now de�ne the onept of a ross system of rank � for �. Informally,this is just the losure of a ross set of rank � for �, equipped with funtionsthat remember the sets appearing in the de�nition of the ross set of rank�.4.39 De�nition. By trans�nite reursion on � < !1, we de�ne, for � 2 S�,the onept D = 
D;<D; rankD; suD� is a ross system of rank � for �as follows:1. For � 2 S0, a quadruple D = 
D;<D rankD; sud� is a ross systemof rank 0 for � if and only if D = f�g, <D= ;, rank(�) = 0, andsu(�) = ;.2. For � > 0, a quadruple D = 
D;<D; rankD; suD� is a ross systemof rank � for � with underlying ross set D if there is a witnessingsequene hDn : n < ! i of ross systems so that(a) Dn is a ross system of rank �n for �n for all n < !;(b) D = S fDn : n < ! g is a ross set with witnessing sequenehDn : n < ! i, where Dn underlies Dn;() D = S�Dn : n < ! 	 [ f�g;(d) <D is de�ned by � <D � for all � 2 D�f�g, and <D jDn =<Dnfor n < !.(e) under <D, D is a (rooted) tree with root �;(f) rankD : D ! �+1 is de�ned by rankD(�) = �, and rankD jDn =rankDn for n < !.Finally, suD(�) is just a redundant notation for the set of immediatesuessors of � in the tree under <D.



32 I. Partition RelationsNote that for � > 0 and n < !, under the notation of De�nition 4.36,suD(�) = f�n : n < ! g and rankD(�n) = �n.Note that the underlying set of a ross system is de�nable as the set ofelements in D of rank 0.4.40 Lemma. Assume D = 
D;<D; rankD; suD� is a ross system ofrank � for �. Then for all � 2 D, rankD(�) = ; if and only if � 2 D.The next two lemmas are proved by indution on �.4.41 Lemma (Reetion Lemma). Assume D is a ross system of rank �for �. Then for  2 D �D, suD() is a diagonal set for .4.42 De�nition. Assume D is a ross system of rank � for � with under-lying set D. We say that C is a full subset of D if � 2 C and C \ suD(�)is in�nite for � 2 C with rankD(�) > 0.4.43 Lemma (Indution lemma for ross systems). Assume D is a rosssystem of rank � for � with underlying set D. For every full subset C of D,there is a set B � C \D so that B � C and B is the underlying set for aross system of rank � for �.4.44 De�nition. By reursion on � < !1 de�ne, for � 2 S�, the oneptD is an f-anonial ross system of rank � for � as follows.1. For � 2 S0, the unique ross system of rank 0 for � is an f -anonialross set of rank 0.2. For � > 0, D is an f -anonial ross system of rank � for � if it is aross system of rank � for � with a witnessing sequene hDn : n < ! ifor whih the following additional onditions hold:(g) for n < !, Dn is an f -anonial ross system of rank �n for �n ;(h) there is some i so that f(�; ) = i for all � 2 Dn and  2 Dpwith n < p < !.This usage is slightly di�erent from the use of the word \anonial" in4.13. In this setion we do not use the term (�; �)-anonial.The following is one of the oldest ideas in the subjet.4.45 Lemma (Homogeneity Lemma). For all � < !1 there is some � < !1,so that if D is an f-anonial ross system of rank �, then there is a setH � D of order type !� whih is homogeneous for f .The proof is left to the reader. Detailed proofs an be found in both [2℄and in [21℄ of F. Galvin, where the �rst elementary proof of Theorem 4.30was given.We need one more tehnial lemma, a strengthening of Lemma 4.43,before launhing into the main proof.



4. Generalizations of the Erd}os-Rado Theorem 334.46 Lemma (Indution lemma for anonial ross systems).Assume D is an f-anonial ross system of rank � for �. Suppose C is afull subset of D. Then there is a set B � C \ D so that B � C and B isthe underlying set of an f-anonial system of rank � for �.Proof. Use indution on � and the fat that every o�nal subset of a diagonalset for � is diagonal for �. aBy the Homogeneity Lemma 4.45, the following lemma will be suÆientto prove Corollary 4.31.4.47 Lemma (Main Lemma). For all � < !1, � 2 S� and F 2 F�, there isan f-anonial system D of rank � for � with D � S0 \ F and D 2 N�+1.Note that it would be suÆient to prove 4.47 without the last lause,whih is needed to support indution.The rest of this setion is devoted to the proof of 4.47. We need furtherpreliminaries. In what follows, U is a �xed non-prinipal ultra�lter on !with U 2 N0.4.48 De�nition. De�ne, by reursion on � < !1, deferene funtions iDwhere D is a ross system of rank � for �. For � 2 S0 and a ross systemD of rank 0 for �, de�ne iD(�) for � with � < � < !1 by iD(�) = i if andonly if f(f�; � g) = i. Assume � > 0 and deferene funtions have beende�ned for ross systems of rank � < �. For a ross system D of rank� for �, de�ne iD(�) for � with � < � < !1 by iD(�) = i if and only iffn < ! : iDn(�) = i g 2 U where hDn : n < ! i is the witnessing sequeneof ross systems for D.Notie that ifD 2 N�+1, then the deferene funtion iD : !1�(�+1)! mis also in N�+1. Note also that iD(�) an be de�ned \inside D" for a �xed�, as follows.4.49 De�nition. Assume D is a ross system of rank � for � and � <� < !1. De�ne jD(�; �) for � 2 D by trans�nite reursion on rankD(�)as follows. If rankD(�) = 0, then jD(�; �) = f(f�; � g). For � > 0and � with rankD(�) = �, set jD(�; �) = j for that j < m so thatfn < ! : jD(�n; �) = j g 2 U , where �n is the nth element of suD(�).The proof that these two de�nitions oinide is left to the reader.4.50 Lemma. Assume D is a ross system of rank � for �. Then for all �with � < � < !1, jD(�; �) = iD(�).Note that jD is an element of N�+1 if D 2 N�+1.Next we use a �xed enumeration of pairs of natural numbers to de�ne astandard well-ordering for D where D is a ross system. For the remainderof this setion, assume ' : ! � ! ! ! � f0g is a �xed bijetion whih ismonotoni in both variables, and whih is in N0.



34 I. Partition Relations4.51 De�nition. De�ne, by reursion on positive � < !1, for ross systemsD of rank �, a standard well-ordering of D.1. For � 2 S1, if D = f�n : n < ! g is the underlying set of a rosssystem D of rank 1, then the standard well-ordering of D has leastelement d0 = �, and for positive k, has kth element dk = �k�1.2. For � > 1, if D = S fDn : n < ! g is the underlying set of a rosssystem D of rank � where Dn is the underlying set of Dn of thewitnessing sequene of D, then the standard well-ordering of D hasleast element d0 = �, and for positive k = '(n; j), has kth elementdk = dn;j , where dn;j is the jth element of Dn.By some abuse of notation, we write dn for the nth element of the stan-dard well-ordering.4.52 Lemma. For all positive � < !1 and all � 2 S�, if D is a ross systemof rank � for � and h dk : k < ! i is the standard well-ordering of D, thenfor all positive n < !, there is some m < n so that dn 2 suD(dm).Proof. The proof is by indution on � over the reursive de�nition of stan-dard well-orderings. aProof of the Main Lemma 4.47. The proof is by indution on �. For � = 0,the lemma is trivial.For the indution step, assume � > 0 and the lemma is true for all � < �.Let � 2 S� and F 2 F� be arbitrary. If � = � + 1, then let �n = � for alln < !. If � is a limit, then let h �n : n < ! i 2 N�+1 be a stritly inreasingo�nal sequene with limit �, and assume �0 � 1.Now, for all n < !, � 2 S�n+1, so � is a limit of ordinals in S�n and� 2 ~S�n . Temporarily �x an enumeration of F� as fGn : n < ! g. Byde�nition of ~S�n , (S�n \ F \G0 \ � � � \Gn) \ � =2 I�.De�ne by reursion sequenes h�n : n < ! i and hDn : n < ! i. To start,hoose �0 2 (S�0 \ F \ G0) \ � large enough so that F;G0 2 N�0 . ThenF;G0 2 F�n . Use the indution hypothesis on �0, �0, F 00 = F \ G0 to�nd an f -anonial ross system D0 2 N�0+1 of rank �0 for �0 so thatD0 � S0 \ F 00.Continue, taking are to make sure the sequene of �n's inreases to�. If �n has been de�ned, then hoose �n+1 2 (S�n+1 \ F \ G0 \ � � � \Gn+1� (�n+1))\� large enough so that F;G0; G0; : : : ; Gn+1 2 N�0 . ThenF;G0; : : : ; Gn+1 2 F�n+1 . Use the indution hypothesis on �n+1, �n+1,F 0n+1 = F 0n \ Gn+1 \ !1 � (�n+1 + 1) to �nd an f -anonial ross systemDn+1 2 N�n+1+1 of rank �n+1 for �n+1 so that Dn+1 � S0 \ F 0n+1.Also, sine m is �nite, there is an in�nite subsequene of h�n : n < ! i 2N�+1 and an i < m so that iDn(�) = i for all n in the subsequene.By shrinking if neessary, we may assume, without loss of generality, that



4. Generalizations of the Erd}os-Rado Theorem 35this subsequene is the entire sequene. Now hDn : n < ! i is a witnessingsequene for a ross set of rank � for � by onstrution. Hene hDn : n < ! iis a witnessing sequene for a ross system of rank � for �.Finally, as N�; �;2 N�+1, and sine S� is amenable by Lemma 4.33, wemay assume that hDn : n < ! i is de�ned in N�+1.Claim. There is an in�nite set T � ! with T 2 N�+1 and a familyfCn : n 2 T g so that Cn is a full subset of Dn for n 2 T and f(�; ) = ifor all � 2 Cn and  2 Cp with n; p 2 T and n < p.The indution step of the Main Lemma follows from the laim by Lemma4.46, as eah Cn an be replaed by an f -anonial system Cn 2 N�n+1 andh Cn : n 2 T i is the witnessing sequene of the desired f -anonial systemof rank � for �.To prove the laim, we will pik elements of f� g [ S�Dn : n 2 ! 	aording to a ertain bookkeeping. We pik � �rst. In�nitely often wepik a new element n for T , larger than any element of T piked earlier.Our hoie of n means we have piked the top point �n of Dn. For eahpoint n of T , we promise that in�nitely often we will pik an element of Dnaording to the standard well-ordering of Dn.For notational onveniene, let n(�) denote that value of n with � 2 Dn.Assume we have piked a �nite non-empty set A � f�g[S�Dn : n < ! 	whih satis�es the following ondition:�(A): For any n < p, � 2 Dn \ A and � 2 Dp \ A,jDn(�; �) = jDn(�; �) = i.We have to pik a new point  for A so that the enlarged set still satis�esthe ondition �(A [ fg).For the �rst senario, suppose we want to add a new �p to A. That is,we want to add a new value p to T . LetZ0 = Z0(A) =\�� � : jDn(�)(�; �) = i	 : � 2 A	 :Note that Z0 is in N� and � 2 Z0. As su(�) is reeting, we an hoosethe desired �p 2 su(�) as large as we want.For the seond senario, assume we want to pik a � to add to A sothat � 2 Dp for some p 2 T where �p 2 A and so that � 2 su()for some  2 A \ Dp. There are three ases, �p = min(A \ suD(�)),�p = max(A\suD(�)), and min(A\suD(�)) < �p < max(A\suD(�)).We sketh only the last, and leave the others to the reader. Let A� :=A \S�Dn : n < p	, and A+ := A \S�Dn : n > p	, and de�neZ+ = Z+(A) :=\� Æ 2 suDp() : jDp(Æ; �) = i ^ � 2 A+ 	 :



36 I. Partition RelationsNow Z+ is a subset of suDp() whih is a reeting subset of  by theReetion Lemma 4.41. Sine by �(A), jDp(; �) = i for � 2 A, and A is�nite, it follows that Z+ is a reeting subset of . Next de�neZ� = Z�(A) :=\� � < !1 : jDn(Æ)(Æ; �) = i ^ Æ 2 A� 	 :By Lemma 4.50, Z� 2 NmaxA�+1. Sine maxA� < , it follows thatZ� 2 N . By �(A),  2 Z�. Hene Z+ \ Z� is in�nite and any element ofZ+ \ Z� is a suitable hoie for �.Use the tehnique of \jumping around" and these two senarios to inter-twine the reursive de�nitions of T and of all the Cn's for n 2 T . Spei�ally,use the standard well-ordering of � to de�ne a sequene h �k : k < ! i. Atstage 0, pik �0 = �. Suppose �` has been de�ned for ` < k. Look atdk. If dk 2 suD(�), then use the �rst senario to hoose �k 2 suD(�).If dk 2 suD(�`) for some ` < k, then use the seond senario to hoose�k 2 suD(�`). Otherwise, set �k = �k�1. Finally, let E = f �k : k < ! g.Let T = f p < ! : (9k)(�k = �p) g. Sine the standard order lists all thesuessors of �, the set T is in�nite and inN�+1. For p 2 T , let Cp = E\Dp.Temporarily �x p 2 T . For any  2 Cp, sine �p = d` for some `, andsuDn() forms an in�nite monotoni subsequene of f dk : k < ! g, theset Cp has in�nitely many suessors of . Thus Cp is full. Therefore T andthe sets fCp : p 2 T g are the ones required to prove the laim.As noted above, the laim suÆes to omplete the indution step of theMain Lemma, so it follows. a5. The Milner-Rado Paradox and 
(�)Erd}os and Rado onsidered Ramsey's Theorem to be a generalization of thepigeon-hole priniple (for ardinals). In 1965, Milner and Rado [45℄ turnedaround this view, noting that the pigeon-hole priniple is a partition relationwith exponent 1, and that a partition relation with exponent 1 and ordinalresoure and goal would be a pigeon-hole priniple for ordinals.A ase in point of this approah is the easily heked family of partitionrelations �n ! (�n)1 for � � !, n < !, and  < f(�). Soon Milner andRado disovered that basially nothing stronger is true.5.1 Theorem (Milner-Rado [45℄). For all ardinals � � ! and all � < �+,�9 (�n)1n<!:Proof. It is suÆient to prove(�) �� 9 (�n)1n<! for � < �+:



5. The Milner-Rado Paradox and 
(�) 37Clearly we may assume � > !. We prove (�) by trans�nite indution on�. We an write �� = S�<� A� with A0 < � � � < A� < : : : and eahotA� = ��� for some �� < �, where � = f(�) if f(�) > 1 and � =� otherwise. By the indution hypothesis, eah A� = Sn<! A�;n whereotA�;n < �n for � < �, n < !. In the ase of � = !, de�ne a witnessingpartition �� = Sj<! Bj where Bj = A�;n for j = 2�(2n + 1). In the aseof � > !, let B0 := ;, Bn+1 := S fA�;n : � < � g. Clearly �� = Sn<! Bn;and otBn+1 �P�<� �n � �n+1 < �!. aWe state one onsequene of the above theorem giving further limitationson to positive relations (as disussed in Theorem 4.3).5.2 Theorem. For all ardinals � � !, �+ 9 (�n)2n<!.Proof. For � < �+, use Theorem 5.1 to hoose partitions � = Sn<! A�nwith otA�n < �n for eah n < !. De�ne f : [�+℄2 ! ! as follows: for� < � < �+, set f(�; �) = n+ 1 if and only if � 2 A�n. aThe word paradox was used in referene to Theorem 5.1 beause thisresult was so ontrary to expetations. It turned out that the phenomenadesribed in Theorem 5.1 is involved in many problems onerning unount-able ardinals, and often it leads to unexpeted diÆulties.In this setion we are trying to turn this tide and use the paradox in ourfavor. For the remainder of this setion, let � be a �xed in�nite ardinal.5.3 De�nition. For � < �+, all a partition � = S2�A with � < � aMR-deomposition of � if there is a sequene hn :  < � i 2 �! suh thatotA = �n .From Theorem 5.1 and the fat that any Æ < �n is the �nite sum ofordinals of the form �m � � where m < n and � < �, we get the followingorollary.5.4 Corollary. Eah � < �+ has a MR-deomposition.Another way to put De�nition 5.3 is that � has a MR-deomposition ifthere are sequenes hn :  < � i 2 �! and funtions 	 : [�℄n ! � for < � < � suh that 	 is the anonial monotone map from [�℄n orderedlexiographially into �.The next de�nition from [20℄ is motivated by this formulation.5.5 De�nition. Call � < �+ odeable if there are � < � and sequeneshn :  < � i 2 �! and h	 :  < � i so that 	 : [�℄n ! � for  < � andfor every A 2 [�℄�, ot [<�	\ [A℄n = �:



38 I. Partition Relations5.6 De�nition. Let 
(�) be de�ned as the least ordinal 
 � �+ so thateah � < 
 is odeable.Note that this de�nition from [20℄ is only interesting if � is a large ar-dinal, say at least a Jonsson ardinal.The following list of properties of 
(�) proved in [20℄ gives some sense ofthis ordinal for a measurable ardinal � > !.1. 
(�) < �+;2. 
(�) is losed under the operations of ordinal addition, multipliation,exponentiation, and taking �xed points of these operations;3. 
(�) annot be hanged by (�;1)-distributive foring;4. if V �W and both V andW are models of \ZFC + � is measurable",then 
(�)V � 
(�)W ;5. by using generi elementary embeddings in the situation of 4., it ispossible to make 
(�)V < 
(�)W .Moreover, 
(�) is big, e.g. if U is a normal ultra�lter on � and � is the leastordinal suh that L� [U ℄ \ �<� = L[U ℄ \ �<�, then L[U ℄ j= 
(�) = �. Sinethe statement Æ < 
(�) is upwards absolute, this impliation shows thatthe value of 
(�)V is at least as big as �. Moreover � is muh bigger than,for example, the �rst � > � suh that L�[U ℄ is an admissible struture, butmuh to our regret, we must omit the proofs.However, we have to onfess that we know very little about the ombi-natorial properties involved in the de�nitions of 
(�). In fat, we do notknow if 
(�) would beome smaller if we requested that the mappings 	be monotone.6. Shelah's Theorem for in�nitely many olors.In this setion we prove Shelah's Theorem 4.6, that �+ ! (� + �)2� for� < � = f(�) and � = 2<�, under the assumption that � < � � � for somestrongly ompat ardinal �. By Theorem 4.18 we may assume � � !.First we need a lemma that was studied and proved independently in [20℄.We say that B � �+ has essential olors for g, I, where g is a 2-partitionof �+ and I is a normal ideal on �+, if B =2 I and every C � B with C =2 Isatis�es g\ [C℄2 = g\ [B℄2.6.1 Lemma (Redution to essential olors). Assume � < � = f(�), and� := 2<�. Further suppose that g : [�+℄2 ! � is a 2-partition of �+ with �olors, I is a normal ideal onentrating on S�;�+ , and A � �+ is not in I.Then there are a subset B � A and a normal ideal J � I, suh that Bhas essential olors for g; J .



6. Shelah's Theorem for in�nitely many olors. 39Proof. By the normality of I and Fats 3.2 we an hoose N � H(�++)suitable for � suh that g; I; A 2 N , N \ �+ = � < �+, � 2 A, and Nsatis�es the following ondition:(�) : for all C 2 N , if � 2 C � �+, then C =2 I .To see this situation may be assumed, hoose an elementary hain N0 �� � � � N� � H(�++) as in Subsetion 4.4 and use normality to see thatf� 2 S0 : (�) fails for some C g 2 I:To prove the lemma, de�ne a dereasing sequene hA� : � < � i of subsetsof �+ by reursion on � < �. To start the reursion, let A0 := A. Assume0 < � < � and A� is de�ned for � < � in suh a way that(+) : A� 2 N and � 2 A� � �+; for � < �:Put A� = T�<� A� in ase � is a limit ordinal.Suppose A� has been de�ned, and set �� = g\ [A� ℄2. Let I� be the normalideal generated on A� fromI \ P(A�) [ �x � A� : g\ [x℄2 $ �� 	 :If A� =2 I� , then set A�+1 = A� . If A� 2 I� , then it is a �nite or diagonalunion of elements of the generating set. We treat the ase where there is asequene B� = hB�;� : � < �+i suh that A� = S�<�+ B�;�, and for � < �+,B�;� \ (� + 1) = ;, and either B�;� 2 I or g\ [B�;�℄2 $ �� .Then, by elementarity, there is a sequene B� 2 N as desribed above.Moreover, � 2 B�;� for some � < �+ with � < � and � 2 N , and thusB�;� 2 N for this �. We set A�+1 = B�;� for this �. Note that in thisase, � 2 A�+1 =2 I and g\ [A�+1℄2 $ g\ [A� ℄2. This de�nes the sequenehA� : � < �i.Sine g maps pairs from �+ into �, there are at most � < � many � withA� $ A�+1. Let � be the least ordinal with A� = A�+1, and set B := A� .Then I� is a proper ideal on B. The ideal J generated from I[I� is normal,and B =2 J . So by de�nition of I� , B has essential olors for g; J . aGiven a 2-partition g, we say that y and z are olor equivalent over xand write y �gx z if x < y, x < z, ot(y) = ot(z), and the order isomorphism� : x[y ! x[z has �jx = id and is olor preserving: g(�; �) = g(�(�); �(�)).6.2 Corollary. For any 2-partition g : [�+℄2 ! �, and any normal idealJ , if B has has essential olors for g and J , then there is a set C � Bwith B � C 2 J suh that for all � 2 C, for all x 2 [�℄<�, and for all 2 � := g\ [B℄2, the set D(�; x; ) is J-positive, whereD(�; x; ) := f� 2 C : � < � ^ f� g �gx f� g ^ g(�; �) =  g :



40 I. Partition RelationsProof. To see that the set B has the desired property, assume to the ontrarythat for all � in some J-positive set X � B, there are x(�) 2 [�℄<� and(�) 2 g\ [B℄2 suh that the set D(�; x(�); (�)) 2 J . By normality andf(�) = �, there are Y � X with Y =2 J suh that for some x;  one hasx(�) = x, (�) =  for all � 2 Y . Then for some Z � Y with Z =2 Jthe ondition f�g �gx f�g holds for all �; � 2 Z. If for eah � 2 Z theset f� 2 Z : g(�; �) =  g 2 J , then, beause of the normality, for the setW := f Æ 2 Z : 8� 2 Æ \ Z ( g(�; Æ) 6=  ) g both W =2 J and  =2 g\ [W ℄2would hold, ontraditing the fat that B has essential olors for g; J . aThe above lemma and orollary are to be used with di�erent 2-partitions,and hene were stated in generality. Now �x a 2-partition f : [�+℄2 ! � forwhih we seek a homogeneous set of type �+ �.6.3 Lemma (Pulldown Lemma). There is a subset S0 � S�;�+ losed inS�;�+ suh that for all � 2 S0, for all x 2 [�℄<�, and for all z 2 [�+ � (�+1)℄<�, there is a y 2 [�� supx℄<� suh that y �fx z.Proof. By the fats listed in 3.2, there is an elementary hain hN� : � <�+i � H(�++) with hN�;2i � hN� ;2i � H(�++) for � < � < �+ andf 2 N0 and S0 = f� < �+ : N� \ �+ = � g.Then Lemma 6.3 is true by reetion. aThe Pulldown Lemma 6.3 does not say anything about the olors of edgesthat go between the sets y and z, while Corollary 6.2 detailed a situation inwhih any essential olor may be pre-seleted.We apply Lemma 6.1 to f and the smallest normal ideal on �+, the non-stationary ideal, to get B0 � S0 and J0, so J0 is a normal ideal extendingthe non-stationary ideal, and B0 has essential olors for f; J0. We applyCorollary 6:2 to get A0 � B0 so that B0�A0 2 J0 and the other onditionsof the orollary hold for all � 2 A0. Then we hoose �0 2 A0, and putT := A0 � �0.6.4 Lemma. There exists a funtion h : T � T ! � suh that for allx 2 [�0℄<� and z 2 [T ℄<� there is a y 2 [�0 � supx℄<� suh that(a). y �gx z via � : x [ y ! x [ z and(b). g(�; � 0) = h(�(�); � 0) for all � 2 y, � 0 2 z.Proof. As � is strongly ompat is suÆes to show that for every Z 2 [T ℄<�there exists a funtion H : Z � Z ! � as required.Assume for the sake of ontradition that for every H : Z �Z ! � thereis an xH 2 [�℄<� suh that for all y � ��supxH satisfying (a), the funtiongiven by (b) is not H .Let x = S fxH : H : Z � Z ! � g. Then jxj < � as jxj � �jZj < �, sine� is strongly inaessible.



6. Shelah's Theorem for in�nitely many olors. 41By Lemma 6.3, there is a y satisfying (a). Then (b) de�nes a funtionH : Z � Z ! �. By the de�nition of x, the set xH � x is a set on whihthe funtion de�ned by (b) for y is not H , and that is a ontradition. aNow we de�ne k : [�+℄2 ! �� � for u; v 2 �+ with u < v byk(u; v) = hf(u; v); h(v; u)i:Next apply Lemma 6.1 and Corollary 6.2 to k and the normal ideal J0 andthe set T .6.5 Corollary. We get a normal ideal J1 � J0, a non-empty set � � ���,and subsets S1 � B1 � T with B1 =2 J1, B1 � S1 2 J1 suh that B1 hasessential olors for k; J1, and for eah � 2 S1 and for eah x 2 [�℄<� andh; Æi 2 � the set E(�; x; h; Æi) is J1-positive, whereE(�; x; h; Æi) := �� 2 S1 : � < � ^ f�g �kx f�g ^ k(�; �) = h; Æi	 :6.6 Lemma. There is a subset a 2 [S1℄<� suh that for every partition ofa, say a = S f a� : � < � g, there is a � < � suh that for every  < �, thereis a subset b�; of a� of type � homogeneous for f in the olor .Proof. Notie that sine S1 � B0 � S0 with B =2 J1 � J0 � I for thenon-stationary ideal I , we may assume that for the N suitable for � in theproof of Lemma 6.1 and � = N \ �+, we have � 2 S1. Hene S1 has theproperty that any partition of it into � piees has a part A (hose the onewith � 2 A) whih ontains a homogeneous subset of type � > � for every 2 f\ [S1℄2, else just like in the proof of the Erd}os-Rado Theorem 3.10(apply it to the funtion that is 1 on pairs f sends to  and 0 elsewhere),there would be a B � A with B =2 I and  =2 f\ [B℄2.By the strong ompatness of �, there must be a set a � S1 of size < �satisfying the same statement as S1 about f , all partitions into � parts andthe existene of homogeneous subsets of type � for all olors  2 f\ [S1℄2. aWe now desribe the onstrution of the required homogeneous set.Reall that immediately following Lemma 6.3 we hose �0. Next hoosea as in Lemma 6.1 Then hoose �1 2 S1 satisfying Corollary 6.5.Then �0 < a < �1.De�ne a;Æ := fu 2 � : g(u; �1) = h; Æi g.By Lemma 6.6 there is a h0; Æ0i 2 � suh that a0;Æ0 ontains a subsetof type � homogeneous for olor  for every , hene it ontains a subsetb � �0;Æ0 of type ot b = � homogeneous for f in olor Æ0. This will be \ourolor" and b will be the \�-part" of our set. We are going to onstrut the\�-part" of the set by trans�nite reursion on � < � as follows. Assume� < k and we have onstruted X = X� of order type � homogeneous for fin olor Æ0 and so that all edges from x to b [ f�1g have olor Æ0.



42 I. Partition RelationsWe now apply Corollary 6.2 to �1, and X [ b and we obtain an �2 2 S1,with �1 < �2 suh that �1 �kX[b �2 and k(�1; �2) = h0; Æ0i.As a orollary of this we have Æ0 = f(u; �1) = f(u; �2) for u 2 X andh(v; �1) = h(v; �2) = Æ0 for v 2 b.Apply Lemma 6.4 for � to X , b [ f�1; �2g � T . We get b0 [ f�01; �02g.We laim that X�+1 = X [ f�02g is homogeneous in olor Æ0 and sends alledges to b [ f�1g of olor Æ0.Indeed f(u; �02) = f(u; �2) = Æ0 for u 2 X by the equivalene over X .For v 2 b, we have f(�02; v) = h(�2; v) = h(�1; v) = Æ0. By hoie of �2,we have k(�1; �2) = hg(�1; �2); h(�2; �1)i = h0; Æ0i. Hene f(�02; �1) = Æ0also.7. Singular Cardinal ResouresIt should be lear to the attentive reader that neither the rami�ationmethod as desribed in Remark 2.4 nor its re�nements disussed up tonow an yield any spei� partition results for a singular resoure. To getsuh results the method of anonization was invented in [15℄.7.1 De�nition. Assume f : [�℄r !  is an r-partition of length  of �,and hA� : � < � i is a sequene of disjoint subsets of �. Then f is said tobe anonial on hA� : � < � i if f(x) = f(y) for all x; y 2 A := S�<� A�whenever x; y are positioned the same way in the sequene, i.e. ifjx \ A� j = jy \A� j for all � < �:The idea is that, for a singular ardinal �, we want to �nd a sequenehA� : � < f(�) i with jA� j < � for � < f(�), and A := S fA� : � < f(�) gof power � suh that f is anonial on hA� : � < f(�) i and use it to pieetogether large homogeneous sets. The following is the lassial anonizationtheorem.7.2 Theorem (General Canonization Lemma [15℄). Suppose that � � 2 isa ardinal, r � 1 is an integer, h �� : � < � i is a stritly inreasing sequeneof in�nite ardinals with �0 � � j�j and exp( r2 )(��) < exp( r2 )(��) for � <� < �. For any disjoint union A = _S fA� : � < � g, and any oloringf : [A℄r ! � , if jA� j � �exp( r2 )(��)�+ for all � < �, then there are setsB� � A� for � < � so that jB� j � ��+ and the sequene hB� : � < � i isanonial with respet to f .We are omitting the proof, sine any reader with some experiene in om-binatoris should be able to reonstrut it, and sine neither this proof northe subsequent proofs fall into the line of the methods we are desribing. We



7. Singular Cardinal Resoures 43inlude anonization results beause we think that no hapter on partitionrelations would be omplete without them.Here is the very �rst appliation of Theorem 7.2.7.3 Theorem (Redution Theorem). Assume � > f(�) is a strong limitardinal. Then �! (�; ��)21��< if and only if f(�)! (f(�); ��)21��< .Indeed, the next theorem is the only one obtained for a singular resoureusing a method di�erent from anonization. The elementary proof of thetheorem is left to the reader (see [14℄).7.4 Theorem (Erd}os; Dushnik and Miller [9℄). For every in�nite ardinal�, �! (�; !)2.See also [14℄ for a proof. Added in Proof: The General CanonizationLemma implies Theorem 7.4 for singular strong limit � and for f � > !it yields � ! (�; ! + 1)2. It has been a longstanding problem if this par-tition relation holds if we do not assume that � is strong limit. ReentlySaharon Shelah [55℄ proved this partition relation holds under the muhweaker ondition that 2f � < �.Erd}os, Hajnal and Rado in [15℄ pursued the idea of �nding the rightgeneralization of the form �! (�; !1)2 for singular �. The �rst possible aseis � = �+ , where  = 2!, and the Redution Theorem 7.3 gives a positiveanswer in ase � is a strong limit. The very �rst question of the Erd}os-Hajnalproblem list [12℄ asks if this additional hypothesis is neessary. Shelah andStanley in [61℄ and [62℄ proved that the partition relation �! (�; !1)2 anbe both false and true if � is not a strong limit ardinal. A desription ofthis deep result is beyond the sope of this setion.There is one more anonization result that we want to mention. It wasisolated during the disussion of the ordinary partition relation in the book[14℄ that the following result should be true, and Shelah later proved it.7.5 Theorem (Shelah [58℄). Assume that � is a singular ardinal of weaklyompat o�nality. If � < 2<� and 2� < 2<� for � < �, then2<� ! (�)22:To prove this partition relation, Shelah worked out a new group of an-onization results in [58℄. We only state here one of the main results. Calla sequene of ardinals h�� : � < � i exponentially inreasing if � < � < �implies 2�� < 2�� . A sequene of sets hB� : � < � i is weakly anonial iff(u) = f(v) whenever u; v 2 [B℄r (B = S�<�B�) and ju\B� j = jv\B� j � 1for every � < �. A set F � P(A) sustains A over � if for every X � A withjX j = (2�)+, there is Y 2 F so that Y � X and jY j = �+.7.6 Theorem (Shelah's Canonization Lemma [58℄). Suppose h�� : � < � iis an exponentially inreasing sequene of in�nite ardinals with �0 � �; �; !,



44 I. Partition Relationsfor a ardinal � � 2. Then for any disjoint union A = _S fA� : � < � g,any sequene hF� � P(A�) : � < � i, and any oloring f : [A℄2 ! � , ifjA� j > 2�� and F� sustains A� for all � < �, then there is a sequenehB� : � < � i weakly anonial with respet to f with jB� j = ��+ for all� < �.8. Polarized Partition RelationsPolarized partition relations were de�ned in the introdution. We do nothave the spae to give an orderly disussion of the problems and resultson this partition relation. Rather, we will only give a few examples, wherethe method of elementary submodels desribed in the previous setion anbe resourefully used. The �rst appearane in the literature of the use ofelementary submodels for the proofs of polarized partition relations is thefollowing theorem of Albin Jones whih generalizes a result of Erd}os, Hajnaland Rado [15℄ from 1965:8.1 Theorem (A. Jones [30℄). Let � be an in�nite ardinal and � = 2<�.Then the following polarized partition relation holds:0� �+�+ 1A! 0� �+  �+ 1or ; �+ �+ 1 1A1;1 :In the remainder of this setion, we apply the method of elementarysubmodels using the \method of double rami�ation".8.1. Suessors of weakly ompat ardinalsThe �rst example is hosen with an eye to a lean presentation of themethod.8.2 Theorem (Baumgartner and Hajnal [3℄). Suppose that � is a weaklyompat ardinal. Then� �+� �! � �� �1;1 for  < �.Before going into the details of the proof, we give some historial remarksand state an open problem. In [26℄, Hajnal proved that for measurable �,the following partition relations holds:� �+� �! � �� �1;n<� for n < ! and � < �+.



8. Polarized Partition Relations 45In an early paper of Choodnovsky [6℄, it was laimed that� �+� �! � �� �1;1<� for � < �+remains valid for weakly ompat �, but no proof was given. Realizing thatthis laim was by no means obvious, both Kanamori [32℄ and Wolfsdorf [67℄published proofs that the relation is true for two olors:� �+� �! � �� �1;12 for � < �+Theorem 8.2 was generalized in the thesis of Albin Jones [27℄, [29℄, whoproved, using elementary submodels, that for weakly ompat ardinals �,� �+� �! � � �� �m ; � �n� � �1;1 for m;n < �,  < �, � < �+.To the best of our knowledge, the following problem remains unsolved.8.3 Question. Does the partition relation� �+� �! � �� �1;1! hold for all weakly ompat � � !, � � �!?The rest of this subsetion is devoted to the proof of Theorem 8.2 for� > !. To that end, let � > ! be a weakly ompat ardinal, and letf : �+ � � !  be a �xed partition. We outline bakground assumptionsbelow, using work from earlier setions.8.4 De�nition. Let h hN�;2i : � < �+ i be a sequene of elementary sub-models of H(�++) satisfying 3.2 with � = �<� = � and A = ffg. Leth I� : � < �+ i be the ideals de�ned in 3.4 and letS0 := �� < �+ : �(N�) = � ^ f(�) = � ^ N� is suitable	as de�ned in subsetion 4.2. Note that for � 2 S0, I� is a �-omplete properideal, by 3.6.8.5 De�nition. Call N = hN�;� : � < �+ ^ � < � i a double rami�ationsystem for hN� : � < �+ i as in De�nition 8.4 if for eah � < �+, the se-quene hN�;� : � < � i 2 N�+1 is an inreasing ontinuous sequene of ele-mentary submodels ofN� withS fN�;� : � < � g = N� suh that jN�;�j < �for � < �.



46 I. Partition RelationsWe use the name double rami�ation system sine, as we explained in theproof of the Erd}os-Rado Theorem, the N�'s play the role of the rami�ationsystem of Erd}os and Rado.Just like in 3.2, using general fats about elementary submodels, and theunountability and strong Mahloness of �, we an see that there is a systemsatisfying the next de�nition.8.6 De�nition. Let N = hN�;� : � < �+ ^ � < � i be a double rami�a-tion system suh that for eah � 2 S0 there is a T 0� � �, with T 0� 2 Stat(�)satisfying the following onditions for all � 2 T 0�:1. N�;� \ � = � > ;2. � is a regular ardinal; and3. [N�;�℄<� � N�;�.Next we relativize ertain important sets to the submodels of the doublerami�ation system.8.7 De�nition. For eah � 2 S0 and � 2 T 0�, de�ne the following sets:1. X�;� := N�;� \ �+;2. I�;� := fX � � : (9Y )(Y � � ^ Y 2 N�;� ^ � =2 Y ^X � Y ) g;3. Î�;� := fX � X�;� : (9Y )(Y � �+ ^ Y 2 N�;� ^ � =2 Y ^X � Y ) g.8.8 Lemma. For � 2 S0 and � 2 T 0�, both I�;� and Î�;� are �-ompleteideals, and I�;� is proper.Proof. The �rst statement follows from the fat that [N�;�℄<� � N�;�. Tosee that I�;� is proper, then just like in Lemma 3.6, assume Z � �, � 2 Zand Z 2 N�;�. Then supZ 2 N�;�, hene supZ = � and supZ \ � = �.This implies � =2 I�;� . aNote that Î�;� is proper for many � and � as well (see 8.11 below).Notation. For all � < , letf#(�; �) := f � < � : f(�; �) = � g for � < �+, andf"(�; �) := f� < �+ : f(�; �) = � g for � < �.8.9 De�nition. For � 2 S0 and � 2 T 0�, leta�;� := � � <  : f#(�; �) \ � =2 I�;� 	 :Note that a�;� 6= ; by Lemma 8.8 and the fat that  < �.



8. Polarized Partition Relations 478.10 Lemma (Main Lemma). There are subsets a �  and S � S0 withS 2 Stat(�+), and for eah � 2 S, there is a subset T� � T 0� with T� 2Stat(�), so that f(�; �) 2 a = a�;� for all � 2 S and � 2 S fT� : � 2 S g.Proof. First thin eah T 0� for � 2 S0 to a stationary subset T 1� so that forsome a�, one has a�;� = a� for all � 2 T 1�. Then thin S0 to a stationarysubset S1 so that for some a �  and for all � 2 S1, a� = a. We mayassume without loss of generality that  < � for all � 2 T 1�.Notie that for all � 2 S1 and all � 2 T 1�, if � =2 a, then f#(�; �) \� 2 I�;� . Hene, by the de�nition of f# and the �-ompleteness of I�;� ,it follows that f � < � : f(�; �) =2 a g 2 I�;� . By De�nition 8.7, for � 2 S1and � 2 T 1�, we an hoose sets Y�;� � � suh that � =2 Y�;� 2 N�;� andf � < � : f(�; �) =2 a g � Y�;� . Using Fodor's Theorem twie, we get Y � �,S � S1 with S 2 Stat(�+), and 
T� � T 1� : � 2 S � suh that T� 2 Stat(�)for all � 2 S, and Y�;� = Y for � 2 S and � 2 T�.Consequently, for all � 2 S fT� : � 2 S g, we have � =2 Y , sine � =2Y�;� = Y . However, if � 2 S and � < � are suh that f(�; �) =2 a, then forsome � 2 T�, one has � 2 Y�;� = Y , so the theorem follows. a8.11 Corollary. There is an � < �+, so that for �-many �, the followingondition holds:(+)(9� < )(f#(�; �) \ � =2 I�;� ^ f"(�; �) \X�;� =2 Î�;�):Proof. Let � be suh that S \ � =2 I�. Suh an � must exist by Corol-lary 4.8. A standard argument shows that if S \ � =2 I�, then W =n � < � : S \ � \X�;� 2 Î�;� o is non-stationary in �. By Main Lemma8.10, f(�; �) 2 a for � 2 T� and � 2 S\�\X�;� . Hene f"(�; �)\X�;� =2 Î�;�for some � 2 a and for every � 2 T��W . On the other hand, f#(�; �)\ � =2I�;� for all � 2 a and for every � 2 T�. a8.12 Lemma (Compatness Lemma). Assume that for some � < �+ thereare �-many � so that for some A� � X�;�, B� � � with otA� = otB� = �,the set A� �B� is homogeneous for f . Then there are A � �+, B � � withotA = �+ 1 and otB = � suh that A�B is homogeneous for f .Proof. Use the weak ompatness of � via its �11-indesribability. aAfter all these preliminaries, Theorem 8.2 now follows from Corollary8.11, the Compatness Lemma 8.12 above, and the Reetion Lemma below.8.13 Lemma. Assume that for � as in Corollary 8.11 and for some � < ,the ordinal � satis�es the formula (+) of 8.11. Then there are A � X�;�,B � � with otA� = otB� = � so that A �B is homogeneous for f in olor�.



48 I. Partition RelationsProof. Let A := f"(�; �) \X�;� and let B = f#(�; �) \ �. Sine (+) holdsfor � and �, we know that B =2 I�;� and A =2 Î�;� . These last two statementsimply the existene of the sets A, B as required. Indeed, we an de�nesequenes A = f a� : � < � g � A and B = f b� : � < � g � B by trans�nitereursion on � < � so that for all �0; �00 < �,f(a�0 ; b�00) = �,a�0 2 f"(�; �),b�00 2 f#(�; �).At stage � < �, assume this has been done for �0; �00 < �. First hoose a�.Toward that end, letZ�� := �� < �+ : f(�; b�00) = � for all �00 < �	 :Then � 2 Z�� sine b�00 2 f#(�; �) for all �00 < �. Sine f , f b�00 : �00 < � g 2N�;�, it follows that Z�� 2 N�;�. So Z�� \A� fa�0 : �0 < � g is not in Î�;�,so we an hoose �� from it.Then hoose b� similarly using f"(�; �) in the role of f#(�; �) and I�;�instead of Î�;� and taking are to make f(a�0 ; b�) = � for �0 � �. a8.2. Suessors of singular ardinalsIn this subsetion we investigate the following question.8.14 Question. Assume � is a singular strong limit ardinal and  < �.Under what irumstanes does the following partition relation hold?(�) � �+� �! � �� �1;1The problem was isolated in Problem 11 of [15℄, where it was asked if (�)holds for � = �!1 under GCH. In the same paper, it was proved that (�)holds provided f(�) = !, but we omit the proof of this fat.After about thirty years, a shoking partial result was proved by SaharonShelah.8.15 Theorem (Shelah [60℄). Assume � is a singular strong limit ardinalof unountable o�nality. Then (�) holds if 2� > �+.For another proof of this result, see Kojman [34℄. A little extra informa-tion is ontained in an unpublished result of M. Foreman, whih we provehere using the result of Shelah.



8. Polarized Partition Relations 498.16 Theorem (Foreman unpublished). Suppose that � is a singular stronglimit ardinal in V and (2�)V > (�+)V . Then there is a �-omplete partialorder P whih satis�es the (2�)+-hain ondition so thatV P j= 2� = �+ and � �+� �! � �� �1;1 for  < �.Proof. We an hoose for P the �+-omplete Levy ollapse of 2<� to �+.For every p 2 P and every name for a partition _f , we an de�ne in V adereasing sequene h p� j � < �+ i of onditions and a funtion g : �+��! suh that p0 = p and8� < �+ 8� � � 8� < � p�  _f(�; �) = g(�; �):By Theorem 8.15, we an hoose A, B suh that A�B is homogeneous forg and jAj = jBj = �. For some � < �, we have A;B � � and thenp�  9A 9B (jAj = jBj = � ^ A�B is homogeneous for _f)Hene V P satis�es the laim. aAll other problems remain unsolved, even for  = 2. For notationalonveniene, for the rest of this setion let � = f(�). We may assume that� > !, and we will embark on a lengthy proof of a mild strengthening ofthe result of Shelah.8.17 Theorem. Suppose that � is a singular strong limit ardinal of un-ountable o�nality �. Then (��) holds if 2� > �+:(��) � �+� �! � �+ 1� �1;1The proof we are going to desribe will be a double rami�ation, quitesimilar in struture to the proof of Theorem 8.2 and di�erent from thesimpli�ed proof of Theorem 8.15 in Kojman [34℄.8.18 De�nition. Choose ~� = h�� : � < � i to be an inreasing ontinuoussequene of ardinals satisfying the following properties:1. sup f�� : � < � g = �;2. � < �0; and3. 2�� < ��+1 = f(��+1) for � < �.We use results of Shelah's pf theory [59℄ to guarantee the existene ofthe sequene delineated in the next de�nition.



50 I. Partition Relations8.19 De�nition. Choose ~� = h�� : � < � i to be an inreasing sequeneof regular ardinals with �� < �� < � for � < � suh that the produt� :=Q�<� �� satis�es(8�'� : � < �+ 	 � �) ( 9' 2 �) (8� < �+ ) ('� � ' )where � is the relation of eventual domination on �.We now hoose a sequene of models to serve as the skeleton of a doublerami�ation.8.20 De�nition. Let A := � [ n�; f; ~�;~�o. Using 3.2, we an hoose aninreasing hain h hN�;2i : � < �+ i of elementary submodels of H(�++)with A 2 N0 suh thatS0 := �� < �+ : �(N�) = � > � ^ f(�) = � ^ N� is suitable for �	is a lub in S�;�+ . As in De�nition 3.4, we de�neI� := �X � �+ : 9Y (Y � �+ ^ Y 2 N� ^ � =2 Y ^ jX � Y j < �)	 ;and note that sine � is singular, the last ondition may no longer be re-plaed by X � Y .8.21 Fats. The following statements hold.1. I� is a �-omplete proper ideal for all � 2 S0;2. for every stationary S � S0, there is some � 2 S so that S \ � =2 I�;3. for every � 2 S0, every X 2 P(�)� I� and every � < �, there is someW � X with jW j = � so that W 2 N�.Proof. The �rst item follows from Lemma 3.6, and the seond from Corol-lary 4.8. To see that the third item holds, �x � 2 S0, and assume X 2P(�) � I�. By the de�nition of I�, we have jX j � �. Let � < � be given.Sine f(�) = � < �, there is a � < � with jX\�j � � . Sine N� � H(�++)and � 2 N�, there is some U in N� with jU j < � and jX \ U j � � . Thenany W � X \ U with jW j = � satis�es the requirement of the item sinejP(U)j < � and therefore P(U) � N�. aFor notational onveniene, we use the same names for our double rami-�ation system here as in the proof of Theorem 8.2.8.22 De�nition (Double rami�ation). For eah � 2 S0, we hoose <�, awell-ordering of type � of N�. Choose N = hN�;� : � < �+ ^ � < � i forthe skeleton hosen above so that for � 2 S0, the sequene hN�;� : � < � iis inreasing, ontinuous and internally approahable and satis�es the fol-lowing onditions:



8. Polarized Partition Relations 511. A 2 N�;0;2. �� � N�;� , jN�;� j = �� , and N�;� ontains the �th setion of N�;� inthe well-ordering <� for eah � < �.Next we relativize ertain important sets to the submodels of the doublerami�ation system.Notation. For eah � 2 S0, de�ne the set X�;� := N�;� \�� for � < � andthe funtion '� : �! � so that '�(�) := supX�;� .The following fats follow from De�nition 8.19 of � and ~�.8.23 Lemma. For all � 2 S0, the funtion '� is in �, and there is afuntion ' 2 � whih eventually dominates all the '� for � 2 S0. That is,for eah � 2 S0, there is some �� < �, so that '�(�) < '(�) for all � with�� � � < �.For the remainder of this setion, �x a funtion ' whih eventually dom-inates all the '� for � 2 S0, and let �� as above be the point at whihdomination sets in.8.24 De�nition. For � 2 S0 and � with �� � � < �, de�neI�;� := fX � � : 9Y (Y � � ^ Y 2 N�;� ^ '(�) =2 Y ^ jX � Y j < ��) g :8.25 Lemma. Let � 2 S0 and � with �� � � < � be given. Then1. I�;� is a proper ideal;2. for eah X � X�;� with X 2 I+�;� , there is a W � X with jW j = ��so that W 2 N�;�+1.Proof. For the �rst item, note that the set I�;� is an ideal beause N�;� islosed with respet to �nite unions. To see that X�;� =2 I�;� , let Z 2 N�;�be a subset of �� with '(�) 2 Z. It is enough to show jZ \ X�;� j � �� .Now Z 2 N�;� and supZ 2 N�;� . Hene supZ = �� . Thus there is aone-to-one funtion g : �� ! Z. Using the fat that �� and �� are in N�;� ,by elementarity, there is a funtion g 2 N�;� like this. Using the fat that�� + 1 � N�;� , we get that ran(g) � N�;� \ �� = X�;� .For the seond item, there is a subsetW � X with jW j = �� by De�nition8.24. Also, by De�nition 8.22, we know that X�;� 2 N�;�+1, 2�� < ��+1and P(X�;�) � N�;�+1. Therefore W 2 N�;�+1 as required. aReall the notation f#(�; i) introdued after Lemma 8.8:f#(�; i) := f � < � : f(�; �) = i g for � < �+, i < .



52 I. Partition RelationsUsing the fats that ; ! < � and 2� < �, we an show diretly that� �+� �! � Stat(�+)Stat(�) �1;1 :We get the next lemma by applying this partition relation to the oloringf Æ ' of �+ � �.8.26 Lemma. There are S � S0, T � �, � < � and i <  suh thatS 2 Stat(�+), T 2 Stat(�), � \ T = ;, '\ T � f#(�; i) and �� = � for all� 2 S.We now prove our main laim.8.27 Lemma (Main Claim). There is an � 2 S suh that S \ � =2 I� and� � 2 T : f#(�; i) \X�;� =2 I�;� 	 2 Stat(�):Proof. By Corollary 4.8, it is suÆient to see that�� 2 S : � � 2 T : f#(�; i) \X�;� =2 I�;� 	 2 Stat(�)	 2 Stat(�+):Let T� := � � 2 T : f#(�; i) \X�;� 2 I�;� 	 for � 2 S. Assume by way ofontradition that for some S0 2 Stat(�+)\P(S), one has T� 2 Stat(�) forall � 2 S0.For � 2 S0, � 2 T�, hoose Y�;� satisfying the following onditions:Y�;� � �� , Y�;� 2 N�;� , '(�) =2 Y�;� , and jf#(�; i) \X�;� � Y�;� j < �� . Foreah � 2 S0, by Fodor's Theorem, the sets Y�;� stabilize on a stationarysubset of T�. That is, for eah � 2 S0, there are T 0� � T� with T 0� 2 Stat(�),Y� and �� < � suh that Y�;� = Y� and jf#(�; i) \ X�;� � Y�;� j � �� for� 2 T 0� and Y� \ f'(�) : � 2 T 0� g = ;:Note that S fX�;� : � 2 T 0� g = �, henejf#(�; i)� Y�j � ��:Now, using Fodor's Theorem again, Y� stabilizes on a stationary subset ofS0. That is, there are T 0 2 Stat(�), Y and � suh that for some S00 2Stat(�+) \ P(S0), one has T 0� = T 0, Y� = Y and �� = � for all � 2 S00.Now hoose two elements �0; �0 2 S00 with �0 < �0, and let �0 2 T 0 be suhthat �0 2 N�0;�0 and ��0 > �. Sine �0 2 S00 � S and �0 2 T 0 � T , it followsthat f(�0; '(�0)) = i by Lemma 8.26. In other words, '(�0) 2 f#(�0; i).However, f#(�0; i) 2 N�0;�0 , henef#(�0; i) \X�0;�0 =2 I�0;�0 :This last fat ontradits the inequality jf#(�0; i)� Y j < � and the lemmafollows. a



9. Countable Ordinal Resoures 53To �nish the proof of Theorem 8.17 using the Main Claim 8.27, we want tode�ne sequenes hA� : � < � i with A� � � and hB� : � < � i with B� � S0so that the sets are pairwise disjoint, jA�j = jB�j = ��, A� ; B� 2 N�;��for some �� 2 T 0, where T 0 := � � 2 T : f#(�; i) \X�;� =2 I�;� 	 is the setde�ned in the Main Claim 8.27, and f is onstantly i on the set[�<�B� [ f� g � [�<�A�:To arry out an indution of length � to de�ne the desired sequenes, weonly need the following lemma.8.28 Lemma. Assume A;B 2 N�;� for some � 2 T 0, B � S, � < �, andf is homogeneous of olor i on (B [ f� g) � A. Then the following twostatements hold.1. There is C 2 [�� (A[B)℄� with C � T� f#(�; i) : � 2 B [ f� g	 sothat for some �0 2 T 0 with ��0 > �, one has C 2 N�;�0 .2. There is D 2 [S � (A [ B)℄� with A � T� f#(�; i) : � 2 D 	 so thatfor some �0 2 T 0 with ��0 > �, one has D 2 N�;�0 .Proof. For the �rst item, hoose �0 2 T 0 with �0 > � and ��0 > �. By thede�nition of S, we know f(�; '(�0)) = i for � 2 B[f� g. By the Main Claim8.27, we know that f#(�; i) \X�;�0 =2 I�;�0 . Let Z = T� f#(�; i) : � 2 B 	.Then Z 2 N�;�0 and '(�0) 2 Z. Hene jZ \ f#(�; i)\X�;�0 j � � by Lemma8.25, and we an hoose a subset of this intersetion for C.For the seond item, the set Z := T� f"(�; i) : � 2 A	 is in N�;� and� 2 Z. Sine S \ � =2 I�, we an hoose a suitable D by Fats 8.21. a9. Countable Ordinal Resoures9.1. Some historyIn this setion we look at ordinal partition relations of the form �! (�;m)2for limit ordinals � and � of the same ardinality. The goal m will be takento be �nite, sine if � : �! j�j is a one-to-one mapping, then the partitionde�ned on pairs x < y < � byf(x; y) = (0; if x < y and �(x) < �(y)1; if x < y and �(x) > �(y)shows that � 6! (j�j + 1; !)2.This partiular branh of the partition alulus dates bak to the 1950's,in partiular to to the seminal paper of Erd}os and Rado [19℄ whih in-trodued the partition alulus for linear order types and to the paper ofSpeker [63℄, in whih he proves the following theorem.



54 I. Partition Relations9.1 Theorem (Speker [63℄). The following partition relations hold:1. !2 ! (!2;m)2 for all m < !.2. !n 6! (!n; 3)2 for all 3 � n < !.The �nite powers of ! are all additively indeomposable (AI), sine theyannot be written as the sum of two stritly smaller ordinals. It is well-known that the additively indeomposable ordinals are exatly those of theform ! (see Exerise 5 on page 43 of Kunen [36℄, [37℄). We will fouson additively indeomposable � and �. There are additional ombinatorialompliations for deomposable ordinals.For notational onveniene in disussions of � ! (�;m)2, all � theresoure, � the 0-goal and m the 1-goal.For a spei�ed ountable 0-goal � and �nite 1-goal m, it is possible todetermine an upper bound for the resoure � needed to ensure that thepositive partition relation holds. In partiular, Erd}os and Milner showed!1+�m ! (!1+�; 2m)2. This result dates bak to 1959 and a proof appearedin Milner's thesis in 1962. See also pages 165-168 of [66℄ where the proof isgiven via the following stepping-up result:9.2 Theorem. Suppose , Æ are ountable and k is �nite.If ! ! (!1+Æ ; k)2, then !+Æ ! (!1+Æ; 2k)2.9.3 Corollary (Erd}os and Milner [16℄). If m < ! and � < !1, then!1+��` ! (!1+�; 2`)2.The partition alulus for �nite powers of ! is largely understood via theresults below of Nosal. Her work built on 9.3 and earlier work by Galvin(unpublished), Hajnal, Haddad and Sabbagh [24℄, Milner [43℄.9.4 Theorem (Nosal [47℄, [48℄).1. If 1 � ` < !, then !2+` ! (!3; 2`)2 and !2+` 6! (!3; 2` + 1)2.2. If 1 � ` < ! and 4 � r < !, then !1+r�` ! (!1+r; 2`)2 and!r+r�` 6! (!1+r; 2` + 1)2:Some progress has been made for the ase in whih the goal is !4. Nosalshowed in her thesis that !6 6! (!4; 3)2, whih is sharp, sine !7 ! (!4; 4)2by Corollary 9.3. Darby (unpublished) has shown that !9 6! (!4; 5)2.9.2. Small CounterexamplesIn this setion we look at partition relations of the form � 6! (�;m)2 forlimit ordinals � and m < !.In the previous setion, we noted that E. Speker proved that !n 6!(!n; 3)2. In the 1970's, Galvin used pinning, de�ned below, to exploit theounterexample !3 6! (!3; 3)2 to the full.



9. Countable Ordinal Resoures 559.5 De�nition. Suppose � and � are ordinals. A mapping � : �! � is apinning map of � to � if otX = � implies ot�\X = � for all X � �. Wesay � an be pinned to �, in symbols, �! �, if there is a pinning map of �to �.9.6 Theorem (Galvin [22℄). For all ountable ordinals � � 3, if � is notAI and � = !�, then � 6! (�; 3)2.The �rst ountable ordinal not overed by the Speker and Galvin resultsmentioned so far is !!. Chang showed that !! ! (!!; 3)2 and Milnermodi�ed his proof to work for all m < !.9.7 Theorem (Chang [5℄; Milner; see also [39℄, [66℄). For all m < !,!! ! (!!;m)2:Chang's original manusript was about 90 pages long, and he reeived$250 from Erd}os for this proof, one of the largest sums Erd}os had paid tothat time. Paul Erd}os ontinued to fous attention on partition relations ofthe form �! (�;m)2 through o�ering money. In 1985, he [11℄ o�ered $1000for a omplete haraterization of those ountable � for whih �! (�; 3)2.9.8 De�nition. Any ordinal � an be uniquely written as the sum of AIordinals, � = �0 + � � � + �k with �0 � � � � � �k. This sum is alled theadditive normal form (ANF) of �, and in this ase, we say the ANF of �has k + 1 summands. The summand �k is alled the �nal summand. Theinitial part of the ANF of � is �0 + � � �+ �k�1 if k > 0 and, for notationalonveniene, is 0 if � is AI.An AI ordinal � is multipliatively indeomposable (MI) if it is annot bewritten as a produt  � Æ where , Æ are AI and � >  � Æ. Any AI ordinal� an be written uniquely as a produt of MI ordinals � = �0 � : : : � �kwith �0 � � � � � �k. This produt is alled the multipliative normal form(MNF) of �, and in this ase, we say the MNF of � has k + 1 fators. Thefator b� := �k is alled the �nal fator. The initial part of the MNF of � is� := �0 + � � �+�k�1 if k > 0 and, for notational onveniene, is � := 1 if �is MI.Note that if � = !�, then � is MI exatly when � is AI. Thus Galvin'sresult (Theorem 9.6) may be rephrased to say that for all ountable ordinals� > !2, if � is not MI , then � 6! (�; 3)2. In the 1990's, Carl Darby [7℄and Rene Shipperus [54℄, [52℄ working independently, ame up with newfamilies of ounterexamples for MI ordinals �. Larson [40℄ built on theirwork to improve one of the results obtained by both of them.9.9 Theorem.1. (Darby) If � = !�+1 and m! (4)3232 , then !!� 6! (!!� ;m)2.



56 I. Partition Relations2. (Darby; Shipperus; Larson) If � �  � 1, then !!�+ 6! (!!�+ ; 5)2.3. (Darby; Shipperus) If � �  � Æ � 1, then !!�++Æ 6! (!!�++Æ ; 4)2.4. (Shipperus) If � �  � Æ � " � 1, then !!�++Æ+" 6! (!!�++Æ+" ; 3)2.We plan to sketh a proof that there is some �nite k so that !!2 9(!!2 ; k)2, using the basi approah developed by Darby and some of hisonstrution lemmas. Surprisingly, the partition ounterexamples devel-oped by Darby and Shipperus were the same, even if their approahes touniformization were at least osmetially di�erent.Rather than working diretly with the ordinals, we use olletions of�nite inreasing sequenes from ! under the lexiographi ordering. Sineour sequenes are inreasing, we will identify them with the set of theirelements.We write s_t for the onatenation of the two sequenes under the as-sumption that the last element of s is smaller than the �rst element of t, insymbols s < t.We extend the notion of onatenation from individual sequenes to setsof sequenes by settingS_T := f s_t j s 2 S ^ t 2 T ^ s < t g :9.10 De�nition. De�ne sets G� for � = !` by reursion on 1 � ` < !.G! := f hm i_ h k1; k2; : : : ; km i j m < k1 < k2 < � � � < km < ! gG!k+1 :=[8<: f hm i g_ m opiesz }| {G!k_ � � �_G!k j m < !9=;Given a olletion of sequenes S and a partiular sequene t, writeS(t) := f s 2 S j t v s g for the set of extensions of t in S.9.11 Lemma. For 1 � `;m; p < !, otG!`(hm i) = �!!`�1�m, otG!` =!!` , and ot0� p opiesz }| {G!`_ � � �_G!`1A = �!!`�p :Proof. First observe that otG!(hm i) = !m for all 1 � m < ! and otG! =!!. Next notie that for subsets S and T � [!℄<! whih have indeom-posable order types and whih have arbitrarily large �rst elements, theorder type of the onatenation S_T is the produt of the order types(otT ) � (otS). Then use indution on `, m, and p. a



9. Countable Ordinal Resoures 579.12 Remark. Darby [7, De�nition 2.8℄ de�nes G� for all � < !1 so thatotG� = !� using a nie ladder system to assign to eah limit ordinal aninreasing o�nal sequene of type !. In partiular, for � = � � ! where �is an AI ordinal, the o�nal sequene is �m = � �m.Our main interest is in G� for � AI. We de�ned G!k for k < ! inDe�nition 9.10. If � = � � ! where � is an AI ordinal, thenG� =[8<: fhm ig_ m opiesz }| {G�_ � � �_G� j m < !9=; :If � � !! is an AI ordinal not of the form � = � � !, then the o�nalsequene is a stritly inreasing sequene h�m : m < ! i of AI ordinals andG� is the union of f hm i g_G�m .Reall we write s v t to indiate that s is an initial segment of t, ands � t to indiate it is a proper initial segment.9.13 De�nition. For any olletion of inreasing sequenes S � [!℄<!, letS� denote the olletion of initial segments of elements of S. For any s 2 S�,let S(s) := f t 2 S j s v t g be the set of all extensions of s that are in S.9.14 De�nition (See De�nition 3.1 of [7℄). Suppose ! < � = � � b� < !1is AI but not MI with initial part � and �nal fator b�. Call a non-emptysequene p 2 G�� a level pre�x of G� if otG�(p) = ! where the �nalsummand in the ANF of  is �.The next lemma is of partiular interest when s is a level pre�x.9.15 Lemma (See Lemma 2.9 of [7℄). Suppose  � � < !1 where the ANFof  is  = 0+ 1+ � � �+ k for k > 0. Further suppose that s 2 G��r f;g.If otG�(s) = !, then G�(s) = fsg_Gk_ : : :_G0 .Proof. We only prove this in the speial ase where � = � �! and  = � �n.In this ase, s has an extension in G�(hm i) = fhm ig_G� : : :_G� form = min s by De�nition 9.10 or Remark 9.12. Let t v s be the longestinitial segment of s for whih G�(t) is the onatenation of ftg with some�nite number of opies of G�. There must be suh a t sine hm i has thisproperty. If s = t, then we are done. So assume by way of ontraditionthat u = s r t 6= ;. By the maximality of t, it follows that u 2 G�� rG�.Sine u 6= ;, G�(u) has order type Æ for some Æ < !� with Æ > 1. Let rbe the number of opies of G� in the deomposition of G�(t). If r = 1,then G�(s) = ftg_G�(u) has order type Æ < !�. If r > 1, then G�(s) isthe onatenation of ftg_G�(u) with r� 1 opies of G�, so has order type!��(r�1) � Æ, by the argument of Lemma 9.11. In both ases, sine Æ 6= 1 andÆ 6= !�, we have a ontradition to the assumption that otG�(s) = !��n. a



58 I. Partition Relations9.16 De�nition (See De�nition 3.1 of [7℄). Suppose the MNF of � < !1has at least four fators. Call t 2 G�� a sublevel pre�x of G� if there area level pre�x p for G� and a level pre�x q for G� so that t = p_q. Callu 2 G�� a sub-sublevel pre�x of G� if there are a sublevel pre�x t for G�and a level pre�x r for G� so that u = t_r.If we look at a pair s �lex t from G�, if s and t are disjoint as sets,then they partition one another into onvex segments. That is, s and tan be expressed as onatenations, s = s0_s1_ : : :_sn�1(_sn) and t =t0_t1_ : : :_tn�1 where s0 < t0 < s1 < t1 < � � � < sn�1 < tn�1(< sn).The next de�nition uses De�nition 9.16 to identify four types of segmentsused in the proofs of the negative partition relations (2)-(4) of Theorem 9.9.9.17 De�nition. Suppose the MNF of � < !1 has at least four fators.Further suppose that s 2 G� has been deomposed into a onvex partitions = s0_s1_ : : :_sn where s0 < s1 < � � � < sn.1. Call si a �-segment of s if i = 0 or i = n or there are a level pre�x t ofG� and a 2 G� so that s0_ : : :_si�1 � t � s0_ : : :_si�1_si v t_a.2. Call si a 4-segment of s if it is not a �-segment of s and there area sublevel pre�x u of G� and b 2 G� so that s0_ : : :_si�1 � u �s0_ : : :_si�1_si v u_b:3. Call si a -segment of s if it is not a � or 4-segment of s and thereare a sub-sublevel pre�x u of G� and  2 G� so that s0_ : : :_si�1 �v � s0_ : : :_si�1_si � v_.4. Call si a �-segment of s there are a sub-sublevel pre�x u of G� and 2 G� so that v � s0_ : : :_si�1 and s0_ : : :_si�1_si v v_.For simpliity, we inlude an example for whih only �-segments areneeded to illustrate the tehnique. We have hosen to give an example thatis easy to disuss rather than an optimal one.9.18 Proposition. The following partition relation holds: !!2 9 (!!2 ; 6)2.The remainder of this setion is devoted to the proof of Proposition 9.18.We de�ne a graph � on G = G!2 below. Then in Lemma 2, we show it hasno 1-homogeneous set of size 6. After onsiderably more work, in Lemma9.31, we show it has no 0-homogeneous subset of order type !!2 . These twolemmas omplete the proof.9.19 De�nition. Let G = G!2 . Call a oordinate x of x 2 G a boxoordinate if it is either the minimum or the maximum of x or if x =minx � p for some level pre�x p v x. De�ne a graph � : [G℄2 ! 2 by�(x;y) = 1 if and only if there are onvex partitionsx = X0_X1_X2_X3_X4 and y = Y0_Y1_Y2_Y3



9. Countable Ordinal Resoures 59with X0<Y0<X1<Y1<X2<Y2<X3<Y3<X4 so that all of X0, X2, X4 are�-segments of x, Y0, Y3 are �-segments of y, and none of X1, X3, Y1, Y2have box oordinates of x, y, respetively.For notational onveniene, let �(x;y) = maxY1, +(x;y) = min Y2,Æ�(x;y) be the largest box oordinate of Y0, and Æ+(x;y) be the smallestbox oordinate of Y3. The graphial display below shows how the twosequenes are interlaed and whih have box oordinates if �(x;y) = 1.X0 X1 X2 X3 X4Y0 Y1 Y2 Y39.20 Lemma. The graph � has no 1-homogeneous set of size six.Proof. The proof starts with a series of laims whih delineate basi prop-erties of the partition.Claim A. Suppose x < y, �(x;y) = 1.1. There is a box oordinate x 2 x with miny < x < maxy.2. For any box oordinate x 2 x with miny < x < maxy, the inequalities�(x;y) < x < +(x;y) hold.3. There is no sequene x < y < x0 2 x where miny < x 2 x, x0 < maxyand y is a box oordinate of y.Proof. Use the diagram above to verify these basi properties. aClaim B. Suppose fx;y; z g< � G is 1-homogeneous for �. If �x 2 x,�y 2 y, and �z 2 z are box oordinates and min z < �x;�y < max z, theneither �x;�y < �z or �z < �x;�y.Proof. Suppose the hypothesis holds but the onlusion fails. Then either(a) �x < �z < �y or (b) �y < �z < �x. Note that miny < min z < �xand �x < max z < maxy, sine y < z. By Claim A(2), �(x;y) <�x < +(x;y). Use the de�nition of � to �nd x�; x+ 2 x suh thatÆ�(x;y) < x� < �(x;y) and +(x;y) < x+ < Æ+(x;y). If (a) holds,then either �x < �z < x+ or +(x;y) < �z < �y is a sequene thatontradits Claim A(3). If (b) holds, then either �y < �z < �(x;y) orx� < �z < �x is a sequene that ontradits Claim A(3). Thus the abovelaim follows. aClaim C. Suppose fx;y; z g< � G is 1-homogeneous for �. If �x 2 x,�y 2 y are box oordinates with min z < �x;�y < max z, then someoordinate z of z lies between �x and �y.



60 I. Partition RelationsProof. For the �rst ase, suppose �x < �y. In this ase, let z = +(x; z).Then z 2 z and by Claim A, �x < z. By de�nition of �, there is somex0 2 x with z < x0 < max z. Sine y < z, it follows that x0 < maxy, sox0 < Æ+(x;y) � �y. By transitivity, �x < z < �y. The seond ase for�y < �x is left to the reader with the hint that z = �(x; z) works. aNow prove the lemma from the laims. Assume by way of ontraditionthat U = f a;b; ;d; e; f g< � G is 1-homogeneous for �. Use Claim A tohoose box oordinates "0 2 a, "1 2 b, "2 2 , "3 2 d, "4 2 e, so thatmin f < "i < max f . Let ijk` be a permutation of 0123 so that "i < "j <"k < "`. Use Claim C to hoose oordinates e0; e00 2 e and f 0 2 f with"i < e0 < "j < f 0 < "k < e00 < "`. By Claim B, either (a) "4 < "i or (b)"` < "4. Choose oordinate f 00 2 f between "4 and the appropriate one of"i and "`.Let x;y 2 U be suh that "i 2 x and "` 2 y. By Claim A, Æ�(x; f) <�(x; f) < "i and "` < +(y; f) < Æ+(y; f).Let e = E0_E1_E2_E3_E4, f = F0_F1_F2_F3 be the partition thatwitnesses �(e; f) = 1. Note that "4 2 E2.If (a) holds, then Æ+(y; f) 2 F3, and"4 < f 00 < e0 < f 0 < e00 < Æ+(y; f):However, this inequality ontradits the de�nition of g, sine there are onlytwo bloks between E2 and F3. If (b) holds, then Æ�(x; f) 2 F0, andÆ�(x; f) < e0 < f 0 < e00 < f 00 < "4:This inequality also ontradits the de�nition of g, sine there are only twobloks between F0 and E2. In either ase we have reahed the ontraditionrequired to prove the lemma. aNow we turn to the task of showing that every subsetX � G of order type!!2 inludes a pair fx;y g< � X so that �(x;y) = 1. The �rst hallengeis to guarantee that when we build a segment of one of x and y, we willbe able to extend it starting above the segment of the other that we willhave onstruted in the meanwhile. To that end, we introdue �-pre�xesand maximal �-pre�xes.9.21 De�nition. Suppose � < !1. Call a sequene s 2 G�� a �-pre�x ofW � G� if otW (s) = �, and a maximal �-pre�x if no proper extension is a�-pre�x.9.22 Lemma (Galvin; see Lemma 4.5 in [7℄). Suppose s 2 G�� and � is AI.If W � G� has otW (s) � �, then there is an extension t w s so that t is amaximal �-pre�x for W .



9. Countable Ordinal Resoures 61The proof of the above lemma depends on the fat that the sequenes inG� are well-founded under extension. We use the next lemma for sequenesr whih are either maximal !2-pre�xes or maximal !3-pre�xes.9.23 Lemma. Suppose Æ < � � !� for AI Æ and �. Further supposeW � G� and r is a maximal �-pre�x for W . Then r has in�nitely manyone point extensions r_hpi 2 W � with otW (r_hpi) � Æ. Also, for anysequene s, there is a sequene t so that s < t, r_t 2 W �, and r_t is amaximal Æ-pre�x for W .Proof. Sine r is a maximal �-pre�x forW , otW (r_ h p i) < � for all p < !.Consequently, sine � is AI, it follows that Pq<p<! otW (r_ h p i) = �for all q < !. Sine Pq<p<! p � Æ if eah p < Æ, it follows that forin�nitely many p < !, W (r_ h p i) has order type � Æ. Thus given s, thereis p > max s with otW (r_ h p i) � Æ. In partiular, W (r_ h p i) 6= ;. Toomplete the proof, apply Lemma 9.22 to get t w h p i so that r_t is amaximal Æ-pre�x. aIn our onstrution of x, y, we must be able to iterate the proess ofextending to a level pre�x. To that end, we introdue the notion of levels.9.24 De�nition (See Def. 5.2 of [7℄). Suppose � is AI but not MI and qis a level pre�x of G�. The level of W pre�xed by q is the setL(W;q) := f a 2 G� jW (q_a) 6= ; g :A non-empty sequene s 2 G�� rG� ends in the level of W pre�xed by q ifthere is some a 2 L(W;q) so that q v s � q_a.Next we state without proof a series of lemmas from Darby [7℄ that leadup to Lemma 9.29. The interested reader an �ll in the proofs for the asewhere � = !` < !!.9.25 Lemma (See Def. 4.6 and Lemma 4.7 of [7℄). Suppose Æ �  � � <!1, where Æ,  are AI and  � Æ � �. If s 2 G�� is a maximal  � Æ-pre�x forW � G�, then the following set has order type Æ:W (�; s) := fp 2 G�� j s v p and p is a maximal -pre�x for W g :9.26 Lemma (See Lemma 5.5 of [7℄). Suppose � < !1 is AI but not MI,q is a level pre�x of G� and W � G�. If s ends in level L(W;q) andotW (s) � !��n, then for any  < �, there is an a 2 L(W;q) so thats � q_a and otW (q_a) � !�(n�1)+.9.27 Lemma (See Lemma 5.6 of [7℄). Suppose � < !1 is AI but not MI,W � G� and every level of W has order type � !Æ. If s 2 G�� andotG�(s) = !���, then otW (s) � !Æ��.



62 I. Partition Relations9.28 Lemma (See Lemma 5.7 of [7℄). Suppose � < !1 is AI but not MI,W � G�(hm i) and otW > !. Then for any Æ so that Æ �m < , there isa level of W of order type > !Æ.The following lemma of Darby, mildly rephrased sine the general def-inition of G� has been omitted, is the key to onstruting pairs 1-oloredby any generalization of the graph � to a �� de�ned for � = � � !, sineit allows one to plan ahead: one takes a suÆiently large set, thins it tosomething tratable, dives into a large level to work within, knowing thaton exit from the level, one will have a large enough set of extensions toontinue aording to plan.9.29 Lemma (See Lemma 5.9 of [7℄). Suppose � is AI but not MI, 0 <m < ! and otG�(hm i) = !���. Further suppose W � G�(hm i) andotW � !��n+" where " � � and 0 < n < !, and assume Æ is suh thatÆ �� < ". Then there is a set U �W and a level pre�x q so that U = U(q),otL(U;q) > !Æ and otU(q_a) � !��(n�1)+" for all a 2 L(U;q).Here our fous is on !!k for �nite k, that is, on � = !k. In this ase,G�(hm i) has order type !!k�1�m, so the � of the previous lemma is sim-ply m. The following weaker version of the above lemma suÆes for ourpurposes.9.30 Lemma. Suppose � = � � ! is AI but not MI, 0 < n � m < !,and W � G�(hm i) has order type � !��n. Further assume Æ is suh thatÆ �m < �. Then there is a set U �W and a level pre�x q so that U = U(q),otL(U;q) > !Æ and otU(q_a) � !��(n�1) for all a 2 L(U;q).9.31 Lemma. Suppose W � G!2 has order type !!2 . Then there is a pairx, y from W so that �(x;y) = 1.Proof. We revisit the set G!2 to better understand how it is onstruted byunraveling the reursive onstrution. A typial element � ishm i_h b1 i_
 a11; : : : ; a1b1 �_h b2 i_
 a21; : : : ; a2b2 � : : :_h bm i_
 am1 ; : : : ; ambm � :Notie that the initial element, m, tells how many levels there will be, andeah level starts with a box oordinate, bi, whih determines the order typeof the level, !bi . To make the identi�ation of the various types of elementsvisually immediate, we fold the sequene � into a tree, with the initialelement at the top, the box oordinates as immediate suessors, and theremaining oordinates as terminal nodes. To rebuild the sequene from thetree, one walks through the tree in depth �rst, left-to-right order.,,,�� LL ���� �� ����XXXXXXXXXma1;1 a1;b1b1 a2;1 a2;b2b2� � � � � � bm� � � am;1 am;bm� � �



9. Countable Ordinal Resoures 63Use Lemmas 9.22, 9.23, and 9.30 to build x = X0_X1_X2_X3_X4 andy = Y0_Y1_Y2_Y3 one onvex segment at a time so thatX0<Y0<X1<Y1<X2<Y2<X3<Y3<X4For notational onveniene, we plan to let i < j < k < ` be suh thatmaxX0 = xi, maxX1 = xj , maxX2 = xk , maxX3 = x`. Similarly, we planto let s < t < u be suh that maxY0 = ys, maxY1 = yt, maxY2 = yu. Inaddition it will be onvenient to write b for the largest box oordinate of X0,b0 for the largest box oordinate of X2, and  = Æ�(x;y) for the largest boxoordinate of Y0. Here is a pair of subtrees of the trees we get by folding thesequenes we build for x and y, that inlude only the ritial oordinatesnamed above, together with maxx, maxy. These subtrees highlight therelationships between the ritial oordinates, and allow one to see at aglane whih of the segments are �-segments.,,,�� LL ���� �� ## lll........................................ ................................mb b0 maxx nys yt yuxi xj xk x` maxyObserve that sine G is the union of G(h 0 i); G(h 1 i); G(h 2 i); : : : , itfollows that for � < !2, there are in�nitely many m� < ! with otW \G(hm� i) � !�. We start our onstrution by hoosing m so that U0 :=W \G(hm i) has order type at least !!�4.Next we apply Lemma 9.30 to �nd a set U1 � U0 and a level pre�xp so that U1 = U1(p), otL(U1;p) > !5, and otU1(p_a) � !!�3 for alla 2 L(U1;p). Apply Lemma 9.22 to get u, a maximal !4 pre�x in L(U1;p).Then b = minu is the box oordinate of our diagram. We set X0 = p_uand note that maxu = xi on our diagram.Choose n > xi so that V0 := W \ G(hn i) has order type at least !!�4.Continue as in the previous step. Use Lemma 9.30 to �nd a set V1 � V0 anda level pre�x q so that V1 = V1(q), otL(V1;q) > !7, and otV (q_a) � !!�3for all a 2 L(V1;q). Let v be a maximal !6 pre�x in L(V1;q). Then = minv is the box oordinate of our diagram. We set Y0 = q_v and notethat maxv = ys on our diagram.By Lemma 9.23, there is a sequene X1 with Y0 < X1 so that u_X1 is amaximal !3 pre�x in L(U1;p). Note that X0_X1 is not a level pre�x noris any one point extension.By Lemma 9.23, there is a sequene Y1 with X1 < Y1 so that v_Y1 is amaximal !5 pre�x in L(V1;q).By Lemma 9.23, the sequene u_X1 has in�nitely many one point ex-tensions in L(U1;p)�. By hoosing a suitable one point extension and thenextending it into L(U1;p), we �nd w so that Y1 < w and u_X1_w 2



64 I. Partition RelationsL(U1;p). By hoie of U1 and p, we know otU1(p_(u_X1_w)) � !!�3.Use Lemma 9.30 to �nd U2 � U1(p_(u_X1_w)) and a level pre�x p0so that U2 = U2(p0), otL(U2;p0) > !5, and otU2(p0_a) � !!�3 for alla 2 L(U2;p0). Then p_(u_X1_w) v p0. Apply Lemma 9.22 to get u0, amaximal !4 pre�x in L(U2;p0). Then b0 = minu0 is another box oordinatein our diagram. Then p0_u0 is not a level pre�x of U2, nor is any one pointextension of it a level pre�x. We set X2 = p0 r (X0_X1), and note thatmaxX2 = maxu0 = xk on our diagram.By Lemma 9.23, there is a sequene Y2 with X2 < Y2 so that v_Y1_Y2is a maximal !4 pre�x in L(V1;q).By Lemma 9.23, there is a sequene X3 with Y2 < X3 so that u0_X3 isa maximal !3 pre�x in L(U2;p0).By Lemma 9.23, the sequene v_Y1_Y2 has in�nitely many one pointextensions in L(V1;q)�. Hene by �rst hoosing a suitable one point exten-sion and then extending it into L(V1;q), and �nally extending it into V1,we an �nd Y3 so that X3 < Y3 and y = Y0_Y1_Y2_Y3 2 V1 �W .By Lemma 9.23, the sequene u0_X3 has in�nitely many one point exten-sions in L(U2;p0)�. Hene by �rst hoosing a suitable one point extensionand then extending it into L(U2;p0), and �nally extending it into U2, wean �nd X4 so that Y3 < X4 and x = X0_X1_X2_X3_X4 2 U2 �W .By onstrution, X0; X2; X4 and Y0; Y3 are all �-segments, while X1; X3and Y1; Y2 have no box oordinates. Thus x;y witnesses the fat that W isnot a 0-homogeneous set for �. aLemmas 9.20 and 9.31 show that � is a witness to !!2 9 (!!2 ; 6)2.The oloring an easily be generalized to !!� where � is deomposable,sine it was desribed using only box segments and segments without boxoordinates. Hene the proof of Lemma 9.20 arries through for these gen-eralizations. In the proof of Lemma 9.31, we have taken advantage of thefat that � = 2 is a suessor ordinal, but use of lemmas from Darby's paperallow one to modify the given onstrution suitably.The proof of the previous lemma gives some evidene for the followingremark.9.32 Remark. We have the following heuristi for building pairs. Suppose� is a list of spei�ations of onvex segments detailing whih have box,triangle, bar (or dot) oordinates and whih do not. If the �rst two and lasttwo segments are to be box segments, then for any ordinal � of suÆientdeomposability for the desription to make sense, there is a disjoint pairx;y 2 G!� so that the sequene of onvex segments they reate �ts thedesription.For the atual onstrution, one needs to iterate the proess of takinglevels and look at the approah taken arefully.



10. A positive ountable partition relation 6510. A positive ountable partition relationThe previous setion foused on ountable ounterexamples. Here we surveypositive ordinal partition relations of the form � ! (�;m)2 for ountablelimit ordinals � and sketh the proof of one of them.Carl Darby [7℄ and Rene Shipperus [54℄, [52℄ working independently,extended Chang's positive result for !! and m = 3 to larger ountable limitordinals.10.1 Theorem. (Chang for � = 1 (see Theorem 9.7); Darby for � = 2 [7℄;Shipperus for � � 2 [54℄) If the additive normal form of � < !1 has oneor two summands, then !!� ! (!!� ; 3)2.Reall that Erd}os [11℄ o�ered $1000 for a omplete haraterization ofthe ountable ordinals � for whih � ! (�; 3)2. It is not diÆult to showthat additively deomposable ordinals fail to satisfy this partition relation.Reall that additively indeomposable ordinals are powers of !. Spekershowed that �nite powers of ! greater than !2 fail to satisfy it. Galvinshowed (see Theorem 9.6) that additively deomposable powers of ! greaterthan !2 fail to satisfy it. Thus attention has been on indeomposable powersof !, � = !!� , that is, the ountable ordinals that are multipliativelyindeomposable. Shipperus (see Theorem 9.9) showed that if the additivenormal form of � has at least four summands, then � 6! (�; 3)2. Thusto omplete the haraterization of whih ountable ordinals � satisfy thispartition relation it suÆes to haraterize it for ordinals of the form � =!!� where the additive normal form of � has exatly three summands. Welist below the �rst open ase.10.2 Question. Does !!3 ! (!!3 ; 3)2?In light of Theorem 9.9, Darby and Larson have ompleted the hara-terization of the set of m < ! for whih !!2 ! (!!2 ;m)2 with the followingresult.10.3 Theorem (Darby and Larson [8℄). !!2 ! (!!2 ; 4)2.We omplete this subsetion with a sketh of the Shipperus proof that!!! ! (!!! ; 3)2, using somewhat di�erent notation than he used originally.The sketh will be divided into seven subsetions:1. representation of !!! as a olletion T (!) of �nite trees;2. analysis of node labeled trees;3. desription of a two-player game G(h;N) for h a 2-partition of T (!)into 2 olors and N � ! in�nite;



66 I. Partition Relations4. uniformization of play of the game G(h;N) via onstraint on the se-ond player to a onservative style of play determined by an in�niteset H � N and a bounding funtion b;5. onstrution of a three element 1-homogeneous set when the the �rstplayer has a winning strategy for all games in G(h;N) in whih theseond player makes onservative moves;6. onstrution of an almost 0-homogeneous set of order type !!! whenthe �rst player has no suh strategy;7. ompletion of the proof.10.1. RepresentationReall that, by onvention, we are identifying a �nite set of natural numberswith the inreasing sequene of its members. The trees we have in mindfor our representation are subsets of [!℄<! whih are trees under the subsetrelation, and the subset relation is the same as the end-extension relationwhen the subsets are regarded as inreasing sequenes.In the proof that the oloring � had no independent subset of order type!!2 , we found it onvenient to fold an elementx = 
m;n1; a11; : : : ; a1n1 ; n2; a21; : : : ; a2n2 ; : : : ; nm; am1 ; : : : ; amnm �ofG!2 into a tree with root hm i, immediate suessors hm;ni i and terminalnodes 
m;ni; aij �. Then we ould walk through the tree, node by node, sothat the maximum element of eah node ontinually inreased along thewalk, just as the elements of x inrease.We already have representations of !!� from the previous setion as setsof inreasing sequenes under the lexiographi ordering. The de�nitionof those sets is reursive, so we fold these sets up into trees reursively.Spei�ally, the next de�nition uses the representations of G!� detailed inDe�nition 9.10 and Remark 9.12.10.4 De�nition. De�ne by reursion on � � ! a sequene of folding maps,F� : G!� ! T :1. For � = h k i 2 G!0 = G1, set F0(�) := fh k ig.2. For � = hm i_�1_�2_ : : :_�m 2 G!n+1 , setFn+1(�) := fhm ig [[ ffhm ig_Fn(�i) : 1 � i � mg :3. For � = hm i_� 2 G!! , set F!(�) := fhm ig [ fhm ig_Fm(�).Let T (�) be the range of F� .



10. A positive ountable partition relation 67Prove the following lemmas by indution on �.10.5 Lemma. For eah � � !, the mapping F� is one-to-one and � =SF�(�). Thus, <lex on G!� indues an order < on T (�).10.6 Lemma. For all � � ! and all in�nite H � !, the olletion of se-quenes in G!� \ [H ℄<! has order type !!� , and hene so does the olletionof trees in T (�;H) := T (�) \ P([H ℄<!).Let T be the olletion of all �nite trees (T;v) of inreasing sequeneswith the property that if s; t 2 T and as sets, s � t, then as sequenes,s v t. Identify eah t 2 T 2 T with the set of its elements. Then v and� oinide, so this identi�ation permits one to use set operations on thenodes of T .10.7 Lemma. For all � < !1, for all T 2 T (�), the following onditionsare satis�ed:1. (transitivity) s � t 2 T implies s 2 T ;2. (losure under intersetion) for all s; t 2 T , s\ t is an initial segmentof both s and t;3. (rooted) (T;v) is a rooted tree with ; =2 T .4. (node ordering) for all s 6= t in T , exatly one of the following holds:(a) s � t,(b) t � s,() s �lex t and s < t� (s \ t),(d) t �lex s and t < s� (s \ t);10.8 De�nition. For all � < !1, for all T 2 T (�), order the nodes of T byu < v if and only if u � v or u <lex v.10.9 Lemma. For all � < !1, for all non-empty initial segments S; T oftrees in T (�), SS � ST if and only if S � T .Proof. By Lemma 10.7, if ; 6= S � T v T 0 2 T (�), then SS � ST . For� = 0, the reverse impliation is trivially true, and for � > 0, it is true byde�nition of the fold map and the indution hypothesis. a10.10 De�nition. For all � � !, de�ne e� : [!℄<! ! f�1g [ (� + 2) byreursion: e�(;) = � + 1;e�(�_ hm i) = 8><>:�1 if e�(�) � 0,e�(�)� 1 if e�(�) > 0 suessor,max(�) if e�(�) = ! limit.



68 I. Partition RelationsWe refer to e�(x) as the ordinal of x.Use indution on �, the de�nition of F� , and the previous lemma to provethe next lemma.10.11 Lemma. For all � � !, for all T 2 T (�), for all t 2 T , e�(t) � 0,and if e�(t) > 0, then t has a proper extension u 2 T .The following onsequene of the reursive nature of De�nition 10.10 isuseful in indution proofs.10.12 Lemma. For all � � !, for all hm i_� 2 [!℄<!, e�(hm i) = � andif � 6= ; and  = e�(hm;max � i) � 0, then e�(hm i_�) = e(�).10.13 De�nition. Suppose T 2 T . For all t 2 T , let ℄(t; T ) be the numberof suessors of t in T .10.14 Lemma. For all � � !, for all T 2 T (�), for all t 2 T ,℄(t; T ) = 8><>:0; if e�(t) = 0,1; if e�(t) = ! is a limit,max t; if e�(t) is a suessor,10.15 Lemma. For all � � !, for all T � [!℄<!, T 2 T (�) if and only ifT satis�es the four onlusions of Lemma 10.7, and for all t 2 T , e�(t) � 0and ℄(t; T ) has the value spei�ed in Lemma 10.14.Proof. By Lemmas 10.7, 10.11, and 10.14, if (T;v) 2 T (�), then it satis�esthe given list of onditions.To prove the other diretion, work by indution on � to show that ifT � [!℄<! satis�es the given onditions for �, then ST 2 G!� and T =F�(ST ) 2 T (�). a10.16 De�nition. For 0 < � � ! and ; 6= S � T 2 T (�), the ritial nodeof S, in symbols rit(S), is the largest s 2 S with ℄(s; S) smaller than thevalue predited in Lemma 10.14. For notational onveniene, let rit(;) = ;,and set rit(T ) = ; for T 2 T (�).The next lemma shows why the name was hosen.10.17 Lemma. For 0 � � � ! and S v T 2 T (�), if t := min(T � S),then t = rit(S)_ hmax t i.Proof. Let m < ! be suh that hm i 2 T . Then hm i is the least elementof T . If S = ;, then t = hm i = rit(S)_ hmax t i and the lemma follows.Otherwise, hm i must be in S, and beause it is the root of T , hm i � t :=min(T � S). Let r = t � fmax tg. Then hm i v r � t, ℄(r; S) < ℄(r; T ), so



10. A positive ountable partition relation 69r is an element of S with ℄(r; S) smaller than the value spei�ed in Lemma10.14.If p 2 T and p <lex t, then p 2 S, sine S � T and T = min(T �S). Moreover, if p <lex t and p � q 2 T , then q <lex t. Hene ifp <lex t, then ℄(p; S) = ℄(p; T ) takes on the value spei�ed in Lemma10.14. Thus rit(S) � t, so rit(S) v r. It follows that r = rit(S) andt = rit(S)_ hmax t i as required. a10.18 Lemma. For all � � !, the set of initial segments of trees in T (�)is well-founded under �.Proof. The proof is by indution on �. For � = 0, the lemma is learly true,sine the longest possible sequenes are those of the form ;; hm i for somem < !.Next suppose the lemma is true for k < ! and � = k + 1. Let S0, S1,: : : be an arbitrary �-inreasing sequene, and without loss of generality,assume it has at least two trees in it. Then there is some m < ! so thathm i 2 S1. By the de�nition of the fold map Fk , it follows that for i > 1,the tree Si satis�es SSi = hm i_�i;1_ : : :_�i;ni for some ni � m, whereFk(�i;j) 2 T (k) for j < ni, and for some �0 w �i;ni , Fk(�0) 2 T (k), so�i;ni = STi for Ti an initial segment of a tree in T (k). If i < ` and Ti; T`are suh that ni = n`, then for j < ni, �i;j = �`;j . Thus by the indutionhypothesis, for eah n with 1 � n � m, there an be at most �nitely manytrees in the sequene with ni = n. Hene the sequene must be �nite, andthe lemma is true for � = k + 1.The proof for � = ! is similar, sine for all initial segments S of trees inT (!), either S = ;, S = f hm i g, or S = f hm i g_S0 for some m < ! andsome S0 whih is an initial segment of a tree in T (m). The details are leftto the reader.Therefore, by indution, the lemma holds for all � � !. a10.2. Node labeled treesA typial proof of a positive partition relation for a ountable ordinal forpairs inludes a uniformization of an arbitrary 2-partition into 2 olors, butonly for those pairs for whih some easily de�nable additional informationis also uniformized. We will introdue node labelings to provide that extrainformation, but before we do so, we examine onvex partitions of disjointtrees and the partition nodes that determine them.10.19 De�nition. For trees S0, S1 from T (�) with SS0 \SS1 = ;, allt 2 S" a partition node if t < maxS" and there is some u 2 S1�" withmax t < maxu < min (SS" � (1 + max t)).For notational onveniene, write T (;; t℄ for the initial segment of Tonsisting of all nodes s � t 2 T , and, for t < u in T , write T (t; u℄ for



70 I. Partition Relationsf s 2 T : t < s � u g. With this notation in hand, we an state the lemmabelow justifying the label partition nodes. This lemma follows from Lemmas10.7 and 10.9.10.20 Lemma. Suppose S0, S1 are in T (�) and SS0\SS1 = ;. Furthersuppose t00; t01; : : : ; t0k�1 2 S0 and t10; t11; : : : ; t1̀�1 2 S1 are the partition nodesof these trees if any exist. Set t0�1 = t1�1 = ;, t0k = maxS0, t0̀ = maxS1.Then every node of S" is in one and only one S"(t"i�1; t"i ℄, and the sets�"i = SS"(t"i�1; t"i ℄� t"i�1 satisfy�00 < �10 < �01 < �11 < : : : �0̀�1 < �1̀�1(< �0k�1):Now we introdue node labelings. For simpliity, this onept is given ageneral form.10.21 De�nition. Suppose � � ! and N � ! is in�nite. For any initialsegment S v T 2 T (�), a funtion C is a node labeling of S into N ifC : S ! [N ℄<! satis�es maxC(s) < max s for all s 2 S with C(s) 6= ;.We arry over from T (�) the notions of extension, omplete tree andtrivial tree. In partiular, all (T;D) a (proper) extension of (S;C), insymbols, (S;C) � (T;D), if S � T and DjS = C. Call (T;D) omplete (for�) if T 2 T (�); all it trivial if (T;D) = (;; ;).Call a pair S; T from T (�) loal if S and T have a ommon root; otherwiseit is global. Similarly, all (S;C), (T;D) loal if S; T is loal and otherwiseall it global.10.22 De�nition. A pair ((S0; C0); (S1; C1)) is strongly disjoint if (a)either S0 = ; = S1 or �SS0 [ ranC0� \ �SS1 [ ranC1� = ; and (b)for all s; t 2 S0 [ S1, whenever max s < max t and C"(t) 6= ;, then alsomax s < minC"(t).10.23 De�nition. Call a pair ((S0; C0); (S1; C1)) of node labeled treeslear if S0 < S1, ((S0; C0); (S1; C1)) is strongly disjoint, all partition nodest 2 S0 [ S1 are leaf nodes (e�(t) = 0), and if for all " < 2 and all s 2 S",� C"(s) = ; if e�(s) = 0;� C"(s) = f ℄(s; S"(;; t℄) : s � t 2 S" is a partition node g if e�(s) is asuessor ordinal;� C"(s) = f e�(t) : s � t 2 S"& jC"(t)j > 1 g if e�(s) = ! is a limit or-dinal.Call a pair S0; S1 of trees from T (�) lear if it is loal or if it is global andthere are node labelings C0; C1 with ((S0; C0); (S1; C1)) lear.



10. A positive ountable partition relation 71For � > !, the value of the node labeling for s with e�(s) limit is moreompliated to desribe.Notie that for 2 � � � !, if (S0; C0); (S1; C1) is a global lear pair andneither C0 nor C1 is onstantly the emptyset, then all initial segments ofpartition nodes are identi�able: they are the root of the tree, suessor nodeswhose node label is non-empty, and nodes of ordinal 0 whose immediatepredeessor has non-empty node label that identi�es it as a suessor whihis a partition node.From the de�nition of lear, if u is a partition node of one of a pair oftrees, say (S;C) then for eah initial segment s whose ordinal e!(s) is asuessor, the node label C(s) must have as a member the number of imme-diate suessors of s whih are less than or equal to u in the lexiographiorder. If we index the immediate suessors of s in S in inreasing lexio-graphi order starting with 1, then this value is the index of the immediatesuessor of s whih is an initial segment of u. This analysis motivates thenext de�nition.10.24 De�nition. Consider a node labeled tree (S;C) with root hmi. Anon-root node t of (S;C) is a prepartition node if for all s � t with e�(s)a suessor ordinal, ℄(s; S(;; t℄) 2 C(s), and if e!(s) 2 C(hmi) whenever� = ! and jC(s)j > 1 The root is a prepartition node if S 2 T (0) orC(hmi) 6= ; or (S;C) has a non-root prepartition node. Call (S;C) relaxedif S =2 T (0) and maxS is a prepartition node of ordinal 0.Node labeled trees, lear pairs, prepartition nodes and relaxed initialsegments are used in the game introdued in the next setion.10.3. GameIn this setion we develop the game G(h;N) in whih two players ollaborateto build a pair of node labeled trees.Here is a brief desription of the game. Player I, the arhitet, playsspei�ations for Player II, the builder, telling him (a) whih tree to extend,(b) whether to omplete the tree or to build it to the next deision point,and () what the size of the node label of the next node to be onstruted is,if it is not already determined. In turn, the builder extends the designatedtree by a series of steps, adding a node and node label at eah step usingelements of N , until he reahes the next deision point on the given tree, ifhe has been so direted, or until he ompletes the tree. The arhitet winsif the pair ((S;C); (T;D)) reated at the end of the play of the game is aglobal lear pair with h(S; T ) = 1; otherwise the builder wins.Before giving a detailed desription of the general game, as a warmupexerise, onsider a 2-partition h into 2 olors, an in�nite set N , and thegame G0(h;N) in whih the arhitet plays the strategy �0 direting thebuilder to omplete the �rst tree and then omplete the seond tree. The



72 I. Partition Relationsbuilder an use a fold map to fold an initial segment of N into a tree S andassign the onstantly ; node labeling C to reate his �rst response, (S;C).Then he an fold a segment of N starting aboveSS into a tree T and assignthe onstantly ; node labeling D to reate his seond response, (T;D). Byonstrution, the pair ((S;C); (T;D)) is lear, sine there are no partitionnodes, so fS; T g is a lear global pair. If all pairs fX;Y g of trees reatedusing nodes from N in this game have h(X;Y ) = 1, then playing anothergame, starting with (T;D) as the initial move of the builder and ending with(U;E), one builds a triple fS; T; U g eah pair of whih h takes to olor 1.Thus if �0 is a winning strategy for the arhitet, then the arhitet anarrange for a triangle to be onstruted.As a seond warmup exerise, onsider a 2-partition h into 2 olors, anin�nite set N with 0 =2 N , and the game G1(h;N) in whih the arhitetplays the strategy �1 direting the builder to build the �rst tree to the nextdeision point starting from a root node whose node label has 0 elements,to start and omplete the seond tree, and then to omplete the �rst tree.In response to the arhitet's �rst set of spei�ations, the builder usesthe least element n0 of N to build the root, hn0i and gives it the empty setas node label. He then uses the next two elements of N , namely n1 and n2by setting hn0; n2i as the immediate suessor of the root with node labelC0(hn0; n2i) = fn1g. He ontinues with suessive elements of N , extendingthe ritial node of the tree reate to that point, giving the new node anempty label unless the node to be reated is the suessor of a prepartitionnode whose index is the sole element of the node label of the prepartitionnode, in whih ase he extends and labels it as he did the suessor of theroot. He ontinues until he has reated and labeled a prepartition node uwhose ordinal is e!(u) = 0, and the pair (S0; C0) he has built is his response.In response to the arhitet's seond set of spei�ations, the builderuses elements of N larger than any used so far to build a tree T in T (!)and gives it the onstantly ; labeling. Then he responds to the �nal set ofspei�ations of the arhitet by ompleting S0 to S in T (!) and extendingC0 to C with all new nodes reeiving empty node labels.In the brief desription of the game, the arhitet was allowed to diretthe builder to stop at the next deision point. The deision point is eitherwhen a partition node has been reated and it is time to swith to the othertree or when the next node to be reated is permitted to have a node labelwhose size is greater than 2. Notie that if the arhitet swithes trees afterthe builder has reated a prepartition node with ordinal 0, then that nodebeomes a partition node.10.25 De�nition. A deision node of (S;C) is a prepartition node t withordinal e!(t) suh that either e!(t) = 0 or e! = `+ 1 is a suessor ordinalwith ` 2 C(tj1), t is the ritial node of S and 1 + ℄(t; S) is an element ofC(t).



10. A positive ountable partition relation 73In the game G0(h;N), the �nal pair of trees S; T had the property thatminSS < minST and maxSS < maxST . Call suh a pair an outsidepair. In the game G1(h;N), the �nal pair of trees S; T had the property thatminSS < minST and maxSS > maxST . Call suh a pair an insidepair.10.26 De�nition. Suppose N � ! is in�nite and h is a 2-partition ofT (!) into 2 olors. Then G(h;N) is a two player game played in rounds.Player I is the arhitet who issues spei�ations, and Player II is thebuilder whose reates or extends one of a given pair of trees in round `to ((S`; C`); (T`; D`)). Note that if the seond tree has not been started inround `, then T` = D` = ;.The arhitet's moves: In the initial round, the arhitet delares the typeof pair to be produed, either inside or outside. In round `, the arhi-tet spei�es the tree to be reated or extended (�rst or seond), spei�eswhether the extension is to ompletion with all new nodes reeiving emptylabels or to the point at whih a deision node is reated and labeled (om-pletion or deision), and spei�es the size of the label for the next node tobe reated. In her initial move, the arhitet must speify the �rst tree bereated. She may not diret the builder to extend a tree whih is omplete.The builder's moves: In round `, the builder reates or extends the spei�edtree through a series of steps in whih he adds one node and its label usingelements of N larger than any used to that point. If he has been diretedto ontinue to ompletion, he does so while assigning the empty set nodelabel to all new nodes. Otherwise he adds nodes one at a time, until hereates the �rst deision node. He adds a node after determining the sizeof the node label, and hoosing the node label, sine all elements of thenode label must be smaller than the single point used to extend the ritialnode. The size of the label of the �rst node to be reated is spei�ed bythe arhitet's move. Otherwise, the builder determines if the node willbe a prepartition node with non-zero ordinal. If so, its node label has oneelement and otherwise its node label is empty.Stopping ondition: Play stops at in round ` if both trees are omplete.Payo� set: The arhitet wins if both S` and T` are omplete, the pair isinside or outside as spei�ed at the onset, the pair ((S`; C`); (T`; D`)) is aglobal lear pair and h(S`; T`) = 1; otherwise, the builder wins.We are partiularly interested in this game when we have a �xed 2-partition, h : [T (�)℄2 ! 2, but the game may be modi�ed to work with2-partitions into more olors. This game may also be modi�ed to requirethe builder to use an initial segment of an in�nite sequene from N spei�edby the arhitet in her move or be modi�ed to start with a spei�ed pair ofnode labeled trees.



74 I. Partition Relations10.27 Lemma. Suppose N � ! is in�nite and h is a 2-partition of T (!)with 2 olors. Then every run of G(h;N) stops after �nitely many steps.Proof. Use Lemma 10.18. a10.4. UniformizationIn this subsetion, we prove the key dihotomy in whih one or the otherplayer has a winning strategy, at least up to some onstraints on the play.Basially, we build a tree out of the plays of the game, show it is well-founded, and use reursion on the tree to de�ne an in�nite subset H � !so that plays where the builder uses suÆiently large elements of H areuniform enough to allow us to prove the dihotomy.10.28 De�nition. Suppose N � ! is in�nite, and h is a 2-partition ofT (!) with 2 olors. Let S(N) be the set of sequenes of onseutive movesin the game G(h;N), inluding the empty sequene.10.29 Lemma. For in�nite N � !, (S(N);�) is a rooted, well-foundedtree.Proof. The root is the empty sequene. End-extension learly is a tree orderon S(N), and � is well-founded sine every game is �nite. aThe basi idea for the builder is to use elements from a spei�ed set andto always start high enough.10.30 De�nition. Suppose N is an in�nite set with 1 < minN and notwo onseutive integers in N . Then a funtion b : S(N)! ! is a boundingfuntion if b(;) = 0, and if s v t, then b(s) � b(t).Use a bounding funtion and an in�nite set to delineate onservativemoves for the builder.10.31 De�nition. Suppose H � N � ! is in�nite with 1 < minN that bis a bounding funtion. If ~R is a position in the game G(h;N) ending witha move by the arhitet, then a move ((S`; C`); (T`; D`)) for the builder isonservative for b and H if all new nodes and node labels are reated usingelements of H greater than b(~R).10.32 Lemma (Ramsey Dihotomy). Suppose N � ! is in�nite, and h isa 2-partition of T (!) with 2 olors. Then there is an in�nite subset H � Nand a bounding funtion b so that 1 < minH, no two onseutive integersare in H, and the following statements hold:1. for every position ~R 2 S(N) ending in a play for the arhitet, thereis a onservative (for b and H) move for the builder; and



10. A positive ountable partition relation 752. either the arhitet has a strategy � by whih she wins G(h;N) if thebuilder plays onservatively, or the builder wins every run of G(h;N)by playing onservatively (for b and H).Before we takle the proof of the dihotomy, we introdue some prelimi-nary de�nitions and lemmas.10.33 De�nition. Call a set B � [!℄<! thin if no u from B is a properinitial segment of any other v from B. Call B a blok for N � ! if for everyin�nite set H � N , there is exatly one u 2 B whih is an initial segmentof H . Call it a blok if it is a blok for !.Note that if B is a blok, then it is thin. A major tool of the proof of thedihotomy is the following theorem.10.34 Theorem (Nash-Williams Partition Theorem). Let N � ! be in�-nite. For any �nite partition of a thin set  : W ! n, there is an in�niteset M � N so that  is onstant on W jM .For a proof see [46℄ or [23℄. The terminology thin omes from [23℄.Here are some easy examples of bloks.10.35 Lemma. The families f;g, and [!℄k for k < ! are bloks.10.36 Lemma. Suppose w � ! is an inreasing sequene, and B � [!℄<!is thin. Then there is at most one initial segment u of w with u 2 B. If Bis a blok, then there is exatly one suh initial segment.10.37 Lemma. Suppose H � N � ! is in�nite, h is a 2-partition of T (!)with 2 olors, and b is bounding funtion. For every position ~R 2 S(N)ending in a move by the arhitet, there is some k � b(~R) and a blok B(~R)for H � k suh that for all B 2 B(~R), the builder an build his respondingmove using all elements of B.Proof. Reall the arhitet may not diret the builder to extend a ompletetree, so if the arhitet has just moved, the tree she direts the builder toextend is not omplete. Thus the builder's individual steps are spei�ed upto the hoie of elements of N , and his stopping point is determined by hisindividual steps. Hene the set of sequenes of new elements used is thin.Moreover, for any in�nite inreasing sequene w from H above b(~R) andabove the largest element of N used in prior moves, the builder an reatea move using an initial segment of w. Therefore the set of possible movesis a blok. aAt this point we are prepared to prove the main result of this setion.



76 I. Partition RelationsProof of Ramsey Dihotomy 10.32. Without loss of generality, assume 1 <minN and N has no two onseutive elements, sine otherwise one anshrink N to an in�nite set for whih these onditions hold. These onditionsassure that no deision node is an immediate suessor of another deisionnode.Let �� be the rank of S(N). Use reursion on � � �� to de�ne a sequenehM� � N : � < �� i and a valuation v : S(N)! 2.For � = 0, the sequenes ~R of rank 0 are ones in whih the last moveompletes the play of the game. Let M0 = N , and de�ne v(~R) = 0 ona sequene of rank 0 if the game ends with a win for the arhitet andv(~R) = 1 otherwise.Next suppose that 0 < � < ��, and v has been de�ned on all nodes ofrank less than �. Enumerate all the nodes of rank � as ~R0�; ~R1�; : : : andlet M�1� be M��1 if � is a suessor ordinal and let M�1� be a diagonalintersetion of a sequene M� for a set of � o�nal in � otherwise.Extend v to the nodes of rank � and de�ne setsM i� by reursion. For the�rst ase, suppose ~Ri� ends with a move for the builder, and setM i� =M i�1� .If there is some move ai� with ~Ri�_ 
 ai� � 2 S(N) and v(~Ri�_ 
 ai� �) = 1,then set v(~Ri�) = 1, and otherwise set v(~Ri�) = 0.For the seond ase, assume ~Ri� ends with an move for the arhitet. LetB(~Ri�) be the blok of Lemma 10.37 for the set M i�1� and the position ~Ri�.De�ne  : B(~Ri�) ! 2 by (d) = v(~Ri�_ hP (d) i) where P (d) is the uniqueapproved move for the builder whose new elements are reated using exatlythe elements of d. Apply the Nash-Williams Partition Theorem 10.34 to to get an in�nite set M i� � M i�1� and let v(Ri�) be the onstant value of on B(~Ri�) restrited to M i�.Continue by reursion as long as possible, extending v to all nodes ofrank �. If there are only �nitely many of them, let M� be M i� where ~Ri� isthe last one. If there are in�nitely many, let M� be a diagonal intersetionof the sets M i�.Sine every non-empty sequene of moves in the game G(N) extends theempty sequene, this root of S(N) has the largest rank of any element ofS(N), namely rank �� � 1. Let H =M���1. Let v(;) be 1 if there is somemove a by the arhitet so that v(h a i) = 1, and set v(;) = 0 otherwise.De�ne b on S(N) by reursion. Let b(~R) = 2 for all ~R 2 S(N) withj~Rj � 1. Continue by reursion on j~Rj. For notational onveniene, let ~R�be obtained from ~R 2 S(N) � f;g by omission of the last entry. If b(~R�)has been de�ned and the last move in ~R is B` = ((S`; C`); (T`; D`)) for thebuilder, then let b(~R) be the least b greater than b(~R�) and any element ofS(S` [ ranC` [ T` [ ranD`). If b(~R�) has been de�ned, the last move in~R is a` for the arhitet, and ~R = ~Ri�, then let b(~R) be the least b greater



10. A positive ountable partition relation 77than b(~R�) so that for all d in the restrition of B(~Ri�) to subsets of H withmin d > b, there is a onservative move for the builder for position ~R withnew elements d. The existene of a value for b(~R) in this latter ase followsfrom the fat that H �� M i� by onstrution, and by Lemma 10.37.Sine all ~R in S(N) are �nite, this reursion extends b to all of S(N).This de�nition of H and b guarantees that the builder an always respondwith onservative moves to plays of the arhitet.If v(;) = 1, then the strategy for the arhitet is to keep v(~R) = 1. Giventhe de�nition of v, the arhitet will always sueed, as long as the buildermoves onservatively with H and b. If v(;) = 0, and the builder alwaysmoves onservatively with H and b, then he will win, again by the reursivede�nition of v and the de�nition of winning the game. a10.5. TrianglesFor this setion we assume that h : [T (!)℄2 ! 0 is �xed and that anin�nite set H � ! and a bounding funtion b are given so that the arhitethas a winning strategy � for games of G(h;H) in whih the builder playsonservatively for b and H . The goal is to outline how one uses the strategyof the arhitet to onstrut a triangle.10.38 Lemma. Suppose � is a strategy for the arhitet with whih shewins G(h;N) if the builder moves onservatively for H, b. Then there is athree element 1-homogeneous set for h.Proof. Consider the possibilities for �(;). The arhitet must delare thepair to be built will be inside or outside, the initial move is to omplete the�rst tree or onstrut it to a deision point and must delare the size d ofthe node label of the initial node onstruted. We onstrut our trianglesby playing multiple interonneted games in whih the arhitet uses �, thebuilder plays onservatively for H and b, and plays suÆiently large thathis plays work in all the relevant games. While tehnially we should reporta pair of node labeled trees for eah play of the builder, for simpliity, wefrequently only mentioned the one just reated or modi�ed.Case 1: Using �, the arhitet spei�es the builder onstruts a ompletetree in her initial move.Then the arhitet must all for an outside pair and must set d = 0,sine otherwise the pair onstruted will not be lear. The builder respondsvia onservative play with a omplete tree (S;C) whose node labeling isonstantly the emptyset. The strategy � must then speify that the builderonstruts a seond omplete tree whose initial node has a node label ofsize 0. The builder responds via onservative play with a omplete tree(T;D) whose node labeling is onstantly ;. Sine � is a winning strategy,h(S; T ) = 1.



78 I. Partition RelationsNext the arhitet shifts to the game where the builder has responded tothe opening move with (T;D), applies the strategy �, to whih the builderresponds with (U;E), a (third) omplete tree whose node labeling is on-stantly ; starting suÆiently large for this response to be appropriate forthe game where the builder has responded to the opening move with (S;C).Sine � is a winning strategy, h(T; U) = 1 = h(S;U). Thus fS; T; U g is therequired triangle.Case 2: Using �, the arhitet delares the pair will be an inside pair, andspei�es the initial node label size d = 0 and that the builder onstruts toa deision node.The proof in this ase is similar to the last, with the arhitet startingone game to whih the builder responds with a �rst tree (S0; C0) wherethe deision node is a prepartition node of ordinal zero, sine no levels wereoded for introduing deision nodes with suessor ordinals. Thus the nextplay for the arhitet is to diret the builder to reate a omplete tree all ofwhose nodes are labeled by ;.The arhitet stops moving on the �rst game and, using �, starts a newgame, direting the builder to start high enough that the tree onstrutedould be the beginning of his response in the �rst game. The builder re-sponds with a tree (T0; D0) where the deision node is a prepartition nodeof ordinal zero The arhitet ontinues this game using � and the builderresponds with a omplete tree (U;E) all of whose nodes are labeled with;. After the arhitet and builder eah move a �nal time on this game, thebuilder has reated a omplete tree (T;D) extending (T0; D0). Sine � is awinning strategy, h(T; U) = 1.Now return to the �rst game: the builder plays (T;D0) where D0 isthe onstantly emptyset node labeling; The arhitet uses � to respondand requires the builder to onstrut high enough that his response worksin the game where the builder plays (U;E) as well as the one where thebuilder plays (T;D0). Sine � is a winning strategy, h(S; T ) = h(S;U),Thus fS; T; U g is the required triangle.Case 3: Using �, the arhitet delares the pair will be an outside pair,and spei�es the initial node label size d = 0 and that the builder onstrutsto a deision node.The proof in this ase is similar to the last, so only the list of substrees tobe onstruted is given. Start with (S0; C0) and (T0; D0) as responses to the�rst two moves of the arhitet in the �rst game. Next build (U0; E0) and(S;C) as seond and third moves in a game where (S0; C0) is the �rst move,and (U0; E0) is started high enough to be a reponse in the game startingwith (T0; D0). Finally build (T;D) and (U;E) in the game starting withresponses (T0; D0) and (U0; E0) and ontinuing high enough that play using(S;C) in the appropriate games is onservative.



10. A positive ountable partition relation 79In the remaining two ases, we use � and onservative play for the builderto reate trees S; T; U with node labelings (S;C1) , (S;C2), (T;D0), (T;D1),(U;E0) and (U;E1) through plays G0;1, G0;2, G1;2 of the game G(h;H). Wepay speial attention to the reation of the initial segments up to the �rstpartition nodes for eah pair and to the terminal segments, after the lastpartition nodes. We refer to the remainder of the run as \the mid-game".Case 4: Using �, the arhitet delares the pair will be an inside pair, andspei�es the initial node label size d > 0 and direts the builder to onstrutthe �rst tree to a deision node.We start by displaying a shemati overview of the onstrution:S T U T U S U U S T T SNext we outline the steps to be taken.1. Choose fromH odes for d levels for S and U ; hoose d larger levels forS and T ; start the initial segment of S with respet to T ; ontinue it toget the initial segment of S with respet to U (the di�erene is in thenode labelings only), and apply � to the results to determine the sizesd0; d00 of node labels for the roots of T; U in G0;1, G0;2, respetively.2. Choose d0 levels for T 's interation with U ; hoose d larger levels forT 's interation with S; start the initial segment of T with respet toS; ontinue it to get the initial segment of T with respet to U ; andapply � to determine the size d000 of the node label of the root of Ufor G1;2.3. Choose d000 levels for U 's interation with T ; hoose d00 larger levelsfor U 's interation with S; start the initial segment of U with respetto S; ontinue it to get the initial segment of U with respet to T .4. Play the mid-game of G1;2 to the all for the ompletion of U .5. The initial segments of T and U with respet to S are omplete, soupdate the node labelings C0 and C1.6. Play the mid-game of G0;2 until the arhitet alls for the ompletionof S. In partiular, play until U is omplete.7. Update the node labeling E1 for U by labeling all the new nodes bythe empty set.8. Complete the play of the game G0;1, starting by extending the part ofS reated in the play of the mid-game G0;2. Suh a start is possible,sine the levels of S for interation with T are larger than those forinteration with U .



80 I. Partition Relations9. Update the node labelings C2 for S and D2 for T by labeling all thenew nodes by the empty set.Care must be taken to diret the builder to start high enough that allmoves in the tree plays of G(h;H) are onservative. Sine the onstrutionof the initial segments alls for introduing levels, we desribe the �rst suhstep in greater detail.We know that we will need to hoose levels for splitting of S with respetto T and U , and for splitting T with respet to U . Depending on thestrategy �, we may need to hoose levels for the splitting of T with respetto S and for the splitting of U with respet to S and T . Here is a pitureof the approah we plan to take on these splitting levels, in the general asewhere we need levels for all pairs. ��������� AAAAAAA
AA

��AA �����\\\\\for Tfor U for Sfor U for Tfor S
S T UTo start the onstrution, hoose 2d+1 elements from H above b(h �(;) i)ending in m0, and use them to de�ne C1(
m0 �) and C2(
m0 �) withC2(
m0 �) < C1(
m0 �).Start playing a game G0;1 where the arhitet starts with R0;10 = �(;)and the builder must use the elements of C1(
m0 �) and m0 to start hisinitial move, R0;11 . Continue to play until the arhitet's last move R0;1pbefore direting the builder to swith to the seond tree. One an identifythis point in the run of the game, sine it is the �rst time the arhitet hasstopped on a node, all it v0, whose level is one more than min(C1(hm0 i)).Let (S1p�1; C1p�1) be the tree paired with (;; ;) by the builder in his lastmove.Let C2 be the node labeling of S1p�1 with the value of C2(hm0 i) spei�edabove, with the empty set assigned for nodes whih are not initial segmentsof v0, and for initial segments of v0 longer than the root, are the singletonsneeded to guarantee that v0 is a prepartition node. Then the arhitetdirets the builder to extend this node labeled tree to a response R0;21 to�(;) in the seond game G0;2. The two players ontinue the game until thearhitet, in R0;2q , direts the builder to swith to the seond tree to startwith a node label of size d00 and to go to a deision node. Suh a move is theonly one that will lead to a lear pair. Let (S2q�1; C2q�1) be the tree playedby the builder in his previous move.Return to game G0;1 and require the builder to respond to R0;1p with(S1p+1; C1p+1) for S1p+1 = S2q�1 and C1p+1 the node labeling where all new



10. A positive ountable partition relation 81nodes that are not initial segments of the largest node are labeled with theempty set and initial segments of the largest node are labeled minimally sothat it is a prepartition node. Let d0 be the size of the node label for theroot of the seond tree determined by the arhitet's use of � in responseto this move of the builder.The remaining details are left to the reader. The areful reader will notethat there is one possibility in whih the arhitet initially alls for d = 1,spei�es a node label of size 2 at the �rst deision node, and after theompletion of the �rst full segment, alls for an empty node label for theroot of the seond tree. The onstrution proeeds as above but is simpler,so these details are also left to the reader.As in the previous ases, sine � is a winning strategy for the arhitet,the set fS; T; U g we have onstruted is the required triangle.Case 5: Using �, the arhitet delares the pair will be an outside pair,and spei�es the initial node label size d > 0 and direts the builder toonstrut the �rst tree to a deision node.This ase is substantially like the previous one, so we give the shematibelow to guide the reader and a few omments on how to move from onesetion to the next.S T S T U S U S T U T UWe start by building initial segments of S and T . We begin by hoosingd small levels for the interation of S with T and d larger levels for theinteration of S with U . We start to build the initial segment of S withrespet to its onvex partition by U , then extend that start to build theinitial segment of S with respet to its onvex partition by T . We obtainthe size d0 of the root node label of the seond tree in G0;1 by applying �,hoose d0 small levels for the interation of T with S, and d larger levels forthe interation of T with U . We start building the initial segment of T withrespet to U , then extend it to the initial segment of T with respet to S.We play the mid-game of G0;1 until the arhitet alls for the ompletionof S. In the proess we have ompleted the initial segments of S and T withrespet to U , so we update C2 and D2, and apply � to the urrent state ofplay of G0;2 to �nd d00 and to the urrent state of play of G1;2 to �nd d000.We hoose d00 smaller levels for the interation of U with respet to Sand d000 larger levels for the interation of U with respet to T . We startbuilding the initial segment of U with respet to T , then extend it to theinitial segment of U with respet to S.We play the mid-game of G0;2 until the builder has ompleted the on-strution of S and the arhitet has alled for the ompletion of U . In theproess we have ompleted the initial segment of U with respet to T , andthe �nal segment of S with respet to T so we update E1 and and C1.



82 I. Partition RelationsThen we play the mid-game of G1;2 and omplete the play of that gamewith the �nal segments of T and U . Finally, we update D0 and E0 on thenew elements of T and U whih omplete the games G0;1 and G0;2.As in the previous ases, sine � is a winning strategy for the arhitet,the set fS; T; U g we have onstruted is the required triangle. a10.6. Free SetsOur next goal is the onstrution of a subset of T (!) of order type !!!whih is 0-homogeneous for global pairs.Reall the haraterization of subsets of G! of order type at least !s thatdates bak to the late 1960's or early 1970's. (see [43℄, [42℄, [66℄).10.39 De�nition. A non-empty set S � f� 2 G! : min � = n g is freeabove oordinate k if for every x = hx0; x1; : : : ; xn i 2 S, there is anin�nite set N � ! so that for eah x0 2 N , the set of extensions ofhx0; x1; : : : ; xk; x0 i in S is non-empty. The set S is free in s oordinatesif there are s oordinates above whih it is free.10.40 Lemma (see Lemma 7.2.2 of [66℄). A set S � f� 2 G! : min� = n ghas ot(S) � !s if and only if there is a subset V � S so that V is free in soordinates.We would like to adapt this idea to sets of node labeled trees from T (�).By an abuse of notation, write t 2 (T;D) 2 X to mean that t 2 T for some(T;D) 2 X . The next de�nition failitates our disussion. Reall that e�(s)is the ordinal of s.10.41 De�nition. For � � ! and any s 2 (S;C) 2 T �(�), all s a signalnode if either jC(s)j > 1 or e�(s) limit and jC(s)j = 1.Reall De�nition 10.24 of relaxed initial segments of trees in T (�). The�rst three parts of the next de�nition guarantee that loally �-free sets havenie regularity properties, and the last three guarantee (1) signal nodesare introdued whenever there is no onstraint, (2) signal nodes are givenlarge node labels, and (3) there are arbitrarily large starts for extensions ofrelaxed initial segments of trees in the olletion. The de�nition of �-freefrom loally �-free guarantees that there are arbitrarily large new starts fortrees as well.10.42 De�nition. Suppose � � ! and 0 =2 � 2 [� + 1℄<!. A non-emptyset X of node labeled trees from T (�) is loally �-free for � if the followingonditions are satis�ed:1. (ommonality) if � > 0, then every tree in X has a proper relaxedinitial segment and every loal pair from X has a ommon properrelaxed initial segment and otherwise is disjoint;



10. A positive ountable partition relation 832. (onformity) if r 2 (S;C) 2 X and k 2 C(r) 6= ;, then there is somerelaxed (T;D) v (S;C) so that r � maxT and if the ordinal of r is asuessor, then ℄(r; T ) = k.3. (�-signality) for any signal node r 2 (S;C) 2 X , either e�(r) 2 � orfor some p � r with e�(p) = !, there is k 2 C(p) so that e�(r) = k.4. (�-foreasting) for any relaxed (S;C) v (T;D) 2 X , if i 2 �, thenthere is some signal node r � maxS with e�(r) = i; and if p � maxSis a signal node, k 2 C(p), and e�(p) = ! is a limit ordinal, then thereis some signal node r � maxS with e�(r) = k;5. (signal size) for any signal node r 2 (S;C) 2 X , the inequalityjC(r)j < max r holds, and max t < max r implies max t < jC(r)jfor all t 2 (T;D) 2 X .6. (push-up) for every k < ! and every relaxed initial segment (T;D) �(U;E) 2 X , there is some omplete extension (V; F ) A (T;D) in Xwhose new elements start above k, i.e. k < min(S V [ ranF �ST [ranD).We say X is �-free for � if it is loally �-free for �, and for all k < !, thereis some hm i 2 (S;C) 2 X suh that k < jC(hm i)j if � 2 � and k < motherwise.By an abuse of notation, for a olletion X of node labeled trees fromT (�), we let otX = ot fS : 9C(S;C) 2 X g.10.43 Lemma. For all � � !, for all 0 =2 � 2 [� +1℄<!, if X is �-free for�, then otX � �(�;�) where�(�;�) :=8>>><>>>:! if � = 0,!2 if � > 0 and � = ;,!!j�j if � > 0 and ! =2 � 6= ;, and!!! otherwise.Proof. Relaxed trees, espeially with a spei�ed node as an initial segmentof the max, play an important role in the de�nition of free and loally free.Here is some notation to failitate the disussion. For any set X of nodelabled trees, de�ne X(t) := f (T;D) 2 X : t 2 (T;D) g.10.44 Claim. If X is �-free for � = 0 and 0 =2 � � 1, then otX � !.Proof. Sine 0 =2 � � 1, it follows that � = ;. Sine any �-free for � = 0set X has arbitrarily large roots, it must have order type at least !. a



84 I. Partition RelationsFor 1 � � � !, � � � + 1, Y a set of node labeled trees from T (�) andm < !, de�ne �(�;�; Y;m) := 0 unless Y (hm i) 6= ; is loally �-free for �and there is some (S;C) 2 Y with hm i 2 (S;C), and in the latter ase, set�(�;�; Y;m) :=8><>:1; if � = ;!!` ; if � 6= ; and � = max� limit,!!��`; otherwisewhere, for non-empty �, ` := jC(s)j�1 for s the least signal node of (S;C),� := j�j � 1. This funtion is well-de�ned, sine if Y (hmi) 6= ; is loally�-free for � with � non-empty, then all elements of Y (hmi) have a properrelaxed initial segment in ommon with (S;C) whih must inlude the leastsignal node of (S;C).Let �(�;�) be the following statement.�(�;�): For all loally �-free for � sets Y , if hmi 2 (S;C) 2 Y ,then otY (hmi) � �(�;�; Y;m).10.45 Claim. For all � � 1 and 0 =2 � � � + 1, if X is �-free for � and�(�;�) holds, then otX � �(�;�).Proof. Use indution on n to prove the laim for subsets � � ! of size n.To start the indution, onsider subsets of size 0. If X is ;-free for � � 1,then by de�nition, X(hmi) is non-empty for in�nitely many m, and byommonality and push-up, otX(hmi) � !, so otX � !2 = �(�; ;).Next assume the laim is true for subsets of size k and that n = k + 1.If X is �-free for � � 1 and 0 =2 � � � + 1 satis�es ! =2 � and j�j = k + 1,then there are arbitrarily large ` for whih there are m 2 (S;C) 2 X with` < jC(hmi)j if � 2 � and with ` < m otherwise. In the latter ase, by�-foreasting and by signal size, there are arbitrarily large ` for whih the�rst signal node s 2 (S;C) 2 X has ` < jC(s)j. Sine �(�;�) holds, itfollows that there are arbitrarily large ` < m with otX(hmi) � !!k` fork = j�j � 1, hene otX � !!k+1 = �(�;�) as desired.Therefore by indution, the laim holds for all �nite subsets � � !.To omplete the proof, onsider � with ! 2 �. Then � = !. Suppose Xis �-free for ! and ! 2 �. Then the root node of every tree in X is a signalnode. Also X has arbitrarily large values for jC(hmi)j by the de�nition of�-free for � = ! 2 �. Hene from �(!;�) it follows that otX(hmi) � !!`for ` = jC(hmi)j � 1, so otX = !!! = �(!;�) as required. a10.46 Claim. For all � � 1 and 0 =2 � � �+1, the statement �(�;�) holds.Proof. Suppose Y is loally ;-free for � � 1 and hm i 2 (S;C) 2 Y . Thenby ommonality and push-up, otY (hm i) � !, so �(�; ;) holds.



10. A positive ountable partition relation 85Use indution on � to show that for all non-empty 0 =2 � � � + 1, thestatement �(�;�) holds. For the basis ase, � = 1, the only ase to beonsidered is � = f1g. Suppose Y is loally f1g-free and hm i 2 (S;C) 2 Y .Then hm i is a signal node, and Z := fST : (T;D) 2 Y (hm i) g is freein jC(hm i)j oordinates in the sense of De�nition 10.39 by onformity andpush-up. Thus Z has order type !jC(hm i)j by Lemma 10.40. Hene Y (hm i)has this order type as well, so �(1; f1g) holds.For the indution step, assume �(�0) is true for all �0 with 1 � �0 < �.Suppose � is non-empty with 0 =2 � � � + 1, Y is loally �-free for � andhm i 2 (S;C) 2 Y . It follows that Y (hmi) is also loally �-free for �. Let(S�; C�) be the minimal proper relaxed initial segment of (S;C), requiredby ommonality. Then (S�; C�) is a ommon initial segment of all trees inY . Let hm;m� i be the unique initial segment of maxS� of length 2.Case 1: max� < � or max� = � = !.For eah (T;D) 2 Y , the derived tree (T̂ ; D̂) is de�ned by t̂ 2 T̂ if andonly if hm;m� i v hm i_t̂ 2 T , and D̂(t̂) = D(hm i_t̂).Let Z be the olletion of derived trees. Note that hm� i is an elementof every tree in Z. Let �0 = � � 1 and �0 = � if � is �nite, and let �0 = mand �0 = (� � f!g) [ C(hmi) otherwise. Then Z = Z(hm� i) is loally�0-free for �0. Also, otY (hm i) � otZ(hm� i), so in this ase, the desiredinequality follows by the indution hypothesis.Case 2: � = f� + 1g.Consider the set E � T (1) of hm; k1; k2; : : : ; kmi suh that there is(T;D) 2 Y suh that for all 1 � i � m, hm; kii 2 T . By onformity andpush-up, the set E is free in ` = jC(hmi)j�1 many oordinates, so it has or-der type !`, by Lemma 10.40. Thus ot(Y (hmi)) � otE = !` = �(�; ; Y;m)as required.Case 3: � + 1 2 � 6= f� + 1g.Notie that every tree (T;D) in Y (hmi) may be thought of as a olletionof m node labeled trees from T (�) extending from the root hmi.Call an initial segment (T;D) of a tree in Y (hmi) large if maxT is aprepartition node with ordinal 0 suh that ℄(s; T ) = maxC(s) for all propers � t with jsj > 1. Every element of Y (hmi) has exatly jC(hmi)j manylarge initial segments.Let �0 = ��f� + 1g and set � = j�0j. Fix attention on a large (T;D) forwhih ℄(hmi; T ) < maxC(hmi), and let k be the least element of C(hmi)greater than ℄(hmi; T ). Let E(T;D) be the set of initial segments (T 0; D0)of elements of Y extending (T;D) to a tree with root hmi extended byexatly k subtrees from T (�). Then E(T;D) has order type !!� , sine theolletion of trees that our for the kth slot are �0-free for �. In fat theset of maximal large initial segments of these trees also has order type !!� ,sine eah has exatly ! extensions in E(T;D) and !!� is multipliatively



86 I. Partition Relationsindeomposable. From this analysis, it follows that otY (hmi) � !!��`,where ` = jC(hmi)j � 1, so �(�;�) holds in this �nal ase.Therefore by indution on �, the laim follows. aNow the lemma follows from Claims 10.44, 10.45 and 10.46. a10.47 Lemma. Suppose h is a 2-partition of T (!) with 2 olors and N � !is in�nite with 1 < minN and no two onseutive integers are in N . Furthersuppose a bounding funtion b and H � N in�nite are suh that the builderwins every run of G(h;N) by playing onservatively for b and H. Then thereis a set Y � T (!) of order type !!! so that h(S; T ) = 0 for all global pairsfrom Y .Proof. We will use reursion to build a f!g-free for ! set X with theproperty that every global pair ((S;C); (T;D)) from X has a oarsening((S;C 0); (T;D0)) whih is a �nal play in a run of G(h;N) in whih thebuilder plays onservatively for b and H . (By a oarsening, we mean thatC 0(s) � C(s) and D0(t) � D(t) for all s 2 S, t 2 T .) Sine the builder winsthe game, h(S; T ) = 0 for suh pairs. Thus Y = fS : (9C)((S;C) 2 X) g isthe desired set, sine, by Lemma 10.43, Y has order type !!! .To start the reursion, let X0 be the set with only (;; ;) in it. Forpositive j < !, we enumerate the node labeled trees in Si<j Xi whih areproper initial segments, starting with (;; ;) = (S0j;0; C 0j;0) and ending with(S0j;nj ; C 0j;nj ). Speaking generally, in stage j, for eah k � nj , we onsiderthe kth initial segment, (S0j;k; C 0j;k), use moves of the arhitet and builderin G(h;H) to reate a relaxed or omplete extension, (Sj;k; Cj;k), usingelements of H larger than anything mentioned up to that point. Then welet Xk be the set of all (Sj;k; Cj;k) for k � nj .A simple indution shows that that there are only �nitely many properinitial segments to be onsidered in eah stage and they fall into at mostthree types: trivial (i.e. (;; ;)), ready for ompletion (i.e. a relaxed initialsegment (T;D) suh that for all s � maxT whose ordinal is a suessor,℄(s; T ) = maxD(s)), or relaxed but not ready for ompletion.In stage j, for the trivial initial segment, one starts G(h;H) at the begin-ning. Otherwise, for the kth initial segment, one ontinues a game in whihthe �rst tree is (S0j;k; C 0j;k) and the seond tree is the relaxed initial segmentonstruted to extend (;; ;) in this stage, namely (Sj;0; Cj;0).In the games played, the arhitet uses the following strategy. She alwaysdirets the builder to reate or extend the �rst tree. If the arhitet ismaking her �rst move on the kth initial segment and it is relaxed, thenshe delares the next node label size to be 0 and alls for ompletion if(S0j;k; C 0j;k) is ready for ompletion, and for deision otherwise. Reall thatif the arhitet alls for ompletion, then the node label of new elements isthe empty set. Otherwise, the arhitet uses the least element of H larger



10. A positive ountable partition relation 87than any used to that point as the size of the next node label, and alls foronstrution to the next deision node.The builder always responds onservatively for H , b, and always playslarge enough to have the play remain onservative for any possible gamethat ould be onstruted using oarsenings of the given trees.Play stops at the end of the �rst move by the builder in whih he reatesa tree (Sj;k; Cj;k) whih is relaxed or omplete.In any stage, with any starting initial segment, after �nitely many stepsof the game, the builder has onstruted the required relaxed or ompleteextension. Sine there are only �nitely many trees to extend in a givenround, eventually eah round is �nished. Therefore, the onstrution stopsafter ! rounds with a set X = SXj of trees. Let X be the set of ompletetrees in X. By onstrution, X is f!g-free, so by Lemma 10.43, the setY := fS : (9C)((S;C) 2 X) g has order type !!! .To hek that Y is the required set, suppose that ((S0; C0); (S1; C1)) is aglobal pair from the set X with (S0; C0) < (S1; C1). By the onstrution,every partition node of (S"; C") is the maximum of some relaxed segment of(S"; C"), and every splitting node r has e�(r) in C(hm" i), where a splittingnode r 2 S" is one of the form s \ t for distint partition nodes s; t 2 S".Hene there are oarsenings (S0; D0) and (S1; D1) so that for all r 2 S",D"(r) =8><>:f ℄(r; S"(;; s℄) : r � s partition node g e!(r) suessor;f e!(t) : r � t splitting node g e!(r) limit;; otherwiseThus ((S0; D0); (S1; D1)) satis�es De�nition 10.23 and is a global lear pair.If maxSS0 > maxSS1, then the pair is inside, and otherwise it is outside.Use this knowledge in the arhitet's initial move; use the values of jD"(r)jfor the sizes of the node labels in the arhitet's moves; and orhestrate hermoves to reate the pair of node labeled trees when the builder is requiredto use the elements of SS0 [ ranD0 [ SS1 [ ranD1. Sine the arhitethas no winning strategy, and the builder's plays were large enough for anyoarsening, it follows that this run of the game is a win for the builder.Thus h(S0; S1) = 0 as desired. a10.7. Completion of the proofIn this subsetion, we omplete the proof that !!! ! (!!! ; 3)2 by assem-bling the appropriate lemmas. We start with h : [T (!)℄2 ! 2. We applythe Ramsey Dihotomy 10.32 to h and N = ! to get H � ! in�nite, abounding funtion b and a favored player.If the arhitet has a winning strategy by whih she wins G(h;N) whenthe builder plays onservatively, then there is a 1-homogeneous triangle byLemma 10.38.



88 I. Partition RelationsOtherwise, the builder wins every run of G(h;N) by playing onserva-tively, so by Lemma 10.47, there is a set Y of order type !!! so that allglobal pairs get olor 0. Partition Y into sets Yn so that Y0 < Y1 < : : : ,all pairs from Yn are loal, and otYn � !!1+2n . Apply Corollary 9.3 toeah Yn. If for some n, the result is a 1-homogeneous triangle, we are done.Otherwise, we get 0-homogeneous sets Zn � Yn of order type !!1+n , andZ = SZn is the 0-homogeneous set required for ompletion of the proof ofthe theorem.
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