
Handbook of Set TheoryForeman, Kanamori, and Magidor (eds.)O
tober 25, 2006



2



Contents
I Partition Relations 5by Andr�as Hajnal and Jean A. Larson1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.1 Basi
 De�nitions . . . . . . . . . . . . . . . . . . . . . . . 72 Basi
 Partition Relations . . . . . . . . . . . . . . . . . . . . . . 92.1 Ramsey's theorem . . . . . . . . . . . . . . . . . . . . . . 92.2 Rami�
ation Arguments . . . . . . . . . . . . . . . . . . 102.3 Negative Stepping Up Lemma . . . . . . . . . . . . . . . 123 Partition relations and submodels . . . . . . . . . . . . . . . . . 134 Generalizations of the Erd}os-Rado Theorem . . . . . . . . . . . 164.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 164.2 More elementary submodels . . . . . . . . . . . . . . . . 184.3 The Balan
ed Generalization . . . . . . . . . . . . . . . . 204.4 The Unbalan
ed Generalization . . . . . . . . . . . . . . 234.5 The Baumgartner-Hajnal Theorem . . . . . . . . . . . . 285 The Milner-Rado Paradox and 
(�) . . . . . . . . . . . . . . . . 366 Shelah's Theorem for in�nitely many 
olors. . . . . . . . . . . . 387 Singular Cardinal Resour
es . . . . . . . . . . . . . . . . . . . . 428 Polarized Partition Relations . . . . . . . . . . . . . . . . . . . . 448.1 Su

essors of weakly 
ompa
t 
ardinals . . . . . . . . . . 448.2 Su

essors of singular 
ardinals . . . . . . . . . . . . . . 489 Countable Ordinal Resour
es . . . . . . . . . . . . . . . . . . . . 539.1 Some history . . . . . . . . . . . . . . . . . . . . . . . . . 539.2 Small Counterexamples . . . . . . . . . . . . . . . . . . . 5410 A positive 
ountable partition relation . . . . . . . . . . . . . . 6510.1 Representation . . . . . . . . . . . . . . . . . . . . . . . . 6610.2 Node labeled trees . . . . . . . . . . . . . . . . . . . . . . 6910.3 Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7110.4 Uniformization . . . . . . . . . . . . . . . . . . . . . . . . 7410.5 Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . 7710.6 Free Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 8210.7 Completion of the proof . . . . . . . . . . . . . . . . . . . 873



4 CONTENTS



I. Partition RelationsAndr�as Hajnal and Jean A. LarsonResear
h partially supported by NSF grants DMS-0072560 (Hajnal) andDMS-9970536 (Larson)1. Introdu
tionThe study of partition relations dates ba
k to 1930, when F. P. Ramsey [50℄proved his oft-
ited theorem.1.1 Theorem (Ramsey's Theorem). Assume 1 � r; k < ! and f : [!℄r ! kis a partition of the r element subsets of ! to k pie
es. Then there is anin�nite subset X � ! homogeneous with respe
t to this partition. That is,for some i < k; f\ [X ℄r = fig :In 1941, B. Dushnik and E.W. Miller [9℄ looked at partitions of the set ofall pairs of elements of an un
ountable set, involving P. Erd}os in solving oneof their more diÆ
ult problems (see Theorem 7.4). In 1942, P. Erd}os [10℄proved some basi
 generalizations of Ramsey's Theorem, in
luding amongothers the theorem generally 
alled the Erd}os-Rado Theorem for pairs. Inthe early �fties, P. Erd}os and R. Rado [17℄, [19℄ initiated a systemati
investigation of quantitative generalizations of this result. They 
alled itthe partition 
al
ulus. There are 
ases in mathemati
al history when awell-
hosen notation 
an enormously enhan
e the development of a bran
hof mathemati
s and a 
ase in point is the ordinary partition symbol (seeDe�nition 1.3) �! (��)r�<
invented by Ri
hard Rado [18℄, redu
ing Ramsey's Theorem to ! ! (!)r
for 1 � r; 
 < !. It be
ame 
lear that a 
areful analysis of the problemsa

ording to the size and nature of the parameters leads to an inexhaustablearray of problems, ea
h seemingly simple and natural. These 
lassi
al in-vestigations were 
ompleted in the 1965 paper [15℄ of Erd}os, Hajnal andRado, and were extended in the book [14℄ written jointly with Attila M�at�e.5



6 I. Partition RelationsIn 1967, after the �rst post Cohen set theory 
onferen
e, held in LosAngeles, Erd}os and Hajnal wrote a list of unsolved problems for the ordinarypartition symbol and related topi
s. This paper [12℄ appeared in print fouryears later.A great many new results were proved by the then young resear
hers.However, unlike many other 
lassi
al problems, these problems yielded somebut 
ontinued to resist. The introdu
tion of new methods and the dis
overyof new ideas usually has given only in
remental progress, and obje
tively,we are as far as ever from 
omplete answers. However, small steps requiringnew methods have been 
ontinuously made, quite a few of them during thewriting of this paper, and we will 
on
entrate on them.For easy referen
e, in the ordinary partition relation � ! (��)r
 , we 
all� the resour
e, �� the goals, and 
 the set of 
olors. We will be fo
using ontwo main subje
ts:1. New ZFC theorems obtained via the elementary submodelmethod both for ordinary partition relations and for polarizedpartition relations (see De�nition 1.5).2. The new results obtained in the late nineties for partitionrelations with a 
ountable resour
e.Se
tion 2 des
ribes the 
lassi
al proofs of the (balan
ed) form of theErd}os-Rado Theorem and the Positive Stepping Up Lemma. These are theresults where the resour
e is regular and the goals are equal and of the form� , or � +1 for some 
ardinal � . In subse
tion 2.3 we state but do not provethe Negative Stepping Up Lemma 
omplementing these results.In Se
tion 3, we des
ribe the elementary submodel method and in par-ti
ular, the use of nonre
e
ting ideals �rst introdu
ed in [4℄. We give analternate proof of the balan
ed Erd}os-Rado Theorem, and give a proof ofthe unbalan
ed form of it using the new method.In Se
tion 4, espe
ially in subse
tion 4.2, we fully develop the method ofelementary submodels. We give streamlined proofs of both the balan
ed andunbalan
ed forms of the Baumgartner-Hajnal-Todor
evi
 Theorems [4℄ insubse
tions 4.3 and 4.4. These results generalize the Erd}os-Rado Theoremto allow goals whi
h are ordinals more 
omplex than 
ardinals � and theirordinal su

essors, � + 1. We state a result of Foreman and Hajnal [20℄ forthe su

essors of measurable 
ardinals. Using the methods of the Foreman-Hajnal proof, in subse
tion 4.5, we give a dire
t proof of a spe
ial 
ase ofthe Baumgartner-Hajnal Theorem [2℄.In Se
tion 5, we dis
uss the Milner-Rado Paradox and the new ordinal
(�) < �+ introdu
ed in the Foreman-Hajnal result [20℄, whi
h is relatedto a form of the Milner-Rado Paradox.In Se
tion 6, we dis
uss a new development, the �rst in the twenty-�rst
entury. Solving a problem of Foreman and Hajnal, Shelah [56℄ proved that



1. Introdu
tion 7if there is a strongly 
ompa
t 
ardinal, then there are 
ardinals � su
h that�+ ! (�+ 2)2!.In Se
tion 7, we brie
y dis
uss the 
ase of singular resour
es. We statebut do not prove a 
ompilation of theorems on this subje
t from the 1965Erd}os, Hajnal and Rado paper [15℄ and the 1975 Shelah paper [58℄.In Se
tion 8, we des
ribe a new variant of the elementary submodelmethod 
alled double rami�
ation, whi
h was invented by Baumgartner andHajnal in 8.2.In subse
tion 8.1, we use it for the proof of(�) � �+� �! � �� �1;1
where � is weakly 
ompa
t and 
 < �. Result (�) was previously knownonly if 
 < ! (see the dis
ussion before Theorem 8.2). In subse
tion 8.2,we use the method for the proof of Shelah's Theorem [60℄ stating that (�)holds for � a singular strong limit 
ardinal (of un
ountable 
o�nality) whi
hsatis�es 2� > �+ and for 
 < 
f(�).In Se
tion 9, we dis
uss the spe
ta
ular progress by Carl Darby [7℄, [8℄ andRene S
hipperus [54℄, [52℄ on the 
ases where the resour
e � is a 
ountableordinal, listing their negative partition results in Theorem 9.9, and give asample 
ounterexample, !!2 9 (!!2 ; 6)2. This example is not optimal, butwas 
hosen to illustrate the methods of Darby without all the 
ompli
atingdetail.In Se
tion 10, we outline a proof of a spe
ial 
ase of the positive resultsby S
hipperus that !!� ! (!!� ; 3)2 for � � 2 the sum of one or twoinde
omposable ordinals (Darby independently proved the result for � = 2).We 
lose this se
tion with some ba
kground de�nitions.1.1. Basi
 De�nitions1.2 De�nition. Let X be a set, r < ! and �; 
 be ordinals.1. A map f : [X ℄r ! 
 is 
alled an r-partition of X with 
 
olors.2. For � < 
, a subset Y � X is 
alled homogeneous for f in 
olor � iff\ [Y ℄r = f�g :3. The set Y � X is homogeneous for f if it is homogeneous for f insome 
olor � < 
.4. A linearly ordered set X has order type �, in symbols, otX = �, if itis order isomorphi
 to �.



8 I. Partition Relations1.3 De�nition. Let �, �� for � < 
, and 
 be ordinals and suppose 1 �r < !. The ordinary partition symbol�! (��)r
means that the following statement is true.For every r-partition of � with 
 
olors, f : [�℄r ! 
, there exist� < 
 and X � � su
h that otX = �� and X is homogeneousfor f in 
olor �.We write � 6! (��)r
to indi
ate that the negation of this statement is true. If all �� equal �,then we write �! (�)r
 (or � 6! (�)r
):A further more or less self explanatory abbreviation is � ! (�0; (�)
)2 in
ase �� = � for 1 � � < 
:1.4 Remark. Note that the notation of De�nition 1.3 is so devised thatif we start with a positive partition relation � ! (��)r
 , then the truth ofthe assertion is preserved under in
reasing the resour
e ordinal � on thelefthand side of the arrow (!) and de
reasing the ordinal goals ��, or the
olors 
 on the righthand side of the arrow. And this latter statement holds,with some ex
eptions, for the exponent r as well (see [14℄).We stated De�nition 1.3 in this generality, be
ause it will suÆ
e for mostof what we will prove. It should be 
lear that further generalizations 
anbe made. For example, a similar symbol � ! (��)Æ
 
an be de�ned where�;��; Æ are order types, by starting with an arbitrary ordered set hX;�ifor whi
h ot(X;�) = �, partitioning its subsets of order type Æ,[X ℄Æ = fY � X : ot(Y;�) = Æ g ;into 
 
olor 
lasses, and as above, looking for homogeneous subsets of thepres
ribed 
olor and order type. As general Ramsey theory developed inboth �nite and in�nite 
ombinatori
s, problems were 
onsidered in whi
hthe set partitioned was a subset of [X ℄Æ rather than all of [X ℄Æ, and thehomogeneous sets 
onsisted of possibly other kind of subsets of [X ℄Æ. Par-tition relations proliferated. For a review of some of them we refer to [14℄,sin
e we 
an not try to 
over all of them in the limit spa
e of this 
hapter.In [15℄, among other generalizations, polarized partitions were intro-du
ed. In fa
t, this paper is the only pla
e in the published literaturewhere these relations are systemati
ally dis
ussed.



2. Basi
 Partition Relations 91.5 De�nition. Let �, � be ordinals and suppose that �0; �1 � � and�0; �1 � �. The polarized partition relation� �� �! � �0 �1�0 �1 �means that the following statement is true.For all ordered sets A and B of order type �, � respe
tively, andall partitions f : A�B ! 2, there is an i < 2 and sets Ai � A,Bi � B su
h that otAi = �i, otBi = �1 and f\Ai �Bi = fig.2. Basi
 Partition Relations2.1. Ramsey's theorem2.1 De�nition. Assume hX;�i is an ordered set and f : [X ℄r ! 
 is anr-partition of length 
 of X , 1 � r < !.1. For V 2 [X ℄r�1, de�ne fV : X r V ! 
 byfV (u) = f(V [ fug)2. f is endhomogeneous on X if for every V 2 [X ℄r�1, the fun
tion fVis homogeneous on X j � V = fu 2 X : V � u g.3. Let X� = (X � fmg if X has a maximal element mX otherwise4. Assume f is endhomogeneous on X . De�ne f� : [X�℄r�1 ! 
 byf�(V ) = � i� 8u 2 X j � V (fV (u) = �) for V 2 [X�℄r�1.The next lemma follows immediately from the de�nitions.2.2 Lemma. Using the above notation, if f is endhomogeneous on X; Y �X� and f� is homogeneous on Y then f is homogeneous on Y and onY [ fmg if m is the maximal element of X.We �rst give a dire
t proof of the well-known Ramsey's Theorem us-ing non-prin
ipal ultra�lters and postponing the more natural rami�
ationmethod to the next se
tion for two reasons. First, Erd}os and Rado 
on-sidered this approa
h part of their \
ombinatori
s", (Erd}os 
alled the ul-tra�lters \measures"). Se
ond, having given a proof here, we do not haveto adapt the forumulation of the rami�
ation to 
over the 
ase when theresour
e is a regular limit 
ardinal.



10 I. Partition Relations2.3 Theorem (Ramsey's Theorem).! ! (!)rk for 1 � r; k < !Proof. By indu
tion on r. For r = 1 the 
laim is obvious. Assume r > 1and f : [!℄r ! k: Let U be a non-prin
ipal ultra�lter on ! and V 2 [!℄r�1:De�ne ~f(V ) and A(V ) as follows: let ~f(V ) = i for the unique i < k forwhi
h the set A(V; i) := fu 2 ! � V : fV (u) = i g is in U , and set A(V ) :=A(V; ~f(V )).We 
an 
hoose by indu
tion on n an in
reasing sequen
e hxn : n < ! iof integers satisfying xn 2 T fA(V ) : V 2 [fxj : j < n g℄r g for n < !. LetX = fxn : n < ! g : Then f�j[X ℄r�1 = ~f j[X ℄r�1 and f is endhomogeneouson X . By the indu
tion hypothesis, there is a Y � X with ot(Y ) = ! sothat Y is homogeneous for f�. Finally, by Lemma 2.2, Y is the desired sethomogeneous for f . a2.2. Rami�
ation Arguments2.4 Remark (A brief history). The �rst trans�nite generalization of Ram-sey's theorem appeared in the paper [9℄ of Dushnik and Miller. They proved�! (�; !)2 for regular � and Erd}os proved this for singular � as well. Hisproof was in
luded in [9℄. This theorem, unique of its kind, logi
ally belongsto Se
tion 7 where we will dis
uss it brie
y.The basi
 theorems about partition relations with exponent r = 2 were�rst stated and proved in 1942 in an almost forgotten paper of Erd}os [10℄.There he proved (2�)+ ! (�+)2� for � � !; he indi
ated the 
ounterexam-ples 2� 6! (3)2� and 2� 6! (�+)22; and he proved !2 ! (!2; !1)2 assumingCH. The Erd}os-Rado Theorem for exponent larger than 2 was proved laterin [19℄. (See Corollary 2.10.) Kurepa also worked on related questions quiteearly (see the dis
ussion by Todor
evi
 in Se
tion C of [38℄).Few theorems had so many simpli�ed proofs as (2�)+ ! (�+)2�, theErd}os-Rado Theorem. Erd}os and Rado used the so 
alled \rami�
ationmethod". We will present this method in the proof of the next theorem.After some \streamlining," it still seems to be the simplest way for obtainingbalan
ed partition relations for 
ardinals, ones in whi
h all the goals are thesame 
ardinal. For the unbalan
ed 
ase, we will present a method workedout in [4℄. This method will be used in the proofs of a number of morere
ent results whi
h will be presented in later se
tions. Given limitations oftime and energy, and a desire for 
oheren
e, we de
ided to fo
us on resultsamenable to this method.2.5 Theorem. Assume 2 � r < !; � � !; 
 < �; � = 2<� andf : [�+℄r ! 
:



2. Basi
 Partition Relations 11Then there exists an X � �+ with ot(X) = �+ 1 su
h that f is endhomo-geneous on X.Proof. For � < �+, de�ne an in
reasing sequen
e �� = h��� : � < '� i ofordinals less then � and an ordinal '� by trans�nite re
ursion on �. For� = 0, set '0 = 0 and let �0 be the empty sequen
e. For positive �, tostart the re
ursion, let ��q := q for q < max f�; r � 1 g, and for � < r � 1,let '� = �. To 
ontinue the re
ursion, assume r � 2 < � and ��� is de�nedfor � < �. Let �̂�� = supn��� + 1 : � < � o, and de�ne setsB�� := n��� : � < � oA�� := n� < � : �̂�� � � ^ (8V 2 [B�� ℄r�1)(fV (�) = fV (�))o :Let ��� := minA�� if A�� 6= ;: If A�� = ;, put '� = �. Clearly for ea
h� < �+, the set B�'� [ f�g is an endhomogeneous set of order type '� + 1,and we may de�ne f�� on [B�'� ℄r�1 as in De�nition 2.1. If � 2 B�'� , thenit is easy to show by indu
tion on � < '� that ��� = ��� . Thus if � 2 B�'� ,then f�� agrees with f�� on [B�'� ℄r�1.De�ne a relation � on �+ by � � � i� � 2 B�'� . It is easy to verifythat T := h�+;�i is a tree on �+ and rankT (�) = '� for � < �+. T is
alled the 
anoni
al partition tree of f on �+, and T', as usual, denotes thef� < �+ : rankT (�) = ' g.For � < �+, let C� : ['�℄r�1 ! 
 be de�ned by C�(U) = f�� (V ) whereV = n��� : � 2 U o. It follows by trans�nite indu
tion on ' that for �; � 2T', if C� = C� , then � = �. Hen
e jT'j � j
jj'j � � for ' < �. Then���S'<� T'��� � �, T� 6= ; and for all � 2 T�, B�� [ f�g is a set of order type�+ 1 whi
h is endhomogeneous for f . a2.6 Remark. Note that (2<�)<� = 2<� 
an hold for singular �. Indeedit is easy to see that either (2<�)<� = 2<� or 
f (2<�)<� = 
f(�) and2<� = sup f (2� )+ : � < � g. The proof des
ribed above gives Theorem 2.5under the 
ondition 
 � � provided �<� = �.2.7 Theorem (The Stepping Up Lemma). Assume � � !, 1 � r < !,
 < � and �! (��)r
 . Then�2<��+ ! (�� + 1)r+1
 :This is an immediate 
onsequen
e of Lemma 2.2 and Theorem 2.5.2.8 De�nition. De�ne expi(�) by re
ursion on i < !:exp0(�) = �;expi+1(�) = 2expi(�):



12 I. Partition Relations2.9 Theorem (The Erd}os-Rado Theorem). Assume � � !, 
 < 
f(�).Then for all 2 � r < !,expr�2 �2<��+ ! (�+ (r � 1))r
 :Proof. Starting from the trivial relation � ! (�)1
 for 
 < 
f �, we get(2<�)+ ! (�+1)2
 , by Theorem 2.7. This is the 
ase r = 2 of the theorem.The result follows by indu
tion on r with repeated appli
ations of Theorem2.7. aA better known but weaker form of the theorem is the following.2.10 Corollary. Assume � � !. Then for all 1 � r < !,expr�1 (�)+ ! ��+ + (r � 1)�r� :Note that while Theorem 2.9 guarantees for example that �+ ! (�+1)2
holds for 
 < 
f(�) for a singular strong limit 
ardinal �, Corollary 2.10does not say anything about this 
ase.2.3. Negative Stepping Up Lemma2.11 Theorem (The Negative Stepping Up Lemma). Assume � > 0 is a
ardinal, 2 � r < !, 1 � 
 and �9 (��)r
 , where ea
h �� > 0 is a 
ardinal.Then 2� 9 (1 + ��)r+1
 , provided at least one of the following 
onditionshold:1. 
 � 2, �; �0; �1 � ! and �0 is a regular 
ardinal;2. 
 � 2, �; �0 � !, �0 is a regular 
ardinal, and r � 4;3. 
 � 2, �; �0; �1 � !, and r � 4;4. � � ! and �� < ! for all � < 
.For a proof, we refer the reader to the 
ompendium by Erd}os, Hajnal,M�at�e and Rado [14℄, whi
h in
ludes additional negative stepping up results.We do quote one open problem from that referen
e.2.12 Question (Problem 25.8 in [14℄). Assume GCH. Does�!!+1+1 9 ��!!+1+1; (4)!�3?The following theorem provides a 
ontext for this question.2.13 Theorem. Assume GCH. Then1. �!+1 9 (�!+1; (3)!)2 and2. �!!+1 9 ��!!+1 ; (3)!�2.



3. Partition relations and submodels 133. Partition relations and submodelsFor the rest of this paper we will adopt the following 
onventions. Wheneverwe write \H(�)", � will be a regular 
ardinal, and \H(�)" will stand for astru
ture A with domain the 
olle
tion of sets H(�) whi
h are of hereditary
ardinality < � . The stru
ture A will be an expansion of hH(�);2;4i,where 4 is a �xed well ordering of H(�). The expansion will depend on
ontext, and will usually in
lude all of the relevant \data" for the proof athand. Note that the well ordering 4 yields well de�ned Skolem hulls for allsets X � H(�).3.1 De�nition. Assume � � !, 2<� = �. Let H := H(�++). A set N issaid to be suitable for � if it satis�es the following 
onditions: hN;2i � H ,jN j = �, [N ℄<
f(�) � N , [N ℄<� � N if �<� = �, �+ 1 � N , � := N \ �+ 2�+, 
f(�) = 
f(�). The ordinal �(N) = � will be 
alled the 
riti
al ordinalof N . Note that � � N by assumption.We assume that the reader is familiar with the theory of stationary sub-sets of an ordinal. To make our terminology de�nite, for a limit ordinal �,a subset B � � is a 
lub if B is 
o�nal (unbounded) and 
losed in the ordertopology of �. A set S � � is stationary if B \ S 6= ; for every 
lub subsetof �. The notation Stat(�) will denote the set of stationary subsets of �.We will make use of the following fa
ts about elementary submodels.3.2 Fa
ts. Let � = 2<�. For every set A with jAj � � and A 2 H(�++),there is an elementary 
hain hN0;2i � � � � � hN�;2i � � � � � H , withA � N0, indexed by � < �+ that is 
ontinuous, and internally approa
hable(i.e. N� 2 N�+1 for all � � �), and the setS0 = �� < �+ : �(N�) = � and N� is suitable for �	the interse
tion of a 
lub in �+ with S
f(�);�+ = f� < �+ : 
f(�) = 
f(�) g.3.3 De�nition. A subset S � H(�++) is amenable for this sequen
e ifS \ � 2 N�+1 for � 2 S0. A fun
tion g is amenable if gj� 2 N�+1 for all� 2 S0.Note that S0 itself may be assumed to be amenable.In this se
tion we will only use the existen
e of one N suitable for �. Theideals de�ned below were introdu
ed in [4℄ for regular �. In most of thelater appli
ations we will only 
onsider the regular 
ase.3.4 De�nition. Let N be suitable for � � !, � = 2<�, �(N) = �. Wede�ne a set I = I� = I(N) � P(�) as follows. For X � �,X 2 I , (9Y )(Y � �+ ^ Y 2 N ^ � =2 Y ^ jX � Y j < �):



14 I. Partition RelationsNote that for regular �, the last 
lause 
an be repla
ed by X � Y .3.5 Lemma. Let N be suitable for � � !, � = 2<�, �(N) = �. We de�nea set F = F� as follows:F� := �Z 2 N : Z � �+ ^ � 2 Z 	 :Then (i) X =2 I = I� if and only if jX \Zj � � for all Z 2 F�; and (ii) theelements Z of F� are stationary subsets of �+.Proof. Part (i) follows dire
tly from De�nition 3.4. To see that part (ii)also holds, we verify that � 2 Z � �+, Z 2 N imply that Z is stationary.Otherwise Z \ � = ; for some 
lub B 2 N . Then B \ � is 
o�nal in �, byelementarity and � 2 B sin
e B is 
losed. a3.6 Lemma. If N is suitable for �, then I = I(N) is a 
f(�)-
ompleteproper ideal on � = �(N). Moreover, if �<� = �, then I is �-
omplete.Proof. The 
ompleteness 
learly follows from [N ℄<
f(�) � N and [N ℄<� � Nrespe
tively. To see that � =2 I , let Z 2 N be a subset of �+ with � 2 Z.It is enough to show that jZ \ �j = �. Sin
e Z 2 N , also sup(Z) 2 N . As� 2 Z and N \ �+ = �, it follows that sup(Z) = �+. Then a fortiori thereis a one-to-one fun
tion g : � ! Z: Hen
e there is a g 2 N like this. Using�+ 1 � N , we get that ran(g) � N \ �+ = �. aIn what follows we will often suppress details like those given above.3.7 De�nition. Assume N is suitable for �, � = 2<� and � = �(N). ForX � �, we say X re
e
ts the properties of � if X \ Z 6= ; for all Z 2 F�.3.8 Lemma. Assume N is suitable for �, � = 2<� and � = �(N). IfX � � and X 2 I+, then X re
e
ts the properties of �, so we 
all I = I�the non-re
e
ting ideal on � (indu
ed by N).Notation. Assume f : [X ℄2 ! 
 is a fun
tion, � < 
 and � 2 X . Forsimpli
ity, we often write f(�; �) for f(f�; � g), spe
ifying whi
h of theordinals �, � is smaller, if ne
essary. Denote the set f� < � : f(�; �) = � gby f(�; �).3.9 Lemma (Conne
tion Lemma). Assume � � ! and � = 2<�. Furthersuppose that N is suitable for � with �(N) = �, f 2 N is a 2-partition of�+ with 
 < 
f(�) 
olors, and X � f(�; �) \ � for some � < 
 is su
h thatX =2 I = I(N). Then there is some Y � X with ot(Y ) = 
f(�) so thatY [ f�g is homogeneous for f in 
olor �.Proof. Let Z be a subset of X [ f�g maximal with respe
t to the followingproperties: � 2 Z and Z is homogeneous for f in 
olor �. If jZj � 
f(�),then we are done. Assume by way of 
ontradi
tion that jZj < 
f(�). Then



3. Partition relations and submodels 15sup(Z \ �) < � and Z \ � 2 N . Let A = T f f(u; �) : u 2 Z \ � g. ThenA 2 N and � 2 A. Hen
e, by the re
e
tion property, A\(X�sup(Z\�)) 6=;. If y 2 A \ (X � sup(Z \ �)), then fyg [Z is homogeneous for f in 
olor�, 
ontradi
ting the maximality of Z. a3.10 Theorem (Erd}os-Rado Theorem (unbalan
ed form)). Let � be anin�nite 
ardinal and 
 < 
f(�). Then�2<��+ ! ��2<��+ ; (
f(�) + 1)
�2 :Proof. Let � = 2<�, and suppose f : [�+℄2 ! 
 is a 2-partition of �+into 
 
olors. Use Fa
ts 3.2 to 
hoose N suitable for � with f 2 N . Fornotational simpli
ity, let � = �(N) and I = I(N). If f(�; �) \ � =2 I forsome 1 � � < 
, then we are done by Lemma 3.9. By Lemma 3.6, we mayassume that � � f(�; 0) � S f f(�; �) \ � : 1 � � < 
 g 2 I . By De�nition3.4, there is a set Z 2 N with Z � �+ and � 2 Z for whi
h jZ�f(�; 0)j < �.De�ne a set W in H(�++) as follows:W := f� 2 Z : jZ � f(�; 0)j < � g :Then W 2 N and � 2W . Then by Lemma 3.5 we infer that W 2 Stat(�+)and for g(Æ) := f� < Æ : f(�; Æ) 6= 0 g, we have jg(Æ)j < � for all Æ 2W . ByFodor's Set Mapping Theorem [14℄, there is a stationary subset S �W freefor g (i.e. 
 =2 g(Æ) for all Æ 6= 
 2 S), and S is homogeneous for f in 
olor0. aNote that with some abuse of notation we have proved the followingstronger result.3.11 Theorem. Let � � !, � = 2<� and suppose 
 < 
f(�). Then�+ ! (Stat(�+); (
f(�) + 1)
)2:This theorem should be 
ompared with the 
ase r = 2 of Theorem 2.9and it should be observed that while for regular �, the above theorem is astrengthening of Corollary 2.10, for singular � the results are in
omparable.It should also be noted that using Theorem 2.7, the above result 
an bestepped up to the following.3.12 Corollary. Assume � � ! and 
 < 
f(�). Then for all 1 � r < !,expr�2 �2<��+ ! ��2<��+ ; (�+ (r � 1))
�r :Finally it should be remarked that we did not try to state the strongestpossible forms of the Erd}os-Rado theorems. Clearly the methods give simi-lar results in 
ases where the resour
e 
ardinal � is a regular limit 
ardinal.For a detailed dis
ussion we refer to [14℄.



16 I. Partition Relations4. Generalizations of the Erd}os-Rado Theorem4.1. OverviewIn this se
tion we fo
us on the problem of what positive relations of theform �2<��+ ! (��)2

an be proved for regular � and 
 < � in ZFC. The 
ase for singular � willbe almost entirely omitted be
ause of limitations of spa
e. Many problemsremain unsolved, and the simplest of these will be stated at the end of thissubse
tion. We start by dis
ussing limitations, the �rst of whi
h 
omes fromthe next theorem.4.1 Theorem (Hajnal[25℄, Todor
evi
). If 2� = �+, then�+ 6! (�+; �+ 2)2:Proof Outline. We only sket
h the proof given in [25℄, omitting Todor
evi
'sproof for singular �, whi
h has been 
ir
ulated in unpublished notes. LetfA� : � < �+ g be a well-ordering of [�℄�. De�ne a sequen
e of sets B� 2[�+℄� for � < �+ by trans�nite re
ursion on �, in su
h a way that thefollowing two 
onditions are satis�ed:1. jB� \ B� j < � for all � < �;2. B� \ A� 6= ; for all � < � for whi
h jA� �S fB
 : 
 2 F g j = � forall F 2 [�℄<�.To 
omplete the proof, for � < � < �+, set f(�; �) = 1 if and only if� 2 B�.The 
onstraint that jB� \B� j < � for all � < � < �+ implies that f hasno homogeneous subsets of order type �+2 for 
olor 1. The assertion thatit has no homogeneous subsets of order type �+ for 
olor 0 follows from the
laim below.4.2 Claim. Assume A is a subset of size �+. Then there is a subset B of Aof size � whi
h is not almost 
ontained in the union of fewer than � manyB�'s.On the one hand, if fewer than � many B� 's meet A in a set of size �, thenany subset B � A of size � in the 
omplement of the union of these B�'sproves the 
laim. Otherwise, 
hoose a sequen
e B�(�) indexed by � < � of� many sets whose interse
tion with A has 
ardinality �, and let B be theunion of the interse
tions A \ B�(�). aHen
eforth we will assume that the goals, ��, are all ordinals, �� < �+for � < 
.



4. Generalizations of the Erd}os-Rado Theorem 17For � = !, the best possible result, !1 ! (�)2k for all � < !1 andk �nite was 
onje
tured by Erd}os and Rado [17℄ in 1952 and proved byBaumgartner and Hajnal [2℄ in 1971, already in a more general form. Usinga self-explanatory extension of the ordinary partition relation for linearorder types, it says�! (!)1! implies �! (�)2k for all � < !1, k < !.Soon after it was generalized (also in a self-explanatory way) by Todor
evi
to partial orders [64℄. S
hipperus [53℄ proved a topologi
al version. TheBaumgartner-Hajnal proof used \Martin's Axiom + absoluteness". An el-ementary proof not using this kind of argument was given by Fred Galvin[21℄ in 1975. We will treat this theorem later in Se
tion 4.5, where we willalso give a brief history of earlier work on this 
onje
ture, be
ause some ofthese approa
hes served as starting points for other investigations.We will treat �rst the 
ase � = 
f(�) > !. The reason for this strangeorder is really te
hni
al. The results to be presented for the 
ase � > !were proved later and mu
h of the method of using elementary substru
-tures was worked out while proving them. We will give a new proof of theBaumgartner-Hajnal Theorem whi
h 
an be extended to su

essors of mea-surable 
ardinals and uses the methods developed for the treatment of the
ases � > !.For the 
ases � > !, there are further limitations.4.3 Theorem. Assume that � = �+ � !1 and GCH holds. Then there are�-
omplete, �+-

 for
ing 
onditions showing the 
onsisten
y of the follow-ing negative partition relations:�+ 6! (� : �)22 and �+ 6! (� : 2)2� :Here the relations mean that there are no homogeneous sets of the form[A;B℄ := f f�; �g : � 2 A ^ � 2 B g where A < B, ot(A) = �, and ot(B) =� or ot(B) = 2 respe
tively. The for
ing results are due to Hajnal and statedin [13℄. The �rst result, �+ 6! (� : �)22, was shown by Rebholz [51℄ to betrue in L. It is interesting to remark that while the proofs of Theorem 4.1really give �+ 9 (�+; (� : 2))2 in the relevant 
ases, these two statementsare really not equivalent. In [35℄, Komj�ath proves it 
onsistent with ZFCthat !1 9 (!1; ! + 2)2 and !1 ! (!1; (! : 2))2 hold.In view of the limitations above, the following result of Baumgartner,Hajnal and Todor
evi
 [4℄, whi
h we prove in Subse
tion 4.3 (see Theorem4.12), is the best possible balan
ed generalization of the Erd}os-Rado The-orem for �nitely many 
olors to ordinal goals: for all regular un
ountable
ardinals � and �nite 
, if � < � is an ordinal with 2j�j < �, then�2<��+ ! (�+ �)2
 :



18 I. Partition RelationsNote that for 
 = 2, this result was proved mu
h earlier by Shelah inse
tion 6 of [57℄.As a generalization of the unbalan
ed form, we prove in Subse
tion 4.4(see Theorem 4.18) that for all regular un
ountable 
ardinals � and all �nitem, 
, �2<��+ ! (�!+2 + 1; (�+m)
)2:In this dis
ussion we have restri
ted ourselves to 2-partitions, sin
e thesituation is di�erent for larger tuples. For example, Jones [28℄, [31℄ hasshown that for all �nite m;n, !1 ! (! +m;n)3, 
omplementing the resultof Erd}os and Rado [19℄ who showed !1 9 (! + 2; !)3. Milner and Prikry[44℄ proved that !1 ! (! + ! + 1; 4)3.We 
on
lude this subse
tion with some open questions.4.4 Question. For whi
h � < !1 and whi
h n < ! does the partitionrelation !1 ! (�; n)3 hold?4.5 Question. Are the following statements provable in ZFC + GCH?1. !3 ! (!2 + !; !2 + !1)2?2. !3 ! (!2 + 2)2!?Though there are additional limitations for 
 � !, whi
h we will dis
ussin Se
tion 5, both theorems may a
tually generalize for in�nite 
 with 2j
j <�, but nothing like this is known with the ex
eption of the following veryre
ent result a proof of whi
h will be given in Se
tion 6.4.6 Theorem (Shelah [56℄). If 2<� = �, � < � � �, and � is strongly
ompa
t, then �+ ! (�+ �)2�:4.2. More elementary submodelsIn this subse
tion we prove a generalization of Conne
tion Lemma 3.9 forregular �. Let � = 2<� and assume that h hN�;2i : � < �+ i is a sequen
eof submodels of H := H(�++) satisfying the requirements outlined in 3.2,with A = ffg where f : [�+℄2 ! 
 is a given 2-partition of �+ with 
 
olors.For notational 
onvenien
e, we will letS0 := �� < �+ : � \N� = � and N� is suitable for �	 :For � 2 S0, we will write I� for the ideal I(N�) of De�nition 3.4.4.7 Lemma (Set Mapping Lemma). Assume that S � S0 is stationary andg : S ! P(�+) is a set mapping so that g(�) � � and g(�) \ S 2 I� for all� 2 S. Then there is a stationary set S0 � S whi
h is free for g. That is,g(�) \ S0 = ; for all � 2 S0. Moreover, if S and g are amenable, then so isS0.



4. Generalizations of the Erd}os-Rado Theorem 19Proof. Sin
e S is a set of limit ordinals, for ea
h � 2 S, we 
an 
hoose�� < � and Y� � �+ so that � =2 Y� 2 N�� and g(�) � Y�. By Fodor'sTheorem, �rst �� and then Y� stabilize on a stationary set. That is, forsome stationary S0 � S and some Y � �+, we have � =2 Y and g(�) � Yfor all � 2 S0. a4.8 Corollary. Suppose S � S0. An element � 2 S is a re
e
tion point ofS if S \ � =2 I�. Then the set S � ~S is non-stationary, where ~S denotes theset of re
e
tion points of S. Moreover, if S is amenable, then so is S0.Proof. Assume by way of 
ontradi
tion that S0 := S � ~S is stationary, andde�ne g(�) := S0 \ � for � 2 S0. By the Set Mapping Lemma 4.7, there isa stationary subset S00 � S0 so that S00 is free for g. On the other hand,if � < � are both in S00 � S0, then � 2 g(�) := S0 \ �, 
ontradi
ting thefreeness of S00 for g. a4.9 De�nition. For � < �+ and � 2 <!
, we de�ne ideals I(�; �) byre
ursion on j�j. To start the re
ursion, we setI(�; ;) := (P(�) if � =2 S0, andI� if � 2 S0.If � = �_ h i i and I(�; �) has been de�ned, then for all X � �,X 2 I(�; �) , f� < � : X \ � \ f(�; i) =2 I(�; �) g 2 I(�; ;):4.10 Lemma. Suppose � < �+ and � 2 <!
.1. I(�; �) is a �-
omplete ideal;2. if � =2 S0, then I(�; �) = P(�);3. I(�; ;) � I(�; �).Proof. In the spe
ial 
ase of � = ;, item (1) follows either from Lemma 3.6or the triviality that P(�) is �-
omplete. Use re
ursion on j�j to 
ompletethe proof of (1), sin
e at ea
h su

essor stage, I(�; �_ h i i) is gotten byaveraging �-
omplete ideals a

ording to a �-
omplete ideal.Note that (2) follows immediately from the de�nition of I(�; �).Item (3) is also proved by indu
tion on j�j simultaneously for all � < �+.For � =2 S0, it follows from the se
ond item, so assume � 2 S0. It istrivial for � = ;, so assume it is true for I(�; �) where � = �_ h i i, andlet X 2 I(�; ;) = I� = I(N�) be arbitrary. By de�nition of I(N�), thereis some Y � �+ so that � =2 Y 2 N� and X � Y . Sin
e � is limit, thereis �0 < � with Y 2 N�0 . Sin
e the sequen
e of submodels is 
ontinuous,Y 2 N� for all � with �0 < � < �, and for � =2 Y , we either have X\� 2 I�if � 2 S0 or have X \ � 2 I(�; 0) otherwise. Hen
e by the indu
tion



20 I. Partition Relationshypothesis, X \ � 2 I(�; �) for � =2 Y with �0 < � < �. That is, if� < � and X \ � =2 I(�; �), then � 2 Y [ (�0 + 1). So X 2 I(�; �), sin
e� =2 Y � (�0 + 1) 2 N�. aWe postpone the proof that some of these ideals are proper.4.11 Lemma (Se
ond Conne
tion Lemma). Suppose X � �, X =2 I(�; �)and suppose i 2 ran(�). Then there is a subset Y � X [ f�g with ot(Y ) =�+ 1 homogeneous for f in 
olor i.Proof. The proof is by indu
tion on j�j. If � = ;, then there is nothingto prove. Next suppose � = �_ h j i for some j < 
. By Lemma 4.10, weknow that X \ � =2 I(�; �) for some � < � with � 2 X . Thus the indu
tionhypothesis gives the statement for i 2 ran(�). Next assume i = j. Then byLemma 4.10(3), we know that X =2 I� and Conne
tion Lemma 3.9 yieldsthe desired result. a4.3. The Balan
ed GeneralizationIn this subse
tion we will prove, as announ
ed earlier, the following balan
edgeneralization of the Erd}os-Rado Theorem.4.12 Theorem (Baumgartner, Hajnal, Todor
evi
 [4℄). Suppose � is aregular un
ountable 
ardinal, 
 is �nite and � < � is an ordinal with 2j�j <�. Then �2<��+ ! (�+ �)2
 :For notational simpli
ity, we are �xing �, � = 2<�, a 2-partition f :[�+℄2 ! 
, and � as in the statement of the theorem throughout this sub-se
tion, and we 
ontinue the notation introdu
ed in subse
tions 4.1 and 4.2.In what follows, it will be 
onvenient to look at the least inde
omposableordinal � � �, rather than � dire
tly. In preparation for the proof, we giveseveral preliminary fa
ts about ideals.4.13 De�nition. For ordinals �, sets x � �+ and sequen
es � 2 <!
, de�nex is (�; �)-
anoni
al for f by re
ursion on j�j. To begin the re
ursion, wesay x is (�; ;)-
anoni
al for f if x = f�g for some � < �+. For � = �_ h i i,we say x is (�; �)-
anoni
al for f if x is the union of a <-in
reasing sequen
ehx� : � < � i so that ea
h x� is (�; �)-
anoni
al for � < � and f(u; v) = i forall u 2 x� and v 2 x� with � < � < �.The following lemma is left to the reader as an exer
ise.4.14 Lemma. Assume that � is an inde
omposable ordinal and � 2 n
 forsome n < !. Then1. ot(x) = �n for all x whi
h are (�; �)-
anoni
al for f ;



4. Generalizations of the Erd}os-Rado Theorem 212. if x is (�; �)-
anoni
al for f , then every y � x with ot(y) = �n, is also(�; �)-
anoni
al for f and J := f z � y : ot(z) < �n g is a proper ideal;3. if x is (�; �)-
anoni
al for f , then for every i 2 ran(�), there is somey � x with ot(y) = � whi
h is homogeneous for f in 
olor i.4.15 Lemma (Re
e
tion Lemma). Assume X 62 I(�; �) for some � < �+,� 2 <!
, and further suppose that � < � is inde
omposable. Then there isa set x � X whi
h is (�; �)-
anoni
al for f .Proof. The proof is by indu
tion on j�j. To start, noti
e the lemma isva
uously true for � = ;. Next suppose � = �_ h i i. Constru
t a se-quen
e hx� : � < � i by re
ursion on � < �. Assume that � < � and thatthe sets x� � X \ f(�; i) are (�; �)-
anoni
al for f for � < �. Let Z =f� < �+ : (8� < �)(8Æ 2 x�)(f(Æ; �) = i) g. Sin
e hx� : � < � i 2 N�, wehave Z 2 N� and � 2 Z. Sin
e f� < � : X \ � \ f(�; i) =2 I(�; �) g 62 I�,we 
an 
hoose � < � so that � 2 Z 2 N� , X \ � \ f(�; i) =2 I(�; �) andsup(S fx� < � g) < �. By the indu
tion hypothesis, we 
an 
hoose a setx� � X \ Z whi
h is (�; �)-
anoni
al for f with x� < x� for all � < �.This re
ursion de�nes hx� : � < � i, and x = S fx� : � < � g is the re-quired set (�; �)-
anoni
al for f . aWe need one more lemma whi
h will be used in the proof of the unbal-an
ed version (Theorem 4.18) as well.4.16 Lemma. Assume S � S0 is stationary and � � 
 is non-empty. Thenthere are S0 � S stationary and � 2 <!� with � one-to-one su
h that1. S \ � \ f(�; j) 2 I(�; �), for every �; � 2 S0 with � < � and everyj 2 �� ran(�), but2. S \ � =2 I(�; �) for � 2 S0.Moreover, if S is amenable, then so is S0.Proof. Let � be of maximal length so that ran(�) � �, � is one-to-one, andS00 := f� 2 S : S \ � =2 I(�; �) g is stationary.For j 2 �� ran(�), letgj(�) := f� < � : S \ � \ f(�; j) =2 I(�; �) g :By the maximality of �, it follows that gj(�) \ S00 2 I� for all but non-stationarily many � 2 S. By Lemma 4.7, there is a stationary subsetS0 � S00 whi
h is free for gj . a



22 I. Partition RelationsLet S := f� 2 <!
 : � is one-to-oneg.For � < �+ and � 2 S, say (X;Y ) �ts (�; �) if X � �, X =2 I(�; �) andf(�; j) \X 2 I(�; �) for all � 2 Y and j =2 ran(�).From Lemma 4.16 we get the following 
orollary by applying the lemmawith � = 
.4.17 Corollary. For every stationary set S � S0, there are � 2 S, � 2 Sand a stationary subset S0 � S so that (S \ �; S0) �ts (�; �).With these lemmas in hand, we turn to the proof of the main theorem ofthis subse
tion.Proof of Theorem 4.12. Using Corollary 4.17, we de�ne �m 2 S0, �m 2 S,and stationary Zm � S0 by re
ursion on m so that the following 
onditionsare satis�ed:1. �0 < � � � < �m < : : : ; Z0 � � � � � Zm � : : : ; and2. (Zm \ �m; Zm+1) �ts (�m; �m).Sin
e S is �nite, �k = �n for some k < n < !. We 
on
lude that there area sequen
e � 2 S, ordinals �0 < �1, and sets X0, X1 su
h that the followingstatement is true:(*) X0 < X1, Xi =2 I(�i; �) for i < 2, and f(�; j)\X0 2 I(�0; �)for every j =2 ran(�) and every � 2 X1.Let � be the least inde
omposable ordinal with � � �. By the Re
e
tionLemma 4.15, there is a y � X1 su
h that y is (�; �)-
anoni
al for f .We shrink X0 to X = X0 � S f f(Æ; j) : j =2 ran(�) and Æ 2 y g. ThenX =2 I(�0; �) sin
e I(�0; �) is �-
omplete, jyj < � and f(Æ; j) 2 I(�0; �) forj =2 ran(�), Æ 2 y � X1.Let J = fZ � y : Z is not (�; �)-
anoni
al for f g. By Lemma 4.14, J isa proper ideal on y.For every Æ 2 X , there is an i(Æ) 2 ran(�) so that f(Æ; i) \ y =2 J . Thusfor every Æ 2 X , by Lemma 4.14(3), there is a y(Æ) � y of order type � su
hthat fÆg [ y(Æ) is homogeneous for f in 
olor i(Æ).Using the fa
t that !j�j = 2j�j � ! < �, we now obtain i0 2 ran(�), y0 � yand X 0 � X with X 0 =2 I(�; �) so that i(Æ) = i0 and y(Æ) = y0 for all Æ 2 X 0.Thus f(Æ0; Æ1) = i0 for all Æ0 2 X 0 and Æ1 2 y0.By the Se
ond Conne
tion Lemma 4.11, we get an X 00 � X 0 of ordertype � homogeneous for f in 
olor i0. Finally X 00 [ y0 is the required set oforder type �+ � homogeneous for f in 
olor i0. a



4. Generalizations of the Erd}os-Rado Theorem 234.4. The Unbalan
ed Generalization4.18 Theorem (Baumgartner, Hajnal, Todor
evi
 [4℄). Suppose � is aregular un
ountable 
ardinal, and m, 
 are �nite. Then�2<��+ ! (�!+2 + 1; (�+m)
)2:This subse
tion is devoted to the proof of this theorem, and for notational
onvenien
e we set � = 2<� throughout. Also, �x a partition f : [�+℄2 !1 + 
. We also 
ontinue to use the notation introdu
ed in subse
tions 4.1,4.2 and 4.3.The strategy of the proof is to derive Theorem 4.18 from the followingauxiliary assumption:Q(�) : 2<� = � and 8 
 f� : � < �+ � � �� 9g 2 �� ( f� � g );where � is the relation of eventual domination on ��.Then as in the original proof of the Baumgartner-Hajnal Theorem [2℄,we observe that the assumption Q(�) is unne
essary, and therefore thatTheorem 4.18 holds in ZFC.Let us justify this observation before going on to prove the theorem fromthe assumption of Q(�).Let P0 be the natural �-
losed for
ing for 
ollapsing 2<� onto �. Then inV P0 we have � = �. Working in V P0 and using a standard iterated for
ingargument (as in [1℄) we 
an for
e every sequen
e of fun
tions in �� of length� to be eventually dominated via a partial ordering P1 that is �-
losed andhas the �+-
hain 
ondition. Let P = P0 � P1. Then P is �-
losed and inV P , both � = � and Q(�) hold. Note that in V P , we will have 2� > �+,sin
e this inequality is implied by Q(�).Assuming we have proved Theorem 4.18 under the assumption of Q(�),we may assume it holds in V P . Suppose that f : [�+℄2 ! 
 + 1 is a 2-partition in V . Then in V P , there is some A � �+ su
h that either (a) A ishomogeneous for f in 
olor 0 and otA = �!+2+1, or (b) A is homogeneousfor f in 
olor i > 0 and otA = �+m. Suppose (a) holds. Note that �!+2+1is the same whether 
omputed in V or in V P . Let h : � ! �!+2 + 1 be abije
tion with h 2 V . In V P , �x an order-isomorphism j : �!+2 + 1 ! A.Now, working in V , �nd a de
reasing sequen
e h p� : � < � i of elementsof P and a sequen
e h�� : � < � i of elements of �+ su
h that for all �,p� 
 j(h(�)) = ��. This is easy to do by re
ursion on �, using the fa
t thatP is �-
losed. But now it is 
lear that f�� : � < � g 2 V has order type�!+2+1 and is homogeneous for f in 
olor 0. Case (b) may be handled thesame way.For the rest of this subse
tion, assume Q(�) holds. We may also assumethat � > ! sin
e for � = ! we have the mu
h stronger result Theorem 4.30.First we prove a 
onsequen
e of Q(�).



24 I. Partition Relations4.19 Lemma. Assume Q(�). For all positive ` < ! and every sequen
e
X� � �` : � < �+ � with otX� < �` for � < �+, there is a sequen
e
Z� � �` : � < � � with otZ� < �` for � < � su
h that every X� is asubset of some Z� .Proof. Use indu
tion on `. For ` = 1, the sets X� � �1 = � are boundedand we may de�ne Z� := �.For the indu
tion step, assume 
X� � �k+1 : � < �+ � is a given sequen
ewith otX� < �k+1. Write �k+1 = S�<� U� as the union of an in
reasingsequen
e U0 < � � � < U� < : : : in whi
h otU� = �k. For ea
h � < �+ and� < �, de�ne Y�;� := (X� \ U�; if otX� \ U� < �k;; otherwise.Sin
e ea
h U� is isomorphi
 to �k, we may apply the indu
tion hypothesisto ea
h sequen
e h Y�;� � U� : � < �+ i to get hW�;� � U� : � < � i, so thatevery Y�;� is a subset of some W�;�.For ea
h � < �+, de�ne g� : � ! � by g�(�) is the least � so thatY�;� �W�;�. Choose an in
reasing g : �! � eventually dominating all theg� for � < �. De�neZ� := [�<� [[ fW�;� : � � � ^ � � g(�) g :Then 
Z� � �k+1 : � < � � satis�es the requirements of the lemma for ` =k + 1.Therefore by indu
tion, the lemma follows. aFrom this point forward in the subse
tion, we assume that there is nohomogeneous set for 
olor 0 of the order type required. We may also assumethat the result is true for 
0 < 
.4.20 Lemma. Assume S � S0 is stationary. For all � � [1; 
℄ with � 6= ;,there are a stationary set S0 � S and a one-to-one fun
tion � 2 <!� su
hthat the following two properties hold:1. for every stationary S00 � S0 there is some � 2 S00 with S00 \ � =2I(�; �);2. for all j 2 �� ran� and all �; � 2 S0, if � < �, then f(�; j)\�\S0 2I(�; �).Proof. By indu
tion on j�j. For the basis 
ase of j�j = 1, suppose � = figfor some postive i � 
. Then either ran� = fig, the �rst property holdswith S0 = S and the se
ond holds va
uously, or by the Set Mapping Lemma4.7, there is a stationary subset S0 � S free for 
olor i.



4. Generalizations of the Erd}os-Rado Theorem 25For the indu
tion step, assume the lemma is true for some non-emptyproper subset T � [1; 
℄ and let i 2 [1; 
℄�T . We must show the statementis also true for � = T [ fig. Let ST � S and � witness that the lemma istrue for T . Consider two 
ases depending on whether or not the followingstatement is true, where Stat(ST ) := Stat(�+) \ P(ST ):(�) 8S� 2 Stat(ST ) 9� 2 S� ( f� < � : S� \ � \ f(�; i) =2 I(�; �) g =2 I� ):For the �rst 
ase, assume that (�) holds. Then we 
an 
hoose S� = STand � = �_(i), sin
e the �rst item holds by (�) and the se
ond remainstrue sin
e no new j 
omes into play.For the se
ond 
ase, assume that (�) fails and 
hoose a stationary S� � STshowing the failure. De�neg(�) := f� < � : S� \ � \ f(�; i) =2 I(�; �) g :Applying the Set Mapping Lemma 4.7 to g and S�, we get a stationaryS� � S� free for g whi
h together with � = � satisfy the required two
onditions. aOur next lemma uses the fa
t that by Q(�), we have 2<� = �. Fornotational 
onvenien
e, for ea
h � 2 S0, de�neF� := �Z 2 N� : Z � �+ ^ � 2 Z 	 :Also, for any 0 < ` � 
 and any one-to-one fun
tion � 2 `�1[1; 
℄, 
all a setY (�; �)-slim if Y � S0, otY = �`, Y =2 I(�; �), and for all W � Y , theequivalen
e W =2 I(�; �) if and only if otW = �` holds.4.21 Lemma. For all one-to-one fun
tions � 2 <! [1; 
℄, for all X � S0with X =2 I(�; �), if `� 1 is the length of �, then there exists Y � X su
hthat Y is (�; �)-slim.Proof. To start the indu
tion, note that ifX =2 I(�; ;) = I� for some � 2 S0,then there is some Y � X with otY = � so that Y =2 I�. This impli
ationis true be
ause F� has 
ardinality at most � and 
an be diagonalized inX . Then Y is (�; ;)-slim, by the �-
ompleteness of I�. The rest follows byindu
tion on the length of �. aThe following 
orollary is immediate from the previous two lemmas.4.22 Corollary. There are a stationary set S1 � S0, a nonempty subset� � [1; 
℄ and a one-to-one fun
tion � 2 `�1� su
h that the following two
onditions hold:1. for all stationary S � S1, there are � 2 S and X � � of order type�` so that X =2 I(�; �);



26 I. Partition Relations2. for all � < � 2 S1 and all j 2 [1; 
℄��, one has f(�; j)\� 2 I(�; �).For notational 
onvenien
e, write X = ��<�X� to indi
ate that X0 <� � � < X� < : : : and X = S�<�X� . For the remainder of this se
tion, letS1 � S0, � and ` as in the previous 
orollary be �xed.4.23 De�nition. For � 2 S0, de�ne H(�; n) by re
ursion on n < !. Tostart the re
ursion, de�neH(�; 0) := fX � S1 : X is (�; �)-slim g :If H(�; n) has been de�ned, then X 2 H(�; n+1) if and only if the following
onditions are satis�ed:1. X � S1 and there exists hX� 2 H(�; n) : � < � i with X = ��<�X� ;2. for all F 2 F�, there exists �F so that X� � F for all � > �F ;3. for all � < � 0 < � and x 2 X� , y 2 X� 0 , one has f(x; y) = 0.Note that every X 2 H(�; n) has otX = �`+n and X 
ontains a subsetof order �n homogeneous for f in 
olor 0. Furthermore, every Y � X oforder type �`+n has a subset in H(�; n).We now prove the lemma 
ontaining the main idea of the proof.4.24 Lemma (Key Lemma). Suppose � 2 S1, n < ! and X � S1 withX 2 H(�; n). Then there are �0 2 S1 with �0 > � and hT� � X : � < � iwith otT� = �`+n so that for all � 2 S1 with � > �0, there is some � < �su
h that ot(T� � f(�; 0)) < �`+n.Proof. Let M be a maximal subset of S1 with the property that for allV 2 [M ℄<!, otT fX � f(�; 0) : � 2 V g = �`+n. We 
laim that jM j � �and then we are done, by the maximality of M .Assume for the sake of a 
ontradi
tion that jM j = �+, and let� := 8<: \�2V X � f(�; 0) : V 2 [M ℄<!9=; :Extend � [ �X � Y : Y � X ^ otX < �`+n 	 to an ultra�lter U on X .Then for every � 2 M , there is a j(�) 2 � so that X \ f(�; j(�)) 2 U .Hen
e there is some j 2 � so that the set Mj := f� 2M : j(�) = j g has
ardinality �+. By �+ ! (�+; n)2, there is a set H � Mj of size n whi
his homogeneous for f in 
olor j. Now X \ T f f(�; j) : � 2 H g is in U , soit must have order type �`+n. By Lemma 4.11 it 
ontains a set W of type� homogeneous for f in 
olor j. This is the 
ontradi
tion that proves thelemma. a



4. Generalizations of the Erd}os-Rado Theorem 274.25 Lemma. Assume S � S1 is stationary. Then for all n < !, there are� 2 S and X � S so that X 2 H(�; n).Proof. Work by indu
tion on n. For the basis 
ase, n = 0, the statementfollows from Corollary 4.22 and Lemma 4.21.For the indu
tion step, a standard rami�
ation argument gives the result.Assume the 
laim is true for some n. Let � 2 S be arbitrary. We de�ne asequen
e fX� : � < � g � H(�� ; n)by re
ursion on � < �. Assume that X� 2 H(�� ; n), X� � S \ f(�; 0) arede�ned for � < �. Let S� = f� 2 S : S fX� : � < � g � f(�; 0) g. Then� 2 S� and S� 2 N�. Then S� is stationary, and so by the indu
tionhypothesis it 
ontains a subset X 2 H(�� ; n) for some �� 2 � \ S�. Byelementarity, we may assume X 2 N�. By the Key Lemma, there areT� � X for � < � su
h that ot(T�) = �`+n and jS �S�<� Z� j � � whereZ� = �� < � : ot(T� � f(�; 0)) < �`+n 	 :Then, by elementarity S �S�<� Z� � �, hen
e � 2 Z� for some � < � andX� = T� \ f(�; 0) satis�es the requirement. S�<�X� 2 H(�; n+ 1) and asa bonus we have that S�<�X� � f(�; 0). aThe same rami�
ation argument gives the next lemma as well.4.26 Lemma. Assume S � S1 is stationary. Then there exist an in
reasingsequen
e h�� 2 S : � < � i and a family hX�;n � S : � < � ^ n < ! i withea
h X�;n 2 H(�� ; n) so that if either � < � or � = � and k < `, thenX�;k < X�;` and f(x; y) = 0 for all x 2 X�;k, y 2 X�;`.The above lemma gives the result for �!+1, sin
e the setX :=[ fX�;n : � < � ^ n < ! gis homogeneous for f in 
olor 0.To �nish the proof, we use yet another rami�
ation argument.4.27 Lemma. Let X be a set of order type �!+1 as des
ribed above, andlet Xn := S fX�;n : � < � g. Note that otXn = �`+n+1. LetJ := � Y � X : 9n0 < ! 8n > n0 (otY \Xn < �`+n)	 :Then J is an ideal and there are fT� 2 J+ : � < � g and �0 2 S1 su
h thatfor all � 2 S1 with � > �0, the set T� � f(�; 0) is in J .Let M be a maximal subset of S1 so that T�2V X�f(�; 0) =2 J for �niteV �M .



28 I. Partition RelationsTo see that jM j = �, we pro
eed just like in the proof of Lemma 4.24.We only need the fa
t that if Z � X and Z =2 J , then for all j 2 �, the setZ 
ontains a subset of type � homogeneous for f in 
olor j.Sin
e jM j = �, the set � := nT�2V X � f(�; 0) : V 2 [M ℄<! o is afamily of size � su
h that for all � =2 M , there is some Z 2 � so thatZ � f(�; 0) � Y for some Y 2 �.The next lemma is the �nal tool we need.4.28 Lemma. Assume T 2 J+. Then there is a J � J with jJ j � �su
h that for all � 2 S1 with T � f(�; 0) 2 J , there is a Y 2 J so thatT � f(�; 0) � Y .Proof. Choose Jn � [Xn℄`+n+1 with jJnj � � so that for all � 2 S1 withot(Xn � f(�; 0)) < �`+n+1 there is a Yn 2 Jn with T � f(�; 0) � Yn. LetJ0 := ( [n<! Yn : 8n < ! Yn 2 Jn) :Note that jJ0j = �! = �. Finally, setJ := nA [ B : A 2 J0 and B =[ fXi : i � n g for some n < !o :Then J will do the job. a4.5. The Baumgartner-Hajnal TheoremHere is a brief overview of the history of the Baumgartner-Hajnal Theoremand some of its generalizations. Erd}os and Rado 
onje
tured that !1 ! (�)2kand �0 ! (�)2k , for �0 the order type of the reals, and for all k < !, � < !1.Fred Galvin �gured out, for order types �, that �! (!)1! would be theright ne
essary and suÆ
ient 
ondition for �! (�)2k to hold for all � < !1.Hajnal [25℄ proved in 1960 that �0 ! (�0; � _ ��)2 where �0 is the ordertype of the rationals. More signi�
antly, Galvin proved �0 ! (�)22, for � <!1, but 
ontrary to the �rst expe
tations, this proof provided no 
lues forthe general 
ase. For the resour
e !1, Galvin 
ould only prove !1 ! (!2; �)2for � < !1.Another result of Prikry [49℄ said !1 ! (�; (! : !1))2. This result waslater generalized by Todor
evi
 [65℄ to!1 ! ((�)k ; (� : !1))2 for all � < !1.Finally we mention a very signi�
ant 
onsisten
y result of Todor
evi
 [64℄that PFA (Proper For
ing Axiom) implies!1 ! (!1; �)2 for all � < !1.



4. Generalizations of the Erd}os-Rado Theorem 29(For 
ontext, re
all that PFA implies that 
 = !2.)Before going ba
k to the main line of dis
ussion, we make another de-tour. It was already asked in the Erd}os-Hajnal problem lists [12℄, [13℄ if thepartition relations !2 ! (�)22 were 
onsistent for � < !2. Though thereis nothing to refute su
h 
onsisten
y, the results going in this dire
tion areweak and rare.The �rst 
onsisten
y result was obtained by R. Laver [41℄ in 1982, andindependently dis
overed by A. Kanamori [33℄, using what is now 
alled aLaver ideal I on � (a non-trivial, �-
omplete ideal with the strong saturationproperty that given �+ sets not in the ideal, there are �+ of them so thatthe interse
tion of any < � of these is also not in the ideal). He proved thatif there is a Laver ideal on �, then�+ ! (� � 2 + 1; �)2 holds for all � < �+.Laver also proved the 
onsisten
y of the hypothesis that there is a Laverideal on !1 and derived as a 
orollary the 
onsisten
y (relative to a large
ardinal, of 
ourse) of!2 ! (!1 � 2 + 1; �)2 holds for all � < !2.Foreman and Hajnal [20℄ tried to get a stronger 
onsisten
y result for!2 from the stronger assumption that !1 
arries a dense ideal, and indeed,they proved that in this 
ase!2 ! (!12 + 1; �)2 holds for all � < !2.They however dis
overed that their proof gives a mu
h stronger result forsu

essors.4.29 Theorem (Foreman and Hajnal [20℄). Suppose � > ! is measurableand m < !. Then �+ ! (�)2m for all � < 
(�).Here � < 
(�) < �+ is a rather large ordinal. We will 
omment aboutthese results in detail in Se
tion 5, but for la
k of spa
e and energy we willnot in
lude proofs.4.30 Theorem (Baumgartner and Hajnal [2℄). If an order type � satis�es�! (!)1!, then it also satis�es �! (�)2k for all � < !1 and �nite k.4.31 Corollary. For all � < !1 and m < !,!1 ! (�)2m:So we de
ided to give a proof of Corollary 4.31 using the ideas of theForeman-Hajnal proof. This will serve two purposes. It will make thetext almost 
omplete as far as the old results are 
on
erned, and it will
ommuni
ate most of the ideas of the new Foreman-Hajnal proof.



30 I. Partition RelationsNotation. Let h hN�;2i : � < !1 i be a sequen
e of elementary submodelsof H(!2) satisfying 3.2 with � = � = !, A = ffg where f : [!1℄2 ! m, andS0 := f� < !1 : !1 \N� = � and N� is suitable for ! g :Here S0 is a 
lub set in !1. We may assume S0 is amenable.4.32 De�nition. We de�ne S� by trans�nite re
ursion on � < !1: S0 hasalready been de�ned; S�+1 := ~S�, the set of re
e
tion points of S� (see 4.8);and S� := T�<� S� if � limit.4.33 Lemma. For all � < !1, the set S� is amenable.Proof. Use indu
tion on � and 4.8 to prove that hS� : � < � i � N�+1 for� 2 S�. The details and the remainder of the proof are left to the reader. aNext we are going to de�ne diagonal sets, 
ross sets, and 
ross systems.4.34 De�nition. For � 2 S0, for the sake of brevity, we putF� := fZ 2 N� : Z � !1 ^ � 2 Z g :(Note that for X � �, we have X =2 I� if and only if X \ Z 6= ; for allZ 2 F�; see the dis
ussion of notation after Lemma 3.6.)Call D � � a diagonal set for � 2 S0 if supD = � and jD � Zj < ! forall Z 2 F�.Clearly every diagonal set D for � has order type !, and every 
o�nalsubset of it is also diagonal. Moreover, a diagonal set D for � is re
e
tingfor � in the sense des
ribed after Lemma 3.6.4.35 Lemma. For all � 2 S0 and X � � with X =2 I�, there is a diagonalset D � X for �. If X 2 N�+1, then D 
an be 
hosen in N�+1.Proof. Sin
e jF�j = !, we 
an diagonalize it. aNotation. Assume that hDn : n < !i is a sequen
e of sets of ordinals and� 2 S0. Then the sequen
e 
onverges to � in N�, in symbols, Dn =) �,if and only if for every Z 2 F� there is some n0 so that for all n > n0,Dn � Z.For a set D � ON, we denote by D its 
losure in the ordinal topology.4.36 De�nition. By trans�nite re
ursion on � < !1, we de�ne, for � 2 S�,the 
on
ept D is a 
ross set of rank � for � as follows:1. For � 2 S0, the set f�g is 
ross set of rank 0 for �.2. For � > 0, the set D is 
ross set of rank � for � if � 2 S� and there is awitnessing sequen
e hDn : n < !i satisfying the following 
onditions:



4. Generalizations of the Erd}os-Rado Theorem 31(a) ea
h Dn is a 
ross set of rank �n for �n for some �n < � and for�n := supDn;(b) D0 [ f�0g < � � � < Dn [ f�ng < : : : ;(
) Dn =) �;(d) if � = � + 1, then �n = � for all n < !; if � is a limit, then� = sup �n;(e) D = Sn<!Dn.4.37 Remark. Note that a 
ross set D of rank 1 for � is a diagonal set for�, and if f�n : n < ! g is the set of �n := supDn for a witnessing sequen
efor D, then f�n : n < ! g is also a diagonal set for �.The next lemma is proved by indu
tion on �.4.38 Lemma. If D is a 
ross set for � of rank �, then otD = !�.We now de�ne the 
on
ept of a 
ross system of rank � for �. Informally,this is just the 
losure of a 
ross set of rank � for �, equipped with fun
tionsthat remember the sets appearing in the de�nition of the 
ross set of rank�.4.39 De�nition. By trans�nite re
ursion on � < !1, we de�ne, for � 2 S�,the 
on
ept D = 
D;<D; rankD; su

D� is a 
ross system of rank � for �as follows:1. For � 2 S0, a quadruple D = 
D;<D rankD; su

d� is a 
ross systemof rank 0 for � if and only if D = f�g, <D= ;, rank(�) = 0, andsu

(�) = ;.2. For � > 0, a quadruple D = 
D;<D; rankD; su

D� is a 
ross systemof rank � for � with underlying 
ross set D if there is a witnessingsequen
e hDn : n < ! i of 
ross systems so that(a) Dn is a 
ross system of rank �n for �n for all n < !;(b) D = S fDn : n < ! g is a 
ross set with witnessing sequen
ehDn : n < ! i, where Dn underlies Dn;(
) D = S�Dn : n < ! 	 [ f�g;(d) <D is de�ned by � <D � for all � 2 D�f�g, and <D jDn =<Dnfor n < !.(e) under <D, D is a (rooted) tree with root �;(f) rankD : D ! �+1 is de�ned by rankD(�) = �, and rankD jDn =rankDn for n < !.Finally, su

D(�) is just a redundant notation for the set of immediatesu

essors of � in the tree under <D.



32 I. Partition RelationsNote that for � > 0 and n < !, under the notation of De�nition 4.36,su

D(�) = f�n : n < ! g and rankD(�n) = �n.Note that the underlying set of a 
ross system is de�nable as the set ofelements in D of rank 0.4.40 Lemma. Assume D = 
D;<D; rankD; su

D� is a 
ross system ofrank � for �. Then for all � 2 D, rankD(�) = ; if and only if � 2 D.The next two lemmas are proved by indu
tion on �.4.41 Lemma (Re
e
tion Lemma). Assume D is a 
ross system of rank �for �. Then for 
 2 D �D, su

D(
) is a diagonal set for 
.4.42 De�nition. Assume D is a 
ross system of rank � for � with under-lying set D. We say that C is a full subset of D if � 2 C and C \ su

D(�)is in�nite for � 2 C with rankD(�) > 0.4.43 Lemma (Indu
tion lemma for 
ross systems). Assume D is a 
rosssystem of rank � for � with underlying set D. For every full subset C of D,there is a set B � C \D so that B � C and B is the underlying set for a
ross system of rank � for �.4.44 De�nition. By re
ursion on � < !1 de�ne, for � 2 S�, the 
on
eptD is an f-
anoni
al 
ross system of rank � for � as follows.1. For � 2 S0, the unique 
ross system of rank 0 for � is an f -
anoni
al
ross set of rank 0.2. For � > 0, D is an f -
anoni
al 
ross system of rank � for � if it is a
ross system of rank � for � with a witnessing sequen
e hDn : n < ! ifor whi
h the following additional 
onditions hold:(g) for n < !, Dn is an f -
anoni
al 
ross system of rank �n for �n ;(h) there is some i so that f(�; 
) = i for all � 2 Dn and 
 2 Dpwith n < p < !.This usage is slightly di�erent from the use of the word \
anoni
al" in4.13. In this se
tion we do not use the term (�; �)-
anoni
al.The following is one of the oldest ideas in the subje
t.4.45 Lemma (Homogeneity Lemma). For all � < !1 there is some � < !1,so that if D is an f-
anoni
al 
ross system of rank �, then there is a setH � D of order type !� whi
h is homogeneous for f .The proof is left to the reader. Detailed proofs 
an be found in both [2℄and in [21℄ of F. Galvin, where the �rst elementary proof of Theorem 4.30was given.We need one more te
hni
al lemma, a strengthening of Lemma 4.43,before laun
hing into the main proof.



4. Generalizations of the Erd}os-Rado Theorem 334.46 Lemma (Indu
tion lemma for 
anoni
al 
ross systems).Assume D is an f-
anoni
al 
ross system of rank � for �. Suppose C is afull subset of D. Then there is a set B � C \ D so that B � C and B isthe underlying set of an f-
anoni
al system of rank � for �.Proof. Use indu
tion on � and the fa
t that every 
o�nal subset of a diagonalset for � is diagonal for �. aBy the Homogeneity Lemma 4.45, the following lemma will be suÆ
ientto prove Corollary 4.31.4.47 Lemma (Main Lemma). For all � < !1, � 2 S� and F 2 F�, there isan f-
anoni
al system D of rank � for � with D � S0 \ F and D 2 N�+1.Note that it would be suÆ
ient to prove 4.47 without the last 
lause,whi
h is needed to support indu
tion.The rest of this se
tion is devoted to the proof of 4.47. We need furtherpreliminaries. In what follows, U is a �xed non-prin
ipal ultra�lter on !with U 2 N0.4.48 De�nition. De�ne, by re
ursion on � < !1, deferen
e fun
tions iDwhere D is a 
ross system of rank � for �. For � 2 S0 and a 
ross systemD of rank 0 for �, de�ne iD(�) for � with � < � < !1 by iD(�) = i if andonly if f(f�; � g) = i. Assume � > 0 and deferen
e fun
tions have beende�ned for 
ross systems of rank � < �. For a 
ross system D of rank� for �, de�ne iD(�) for � with � < � < !1 by iD(�) = i if and only iffn < ! : iDn(�) = i g 2 U where hDn : n < ! i is the witnessing sequen
eof 
ross systems for D.Noti
e that ifD 2 N�+1, then the deferen
e fun
tion iD : !1�(�+1)! mis also in N�+1. Note also that iD(�) 
an be de�ned \inside D" for a �xed�, as follows.4.49 De�nition. Assume D is a 
ross system of rank � for � and � <� < !1. De�ne jD(�; �) for � 2 D by trans�nite re
ursion on rankD(�)as follows. If rankD(�) = 0, then jD(�; �) = f(f�; � g). For � > 0and � with rankD(�) = �, set jD(�; �) = j for that j < m so thatfn < ! : jD(�n; �) = j g 2 U , where �n is the nth element of su

D(�).The proof that these two de�nitions 
oin
ide is left to the reader.4.50 Lemma. Assume D is a 
ross system of rank � for �. Then for all �with � < � < !1, jD(�; �) = iD(�).Note that jD is an element of N�+1 if D 2 N�+1.Next we use a �xed enumeration of pairs of natural numbers to de�ne astandard well-ordering for D where D is a 
ross system. For the remainderof this se
tion, assume ' : ! � ! ! ! � f0g is a �xed bije
tion whi
h ismonotoni
 in both variables, and whi
h is in N0.



34 I. Partition Relations4.51 De�nition. De�ne, by re
ursion on positive � < !1, for 
ross systemsD of rank �, a standard well-ordering of D.1. For � 2 S1, if D = f�n : n < ! g is the underlying set of a 
rosssystem D of rank 1, then the standard well-ordering of D has leastelement d0 = �, and for positive k, has kth element dk = �k�1.2. For � > 1, if D = S fDn : n < ! g is the underlying set of a 
rosssystem D of rank � where Dn is the underlying set of Dn of thewitnessing sequen
e of D, then the standard well-ordering of D hasleast element d0 = �, and for positive k = '(n; j), has kth elementdk = dn;j , where dn;j is the jth element of Dn.By some abuse of notation, we write dn for the nth element of the stan-dard well-ordering.4.52 Lemma. For all positive � < !1 and all � 2 S�, if D is a 
ross systemof rank � for � and h dk : k < ! i is the standard well-ordering of D, thenfor all positive n < !, there is some m < n so that dn 2 su

D(dm).Proof. The proof is by indu
tion on � over the re
ursive de�nition of stan-dard well-orderings. aProof of the Main Lemma 4.47. The proof is by indu
tion on �. For � = 0,the lemma is trivial.For the indu
tion step, assume � > 0 and the lemma is true for all � < �.Let � 2 S� and F 2 F� be arbitrary. If � = � + 1, then let �n = � for alln < !. If � is a limit, then let h �n : n < ! i 2 N�+1 be a stri
tly in
reasing
o�nal sequen
e with limit �, and assume �0 � 1.Now, for all n < !, � 2 S�n+1, so � is a limit of ordinals in S�n and� 2 ~S�n . Temporarily �x an enumeration of F� as fGn : n < ! g. Byde�nition of ~S�n , (S�n \ F \G0 \ � � � \Gn) \ � =2 I�.De�ne by re
ursion sequen
es h�n : n < ! i and hDn : n < ! i. To start,
hoose �0 2 (S�0 \ F \ G0) \ � large enough so that F;G0 2 N�0 . ThenF;G0 2 F�n . Use the indu
tion hypothesis on �0, �0, F 00 = F \ G0 to�nd an f -
anoni
al 
ross system D0 2 N�0+1 of rank �0 for �0 so thatD0 � S0 \ F 00.Continue, taking 
are to make sure the sequen
e of �n's in
reases to�. If �n has been de�ned, then 
hoose �n+1 2 (S�n+1 \ F \ G0 \ � � � \Gn+1� (�n+1))\� large enough so that F;G0; G0; : : : ; Gn+1 2 N�0 . ThenF;G0; : : : ; Gn+1 2 F�n+1 . Use the indu
tion hypothesis on �n+1, �n+1,F 0n+1 = F 0n \ Gn+1 \ !1 � (�n+1 + 1) to �nd an f -
anoni
al 
ross systemDn+1 2 N�n+1+1 of rank �n+1 for �n+1 so that Dn+1 � S0 \ F 0n+1.Also, sin
e m is �nite, there is an in�nite subsequen
e of h�n : n < ! i 2N�+1 and an i < m so that iDn(�) = i for all n in the subsequen
e.By shrinking if ne
essary, we may assume, without loss of generality, that



4. Generalizations of the Erd}os-Rado Theorem 35this subsequen
e is the entire sequen
e. Now hDn : n < ! i is a witnessingsequen
e for a 
ross set of rank � for � by 
onstru
tion. Hen
e hDn : n < ! iis a witnessing sequen
e for a 
ross system of rank � for �.Finally, as N�; �;2 N�+1, and sin
e S� is amenable by Lemma 4.33, wemay assume that hDn : n < ! i is de�ned in N�+1.Claim. There is an in�nite set T � ! with T 2 N�+1 and a familyfCn : n 2 T g so that Cn is a full subset of Dn for n 2 T and f(�; 
) = ifor all � 2 Cn and 
 2 Cp with n; p 2 T and n < p.The indu
tion step of the Main Lemma follows from the 
laim by Lemma4.46, as ea
h Cn 
an be repla
ed by an f -
anoni
al system Cn 2 N�n+1 andh Cn : n 2 T i is the witnessing sequen
e of the desired f -
anoni
al systemof rank � for �.To prove the 
laim, we will pi
k elements of f� g [ S�Dn : n 2 ! 	a

ording to a 
ertain bookkeeping. We pi
k � �rst. In�nitely often wepi
k a new element n for T , larger than any element of T pi
ked earlier.Our 
hoi
e of n means we have pi
ked the top point �n of Dn. For ea
hpoint n of T , we promise that in�nitely often we will pi
k an element of Dna

ording to the standard well-ordering of Dn.For notational 
onvenien
e, let n(�) denote that value of n with � 2 Dn.Assume we have pi
ked a �nite non-empty set A � f�g[S�Dn : n < ! 	whi
h satis�es the following 
ondition:�(A): For any n < p, � 2 Dn \ A and � 2 Dp \ A,jDn(�; �) = jDn(�; �) = i.We have to pi
k a new point 
 for A so that the enlarged set still satis�esthe 
ondition �(A [ f
g).For the �rst s
enario, suppose we want to add a new �p to A. That is,we want to add a new value p to T . LetZ0 = Z0(A) =\�� � : jDn(�)(�; �) = i	 : � 2 A	 :Note that Z0 is in N� and � 2 Z0. As su

(�) is re
e
ting, we 
an 
hoosethe desired �p 2 su

(�) as large as we want.For the se
ond s
enario, assume we want to pi
k a � to add to A sothat � 2 Dp for some p 2 T where �p 2 A and so that � 2 su

(
)for some 
 2 A \ Dp. There are three 
ases, �p = min(A \ su

D(�)),�p = max(A\su

D(�)), and min(A\su

D(�)) < �p < max(A\su

D(�)).We sket
h only the last, and leave the others to the reader. Let A� :=A \S�Dn : n < p	, and A+ := A \S�Dn : n > p	, and de�neZ+ = Z+(A) :=\� Æ 2 su

Dp(
) : jDp(Æ; �) = i ^ � 2 A+ 	 :



36 I. Partition RelationsNow Z+ is a subset of su

Dp(
) whi
h is a re
e
ting subset of 
 by theRe
e
tion Lemma 4.41. Sin
e by �(A), jDp(
; �) = i for � 2 A, and A is�nite, it follows that Z+ is a re
e
ting subset of 
. Next de�neZ� = Z�(A) :=\� � < !1 : jDn(Æ)(Æ; �) = i ^ Æ 2 A� 	 :By Lemma 4.50, Z� 2 NmaxA�+1. Sin
e maxA� < 
, it follows thatZ� 2 N
 . By �(A), 
 2 Z�. Hen
e Z+ \ Z� is in�nite and any element ofZ+ \ Z� is a suitable 
hoi
e for �.Use the te
hnique of \jumping around" and these two s
enarios to inter-twine the re
ursive de�nitions of T and of all the Cn's for n 2 T . Spe
i�
ally,use the standard well-ordering of � to de�ne a sequen
e h �k : k < ! i. Atstage 0, pi
k �0 = �. Suppose �` has been de�ned for ` < k. Look atdk. If dk 2 su

D(�), then use the �rst s
enario to 
hoose �k 2 su

D(�).If dk 2 su

D(�`) for some ` < k, then use the se
ond s
enario to 
hoose�k 2 su

D(�`). Otherwise, set �k = �k�1. Finally, let E = f �k : k < ! g.Let T = f p < ! : (9k)(�k = �p) g. Sin
e the standard order lists all thesu

essors of �, the set T is in�nite and inN�+1. For p 2 T , let Cp = E\Dp.Temporarily �x p 2 T . For any 
 2 Cp, sin
e �p = d` for some `, andsu

Dn(
) forms an in�nite monotoni
 subsequen
e of f dk : k < ! g, theset Cp has in�nitely many su

essors of 
. Thus Cp is full. Therefore T andthe sets fCp : p 2 T g are the ones required to prove the 
laim.As noted above, the 
laim suÆ
es to 
omplete the indu
tion step of theMain Lemma, so it follows. a5. The Milner-Rado Paradox and 
(�)Erd}os and Rado 
onsidered Ramsey's Theorem to be a generalization of thepigeon-hole prin
iple (for 
ardinals). In 1965, Milner and Rado [45℄ turnedaround this view, noting that the pigeon-hole prin
iple is a partition relationwith exponent 1, and that a partition relation with exponent 1 and ordinalresour
e and goal would be a pigeon-hole prin
iple for ordinals.A 
ase in point of this approa
h is the easily 
he
ked family of partitionrelations �n ! (�n)1
 for � � !, n < !, and 
 < 
f(�). Soon Milner andRado dis
overed that basi
ally nothing stronger is true.5.1 Theorem (Milner-Rado [45℄). For all 
ardinals � � ! and all � < �+,�9 (�n)1n<!:Proof. It is suÆ
ient to prove(�) �� 9 (�n)1n<! for � < �+:



5. The Milner-Rado Paradox and 
(�) 37Clearly we may assume � > !. We prove (�) by trans�nite indu
tion on�. We 
an write �� = S�<� A� with A0 < � � � < A� < : : : and ea
hotA� = ��� for some �� < �, where � = 
f(�) if 
f(�) > 1 and � =� otherwise. By the indu
tion hypothesis, ea
h A� = Sn<! A�;n whereotA�;n < �n for � < �, n < !. In the 
ase of � = !, de�ne a witnessingpartition �� = Sj<! Bj where Bj = A�;n for j = 2�(2n + 1). In the 
aseof � > !, let B0 := ;, Bn+1 := S fA�;n : � < � g. Clearly �� = Sn<! Bn;and otBn+1 �P�<� �n � �n+1 < �!. aWe state one 
onsequen
e of the above theorem giving further limitationson to positive relations (as dis
ussed in Theorem 4.3).5.2 Theorem. For all 
ardinals � � !, �+ 9 (�n)2n<!.Proof. For � < �+, use Theorem 5.1 to 
hoose partitions � = Sn<! A�nwith otA�n < �n for ea
h n < !. De�ne f : [�+℄2 ! ! as follows: for� < � < �+, set f(�; �) = n+ 1 if and only if � 2 A�n. aThe word paradox was used in referen
e to Theorem 5.1 be
ause thisresult was so 
ontrary to expe
tations. It turned out that the phenomenades
ribed in Theorem 5.1 is involved in many problems 
on
erning un
ount-able 
ardinals, and often it leads to unexpe
ted diÆ
ulties.In this se
tion we are trying to turn this tide and use the paradox in ourfavor. For the remainder of this se
tion, let � be a �xed in�nite 
ardinal.5.3 De�nition. For � < �+, 
all a partition � = S
2�A
 with � < � aMR-de
omposition of � if there is a sequen
e hn
 : 
 < � i 2 �! su
h thatotA
 = �n
 .From Theorem 5.1 and the fa
t that any Æ < �n is the �nite sum ofordinals of the form �m � � where m < n and � < �, we get the following
orollary.5.4 Corollary. Ea
h � < �+ has a MR-de
omposition.Another way to put De�nition 5.3 is that � has a MR-de
omposition ifthere are sequen
es hn
 : 
 < � i 2 �! and fun
tions 	
 : [�℄n
 ! � for
 < � < � su
h that 	
 is the 
anoni
al monotone map from [�℄n
 orderedlexi
ographi
ally into �.The next de�nition from [20℄ is motivated by this formulation.5.5 De�nition. Call � < �+ 
odeable if there are � < � and sequen
eshn
 : 
 < � i 2 �! and h	
 : 
 < � i so that 	
 : [�℄n
 ! � for 
 < � andfor every A 2 [�℄�, ot [
<�	
\ [A℄n
 = �:



38 I. Partition Relations5.6 De�nition. Let 
(�) be de�ned as the least ordinal 
 � �+ so thatea
h � < 
 is 
odeable.Note that this de�nition from [20℄ is only interesting if � is a large 
ar-dinal, say at least a Jonsson 
ardinal.The following list of properties of 
(�) proved in [20℄ gives some sense ofthis ordinal for a measurable 
ardinal � > !.1. 
(�) < �+;2. 
(�) is 
losed under the operations of ordinal addition, multipli
ation,exponentiation, and taking �xed points of these operations;3. 
(�) 
annot be 
hanged by (�;1)-distributive for
ing;4. if V �W and both V andW are models of \ZFC + � is measurable",then 
(�)V � 
(�)W ;5. by using generi
 elementary embeddings in the situation of 4., it ispossible to make 
(�)V < 
(�)W .Moreover, 
(�) is big, e.g. if U is a normal ultra�lter on � and � is the leastordinal su
h that L� [U ℄ \ �<� = L[U ℄ \ �<�, then L[U ℄ j= 
(�) = �. Sin
ethe statement Æ < 
(�) is upwards absolute, this impli
ation shows thatthe value of 
(�)V is at least as big as �. Moreover � is mu
h bigger than,for example, the �rst � > � su
h that L�[U ℄ is an admissible stru
ture, butmu
h to our regret, we must omit the proofs.However, we have to 
onfess that we know very little about the 
ombi-natorial properties involved in the de�nitions of 
(�). In fa
t, we do notknow if 
(�) would be
ome smaller if we requested that the mappings 	
be monotone.6. Shelah's Theorem for in�nitely many 
olors.In this se
tion we prove Shelah's Theorem 4.6, that �+ ! (� + �)2� for� < � = 
f(�) and � = 2<�, under the assumption that � < � � � for somestrongly 
ompa
t 
ardinal �. By Theorem 4.18 we may assume � � !.First we need a lemma that was studied and proved independently in [20℄.We say that B � �+ has essential 
olors for g, I, where g is a 2-partitionof �+ and I is a normal ideal on �+, if B =2 I and every C � B with C =2 Isatis�es g\ [C℄2 = g\ [B℄2.6.1 Lemma (Redu
tion to essential 
olors). Assume � < � = 
f(�), and� := 2<�. Further suppose that g : [�+℄2 ! � is a 2-partition of �+ with �
olors, I is a normal ideal 
on
entrating on S�;�+ , and A � �+ is not in I.Then there are a subset B � A and a normal ideal J � I, su
h that Bhas essential 
olors for g; J .



6. Shelah's Theorem for in�nitely many 
olors. 39Proof. By the normality of I and Fa
ts 3.2 we 
an 
hoose N � H(�++)suitable for � su
h that g; I; A 2 N , N \ �+ = � < �+, � 2 A, and Nsatis�es the following 
ondition:(�) : for all C 2 N , if � 2 C � �+, then C =2 I .To see this situation may be assumed, 
hoose an elementary 
hain N0 �� � � � N� � H(�++) as in Subse
tion 4.4 and use normality to see thatf� 2 S0 : (�) fails for some C g 2 I:To prove the lemma, de�ne a de
reasing sequen
e hA� : � < � i of subsetsof �+ by re
ursion on � < �. To start the re
ursion, let A0 := A. Assume0 < � < � and A� is de�ned for � < � in su
h a way that(+) : A� 2 N and � 2 A� � �+; for � < �:Put A� = T�<� A� in 
ase � is a limit ordinal.Suppose A� has been de�ned, and set �� = g\ [A� ℄2. Let I� be the normalideal generated on A� fromI \ P(A�) [ �x � A� : g\ [x℄2 $ �� 	 :If A� =2 I� , then set A�+1 = A� . If A� 2 I� , then it is a �nite or diagonalunion of elements of the generating set. We treat the 
ase where there is asequen
e B� = hB�;� : � < �+i su
h that A� = S�<�+ B�;�, and for � < �+,B�;� \ (� + 1) = ;, and either B�;� 2 I or g\ [B�;�℄2 $ �� .Then, by elementarity, there is a sequen
e B� 2 N as des
ribed above.Moreover, � 2 B�;� for some � < �+ with � < � and � 2 N , and thusB�;� 2 N for this �. We set A�+1 = B�;� for this �. Note that in this
ase, � 2 A�+1 =2 I and g\ [A�+1℄2 $ g\ [A� ℄2. This de�nes the sequen
ehA� : � < �i.Sin
e g maps pairs from �+ into �, there are at most � < � many � withA� $ A�+1. Let � be the least ordinal with A� = A�+1, and set B := A� .Then I� is a proper ideal on B. The ideal J generated from I[I� is normal,and B =2 J . So by de�nition of I� , B has essential 
olors for g; J . aGiven a 2-partition g, we say that y and z are 
olor equivalent over xand write y �gx z if x < y, x < z, ot(y) = ot(z), and the order isomorphism� : x[y ! x[z has �jx = id and is 
olor preserving: g(�; �) = g(�(�); �(�)).6.2 Corollary. For any 2-partition g : [�+℄2 ! �, and any normal idealJ , if B has has essential 
olors for g and J , then there is a set C � Bwith B � C 2 J su
h that for all � 2 C, for all x 2 [�℄<�, and for all
 2 � := g\ [B℄2, the set D(�; x; 
) is J-positive, whereD(�; x; 
) := f� 2 C : � < � ^ f� g �gx f� g ^ g(�; �) = 
 g :



40 I. Partition RelationsProof. To see that the set B has the desired property, assume to the 
ontrarythat for all � in some J-positive set X � B, there are x(�) 2 [�℄<� and
(�) 2 g\ [B℄2 su
h that the set D(�; x(�); 
(�)) 2 J . By normality and
f(�) = �, there are Y � X with Y =2 J su
h that for some x; 
 one hasx(�) = x, 
(�) = 
 for all � 2 Y . Then for some Z � Y with Z =2 Jthe 
ondition f�g �gx f�g holds for all �; � 2 Z. If for ea
h � 2 Z theset f� 2 Z : g(�; �) = 
 g 2 J , then, be
ause of the normality, for the setW := f Æ 2 Z : 8� 2 Æ \ Z ( g(�; Æ) 6= 
 ) g both W =2 J and 
 =2 g\ [W ℄2would hold, 
ontradi
ting the fa
t that B has essential 
olors for g; J . aThe above lemma and 
orollary are to be used with di�erent 2-partitions,and hen
e were stated in generality. Now �x a 2-partition f : [�+℄2 ! � forwhi
h we seek a homogeneous set of type �+ �.6.3 Lemma (Pulldown Lemma). There is a subset S0 � S�;�+ 
losed inS�;�+ su
h that for all � 2 S0, for all x 2 [�℄<�, and for all z 2 [�+ � (�+1)℄<�, there is a y 2 [�� supx℄<� su
h that y �fx z.Proof. By the fa
ts listed in 3.2, there is an elementary 
hain hN� : � <�+i � H(�++) with hN�;2i � hN� ;2i � H(�++) for � < � < �+ andf 2 N0 and S0 = f� < �+ : N� \ �+ = � g.Then Lemma 6.3 is true by re
e
tion. aThe Pulldown Lemma 6.3 does not say anything about the 
olors of edgesthat go between the sets y and z, while Corollary 6.2 detailed a situation inwhi
h any essential 
olor may be pre-sele
ted.We apply Lemma 6.1 to f and the smallest normal ideal on �+, the non-stationary ideal, to get B0 � S0 and J0, so J0 is a normal ideal extendingthe non-stationary ideal, and B0 has essential 
olors for f; J0. We applyCorollary 6:2 to get A0 � B0 so that B0�A0 2 J0 and the other 
onditionsof the 
orollary hold for all � 2 A0. Then we 
hoose �0 2 A0, and putT := A0 � �0.6.4 Lemma. There exists a fun
tion h : T � T ! � su
h that for allx 2 [�0℄<� and z 2 [T ℄<� there is a y 2 [�0 � supx℄<� su
h that(a). y �gx z via � : x [ y ! x [ z and(b). g(�; � 0) = h(�(�); � 0) for all � 2 y, � 0 2 z.Proof. As � is strongly 
ompa
t is suÆ
es to show that for every Z 2 [T ℄<�there exists a fun
tion H : Z � Z ! � as required.Assume for the sake of 
ontradi
tion that for every H : Z �Z ! � thereis an xH 2 [�℄<� su
h that for all y � ��supxH satisfying (a), the fun
tiongiven by (b) is not H .Let x = S fxH : H : Z � Z ! � g. Then jxj < � as jxj � �jZj < �, sin
e� is strongly ina

essible.



6. Shelah's Theorem for in�nitely many 
olors. 41By Lemma 6.3, there is a y satisfying (a). Then (b) de�nes a fun
tionH : Z � Z ! �. By the de�nition of x, the set xH � x is a set on whi
hthe fun
tion de�ned by (b) for y is not H , and that is a 
ontradi
tion. aNow we de�ne k : [�+℄2 ! �� � for u; v 2 �+ with u < v byk(u; v) = hf(u; v); h(v; u)i:Next apply Lemma 6.1 and Corollary 6.2 to k and the normal ideal J0 andthe set T .6.5 Corollary. We get a normal ideal J1 � J0, a non-empty set � � ���,and subsets S1 � B1 � T with B1 =2 J1, B1 � S1 2 J1 su
h that B1 hasessential 
olors for k; J1, and for ea
h � 2 S1 and for ea
h x 2 [�℄<� andh
; Æi 2 � the set E(�; x; h
; Æi) is J1-positive, whereE(�; x; h
; Æi) := �� 2 S1 : � < � ^ f�g �kx f�g ^ k(�; �) = h
; Æi	 :6.6 Lemma. There is a subset a 2 [S1℄<� su
h that for every partition ofa, say a = S f a� : � < � g, there is a � < � su
h that for every 
 < �, thereis a subset b�;
 of a� of type � homogeneous for f in the 
olor 
.Proof. Noti
e that sin
e S1 � B0 � S0 with B =2 J1 � J0 � I for thenon-stationary ideal I , we may assume that for the N suitable for � in theproof of Lemma 6.1 and � = N \ �+, we have � 2 S1. Hen
e S1 has theproperty that any partition of it into � pie
es has a part A (
hose the onewith � 2 A) whi
h 
ontains a homogeneous subset of type � > � for every
 2 f\ [S1℄2, else just like in the proof of the Erd}os-Rado Theorem 3.10(apply it to the fun
tion that is 1 on pairs f sends to 
 and 0 elsewhere),there would be a B � A with B =2 I and 
 =2 f\ [B℄2.By the strong 
ompa
tness of �, there must be a set a � S1 of size < �satisfying the same statement as S1 about f , all partitions into � parts andthe existen
e of homogeneous subsets of type � for all 
olors 
 2 f\ [S1℄2. aWe now des
ribe the 
onstru
tion of the required homogeneous set.Re
all that immediately following Lemma 6.3 we 
hose �0. Next 
hoosea as in Lemma 6.1 Then 
hoose �1 2 S1 satisfying Corollary 6.5.Then �0 < a < �1.De�ne a
;Æ := fu 2 � : g(u; �1) = h
; Æi g.By Lemma 6.6 there is a h
0; Æ0i 2 � su
h that a
0;Æ0 
ontains a subsetof type � homogeneous for 
olor 
 for every 
, hen
e it 
ontains a subsetb � �
0;Æ0 of type ot b = � homogeneous for f in 
olor Æ0. This will be \our
olor" and b will be the \�-part" of our set. We are going to 
onstru
t the\�-part" of the set by trans�nite re
ursion on � < � as follows. Assume� < k and we have 
onstru
ted X = X� of order type � homogeneous for fin 
olor Æ0 and so that all edges from x to b [ f�1g have 
olor Æ0.



42 I. Partition RelationsWe now apply Corollary 6.2 to �1, and X [ b and we obtain an �2 2 S1,with �1 < �2 su
h that �1 �kX[b �2 and k(�1; �2) = h
0; Æ0i.As a 
orollary of this we have Æ0 = f(u; �1) = f(u; �2) for u 2 X andh(v; �1) = h(v; �2) = Æ0 for v 2 b.Apply Lemma 6.4 for � to X , b [ f�1; �2g � T . We get b0 [ f�01; �02g.We 
laim that X�+1 = X [ f�02g is homogeneous in 
olor Æ0 and sends alledges to b [ f�1g of 
olor Æ0.Indeed f(u; �02) = f(u; �2) = Æ0 for u 2 X by the equivalen
e over X .For v 2 b, we have f(�02; v) = h(�2; v) = h(�1; v) = Æ0. By 
hoi
e of �2,we have k(�1; �2) = hg(�1; �2); h(�2; �1)i = h
0; Æ0i. Hen
e f(�02; �1) = Æ0also.7. Singular Cardinal Resour
esIt should be 
lear to the attentive reader that neither the rami�
ationmethod as des
ribed in Remark 2.4 nor its re�nements dis
ussed up tonow 
an yield any spe
i�
 partition results for a singular resour
e. To getsu
h results the method of 
anonization was invented in [15℄.7.1 De�nition. Assume f : [�℄r ! 
 is an r-partition of length 
 of �,and hA� : � < � i is a sequen
e of disjoint subsets of �. Then f is said tobe 
anoni
al on hA� : � < � i if f(x) = f(y) for all x; y 2 A := S�<� A�whenever x; y are positioned the same way in the sequen
e, i.e. ifjx \ A� j = jy \A� j for all � < �:The idea is that, for a singular 
ardinal �, we want to �nd a sequen
ehA� : � < 
f(�) i with jA� j < � for � < 
f(�), and A := S fA� : � < 
f(�) gof power � su
h that f is 
anoni
al on hA� : � < 
f(�) i and use it to pie
etogether large homogeneous sets. The following is the 
lassi
al 
anonizationtheorem.7.2 Theorem (General Canonization Lemma [15℄). Suppose that � � 2 isa 
ardinal, r � 1 is an integer, h �� : � < � i is a stri
tly in
reasing sequen
eof in�nite 
ardinals with �0 � � j�j and exp( r2 )(��) < exp( r2 )(��) for � <� < �. For any disjoint union A = _S fA� : � < � g, and any 
oloringf : [A℄r ! � , if jA� j � �exp( r2 )(��)�+ for all � < �, then there are setsB� � A� for � < � so that jB� j � ��+ and the sequen
e hB� : � < � i is
anoni
al with respe
t to f .We are omitting the proof, sin
e any reader with some experien
e in 
om-binatori
s should be able to re
onstru
t it, and sin
e neither this proof northe subsequent proofs fall into the line of the methods we are des
ribing. We



7. Singular Cardinal Resour
es 43in
lude 
anonization results be
ause we think that no 
hapter on partitionrelations would be 
omplete without them.Here is the very �rst appli
ation of Theorem 7.2.7.3 Theorem (Redu
tion Theorem). Assume � > 
f(�) is a strong limit
ardinal. Then �! (�; ��)21��<
 if and only if 
f(�)! (
f(�); ��)21��<
 .Indeed, the next theorem is the only one obtained for a singular resour
eusing a method di�erent from 
anonization. The elementary proof of thetheorem is left to the reader (see [14℄).7.4 Theorem (Erd}os; Dushnik and Miller [9℄). For every in�nite 
ardinal�, �! (�; !)2.See also [14℄ for a proof. Added in Proof: The General CanonizationLemma implies Theorem 7.4 for singular strong limit � and for 
f � > !it yields � ! (�; ! + 1)2. It has been a longstanding problem if this par-tition relation holds if we do not assume that � is strong limit. Re
entlySaharon Shelah [55℄ proved this partition relation holds under the mu
hweaker 
ondition that 2
f � < �.Erd}os, Hajnal and Rado in [15℄ pursued the idea of �nding the rightgeneralization of the form �! (�; !1)2 for singular �. The �rst possible 
aseis � = �
+ , where 
 = 2!, and the Redu
tion Theorem 7.3 gives a positiveanswer in 
ase � is a strong limit. The very �rst question of the Erd}os-Hajnalproblem list [12℄ asks if this additional hypothesis is ne
essary. Shelah andStanley in [61℄ and [62℄ proved that the partition relation �! (�; !1)2 
anbe both false and true if � is not a strong limit 
ardinal. A des
ription ofthis deep result is beyond the s
ope of this se
tion.There is one more 
anonization result that we want to mention. It wasisolated during the dis
ussion of the ordinary partition relation in the book[14℄ that the following result should be true, and Shelah later proved it.7.5 Theorem (Shelah [58℄). Assume that � is a singular 
ardinal of weakly
ompa
t 
o�nality. If � < 2<� and 2� < 2<� for � < �, then2<� ! (�)22:To prove this partition relation, Shelah worked out a new group of 
an-onization results in [58℄. We only state here one of the main results. Calla sequen
e of 
ardinals h�� : � < � i exponentially in
reasing if � < � < �implies 2�� < 2�� . A sequen
e of sets hB� : � < � i is weakly 
anoni
al iff(u) = f(v) whenever u; v 2 [B℄r (B = S�<�B�) and ju\B� j = jv\B� j � 1for every � < �. A set F � P(A) sustains A over � if for every X � A withjX j = (2�)+, there is Y 2 F so that Y � X and jY j = �+.7.6 Theorem (Shelah's Canonization Lemma [58℄). Suppose h�� : � < � iis an exponentially in
reasing sequen
e of in�nite 
ardinals with �0 � �; �; !,



44 I. Partition Relationsfor a 
ardinal � � 2. Then for any disjoint union A = _S fA� : � < � g,any sequen
e hF� � P(A�) : � < � i, and any 
oloring f : [A℄2 ! � , ifjA� j > 2�� and F� sustains A� for all � < �, then there is a sequen
ehB� : � < � i weakly 
anoni
al with respe
t to f with jB� j = ��+ for all� < �.8. Polarized Partition RelationsPolarized partition relations were de�ned in the introdu
tion. We do nothave the spa
e to give an orderly dis
ussion of the problems and resultson this partition relation. Rather, we will only give a few examples, wherethe method of elementary submodels des
ribed in the previous se
tion 
anbe resour
efully used. The �rst appearan
e in the literature of the use ofelementary submodels for the proofs of polarized partition relations is thefollowing theorem of Albin Jones whi
h generalizes a result of Erd}os, Hajnaland Rado [15℄ from 1965:8.1 Theorem (A. Jones [30℄). Let � be an in�nite 
ardinal and � = 2<�.Then the following polarized partition relation holds:0� �+�+ 1A! 0� �+ 
 �+ 1or ;
 �+ �+ 1 1A1;1 :In the remainder of this se
tion, we apply the method of elementarysubmodels using the \method of double rami�
ation".8.1. Su

essors of weakly 
ompa
t 
ardinalsThe �rst example is 
hosen with an eye to a 
lean presentation of themethod.8.2 Theorem (Baumgartner and Hajnal [3℄). Suppose that � is a weakly
ompa
t 
ardinal. Then� �+� �! � �� �1;1
 for 
 < �.Before going into the details of the proof, we give some histori
al remarksand state an open problem. In [26℄, Hajnal proved that for measurable �,the following partition relations holds:� �+� �! � �� �1;n<� for n < ! and � < �+.



8. Polarized Partition Relations 45In an early paper of Choodnovsky [6℄, it was 
laimed that� �+� �! � �� �1;1<� for � < �+remains valid for weakly 
ompa
t �, but no proof was given. Realizing thatthis 
laim was by no means obvious, both Kanamori [32℄ and Wolfsdorf [67℄published proofs that the relation is true for two 
olors:� �+� �! � �� �1;12 for � < �+Theorem 8.2 was generalized in the thesis of Albin Jones [27℄, [29℄, whoproved, using elementary submodels, that for weakly 
ompa
t 
ardinals �,� �+� �! � � �� �m ; � �n� �
 �1;1 for m;n < �, 
 < �, � < �+.To the best of our knowledge, the following problem remains unsolved.8.3 Question. Does the partition relation� �+� �! � �� �1;1! hold for all weakly 
ompa
t � � !, � � �!?The rest of this subse
tion is devoted to the proof of Theorem 8.2 for� > !. To that end, let � > ! be a weakly 
ompa
t 
ardinal, and letf : �+ � � ! 
 be a �xed partition. We outline ba
kground assumptionsbelow, using work from earlier se
tions.8.4 De�nition. Let h hN�;2i : � < �+ i be a sequen
e of elementary sub-models of H(�++) satisfying 3.2 with � = �<� = � and A = ffg. Leth I� : � < �+ i be the ideals de�ned in 3.4 and letS0 := �� < �+ : �(N�) = � ^ 
f(�) = � ^ N� is suitable	as de�ned in subse
tion 4.2. Note that for � 2 S0, I� is a �-
omplete properideal, by 3.6.8.5 De�nition. Call N = hN�;� : � < �+ ^ � < � i a double rami�
ationsystem for hN� : � < �+ i as in De�nition 8.4 if for ea
h � < �+, the se-quen
e hN�;� : � < � i 2 N�+1 is an in
reasing 
ontinuous sequen
e of ele-mentary submodels ofN� withS fN�;� : � < � g = N� su
h that jN�;�j < �for � < �.



46 I. Partition RelationsWe use the name double rami�
ation system sin
e, as we explained in theproof of the Erd}os-Rado Theorem, the N�'s play the role of the rami�
ationsystem of Erd}os and Rado.Just like in 3.2, using general fa
ts about elementary submodels, and theun
ountability and strong Mahloness of �, we 
an see that there is a systemsatisfying the next de�nition.8.6 De�nition. Let N = hN�;� : � < �+ ^ � < � i be a double rami�
a-tion system su
h that for ea
h � 2 S0 there is a T 0� � �, with T 0� 2 Stat(�)satisfying the following 
onditions for all � 2 T 0�:1. N�;� \ � = � > 
;2. � is a regular 
ardinal; and3. [N�;�℄<� � N�;�.Next we relativize 
ertain important sets to the submodels of the doublerami�
ation system.8.7 De�nition. For ea
h � 2 S0 and � 2 T 0�, de�ne the following sets:1. X�;� := N�;� \ �+;2. I�;� := fX � � : (9Y )(Y � � ^ Y 2 N�;� ^ � =2 Y ^X � Y ) g;3. Î�;� := fX � X�;� : (9Y )(Y � �+ ^ Y 2 N�;� ^ � =2 Y ^X � Y ) g.8.8 Lemma. For � 2 S0 and � 2 T 0�, both I�;� and Î�;� are �-
ompleteideals, and I�;� is proper.Proof. The �rst statement follows from the fa
t that [N�;�℄<� � N�;�. Tosee that I�;� is proper, then just like in Lemma 3.6, assume Z � �, � 2 Zand Z 2 N�;�. Then supZ 2 N�;�, hen
e supZ = � and supZ \ � = �.This implies � =2 I�;� . aNote that Î�;� is proper for many � and � as well (see 8.11 below).Notation. For all � < 
, letf#(�; �) := f � < � : f(�; �) = � g for � < �+, andf"(�; �) := f� < �+ : f(�; �) = � g for � < �.8.9 De�nition. For � 2 S0 and � 2 T 0�, leta�;� := � � < 
 : f#(�; �) \ � =2 I�;� 	 :Note that a�;� 6= ; by Lemma 8.8 and the fa
t that 
 < �.



8. Polarized Partition Relations 478.10 Lemma (Main Lemma). There are subsets a � 
 and S � S0 withS 2 Stat(�+), and for ea
h � 2 S, there is a subset T� � T 0� with T� 2Stat(�), so that f(�; �) 2 a = a�;� for all � 2 S and � 2 S fT� : � 2 S g.Proof. First thin ea
h T 0� for � 2 S0 to a stationary subset T 1� so that forsome a�, one has a�;� = a� for all � 2 T 1�. Then thin S0 to a stationarysubset S1 so that for some a � 
 and for all � 2 S1, a� = a. We mayassume without loss of generality that 
 < � for all � 2 T 1�.Noti
e that for all � 2 S1 and all � 2 T 1�, if � =2 a, then f#(�; �) \� 2 I�;� . Hen
e, by the de�nition of f# and the �-
ompleteness of I�;� ,it follows that f � < � : f(�; �) =2 a g 2 I�;� . By De�nition 8.7, for � 2 S1and � 2 T 1�, we 
an 
hoose sets Y�;� � � su
h that � =2 Y�;� 2 N�;� andf � < � : f(�; �) =2 a g � Y�;� . Using Fodor's Theorem twi
e, we get Y � �,S � S1 with S 2 Stat(�+), and 
T� � T 1� : � 2 S � su
h that T� 2 Stat(�)for all � 2 S, and Y�;� = Y for � 2 S and � 2 T�.Consequently, for all � 2 S fT� : � 2 S g, we have � =2 Y , sin
e � =2Y�;� = Y . However, if � 2 S and � < � are su
h that f(�; �) =2 a, then forsome � 2 T�, one has � 2 Y�;� = Y , so the theorem follows. a8.11 Corollary. There is an � < �+, so that for �-many �, the following
ondition holds:(+)(9� < 
)(f#(�; �) \ � =2 I�;� ^ f"(�; �) \X�;� =2 Î�;�):Proof. Let � be su
h that S \ � =2 I�. Su
h an � must exist by Corol-lary 4.8. A standard argument shows that if S \ � =2 I�, then W =n � < � : S \ � \X�;� 2 Î�;� o is non-stationary in �. By Main Lemma8.10, f(�; �) 2 a for � 2 T� and � 2 S\�\X�;� . Hen
e f"(�; �)\X�;� =2 Î�;�for some � 2 a and for every � 2 T��W . On the other hand, f#(�; �)\ � =2I�;� for all � 2 a and for every � 2 T�. a8.12 Lemma (Compa
tness Lemma). Assume that for some � < �+ thereare �-many � so that for some A� � X�;�, B� � � with otA� = otB� = �,the set A� �B� is homogeneous for f . Then there are A � �+, B � � withotA = �+ 1 and otB = � su
h that A�B is homogeneous for f .Proof. Use the weak 
ompa
tness of � via its �11-indes
ribability. aAfter all these preliminaries, Theorem 8.2 now follows from Corollary8.11, the Compa
tness Lemma 8.12 above, and the Re
e
tion Lemma below.8.13 Lemma. Assume that for � as in Corollary 8.11 and for some � < 
,the ordinal � satis�es the formula (+) of 8.11. Then there are A � X�;�,B � � with otA� = otB� = � so that A �B is homogeneous for f in 
olor�.



48 I. Partition RelationsProof. Let A := f"(�; �) \X�;� and let B = f#(�; �) \ �. Sin
e (+) holdsfor � and �, we know that B =2 I�;� and A =2 Î�;� . These last two statementsimply the existen
e of the sets A, B as required. Indeed, we 
an de�nesequen
es A = f a� : � < � g � A and B = f b� : � < � g � B by trans�nitere
ursion on � < � so that for all �0; �00 < �,f(a�0 ; b�00) = �,a�0 2 f"(�; �),b�00 2 f#(�; �).At stage � < �, assume this has been done for �0; �00 < �. First 
hoose a�.Toward that end, letZ�� := �� < �+ : f(�; b�00) = � for all �00 < �	 :Then � 2 Z�� sin
e b�00 2 f#(�; �) for all �00 < �. Sin
e f , f b�00 : �00 < � g 2N�;�, it follows that Z�� 2 N�;�. So Z�� \A� fa�0 : �0 < � g is not in Î�;�,so we 
an 
hoose �� from it.Then 
hoose b� similarly using f"(�; �) in the role of f#(�; �) and I�;�instead of Î�;� and taking 
are to make f(a�0 ; b�) = � for �0 � �. a8.2. Su

essors of singular 
ardinalsIn this subse
tion we investigate the following question.8.14 Question. Assume � is a singular strong limit 
ardinal and 
 < �.Under what 
ir
umstan
es does the following partition relation hold?(�) � �+� �! � �� �1;1
The problem was isolated in Problem 11 of [15℄, where it was asked if (�)holds for � = �!1 under GCH. In the same paper, it was proved that (�)holds provided 
f(�) = !, but we omit the proof of this fa
t.After about thirty years, a sho
king partial result was proved by SaharonShelah.8.15 Theorem (Shelah [60℄). Assume � is a singular strong limit 
ardinalof un
ountable 
o�nality. Then (�) holds if 2� > �+.For another proof of this result, see Kojman [34℄. A little extra informa-tion is 
ontained in an unpublished result of M. Foreman, whi
h we provehere using the result of Shelah.



8. Polarized Partition Relations 498.16 Theorem (Foreman unpublished). Suppose that � is a singular stronglimit 
ardinal in V and (2�)V > (�+)V . Then there is a �-
omplete partialorder P whi
h satis�es the (2�)+-
hain 
ondition so thatV P j= 2� = �+ and � �+� �! � �� �1;1
 for 
 < �.Proof. We 
an 
hoose for P the �+-
omplete Levy 
ollapse of 2<� to �+.For every p 2 P and every name for a partition _f , we 
an de�ne in V ade
reasing sequen
e h p� j � < �+ i of 
onditions and a fun
tion g : �+��!
 su
h that p0 = p and8� < �+ 8� � � 8� < � p� 
 _f(�; �) = g(�; �):By Theorem 8.15, we 
an 
hoose A, B su
h that A�B is homogeneous forg and jAj = jBj = �. For some � < �, we have A;B � � and thenp� 
 9A 9B (jAj = jBj = � ^ A�B is homogeneous for _f)Hen
e V P satis�es the 
laim. aAll other problems remain unsolved, even for 
 = 2. For notational
onvenien
e, for the rest of this se
tion let � = 
f(�). We may assume that� > !, and we will embark on a lengthy proof of a mild strengthening ofthe result of Shelah.8.17 Theorem. Suppose that � is a singular strong limit 
ardinal of un-
ountable 
o�nality �. Then (��) holds if 2� > �+:(��) � �+� �! � �+ 1� �1;1
The proof we are going to des
ribe will be a double rami�
ation, quitesimilar in stru
ture to the proof of Theorem 8.2 and di�erent from thesimpli�ed proof of Theorem 8.15 in Kojman [34℄.8.18 De�nition. Choose ~� = h�� : � < � i to be an in
reasing 
ontinuoussequen
e of 
ardinals satisfying the following properties:1. sup f�� : � < � g = �;2. � < �0; and3. 2�� < ��+1 = 
f(��+1) for � < �.We use results of Shelah's p
f theory [59℄ to guarantee the existen
e ofthe sequen
e delineated in the next de�nition.



50 I. Partition Relations8.19 De�nition. Choose ~� = h�� : � < � i to be an in
reasing sequen
eof regular 
ardinals with �� < �� < � for � < � su
h that the produ
t� :=Q�<� �� satis�es(8�'� : � < �+ 	 � �) ( 9' 2 �) (8� < �+ ) ('� � ' )where � is the relation of eventual domination on �.We now 
hoose a sequen
e of models to serve as the skeleton of a doublerami�
ation.8.20 De�nition. Let A := � [ n�; f; ~�;~�o. Using 3.2, we 
an 
hoose anin
reasing 
hain h hN�;2i : � < �+ i of elementary submodels of H(�++)with A 2 N0 su
h thatS0 := �� < �+ : �(N�) = � > � ^ 
f(�) = � ^ N� is suitable for �	is a 
lub in S�;�+ . As in De�nition 3.4, we de�neI� := �X � �+ : 9Y (Y � �+ ^ Y 2 N� ^ � =2 Y ^ jX � Y j < �)	 ;and note that sin
e � is singular, the last 
ondition may no longer be re-pla
ed by X � Y .8.21 Fa
ts. The following statements hold.1. I� is a �-
omplete proper ideal for all � 2 S0;2. for every stationary S � S0, there is some � 2 S so that S \ � =2 I�;3. for every � 2 S0, every X 2 P(�)� I� and every � < �, there is someW � X with jW j = � so that W 2 N�.Proof. The �rst item follows from Lemma 3.6, and the se
ond from Corol-lary 4.8. To see that the third item holds, �x � 2 S0, and assume X 2P(�) � I�. By the de�nition of I�, we have jX j � �. Let � < � be given.Sin
e 
f(�) = � < �, there is a � < � with jX\�j � � . Sin
e N� � H(�++)and � 2 N�, there is some U in N� with jU j < � and jX \ U j � � . Thenany W � X \ U with jW j = � satis�es the requirement of the item sin
ejP(U)j < � and therefore P(U) � N�. aFor notational 
onvenien
e, we use the same names for our double rami-�
ation system here as in the proof of Theorem 8.2.8.22 De�nition (Double rami�
ation). For ea
h � 2 S0, we 
hoose <�, awell-ordering of type � of N�. Choose N = hN�;� : � < �+ ^ � < � i forthe skeleton 
hosen above so that for � 2 S0, the sequen
e hN�;� : � < � iis in
reasing, 
ontinuous and internally approa
hable and satis�es the fol-lowing 
onditions:



8. Polarized Partition Relations 511. A 2 N�;0;2. �� � N�;� , jN�;� j = �� , and N�;� 
ontains the �th se
tion of N�;� inthe well-ordering <� for ea
h � < �.Next we relativize 
ertain important sets to the submodels of the doublerami�
ation system.Notation. For ea
h � 2 S0, de�ne the set X�;� := N�;� \�� for � < � andthe fun
tion '� : �! � so that '�(�) := supX�;� .The following fa
ts follow from De�nition 8.19 of � and ~�.8.23 Lemma. For all � 2 S0, the fun
tion '� is in �, and there is afun
tion ' 2 � whi
h eventually dominates all the '� for � 2 S0. That is,for ea
h � 2 S0, there is some �� < �, so that '�(�) < '(�) for all � with�� � � < �.For the remainder of this se
tion, �x a fun
tion ' whi
h eventually dom-inates all the '� for � 2 S0, and let �� as above be the point at whi
hdomination sets in.8.24 De�nition. For � 2 S0 and � with �� � � < �, de�neI�;� := fX � � : 9Y (Y � � ^ Y 2 N�;� ^ '(�) =2 Y ^ jX � Y j < ��) g :8.25 Lemma. Let � 2 S0 and � with �� � � < � be given. Then1. I�;� is a proper ideal;2. for ea
h X � X�;� with X 2 I+�;� , there is a W � X with jW j = ��so that W 2 N�;�+1.Proof. For the �rst item, note that the set I�;� is an ideal be
ause N�;� is
losed with respe
t to �nite unions. To see that X�;� =2 I�;� , let Z 2 N�;�be a subset of �� with '(�) 2 Z. It is enough to show jZ \ X�;� j � �� .Now Z 2 N�;� and supZ 2 N�;� . Hen
e supZ = �� . Thus there is aone-to-one fun
tion g : �� ! Z. Using the fa
t that �� and �� are in N�;� ,by elementarity, there is a fun
tion g 2 N�;� like this. Using the fa
t that�� + 1 � N�;� , we get that ran(g) � N�;� \ �� = X�;� .For the se
ond item, there is a subsetW � X with jW j = �� by De�nition8.24. Also, by De�nition 8.22, we know that X�;� 2 N�;�+1, 2�� < ��+1and P(X�;�) � N�;�+1. Therefore W 2 N�;�+1 as required. aRe
all the notation f#(�; i) introdu
ed after Lemma 8.8:f#(�; i) := f � < � : f(�; �) = i g for � < �+, i < 
.



52 I. Partition RelationsUsing the fa
ts that 
; ! < � and 2� < �, we 
an show dire
tly that� �+� �! � Stat(�+)Stat(�) �1;1
 :We get the next lemma by applying this partition relation to the 
oloringf Æ ' of �+ � �.8.26 Lemma. There are S � S0, T � �, � < � and i < 
 su
h thatS 2 Stat(�+), T 2 Stat(�), � \ T = ;, '\ T � f#(�; i) and �� = � for all� 2 S.We now prove our main 
laim.8.27 Lemma (Main Claim). There is an � 2 S su
h that S \ � =2 I� and� � 2 T : f#(�; i) \X�;� =2 I�;� 	 2 Stat(�):Proof. By Corollary 4.8, it is suÆ
ient to see that�� 2 S : � � 2 T : f#(�; i) \X�;� =2 I�;� 	 2 Stat(�)	 2 Stat(�+):Let T� := � � 2 T : f#(�; i) \X�;� 2 I�;� 	 for � 2 S. Assume by way of
ontradi
tion that for some S0 2 Stat(�+)\P(S), one has T� 2 Stat(�) forall � 2 S0.For � 2 S0, � 2 T�, 
hoose Y�;� satisfying the following 
onditions:Y�;� � �� , Y�;� 2 N�;� , '(�) =2 Y�;� , and jf#(�; i) \X�;� � Y�;� j < �� . Forea
h � 2 S0, by Fodor's Theorem, the sets Y�;� stabilize on a stationarysubset of T�. That is, for ea
h � 2 S0, there are T 0� � T� with T 0� 2 Stat(�),Y� and �� < � su
h that Y�;� = Y� and jf#(�; i) \ X�;� � Y�;� j � �� for� 2 T 0� and Y� \ f'(�) : � 2 T 0� g = ;:Note that S fX�;� : � 2 T 0� g = �, hen
ejf#(�; i)� Y�j � ��:Now, using Fodor's Theorem again, Y� stabilizes on a stationary subset ofS0. That is, there are T 0 2 Stat(�), Y and � su
h that for some S00 2Stat(�+) \ P(S0), one has T 0� = T 0, Y� = Y and �� = � for all � 2 S00.Now 
hoose two elements �0; �0 2 S00 with �0 < �0, and let �0 2 T 0 be su
hthat �0 2 N�0;�0 and ��0 > �. Sin
e �0 2 S00 � S and �0 2 T 0 � T , it followsthat f(�0; '(�0)) = i by Lemma 8.26. In other words, '(�0) 2 f#(�0; i).However, f#(�0; i) 2 N�0;�0 , hen
ef#(�0; i) \X�0;�0 =2 I�0;�0 :This last fa
t 
ontradi
ts the inequality jf#(�0; i)� Y j < � and the lemmafollows. a



9. Countable Ordinal Resour
es 53To �nish the proof of Theorem 8.17 using the Main Claim 8.27, we want tode�ne sequen
es hA� : � < � i with A� � � and hB� : � < � i with B� � S0so that the sets are pairwise disjoint, jA�j = jB�j = ��, A� ; B� 2 N�;��for some �� 2 T 0, where T 0 := � � 2 T : f#(�; i) \X�;� =2 I�;� 	 is the setde�ned in the Main Claim 8.27, and f is 
onstantly i on the set[�<�B� [ f� g � [�<�A�:To 
arry out an indu
tion of length � to de�ne the desired sequen
es, weonly need the following lemma.8.28 Lemma. Assume A;B 2 N�;� for some � 2 T 0, B � S, � < �, andf is homogeneous of 
olor i on (B [ f� g) � A. Then the following twostatements hold.1. There is C 2 [�� (A[B)℄� with C � T� f#(�; i) : � 2 B [ f� g	 sothat for some �0 2 T 0 with ��0 > �, one has C 2 N�;�0 .2. There is D 2 [S � (A [ B)℄� with A � T� f#(�; i) : � 2 D 	 so thatfor some �0 2 T 0 with ��0 > �, one has D 2 N�;�0 .Proof. For the �rst item, 
hoose �0 2 T 0 with �0 > � and ��0 > �. By thede�nition of S, we know f(�; '(�0)) = i for � 2 B[f� g. By the Main Claim8.27, we know that f#(�; i) \X�;�0 =2 I�;�0 . Let Z = T� f#(�; i) : � 2 B 	.Then Z 2 N�;�0 and '(�0) 2 Z. Hen
e jZ \ f#(�; i)\X�;�0 j � � by Lemma8.25, and we 
an 
hoose a subset of this interse
tion for C.For the se
ond item, the set Z := T� f"(�; i) : � 2 A	 is in N�;� and� 2 Z. Sin
e S \ � =2 I�, we 
an 
hoose a suitable D by Fa
ts 8.21. a9. Countable Ordinal Resour
es9.1. Some historyIn this se
tion we look at ordinal partition relations of the form �! (�;m)2for limit ordinals � and � of the same 
ardinality. The goal m will be takento be �nite, sin
e if � : �! j�j is a one-to-one mapping, then the partitionde�ned on pairs x < y < � byf(x; y) = (0; if x < y and �(x) < �(y)1; if x < y and �(x) > �(y)shows that � 6! (j�j + 1; !)2.This parti
ular bran
h of the partition 
al
ulus dates ba
k to the 1950's,in parti
ular to to the seminal paper of Erd}os and Rado [19℄ whi
h in-trodu
ed the partition 
al
ulus for linear order types and to the paper ofSpe
ker [63℄, in whi
h he proves the following theorem.



54 I. Partition Relations9.1 Theorem (Spe
ker [63℄). The following partition relations hold:1. !2 ! (!2;m)2 for all m < !.2. !n 6! (!n; 3)2 for all 3 � n < !.The �nite powers of ! are all additively inde
omposable (AI), sin
e they
annot be written as the sum of two stri
tly smaller ordinals. It is well-known that the additively inde
omposable ordinals are exa
tly those of theform !
 (see Exer
ise 5 on page 43 of Kunen [36℄, [37℄). We will fo
uson additively inde
omposable � and �. There are additional 
ombinatorial
ompli
ations for de
omposable ordinals.For notational 
onvenien
e in dis
ussions of � ! (�;m)2, 
all � theresour
e, � the 0-goal and m the 1-goal.For a spe
i�ed 
ountable 0-goal � and �nite 1-goal m, it is possible todetermine an upper bound for the resour
e � needed to ensure that thepositive partition relation holds. In parti
ular, Erd}os and Milner showed!1+�m ! (!1+�; 2m)2. This result dates ba
k to 1959 and a proof appearedin Milner's thesis in 1962. See also pages 165-168 of [66℄ where the proof isgiven via the following stepping-up result:9.2 Theorem. Suppose 
, Æ are 
ountable and k is �nite.If !
 ! (!1+Æ ; k)2, then !
+Æ ! (!1+Æ; 2k)2.9.3 Corollary (Erd}os and Milner [16℄). If m < ! and � < !1, then!1+��` ! (!1+�; 2`)2.The partition 
al
ulus for �nite powers of ! is largely understood via theresults below of Nosal. Her work built on 9.3 and earlier work by Galvin(unpublished), Hajnal, Haddad and Sabbagh [24℄, Milner [43℄.9.4 Theorem (Nosal [47℄, [48℄).1. If 1 � ` < !, then !2+` ! (!3; 2`)2 and !2+` 6! (!3; 2` + 1)2.2. If 1 � ` < ! and 4 � r < !, then !1+r�` ! (!1+r; 2`)2 and!r+r�` 6! (!1+r; 2` + 1)2:Some progress has been made for the 
ase in whi
h the goal is !4. Nosalshowed in her thesis that !6 6! (!4; 3)2, whi
h is sharp, sin
e !7 ! (!4; 4)2by Corollary 9.3. Darby (unpublished) has shown that !9 6! (!4; 5)2.9.2. Small CounterexamplesIn this se
tion we look at partition relations of the form � 6! (�;m)2 forlimit ordinals � and m < !.In the previous se
tion, we noted that E. Spe
ker proved that !n 6!(!n; 3)2. In the 1970's, Galvin used pinning, de�ned below, to exploit the
ounterexample !3 6! (!3; 3)2 to the full.



9. Countable Ordinal Resour
es 559.5 De�nition. Suppose � and � are ordinals. A mapping � : �! � is apinning map of � to � if otX = � implies ot�\X = � for all X � �. Wesay � 
an be pinned to �, in symbols, �! �, if there is a pinning map of �to �.9.6 Theorem (Galvin [22℄). For all 
ountable ordinals � � 3, if � is notAI and � = !�, then � 6! (�; 3)2.The �rst 
ountable ordinal not 
overed by the Spe
ker and Galvin resultsmentioned so far is !!. Chang showed that !! ! (!!; 3)2 and Milnermodi�ed his proof to work for all m < !.9.7 Theorem (Chang [5℄; Milner; see also [39℄, [66℄). For all m < !,!! ! (!!;m)2:Chang's original manus
ript was about 90 pages long, and he re
eived$250 from Erd}os for this proof, one of the largest sums Erd}os had paid tothat time. Paul Erd}os 
ontinued to fo
us attention on partition relations ofthe form �! (�;m)2 through o�ering money. In 1985, he [11℄ o�ered $1000for a 
omplete 
hara
terization of those 
ountable � for whi
h �! (�; 3)2.9.8 De�nition. Any ordinal � 
an be uniquely written as the sum of AIordinals, � = �0 + � � � + �k with �0 � � � � � �k. This sum is 
alled theadditive normal form (ANF) of �, and in this 
ase, we say the ANF of �has k + 1 summands. The summand �k is 
alled the �nal summand. Theinitial part of the ANF of � is �0 + � � �+ �k�1 if k > 0 and, for notational
onvenien
e, is 0 if � is AI.An AI ordinal � is multipli
atively inde
omposable (MI) if it is 
annot bewritten as a produ
t 
 � Æ where 
, Æ are AI and � > 
 � Æ. Any AI ordinal� 
an be written uniquely as a produ
t of MI ordinals � = �0 � : : : � �kwith �0 � � � � � �k. This produ
t is 
alled the multipli
ative normal form(MNF) of �, and in this 
ase, we say the MNF of � has k + 1 fa
tors. Thefa
tor b� := �k is 
alled the �nal fa
tor. The initial part of the MNF of � is� := �0 + � � �+�k�1 if k > 0 and, for notational 
onvenien
e, is � := 1 if �is MI.Note that if � = !�, then � is MI exa
tly when � is AI. Thus Galvin'sresult (Theorem 9.6) may be rephrased to say that for all 
ountable ordinals� > !2, if � is not MI , then � 6! (�; 3)2. In the 1990's, Carl Darby [7℄and Rene S
hipperus [54℄, [52℄ working independently, 
ame up with newfamilies of 
ounterexamples for MI ordinals �. Larson [40℄ built on theirwork to improve one of the results obtained by both of them.9.9 Theorem.1. (Darby) If � = !�+1 and m! (4)3232 , then !!� 6! (!!� ;m)2.



56 I. Partition Relations2. (Darby; S
hipperus; Larson) If � � 
 � 1, then !!�+
 6! (!!�+
 ; 5)2.3. (Darby; S
hipperus) If � � 
 � Æ � 1, then !!�+
+Æ 6! (!!�+
+Æ ; 4)2.4. (S
hipperus) If � � 
 � Æ � " � 1, then !!�+
+Æ+" 6! (!!�+
+Æ+" ; 3)2.We plan to sket
h a proof that there is some �nite k so that !!2 9(!!2 ; k)2, using the basi
 approa
h developed by Darby and some of his
onstru
tion lemmas. Surprisingly, the partition 
ounterexamples devel-oped by Darby and S
hipperus were the same, even if their approa
hes touniformization were at least 
osmeti
ally di�erent.Rather than working dire
tly with the ordinals, we use 
olle
tions of�nite in
reasing sequen
es from ! under the lexi
ographi
 ordering. Sin
eour sequen
es are in
reasing, we will identify them with the set of theirelements.We write s_t for the 
on
atenation of the two sequen
es under the as-sumption that the last element of s is smaller than the �rst element of t, insymbols s < t.We extend the notion of 
on
atenation from individual sequen
es to setsof sequen
es by settingS_T := f s_t j s 2 S ^ t 2 T ^ s < t g :9.10 De�nition. De�ne sets G� for � = !` by re
ursion on 1 � ` < !.G! := f hm i_ h k1; k2; : : : ; km i j m < k1 < k2 < � � � < km < ! gG!k+1 :=[8<: f hm i g_ m 
opiesz }| {G!k_ � � �_G!k j m < !9=;Given a 
olle
tion of sequen
es S and a parti
ular sequen
e t, writeS(t) := f s 2 S j t v s g for the set of extensions of t in S.9.11 Lemma. For 1 � `;m; p < !, otG!`(hm i) = �!!`�1�m, otG!` =!!` , and ot0� p 
opiesz }| {G!`_ � � �_G!`1A = �!!`�p :Proof. First observe that otG!(hm i) = !m for all 1 � m < ! and otG! =!!. Next noti
e that for subsets S and T � [!℄<! whi
h have inde
om-posable order types and whi
h have arbitrarily large �rst elements, theorder type of the 
on
atenation S_T is the produ
t of the order types(otT ) � (otS). Then use indu
tion on `, m, and p. a



9. Countable Ordinal Resour
es 579.12 Remark. Darby [7, De�nition 2.8℄ de�nes G� for all � < !1 so thatotG� = !� using a ni
e ladder system to assign to ea
h limit ordinal anin
reasing 
o�nal sequen
e of type !. In parti
ular, for � = � � ! where �is an AI ordinal, the 
o�nal sequen
e is �m = � �m.Our main interest is in G� for � AI. We de�ned G!k for k < ! inDe�nition 9.10. If � = � � ! where � is an AI ordinal, thenG� =[8<: fhm ig_ m 
opiesz }| {G�_ � � �_G� j m < !9=; :If � � !! is an AI ordinal not of the form � = � � !, then the 
o�nalsequen
e is a stri
tly in
reasing sequen
e h�m : m < ! i of AI ordinals andG� is the union of f hm i g_G�m .Re
all we write s v t to indi
ate that s is an initial segment of t, ands � t to indi
ate it is a proper initial segment.9.13 De�nition. For any 
olle
tion of in
reasing sequen
es S � [!℄<!, letS� denote the 
olle
tion of initial segments of elements of S. For any s 2 S�,let S(s) := f t 2 S j s v t g be the set of all extensions of s that are in S.9.14 De�nition (See De�nition 3.1 of [7℄). Suppose ! < � = � � b� < !1is AI but not MI with initial part � and �nal fa
tor b�. Call a non-emptysequen
e p 2 G�� a level pre�x of G� if otG�(p) = !
 where the �nalsummand in the ANF of 
 is �.The next lemma is of parti
ular interest when s is a level pre�x.9.15 Lemma (See Lemma 2.9 of [7℄). Suppose 
 � � < !1 where the ANFof 
 is 
 = 
0+ 
1+ � � �+ 
k for k > 0. Further suppose that s 2 G��r f;g.If otG�(s) = !
, then G�(s) = fsg_G
k_ : : :_G
0 .Proof. We only prove this in the spe
ial 
ase where � = � �! and 
 = � �n.In this 
ase, s has an extension in G�(hm i) = fhm ig_G� : : :_G� form = min s by De�nition 9.10 or Remark 9.12. Let t v s be the longestinitial segment of s for whi
h G�(t) is the 
on
atenation of ftg with some�nite number of 
opies of G�. There must be su
h a t sin
e hm i has thisproperty. If s = t, then we are done. So assume by way of 
ontradi
tionthat u = s r t 6= ;. By the maximality of t, it follows that u 2 G�� rG�.Sin
e u 6= ;, G�(u) has order type Æ for some Æ < !� with Æ > 1. Let rbe the number of 
opies of G� in the de
omposition of G�(t). If r = 1,then G�(s) = ftg_G�(u) has order type Æ < !�. If r > 1, then G�(s) isthe 
on
atenation of ftg_G�(u) with r� 1 
opies of G�, so has order type!��(r�1) � Æ, by the argument of Lemma 9.11. In both 
ases, sin
e Æ 6= 1 andÆ 6= !�, we have a 
ontradi
tion to the assumption that otG�(s) = !��n. a



58 I. Partition Relations9.16 De�nition (See De�nition 3.1 of [7℄). Suppose the MNF of � < !1has at least four fa
tors. Call t 2 G�� a sublevel pre�x of G� if there area level pre�x p for G� and a level pre�x q for G� so that t = p_q. Callu 2 G�� a sub-sublevel pre�x of G� if there are a sublevel pre�x t for G�and a level pre�x r for G� so that u = t_r.If we look at a pair s �lex t from G�, if s and t are disjoint as sets,then they partition one another into 
onvex segments. That is, s and t
an be expressed as 
on
atenations, s = s0_s1_ : : :_sn�1(_sn) and t =t0_t1_ : : :_tn�1 where s0 < t0 < s1 < t1 < � � � < sn�1 < tn�1(< sn).The next de�nition uses De�nition 9.16 to identify four types of segmentsused in the proofs of the negative partition relations (2)-(4) of Theorem 9.9.9.17 De�nition. Suppose the MNF of � < !1 has at least four fa
tors.Further suppose that s 2 G� has been de
omposed into a 
onvex partitions = s0_s1_ : : :_sn where s0 < s1 < � � � < sn.1. Call si a �-segment of s if i = 0 or i = n or there are a level pre�x t ofG� and a 2 G� so that s0_ : : :_si�1 � t � s0_ : : :_si�1_si v t_a.2. Call si a 4-segment of s if it is not a �-segment of s and there area sublevel pre�x u of G� and b 2 G� so that s0_ : : :_si�1 � u �s0_ : : :_si�1_si v u_b:3. Call si a -segment of s if it is not a � or 4-segment of s and thereare a sub-sublevel pre�x u of G� and 
 2 G� so that s0_ : : :_si�1 �v � s0_ : : :_si�1_si � v_
.4. Call si a �-segment of s there are a sub-sublevel pre�x u of G� and
 2 G� so that v � s0_ : : :_si�1 and s0_ : : :_si�1_si v v_
.For simpli
ity, we in
lude an example for whi
h only �-segments areneeded to illustrate the te
hnique. We have 
hosen to give an example thatis easy to dis
uss rather than an optimal one.9.18 Proposition. The following partition relation holds: !!2 9 (!!2 ; 6)2.The remainder of this se
tion is devoted to the proof of Proposition 9.18.We de�ne a graph � on G = G!2 below. Then in Lemma 2, we show it hasno 1-homogeneous set of size 6. After 
onsiderably more work, in Lemma9.31, we show it has no 0-homogeneous subset of order type !!2 . These twolemmas 
omplete the proof.9.19 De�nition. Let G = G!2 . Call a 
oordinate x of x 2 G a box
oordinate if it is either the minimum or the maximum of x or if x =minx � p for some level pre�x p v x. De�ne a graph � : [G℄2 ! 2 by�(x;y) = 1 if and only if there are 
onvex partitionsx = X0_X1_X2_X3_X4 and y = Y0_Y1_Y2_Y3



9. Countable Ordinal Resour
es 59with X0<Y0<X1<Y1<X2<Y2<X3<Y3<X4 so that all of X0, X2, X4 are�-segments of x, Y0, Y3 are �-segments of y, and none of X1, X3, Y1, Y2have box 
oordinates of x, y, respe
tively.For notational 
onvenien
e, let 
�(x;y) = maxY1, 
+(x;y) = min Y2,Æ�(x;y) be the largest box 
oordinate of Y0, and Æ+(x;y) be the smallestbox 
oordinate of Y3. The graphi
al display below shows how the twosequen
es are interla
ed and whi
h have box 
oordinates if �(x;y) = 1.X0 X1 X2 X3 X4Y0 Y1 Y2 Y39.20 Lemma. The graph � has no 1-homogeneous set of size six.Proof. The proof starts with a series of 
laims whi
h delineate basi
 prop-erties of the partition.Claim A. Suppose x < y, �(x;y) = 1.1. There is a box 
oordinate x 2 x with miny < x < maxy.2. For any box 
oordinate x 2 x with miny < x < maxy, the inequalities
�(x;y) < x < 
+(x;y) hold.3. There is no sequen
e x < y < x0 2 x where miny < x 2 x, x0 < maxyand y is a box 
oordinate of y.Proof. Use the diagram above to verify these basi
 properties. aClaim B. Suppose fx;y; z g< � G is 1-homogeneous for �. If �x 2 x,�y 2 y, and �z 2 z are box 
oordinates and min z < �x;�y < max z, theneither �x;�y < �z or �z < �x;�y.Proof. Suppose the hypothesis holds but the 
on
lusion fails. Then either(a) �x < �z < �y or (b) �y < �z < �x. Note that miny < min z < �xand �x < max z < maxy, sin
e y < z. By Claim A(2), 
�(x;y) <�x < 
+(x;y). Use the de�nition of � to �nd x�; x+ 2 x su
h thatÆ�(x;y) < x� < 
�(x;y) and 
+(x;y) < x+ < Æ+(x;y). If (a) holds,then either �x < �z < x+ or 
+(x;y) < �z < �y is a sequen
e that
ontradi
ts Claim A(3). If (b) holds, then either �y < �z < 
�(x;y) orx� < �z < �x is a sequen
e that 
ontradi
ts Claim A(3). Thus the above
laim follows. aClaim C. Suppose fx;y; z g< � G is 1-homogeneous for �. If �x 2 x,�y 2 y are box 
oordinates with min z < �x;�y < max z, then some
oordinate z of z lies between �x and �y.



60 I. Partition RelationsProof. For the �rst 
ase, suppose �x < �y. In this 
ase, let z = 
+(x; z).Then z 2 z and by Claim A, �x < z. By de�nition of �, there is somex0 2 x with z < x0 < max z. Sin
e y < z, it follows that x0 < maxy, sox0 < Æ+(x;y) � �y. By transitivity, �x < z < �y. The se
ond 
ase for�y < �x is left to the reader with the hint that z = 
�(x; z) works. aNow prove the lemma from the 
laims. Assume by way of 
ontradi
tionthat U = f a;b; 
;d; e; f g< � G is 1-homogeneous for �. Use Claim A to
hoose box 
oordinates "0 2 a, "1 2 b, "2 2 
, "3 2 d, "4 2 e, so thatmin f < "i < max f . Let ijk` be a permutation of 0123 so that "i < "j <"k < "`. Use Claim C to 
hoose 
oordinates e0; e00 2 e and f 0 2 f with"i < e0 < "j < f 0 < "k < e00 < "`. By Claim B, either (a) "4 < "i or (b)"` < "4. Choose 
oordinate f 00 2 f between "4 and the appropriate one of"i and "`.Let x;y 2 U be su
h that "i 2 x and "` 2 y. By Claim A, Æ�(x; f) <
�(x; f) < "i and "` < 
+(y; f) < Æ+(y; f).Let e = E0_E1_E2_E3_E4, f = F0_F1_F2_F3 be the partition thatwitnesses �(e; f) = 1. Note that "4 2 E2.If (a) holds, then Æ+(y; f) 2 F3, and"4 < f 00 < e0 < f 0 < e00 < Æ+(y; f):However, this inequality 
ontradi
ts the de�nition of g, sin
e there are onlytwo blo
ks between E2 and F3. If (b) holds, then Æ�(x; f) 2 F0, andÆ�(x; f) < e0 < f 0 < e00 < f 00 < "4:This inequality also 
ontradi
ts the de�nition of g, sin
e there are only twoblo
ks between F0 and E2. In either 
ase we have rea
hed the 
ontradi
tionrequired to prove the lemma. aNow we turn to the task of showing that every subsetX � G of order type!!2 in
ludes a pair fx;y g< � X so that �(x;y) = 1. The �rst 
hallengeis to guarantee that when we build a segment of one of x and y, we willbe able to extend it starting above the segment of the other that we willhave 
onstru
ted in the meanwhile. To that end, we introdu
e �-pre�xesand maximal �-pre�xes.9.21 De�nition. Suppose � < !1. Call a sequen
e s 2 G�� a �-pre�x ofW � G� if otW (s) = �, and a maximal �-pre�x if no proper extension is a�-pre�x.9.22 Lemma (Galvin; see Lemma 4.5 in [7℄). Suppose s 2 G�� and � is AI.If W � G� has otW (s) � �, then there is an extension t w s so that t is amaximal �-pre�x for W .



9. Countable Ordinal Resour
es 61The proof of the above lemma depends on the fa
t that the sequen
es inG� are well-founded under extension. We use the next lemma for sequen
esr whi
h are either maximal !2-pre�xes or maximal !3-pre�xes.9.23 Lemma. Suppose Æ < � � !� for AI Æ and �. Further supposeW � G� and r is a maximal �-pre�x for W . Then r has in�nitely manyone point extensions r_hpi 2 W � with otW (r_hpi) � Æ. Also, for anysequen
e s, there is a sequen
e t so that s < t, r_t 2 W �, and r_t is amaximal Æ-pre�x for W .Proof. Sin
e r is a maximal �-pre�x forW , otW (r_ h p i) < � for all p < !.Consequently, sin
e � is AI, it follows that Pq<p<! otW (r_ h p i) = �for all q < !. Sin
e Pq<p<! 
p � Æ if ea
h 
p < Æ, it follows that forin�nitely many p < !, W (r_ h p i) has order type � Æ. Thus given s, thereis p > max s with otW (r_ h p i) � Æ. In parti
ular, W (r_ h p i) 6= ;. To
omplete the proof, apply Lemma 9.22 to get t w h p i so that r_t is amaximal Æ-pre�x. aIn our 
onstru
tion of x, y, we must be able to iterate the pro
ess ofextending to a level pre�x. To that end, we introdu
e the notion of levels.9.24 De�nition (See Def. 5.2 of [7℄). Suppose � is AI but not MI and qis a level pre�x of G�. The level of W pre�xed by q is the setL(W;q) := f a 2 G� jW (q_a) 6= ; g :A non-empty sequen
e s 2 G�� rG� ends in the level of W pre�xed by q ifthere is some a 2 L(W;q) so that q v s � q_a.Next we state without proof a series of lemmas from Darby [7℄ that leadup to Lemma 9.29. The interested reader 
an �ll in the proofs for the 
asewhere � = !` < !!.9.25 Lemma (See Def. 4.6 and Lemma 4.7 of [7℄). Suppose Æ � 
 � � <!1, where Æ, 
 are AI and 
 � Æ � �. If s 2 G�� is a maximal 
 � Æ-pre�x forW � G�, then the following set has order type Æ:W (�; s) := fp 2 G�� j s v p and p is a maximal 
-pre�x for W g :9.26 Lemma (See Lemma 5.5 of [7℄). Suppose � < !1 is AI but not MI,q is a level pre�x of G� and W � G�. If s ends in level L(W;q) andotW (s) � !��n, then for any 
 < �, there is an a 2 L(W;q) so thats � q_a and otW (q_a) � !�(n�1)+
.9.27 Lemma (See Lemma 5.6 of [7℄). Suppose � < !1 is AI but not MI,W � G� and every level of W has order type � !Æ. If s 2 G�� andotG�(s) = !���, then otW (s) � !Æ��.



62 I. Partition Relations9.28 Lemma (See Lemma 5.7 of [7℄). Suppose � < !1 is AI but not MI,W � G�(hm i) and otW > !
. Then for any Æ so that Æ �m < 
, there isa level of W of order type > !Æ.The following lemma of Darby, mildly rephrased sin
e the general def-inition of G� has been omitted, is the key to 
onstru
ting pairs 1-
oloredby any generalization of the graph � to a �� de�ned for � = � � !, sin
eit allows one to plan ahead: one takes a suÆ
iently large set, thins it tosomething tra
table, dives into a large level to work within, knowing thaton exit from the level, one will have a large enough set of extensions to
ontinue a

ording to plan.9.29 Lemma (See Lemma 5.9 of [7℄). Suppose � is AI but not MI, 0 <m < ! and otG�(hm i) = !���. Further suppose W � G�(hm i) andotW � !��n+" where " � � and 0 < n < !, and assume Æ is su
h thatÆ �� < ". Then there is a set U �W and a level pre�x q so that U = U(q),otL(U;q) > !Æ and otU(q_a) � !��(n�1)+" for all a 2 L(U;q).Here our fo
us is on !!k for �nite k, that is, on � = !k. In this 
ase,G�(hm i) has order type !!k�1�m, so the � of the previous lemma is sim-ply m. The following weaker version of the above lemma suÆ
es for ourpurposes.9.30 Lemma. Suppose � = � � ! is AI but not MI, 0 < n � m < !,and W � G�(hm i) has order type � !��n. Further assume Æ is su
h thatÆ �m < �. Then there is a set U �W and a level pre�x q so that U = U(q),otL(U;q) > !Æ and otU(q_a) � !��(n�1) for all a 2 L(U;q).9.31 Lemma. Suppose W � G!2 has order type !!2 . Then there is a pairx, y from W so that �(x;y) = 1.Proof. We revisit the set G!2 to better understand how it is 
onstru
ted byunraveling the re
ursive 
onstru
tion. A typi
al element � ishm i_h b1 i_
 a11; : : : ; a1b1 �_h b2 i_
 a21; : : : ; a2b2 � : : :_h bm i_
 am1 ; : : : ; ambm � :Noti
e that the initial element, m, tells how many levels there will be, andea
h level starts with a box 
oordinate, bi, whi
h determines the order typeof the level, !bi . To make the identi�
ation of the various types of elementsvisually immediate, we fold the sequen
e � into a tree, with the initialelement at the top, the box 
oordinates as immediate su

essors, and theremaining 
oordinates as terminal nodes. To rebuild the sequen
e from thetree, one walks through the tree in depth �rst, left-to-right order.,,,�� LL ���� �� ����XXXXXXXXXma1;1 a1;b1b1 a2;1 a2;b2b2� � � � � � bm� � � am;1 am;bm� � �



9. Countable Ordinal Resour
es 63Use Lemmas 9.22, 9.23, and 9.30 to build x = X0_X1_X2_X3_X4 andy = Y0_Y1_Y2_Y3 one 
onvex segment at a time so thatX0<Y0<X1<Y1<X2<Y2<X3<Y3<X4For notational 
onvenien
e, we plan to let i < j < k < ` be su
h thatmaxX0 = xi, maxX1 = xj , maxX2 = xk , maxX3 = x`. Similarly, we planto let s < t < u be su
h that maxY0 = ys, maxY1 = yt, maxY2 = yu. Inaddition it will be 
onvenient to write b for the largest box 
oordinate of X0,b0 for the largest box 
oordinate of X2, and 
 = Æ�(x;y) for the largest box
oordinate of Y0. Here is a pair of subtrees of the trees we get by folding thesequen
es we build for x and y, that in
lude only the 
riti
al 
oordinatesnamed above, together with maxx, maxy. These subtrees highlight therelationships between the 
riti
al 
oordinates, and allow one to see at aglan
e whi
h of the segments are �-segments.,,,�� LL ���� �� ## lll........................................ ................................mb b0 maxx n
ys yt yuxi xj xk x` maxyObserve that sin
e G is the union of G(h 0 i); G(h 1 i); G(h 2 i); : : : , itfollows that for � < !2, there are in�nitely many m� < ! with otW \G(hm� i) � !�. We start our 
onstru
tion by 
hoosing m so that U0 :=W \G(hm i) has order type at least !!�4.Next we apply Lemma 9.30 to �nd a set U1 � U0 and a level pre�xp so that U1 = U1(p), otL(U1;p) > !5, and otU1(p_a) � !!�3 for alla 2 L(U1;p). Apply Lemma 9.22 to get u, a maximal !4 pre�x in L(U1;p).Then b = minu is the box 
oordinate of our diagram. We set X0 = p_uand note that maxu = xi on our diagram.Choose n > xi so that V0 := W \ G(hn i) has order type at least !!�4.Continue as in the previous step. Use Lemma 9.30 to �nd a set V1 � V0 anda level pre�x q so that V1 = V1(q), otL(V1;q) > !7, and otV (q_a) � !!�3for all a 2 L(V1;q). Let v be a maximal !6 pre�x in L(V1;q). Then
 = minv is the box 
oordinate of our diagram. We set Y0 = q_v and notethat maxv = ys on our diagram.By Lemma 9.23, there is a sequen
e X1 with Y0 < X1 so that u_X1 is amaximal !3 pre�x in L(U1;p). Note that X0_X1 is not a level pre�x noris any one point extension.By Lemma 9.23, there is a sequen
e Y1 with X1 < Y1 so that v_Y1 is amaximal !5 pre�x in L(V1;q).By Lemma 9.23, the sequen
e u_X1 has in�nitely many one point ex-tensions in L(U1;p)�. By 
hoosing a suitable one point extension and thenextending it into L(U1;p), we �nd w so that Y1 < w and u_X1_w 2



64 I. Partition RelationsL(U1;p). By 
hoi
e of U1 and p, we know otU1(p_(u_X1_w)) � !!�3.Use Lemma 9.30 to �nd U2 � U1(p_(u_X1_w)) and a level pre�x p0so that U2 = U2(p0), otL(U2;p0) > !5, and otU2(p0_a) � !!�3 for alla 2 L(U2;p0). Then p_(u_X1_w) v p0. Apply Lemma 9.22 to get u0, amaximal !4 pre�x in L(U2;p0). Then b0 = minu0 is another box 
oordinatein our diagram. Then p0_u0 is not a level pre�x of U2, nor is any one pointextension of it a level pre�x. We set X2 = p0 r (X0_X1), and note thatmaxX2 = maxu0 = xk on our diagram.By Lemma 9.23, there is a sequen
e Y2 with X2 < Y2 so that v_Y1_Y2is a maximal !4 pre�x in L(V1;q).By Lemma 9.23, there is a sequen
e X3 with Y2 < X3 so that u0_X3 isa maximal !3 pre�x in L(U2;p0).By Lemma 9.23, the sequen
e v_Y1_Y2 has in�nitely many one pointextensions in L(V1;q)�. Hen
e by �rst 
hoosing a suitable one point exten-sion and then extending it into L(V1;q), and �nally extending it into V1,we 
an �nd Y3 so that X3 < Y3 and y = Y0_Y1_Y2_Y3 2 V1 �W .By Lemma 9.23, the sequen
e u0_X3 has in�nitely many one point exten-sions in L(U2;p0)�. Hen
e by �rst 
hoosing a suitable one point extensionand then extending it into L(U2;p0), and �nally extending it into U2, we
an �nd X4 so that Y3 < X4 and x = X0_X1_X2_X3_X4 2 U2 �W .By 
onstru
tion, X0; X2; X4 and Y0; Y3 are all �-segments, while X1; X3and Y1; Y2 have no box 
oordinates. Thus x;y witnesses the fa
t that W isnot a 0-homogeneous set for �. aLemmas 9.20 and 9.31 show that � is a witness to !!2 9 (!!2 ; 6)2.The 
oloring 
an easily be generalized to !!� where � is de
omposable,sin
e it was des
ribed using only box segments and segments without box
oordinates. Hen
e the proof of Lemma 9.20 
arries through for these gen-eralizations. In the proof of Lemma 9.31, we have taken advantage of thefa
t that � = 2 is a su

essor ordinal, but use of lemmas from Darby's paperallow one to modify the given 
onstru
tion suitably.The proof of the previous lemma gives some eviden
e for the followingremark.9.32 Remark. We have the following heuristi
 for building pairs. Suppose� is a list of spe
i�
ations of 
onvex segments detailing whi
h have box,triangle, bar (or dot) 
oordinates and whi
h do not. If the �rst two and lasttwo segments are to be box segments, then for any ordinal � of suÆ
ientde
omposability for the des
ription to make sense, there is a disjoint pairx;y 2 G!� so that the sequen
e of 
onvex segments they 
reate �ts thedes
ription.For the a
tual 
onstru
tion, one needs to iterate the pro
ess of takinglevels and look at the approa
h taken 
arefully.



10. A positive 
ountable partition relation 6510. A positive 
ountable partition relationThe previous se
tion fo
used on 
ountable 
ounterexamples. Here we surveypositive ordinal partition relations of the form � ! (�;m)2 for 
ountablelimit ordinals � and sket
h the proof of one of them.Carl Darby [7℄ and Rene S
hipperus [54℄, [52℄ working independently,extended Chang's positive result for !! and m = 3 to larger 
ountable limitordinals.10.1 Theorem. (Chang for � = 1 (see Theorem 9.7); Darby for � = 2 [7℄;S
hipperus for � � 2 [54℄) If the additive normal form of � < !1 has oneor two summands, then !!� ! (!!� ; 3)2.Re
all that Erd}os [11℄ o�ered $1000 for a 
omplete 
hara
terization ofthe 
ountable ordinals � for whi
h � ! (�; 3)2. It is not diÆ
ult to showthat additively de
omposable ordinals fail to satisfy this partition relation.Re
all that additively inde
omposable ordinals are powers of !. Spe
kershowed that �nite powers of ! greater than !2 fail to satisfy it. Galvinshowed (see Theorem 9.6) that additively de
omposable powers of ! greaterthan !2 fail to satisfy it. Thus attention has been on inde
omposable powersof !, � = !!� , that is, the 
ountable ordinals that are multipli
ativelyinde
omposable. S
hipperus (see Theorem 9.9) showed that if the additivenormal form of � has at least four summands, then � 6! (�; 3)2. Thusto 
omplete the 
hara
terization of whi
h 
ountable ordinals � satisfy thispartition relation it suÆ
es to 
hara
terize it for ordinals of the form � =!!� where the additive normal form of � has exa
tly three summands. Welist below the �rst open 
ase.10.2 Question. Does !!3 ! (!!3 ; 3)2?In light of Theorem 9.9, Darby and Larson have 
ompleted the 
hara
-terization of the set of m < ! for whi
h !!2 ! (!!2 ;m)2 with the followingresult.10.3 Theorem (Darby and Larson [8℄). !!2 ! (!!2 ; 4)2.We 
omplete this subse
tion with a sket
h of the S
hipperus proof that!!! ! (!!! ; 3)2, using somewhat di�erent notation than he used originally.The sket
h will be divided into seven subse
tions:1. representation of !!! as a 
olle
tion T (!) of �nite trees;2. analysis of node labeled trees;3. des
ription of a two-player game G(h;N) for h a 2-partition of T (!)into 2 
olors and N � ! in�nite;



66 I. Partition Relations4. uniformization of play of the game G(h;N) via 
onstraint on the se
-ond player to a 
onservative style of play determined by an in�niteset H � N and a bounding fun
tion b;5. 
onstru
tion of a three element 1-homogeneous set when the the �rstplayer has a winning strategy for all games in G(h;N) in whi
h these
ond player makes 
onservative moves;6. 
onstru
tion of an almost 0-homogeneous set of order type !!! whenthe �rst player has no su
h strategy;7. 
ompletion of the proof.10.1. RepresentationRe
all that, by 
onvention, we are identifying a �nite set of natural numberswith the in
reasing sequen
e of its members. The trees we have in mindfor our representation are subsets of [!℄<! whi
h are trees under the subsetrelation, and the subset relation is the same as the end-extension relationwhen the subsets are regarded as in
reasing sequen
es.In the proof that the 
oloring � had no independent subset of order type!!2 , we found it 
onvenient to fold an elementx = 
m;n1; a11; : : : ; a1n1 ; n2; a21; : : : ; a2n2 ; : : : ; nm; am1 ; : : : ; amnm �ofG!2 into a tree with root hm i, immediate su

essors hm;ni i and terminalnodes 
m;ni; aij �. Then we 
ould walk through the tree, node by node, sothat the maximum element of ea
h node 
ontinually in
reased along thewalk, just as the elements of x in
rease.We already have representations of !!� from the previous se
tion as setsof in
reasing sequen
es under the lexi
ographi
 ordering. The de�nitionof those sets is re
ursive, so we fold these sets up into trees re
ursively.Spe
i�
ally, the next de�nition uses the representations of G!� detailed inDe�nition 9.10 and Remark 9.12.10.4 De�nition. De�ne by re
ursion on � � ! a sequen
e of folding maps,F� : G!� ! T :1. For � = h k i 2 G!0 = G1, set F0(�) := fh k ig.2. For � = hm i_�1_�2_ : : :_�m 2 G!n+1 , setFn+1(�) := fhm ig [[ ffhm ig_Fn(�i) : 1 � i � mg :3. For � = hm i_� 2 G!! , set F!(�) := fhm ig [ fhm ig_Fm(�).Let T (�) be the range of F� .



10. A positive 
ountable partition relation 67Prove the following lemmas by indu
tion on �.10.5 Lemma. For ea
h � � !, the mapping F� is one-to-one and � =SF�(�). Thus, <lex on G!� indu
es an order < on T (�).10.6 Lemma. For all � � ! and all in�nite H � !, the 
olle
tion of se-quen
es in G!� \ [H ℄<! has order type !!� , and hen
e so does the 
olle
tionof trees in T (�;H) := T (�) \ P([H ℄<!).Let T be the 
olle
tion of all �nite trees (T;v) of in
reasing sequen
eswith the property that if s; t 2 T and as sets, s � t, then as sequen
es,s v t. Identify ea
h t 2 T 2 T with the set of its elements. Then v and� 
oin
ide, so this identi�
ation permits one to use set operations on thenodes of T .10.7 Lemma. For all � < !1, for all T 2 T (�), the following 
onditionsare satis�ed:1. (transitivity) s � t 2 T implies s 2 T ;2. (
losure under interse
tion) for all s; t 2 T , s\ t is an initial segmentof both s and t;3. (rooted) (T;v) is a rooted tree with ; =2 T .4. (node ordering) for all s 6= t in T , exa
tly one of the following holds:(a) s � t,(b) t � s,(
) s �lex t and s < t� (s \ t),(d) t �lex s and t < s� (s \ t);10.8 De�nition. For all � < !1, for all T 2 T (�), order the nodes of T byu < v if and only if u � v or u <lex v.10.9 Lemma. For all � < !1, for all non-empty initial segments S; T oftrees in T (�), SS � ST if and only if S � T .Proof. By Lemma 10.7, if ; 6= S � T v T 0 2 T (�), then SS � ST . For� = 0, the reverse impli
ation is trivially true, and for � > 0, it is true byde�nition of the fold map and the indu
tion hypothesis. a10.10 De�nition. For all � � !, de�ne e� : [!℄<! ! f�1g [ (� + 2) byre
ursion: e�(;) = � + 1;e�(�_ hm i) = 8><>:�1 if e�(�) � 0,e�(�)� 1 if e�(�) > 0 su

essor,max(�) if e�(�) = ! limit.



68 I. Partition RelationsWe refer to e�(x) as the ordinal of x.Use indu
tion on �, the de�nition of F� , and the previous lemma to provethe next lemma.10.11 Lemma. For all � � !, for all T 2 T (�), for all t 2 T , e�(t) � 0,and if e�(t) > 0, then t has a proper extension u 2 T .The following 
onsequen
e of the re
ursive nature of De�nition 10.10 isuseful in indu
tion proofs.10.12 Lemma. For all � � !, for all hm i_� 2 [!℄<!, e�(hm i) = � andif � 6= ; and 
 = e�(hm;max � i) � 0, then e�(hm i_�) = e
(�).10.13 De�nition. Suppose T 2 T . For all t 2 T , let ℄(t; T ) be the numberof su

essors of t in T .10.14 Lemma. For all � � !, for all T 2 T (�), for all t 2 T ,℄(t; T ) = 8><>:0; if e�(t) = 0,1; if e�(t) = ! is a limit,max t; if e�(t) is a su

essor,10.15 Lemma. For all � � !, for all T � [!℄<!, T 2 T (�) if and only ifT satis�es the four 
on
lusions of Lemma 10.7, and for all t 2 T , e�(t) � 0and ℄(t; T ) has the value spe
i�ed in Lemma 10.14.Proof. By Lemmas 10.7, 10.11, and 10.14, if (T;v) 2 T (�), then it satis�esthe given list of 
onditions.To prove the other dire
tion, work by indu
tion on � to show that ifT � [!℄<! satis�es the given 
onditions for �, then ST 2 G!� and T =F�(ST ) 2 T (�). a10.16 De�nition. For 0 < � � ! and ; 6= S � T 2 T (�), the 
riti
al nodeof S, in symbols 
rit(S), is the largest s 2 S with ℄(s; S) smaller than thevalue predi
ted in Lemma 10.14. For notational 
onvenien
e, let 
rit(;) = ;,and set 
rit(T ) = ; for T 2 T (�).The next lemma shows why the name was 
hosen.10.17 Lemma. For 0 � � � ! and S v T 2 T (�), if t := min(T � S),then t = 
rit(S)_ hmax t i.Proof. Let m < ! be su
h that hm i 2 T . Then hm i is the least elementof T . If S = ;, then t = hm i = 
rit(S)_ hmax t i and the lemma follows.Otherwise, hm i must be in S, and be
ause it is the root of T , hm i � t :=min(T � S). Let r = t � fmax tg. Then hm i v r � t, ℄(r; S) < ℄(r; T ), so



10. A positive 
ountable partition relation 69r is an element of S with ℄(r; S) smaller than the value spe
i�ed in Lemma10.14.If p 2 T and p <lex t, then p 2 S, sin
e S � T and T = min(T �S). Moreover, if p <lex t and p � q 2 T , then q <lex t. Hen
e ifp <lex t, then ℄(p; S) = ℄(p; T ) takes on the value spe
i�ed in Lemma10.14. Thus 
rit(S) � t, so 
rit(S) v r. It follows that r = 
rit(S) andt = 
rit(S)_ hmax t i as required. a10.18 Lemma. For all � � !, the set of initial segments of trees in T (�)is well-founded under �.Proof. The proof is by indu
tion on �. For � = 0, the lemma is 
learly true,sin
e the longest possible sequen
es are those of the form ;; hm i for somem < !.Next suppose the lemma is true for k < ! and � = k + 1. Let S0, S1,: : : be an arbitrary �-in
reasing sequen
e, and without loss of generality,assume it has at least two trees in it. Then there is some m < ! so thathm i 2 S1. By the de�nition of the fold map Fk , it follows that for i > 1,the tree Si satis�es SSi = hm i_�i;1_ : : :_�i;ni for some ni � m, whereFk(�i;j) 2 T (k) for j < ni, and for some �0 w �i;ni , Fk(�0) 2 T (k), so�i;ni = STi for Ti an initial segment of a tree in T (k). If i < ` and Ti; T`are su
h that ni = n`, then for j < ni, �i;j = �`;j . Thus by the indu
tionhypothesis, for ea
h n with 1 � n � m, there 
an be at most �nitely manytrees in the sequen
e with ni = n. Hen
e the sequen
e must be �nite, andthe lemma is true for � = k + 1.The proof for � = ! is similar, sin
e for all initial segments S of trees inT (!), either S = ;, S = f hm i g, or S = f hm i g_S0 for some m < ! andsome S0 whi
h is an initial segment of a tree in T (m). The details are leftto the reader.Therefore, by indu
tion, the lemma holds for all � � !. a10.2. Node labeled treesA typi
al proof of a positive partition relation for a 
ountable ordinal forpairs in
ludes a uniformization of an arbitrary 2-partition into 2 
olors, butonly for those pairs for whi
h some easily de�nable additional informationis also uniformized. We will introdu
e node labelings to provide that extrainformation, but before we do so, we examine 
onvex partitions of disjointtrees and the partition nodes that determine them.10.19 De�nition. For trees S0, S1 from T (�) with SS0 \SS1 = ;, 
allt 2 S" a partition node if t < maxS" and there is some u 2 S1�" withmax t < maxu < min (SS" � (1 + max t)).For notational 
onvenien
e, write T (;; t℄ for the initial segment of T
onsisting of all nodes s � t 2 T , and, for t < u in T , write T (t; u℄ for



70 I. Partition Relationsf s 2 T : t < s � u g. With this notation in hand, we 
an state the lemmabelow justifying the label partition nodes. This lemma follows from Lemmas10.7 and 10.9.10.20 Lemma. Suppose S0, S1 are in T (�) and SS0\SS1 = ;. Furthersuppose t00; t01; : : : ; t0k�1 2 S0 and t10; t11; : : : ; t1̀�1 2 S1 are the partition nodesof these trees if any exist. Set t0�1 = t1�1 = ;, t0k = maxS0, t0̀ = maxS1.Then every node of S" is in one and only one S"(t"i�1; t"i ℄, and the sets�"i = SS"(t"i�1; t"i ℄� t"i�1 satisfy�00 < �10 < �01 < �11 < : : : �0̀�1 < �1̀�1(< �0k�1):Now we introdu
e node labelings. For simpli
ity, this 
on
ept is given ageneral form.10.21 De�nition. Suppose � � ! and N � ! is in�nite. For any initialsegment S v T 2 T (�), a fun
tion C is a node labeling of S into N ifC : S ! [N ℄<! satis�es maxC(s) < max s for all s 2 S with C(s) 6= ;.We 
arry over from T (�) the notions of extension, 
omplete tree andtrivial tree. In parti
ular, 
all (T;D) a (proper) extension of (S;C), insymbols, (S;C) � (T;D), if S � T and DjS = C. Call (T;D) 
omplete (for�) if T 2 T (�); 
all it trivial if (T;D) = (;; ;).Call a pair S; T from T (�) lo
al if S and T have a 
ommon root; otherwiseit is global. Similarly, 
all (S;C), (T;D) lo
al if S; T is lo
al and otherwise
all it global.10.22 De�nition. A pair ((S0; C0); (S1; C1)) is strongly disjoint if (a)either S0 = ; = S1 or �SS0 [ ranC0� \ �SS1 [ ranC1� = ; and (b)for all s; t 2 S0 [ S1, whenever max s < max t and C"(t) 6= ;, then alsomax s < minC"(t).10.23 De�nition. Call a pair ((S0; C0); (S1; C1)) of node labeled trees
lear if S0 < S1, ((S0; C0); (S1; C1)) is strongly disjoint, all partition nodest 2 S0 [ S1 are leaf nodes (e�(t) = 0), and if for all " < 2 and all s 2 S",� C"(s) = ; if e�(s) = 0;� C"(s) = f ℄(s; S"(;; t℄) : s � t 2 S" is a partition node g if e�(s) is asu

essor ordinal;� C"(s) = f e�(t) : s � t 2 S"& jC"(t)j > 1 g if e�(s) = ! is a limit or-dinal.Call a pair S0; S1 of trees from T (�) 
lear if it is lo
al or if it is global andthere are node labelings C0; C1 with ((S0; C0); (S1; C1)) 
lear.



10. A positive 
ountable partition relation 71For � > !, the value of the node labeling for s with e�(s) limit is more
ompli
ated to des
ribe.Noti
e that for 2 � � � !, if (S0; C0); (S1; C1) is a global 
lear pair andneither C0 nor C1 is 
onstantly the emptyset, then all initial segments ofpartition nodes are identi�able: they are the root of the tree, su

essor nodeswhose node label is non-empty, and nodes of ordinal 0 whose immediateprede
essor has non-empty node label that identi�es it as a su

essor whi
his a partition node.From the de�nition of 
lear, if u is a partition node of one of a pair oftrees, say (S;C) then for ea
h initial segment s whose ordinal e!(s) is asu

essor, the node label C(s) must have as a member the number of imme-diate su

essors of s whi
h are less than or equal to u in the lexi
ographi
order. If we index the immediate su

essors of s in S in in
reasing lexi
o-graphi
 order starting with 1, then this value is the index of the immediatesu

essor of s whi
h is an initial segment of u. This analysis motivates thenext de�nition.10.24 De�nition. Consider a node labeled tree (S;C) with root hmi. Anon-root node t of (S;C) is a prepartition node if for all s � t with e�(s)a su

essor ordinal, ℄(s; S(;; t℄) 2 C(s), and if e!(s) 2 C(hmi) whenever� = ! and jC(s)j > 1 The root is a prepartition node if S 2 T (0) orC(hmi) 6= ; or (S;C) has a non-root prepartition node. Call (S;C) relaxedif S =2 T (0) and maxS is a prepartition node of ordinal 0.Node labeled trees, 
lear pairs, prepartition nodes and relaxed initialsegments are used in the game introdu
ed in the next se
tion.10.3. GameIn this se
tion we develop the game G(h;N) in whi
h two players 
ollaborateto build a pair of node labeled trees.Here is a brief des
ription of the game. Player I, the ar
hite
t, playsspe
i�
ations for Player II, the builder, telling him (a) whi
h tree to extend,(b) whether to 
omplete the tree or to build it to the next de
ision point,and (
) what the size of the node label of the next node to be 
onstru
ted is,if it is not already determined. In turn, the builder extends the designatedtree by a series of steps, adding a node and node label at ea
h step usingelements of N , until he rea
hes the next de
ision point on the given tree, ifhe has been so dire
ted, or until he 
ompletes the tree. The ar
hite
t winsif the pair ((S;C); (T;D)) 
reated at the end of the play of the game is aglobal 
lear pair with h(S; T ) = 1; otherwise the builder wins.Before giving a detailed des
ription of the general game, as a warmupexer
ise, 
onsider a 2-partition h into 2 
olors, an in�nite set N , and thegame G0(h;N) in whi
h the ar
hite
t plays the strategy �0 dire
ting thebuilder to 
omplete the �rst tree and then 
omplete the se
ond tree. The



72 I. Partition Relationsbuilder 
an use a fold map to fold an initial segment of N into a tree S andassign the 
onstantly ; node labeling C to 
reate his �rst response, (S;C).Then he 
an fold a segment of N starting aboveSS into a tree T and assignthe 
onstantly ; node labeling D to 
reate his se
ond response, (T;D). By
onstru
tion, the pair ((S;C); (T;D)) is 
lear, sin
e there are no partitionnodes, so fS; T g is a 
lear global pair. If all pairs fX;Y g of trees 
reatedusing nodes from N in this game have h(X;Y ) = 1, then playing anothergame, starting with (T;D) as the initial move of the builder and ending with(U;E), one builds a triple fS; T; U g ea
h pair of whi
h h takes to 
olor 1.Thus if �0 is a winning strategy for the ar
hite
t, then the ar
hite
t 
anarrange for a triangle to be 
onstru
ted.As a se
ond warmup exer
ise, 
onsider a 2-partition h into 2 
olors, anin�nite set N with 0 =2 N , and the game G1(h;N) in whi
h the ar
hite
tplays the strategy �1 dire
ting the builder to build the �rst tree to the nextde
ision point starting from a root node whose node label has 0 elements,to start and 
omplete the se
ond tree, and then to 
omplete the �rst tree.In response to the ar
hite
t's �rst set of spe
i�
ations, the builder usesthe least element n0 of N to build the root, hn0i and gives it the empty setas node label. He then uses the next two elements of N , namely n1 and n2by setting hn0; n2i as the immediate su

essor of the root with node labelC0(hn0; n2i) = fn1g. He 
ontinues with su

essive elements of N , extendingthe 
riti
al node of the tree 
reate to that point, giving the new node anempty label unless the node to be 
reated is the su

essor of a prepartitionnode whose index is the sole element of the node label of the prepartitionnode, in whi
h 
ase he extends and labels it as he did the su

essor of theroot. He 
ontinues until he has 
reated and labeled a prepartition node uwhose ordinal is e!(u) = 0, and the pair (S0; C0) he has built is his response.In response to the ar
hite
t's se
ond set of spe
i�
ations, the builderuses elements of N larger than any used so far to build a tree T in T (!)and gives it the 
onstantly ; labeling. Then he responds to the �nal set ofspe
i�
ations of the ar
hite
t by 
ompleting S0 to S in T (!) and extendingC0 to C with all new nodes re
eiving empty node labels.In the brief des
ription of the game, the ar
hite
t was allowed to dire
tthe builder to stop at the next de
ision point. The de
ision point is eitherwhen a partition node has been 
reated and it is time to swit
h to the othertree or when the next node to be 
reated is permitted to have a node labelwhose size is greater than 2. Noti
e that if the ar
hite
t swit
hes trees afterthe builder has 
reated a prepartition node with ordinal 0, then that nodebe
omes a partition node.10.25 De�nition. A de
ision node of (S;C) is a prepartition node t withordinal e!(t) su
h that either e!(t) = 0 or e! = `+ 1 is a su

essor ordinalwith ` 2 C(tj1), t is the 
riti
al node of S and 1 + ℄(t; S) is an element ofC(t).



10. A positive 
ountable partition relation 73In the game G0(h;N), the �nal pair of trees S; T had the property thatminSS < minST and maxSS < maxST . Call su
h a pair an outsidepair. In the game G1(h;N), the �nal pair of trees S; T had the property thatminSS < minST and maxSS > maxST . Call su
h a pair an insidepair.10.26 De�nition. Suppose N � ! is in�nite and h is a 2-partition ofT (!) into 2 
olors. Then G(h;N) is a two player game played in rounds.Player I is the ar
hite
t who issues spe
i�
ations, and Player II is thebuilder whose 
reates or extends one of a given pair of trees in round `to ((S`; C`); (T`; D`)). Note that if the se
ond tree has not been started inround `, then T` = D` = ;.The ar
hite
t's moves: In the initial round, the ar
hite
t de
lares the typeof pair to be produ
ed, either inside or outside. In round `, the ar
hi-te
t spe
i�es the tree to be 
reated or extended (�rst or se
ond), spe
i�eswhether the extension is to 
ompletion with all new nodes re
eiving emptylabels or to the point at whi
h a de
ision node is 
reated and labeled (
om-pletion or de
ision), and spe
i�es the size of the label for the next node tobe 
reated. In her initial move, the ar
hite
t must spe
ify the �rst tree be
reated. She may not dire
t the builder to extend a tree whi
h is 
omplete.The builder's moves: In round `, the builder 
reates or extends the spe
i�edtree through a series of steps in whi
h he adds one node and its label usingelements of N larger than any used to that point. If he has been dire
tedto 
ontinue to 
ompletion, he does so while assigning the empty set nodelabel to all new nodes. Otherwise he adds nodes one at a time, until he
reates the �rst de
ision node. He adds a node after determining the sizeof the node label, and 
hoosing the node label, sin
e all elements of thenode label must be smaller than the single point used to extend the 
riti
alnode. The size of the label of the �rst node to be 
reated is spe
i�ed bythe ar
hite
t's move. Otherwise, the builder determines if the node willbe a prepartition node with non-zero ordinal. If so, its node label has oneelement and otherwise its node label is empty.Stopping 
ondition: Play stops at in round ` if both trees are 
omplete.Payo� set: The ar
hite
t wins if both S` and T` are 
omplete, the pair isinside or outside as spe
i�ed at the onset, the pair ((S`; C`); (T`; D`)) is aglobal 
lear pair and h(S`; T`) = 1; otherwise, the builder wins.We are parti
ularly interested in this game when we have a �xed 2-partition, h : [T (�)℄2 ! 2, but the game may be modi�ed to work with2-partitions into more 
olors. This game may also be modi�ed to requirethe builder to use an initial segment of an in�nite sequen
e from N spe
i�edby the ar
hite
t in her move or be modi�ed to start with a spe
i�ed pair ofnode labeled trees.



74 I. Partition Relations10.27 Lemma. Suppose N � ! is in�nite and h is a 2-partition of T (!)with 2 
olors. Then every run of G(h;N) stops after �nitely many steps.Proof. Use Lemma 10.18. a10.4. UniformizationIn this subse
tion, we prove the key di
hotomy in whi
h one or the otherplayer has a winning strategy, at least up to some 
onstraints on the play.Basi
ally, we build a tree out of the plays of the game, show it is well-founded, and use re
ursion on the tree to de�ne an in�nite subset H � !so that plays where the builder uses suÆ
iently large elements of H areuniform enough to allow us to prove the di
hotomy.10.28 De�nition. Suppose N � ! is in�nite, and h is a 2-partition ofT (!) with 2 
olors. Let S(N) be the set of sequen
es of 
onse
utive movesin the game G(h;N), in
luding the empty sequen
e.10.29 Lemma. For in�nite N � !, (S(N);�) is a rooted, well-foundedtree.Proof. The root is the empty sequen
e. End-extension 
learly is a tree orderon S(N), and � is well-founded sin
e every game is �nite. aThe basi
 idea for the builder is to use elements from a spe
i�ed set andto always start high enough.10.30 De�nition. Suppose N is an in�nite set with 1 < minN and notwo 
onse
utive integers in N . Then a fun
tion b : S(N)! ! is a boundingfun
tion if b(;) = 0, and if s v t, then b(s) � b(t).Use a bounding fun
tion and an in�nite set to delineate 
onservativemoves for the builder.10.31 De�nition. Suppose H � N � ! is in�nite with 1 < minN that bis a bounding fun
tion. If ~R is a position in the game G(h;N) ending witha move by the ar
hite
t, then a move ((S`; C`); (T`; D`)) for the builder is
onservative for b and H if all new nodes and node labels are 
reated usingelements of H greater than b(~R).10.32 Lemma (Ramsey Di
hotomy). Suppose N � ! is in�nite, and h isa 2-partition of T (!) with 2 
olors. Then there is an in�nite subset H � Nand a bounding fun
tion b so that 1 < minH, no two 
onse
utive integersare in H, and the following statements hold:1. for every position ~R 2 S(N) ending in a play for the ar
hite
t, thereis a 
onservative (for b and H) move for the builder; and



10. A positive 
ountable partition relation 752. either the ar
hite
t has a strategy � by whi
h she wins G(h;N) if thebuilder plays 
onservatively, or the builder wins every run of G(h;N)by playing 
onservatively (for b and H).Before we ta
kle the proof of the di
hotomy, we introdu
e some prelimi-nary de�nitions and lemmas.10.33 De�nition. Call a set B � [!℄<! thin if no u from B is a properinitial segment of any other v from B. Call B a blo
k for N � ! if for everyin�nite set H � N , there is exa
tly one u 2 B whi
h is an initial segmentof H . Call it a blo
k if it is a blo
k for !.Note that if B is a blo
k, then it is thin. A major tool of the proof of thedi
hotomy is the following theorem.10.34 Theorem (Nash-Williams Partition Theorem). Let N � ! be in�-nite. For any �nite partition of a thin set 
 : W ! n, there is an in�niteset M � N so that 
 is 
onstant on W jM .For a proof see [46℄ or [23℄. The terminology thin 
omes from [23℄.Here are some easy examples of blo
ks.10.35 Lemma. The families f;g, and [!℄k for k < ! are blo
ks.10.36 Lemma. Suppose w � ! is an in
reasing sequen
e, and B � [!℄<!is thin. Then there is at most one initial segment u of w with u 2 B. If Bis a blo
k, then there is exa
tly one su
h initial segment.10.37 Lemma. Suppose H � N � ! is in�nite, h is a 2-partition of T (!)with 2 
olors, and b is bounding fun
tion. For every position ~R 2 S(N)ending in a move by the ar
hite
t, there is some k � b(~R) and a blo
k B(~R)for H � k su
h that for all B 2 B(~R), the builder 
an build his respondingmove using all elements of B.Proof. Re
all the ar
hite
t may not dire
t the builder to extend a 
ompletetree, so if the ar
hite
t has just moved, the tree she dire
ts the builder toextend is not 
omplete. Thus the builder's individual steps are spe
i�ed upto the 
hoi
e of elements of N , and his stopping point is determined by hisindividual steps. Hen
e the set of sequen
es of new elements used is thin.Moreover, for any in�nite in
reasing sequen
e w from H above b(~R) andabove the largest element of N used in prior moves, the builder 
an 
reatea move using an initial segment of w. Therefore the set of possible movesis a blo
k. aAt this point we are prepared to prove the main result of this se
tion.



76 I. Partition RelationsProof of Ramsey Di
hotomy 10.32. Without loss of generality, assume 1 <minN and N has no two 
onse
utive elements, sin
e otherwise one 
anshrink N to an in�nite set for whi
h these 
onditions hold. These 
onditionsassure that no de
ision node is an immediate su

essor of another de
isionnode.Let �� be the rank of S(N). Use re
ursion on � � �� to de�ne a sequen
ehM� � N : � < �� i and a valuation v : S(N)! 2.For � = 0, the sequen
es ~R of rank 0 are ones in whi
h the last move
ompletes the play of the game. Let M0 = N , and de�ne v(~R) = 0 ona sequen
e of rank 0 if the game ends with a win for the ar
hite
t andv(~R) = 1 otherwise.Next suppose that 0 < � < ��, and v has been de�ned on all nodes ofrank less than �. Enumerate all the nodes of rank � as ~R0�; ~R1�; : : : andlet M�1� be M��1 if � is a su

essor ordinal and let M�1� be a diagonalinterse
tion of a sequen
e M� for a set of � 
o�nal in � otherwise.Extend v to the nodes of rank � and de�ne setsM i� by re
ursion. For the�rst 
ase, suppose ~Ri� ends with a move for the builder, and setM i� =M i�1� .If there is some move ai� with ~Ri�_ 
 ai� � 2 S(N) and v(~Ri�_ 
 ai� �) = 1,then set v(~Ri�) = 1, and otherwise set v(~Ri�) = 0.For the se
ond 
ase, assume ~Ri� ends with an move for the ar
hite
t. LetB(~Ri�) be the blo
k of Lemma 10.37 for the set M i�1� and the position ~Ri�.De�ne 
 : B(~Ri�) ! 2 by 
(d) = v(~Ri�_ hP (d) i) where P (d) is the uniqueapproved move for the builder whose new elements are 
reated using exa
tlythe elements of d. Apply the Nash-Williams Partition Theorem 10.34 to 
to get an in�nite set M i� � M i�1� and let v(Ri�) be the 
onstant value of 
on B(~Ri�) restri
ted to M i�.Continue by re
ursion as long as possible, extending v to all nodes ofrank �. If there are only �nitely many of them, let M� be M i� where ~Ri� isthe last one. If there are in�nitely many, let M� be a diagonal interse
tionof the sets M i�.Sin
e every non-empty sequen
e of moves in the game G(N) extends theempty sequen
e, this root of S(N) has the largest rank of any element ofS(N), namely rank �� � 1. Let H =M���1. Let v(;) be 1 if there is somemove a by the ar
hite
t so that v(h a i) = 1, and set v(;) = 0 otherwise.De�ne b on S(N) by re
ursion. Let b(~R) = 2 for all ~R 2 S(N) withj~Rj � 1. Continue by re
ursion on j~Rj. For notational 
onvenien
e, let ~R�be obtained from ~R 2 S(N) � f;g by omission of the last entry. If b(~R�)has been de�ned and the last move in ~R is B` = ((S`; C`); (T`; D`)) for thebuilder, then let b(~R) be the least b greater than b(~R�) and any element ofS(S` [ ranC` [ T` [ ranD`). If b(~R�) has been de�ned, the last move in~R is a` for the ar
hite
t, and ~R = ~Ri�, then let b(~R) be the least b greater
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ountable partition relation 77than b(~R�) so that for all d in the restri
tion of B(~Ri�) to subsets of H withmin d > b, there is a 
onservative move for the builder for position ~R withnew elements d. The existen
e of a value for b(~R) in this latter 
ase followsfrom the fa
t that H �� M i� by 
onstru
tion, and by Lemma 10.37.Sin
e all ~R in S(N) are �nite, this re
ursion extends b to all of S(N).This de�nition of H and b guarantees that the builder 
an always respondwith 
onservative moves to plays of the ar
hite
t.If v(;) = 1, then the strategy for the ar
hite
t is to keep v(~R) = 1. Giventhe de�nition of v, the ar
hite
t will always su

eed, as long as the buildermoves 
onservatively with H and b. If v(;) = 0, and the builder alwaysmoves 
onservatively with H and b, then he will win, again by the re
ursivede�nition of v and the de�nition of winning the game. a10.5. TrianglesFor this se
tion we assume that h : [T (!)℄2 ! 0 is �xed and that anin�nite set H � ! and a bounding fun
tion b are given so that the ar
hite
thas a winning strategy � for games of G(h;H) in whi
h the builder plays
onservatively for b and H . The goal is to outline how one uses the strategyof the ar
hite
t to 
onstru
t a triangle.10.38 Lemma. Suppose � is a strategy for the ar
hite
t with whi
h shewins G(h;N) if the builder moves 
onservatively for H, b. Then there is athree element 1-homogeneous set for h.Proof. Consider the possibilities for �(;). The ar
hite
t must de
lare thepair to be built will be inside or outside, the initial move is to 
omplete the�rst tree or 
onstru
t it to a de
ision point and must de
lare the size d ofthe node label of the initial node 
onstru
ted. We 
onstru
t our trianglesby playing multiple inter
onne
ted games in whi
h the ar
hite
t uses �, thebuilder plays 
onservatively for H and b, and plays suÆ
iently large thathis plays work in all the relevant games. While te
hni
ally we should reporta pair of node labeled trees for ea
h play of the builder, for simpli
ity, wefrequently only mentioned the one just 
reated or modi�ed.Case 1: Using �, the ar
hite
t spe
i�es the builder 
onstru
ts a 
ompletetree in her initial move.Then the ar
hite
t must 
all for an outside pair and must set d = 0,sin
e otherwise the pair 
onstru
ted will not be 
lear. The builder respondsvia 
onservative play with a 
omplete tree (S;C) whose node labeling is
onstantly the emptyset. The strategy � must then spe
ify that the builder
onstru
ts a se
ond 
omplete tree whose initial node has a node label ofsize 0. The builder responds via 
onservative play with a 
omplete tree(T;D) whose node labeling is 
onstantly ;. Sin
e � is a winning strategy,h(S; T ) = 1.
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hite
t shifts to the game where the builder has responded tothe opening move with (T;D), applies the strategy �, to whi
h the builderresponds with (U;E), a (third) 
omplete tree whose node labeling is 
on-stantly ; starting suÆ
iently large for this response to be appropriate forthe game where the builder has responded to the opening move with (S;C).Sin
e � is a winning strategy, h(T; U) = 1 = h(S;U). Thus fS; T; U g is therequired triangle.Case 2: Using �, the ar
hite
t de
lares the pair will be an inside pair, andspe
i�es the initial node label size d = 0 and that the builder 
onstru
ts toa de
ision node.The proof in this 
ase is similar to the last, with the ar
hite
t startingone game to whi
h the builder responds with a �rst tree (S0; C0) wherethe de
ision node is a prepartition node of ordinal zero, sin
e no levels were
oded for introdu
ing de
ision nodes with su

essor ordinals. Thus the nextplay for the ar
hite
t is to dire
t the builder to 
reate a 
omplete tree all ofwhose nodes are labeled by ;.The ar
hite
t stops moving on the �rst game and, using �, starts a newgame, dire
ting the builder to start high enough that the tree 
onstru
ted
ould be the beginning of his response in the �rst game. The builder re-sponds with a tree (T0; D0) where the de
ision node is a prepartition nodeof ordinal zero The ar
hite
t 
ontinues this game using � and the builderresponds with a 
omplete tree (U;E) all of whose nodes are labeled with;. After the ar
hite
t and builder ea
h move a �nal time on this game, thebuilder has 
reated a 
omplete tree (T;D) extending (T0; D0). Sin
e � is awinning strategy, h(T; U) = 1.Now return to the �rst game: the builder plays (T;D0) where D0 isthe 
onstantly emptyset node labeling; The ar
hite
t uses � to respondand requires the builder to 
onstru
t high enough that his response worksin the game where the builder plays (U;E) as well as the one where thebuilder plays (T;D0). Sin
e � is a winning strategy, h(S; T ) = h(S;U),Thus fS; T; U g is the required triangle.Case 3: Using �, the ar
hite
t de
lares the pair will be an outside pair,and spe
i�es the initial node label size d = 0 and that the builder 
onstru
tsto a de
ision node.The proof in this 
ase is similar to the last, so only the list of substrees tobe 
onstru
ted is given. Start with (S0; C0) and (T0; D0) as responses to the�rst two moves of the ar
hite
t in the �rst game. Next build (U0; E0) and(S;C) as se
ond and third moves in a game where (S0; C0) is the �rst move,and (U0; E0) is started high enough to be a reponse in the game startingwith (T0; D0). Finally build (T;D) and (U;E) in the game starting withresponses (T0; D0) and (U0; E0) and 
ontinuing high enough that play using(S;C) in the appropriate games is 
onservative.
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ountable partition relation 79In the remaining two 
ases, we use � and 
onservative play for the builderto 
reate trees S; T; U with node labelings (S;C1) , (S;C2), (T;D0), (T;D1),(U;E0) and (U;E1) through plays G0;1, G0;2, G1;2 of the game G(h;H). Wepay spe
ial attention to the 
reation of the initial segments up to the �rstpartition nodes for ea
h pair and to the terminal segments, after the lastpartition nodes. We refer to the remainder of the run as \the mid-game".Case 4: Using �, the ar
hite
t de
lares the pair will be an inside pair, andspe
i�es the initial node label size d > 0 and dire
ts the builder to 
onstru
tthe �rst tree to a de
ision node.We start by displaying a s
hemati
 overview of the 
onstru
tion:S T U T U S U U S T T SNext we outline the steps to be taken.1. Choose fromH 
odes for d levels for S and U ; 
hoose d larger levels forS and T ; start the initial segment of S with respe
t to T ; 
ontinue it toget the initial segment of S with respe
t to U (the di�eren
e is in thenode labelings only), and apply � to the results to determine the sizesd0; d00 of node labels for the roots of T; U in G0;1, G0;2, respe
tively.2. Choose d0 levels for T 's intera
tion with U ; 
hoose d larger levels forT 's intera
tion with S; start the initial segment of T with respe
t toS; 
ontinue it to get the initial segment of T with respe
t to U ; andapply � to determine the size d000 of the node label of the root of Ufor G1;2.3. Choose d000 levels for U 's intera
tion with T ; 
hoose d00 larger levelsfor U 's intera
tion with S; start the initial segment of U with respe
tto S; 
ontinue it to get the initial segment of U with respe
t to T .4. Play the mid-game of G1;2 to the 
all for the 
ompletion of U .5. The initial segments of T and U with respe
t to S are 
omplete, soupdate the node labelings C0 and C1.6. Play the mid-game of G0;2 until the ar
hite
t 
alls for the 
ompletionof S. In parti
ular, play until U is 
omplete.7. Update the node labeling E1 for U by labeling all the new nodes bythe empty set.8. Complete the play of the game G0;1, starting by extending the part ofS 
reated in the play of the mid-game G0;2. Su
h a start is possible,sin
e the levels of S for intera
tion with T are larger than those forintera
tion with U .



80 I. Partition Relations9. Update the node labelings C2 for S and D2 for T by labeling all thenew nodes by the empty set.Care must be taken to dire
t the builder to start high enough that allmoves in the tree plays of G(h;H) are 
onservative. Sin
e the 
onstru
tionof the initial segments 
alls for introdu
ing levels, we des
ribe the �rst su
hstep in greater detail.We know that we will need to 
hoose levels for splitting of S with respe
tto T and U , and for splitting T with respe
t to U . Depending on thestrategy �, we may need to 
hoose levels for the splitting of T with respe
tto S and for the splitting of U with respe
t to S and T . Here is a pi
tureof the approa
h we plan to take on these splitting levels, in the general 
asewhere we need levels for all pairs. ��������� AAAAAAA
AA

��AA �����\\\\\for Tfor U for Sfor U for Tfor S
S T UTo start the 
onstru
tion, 
hoose 2d+1 elements from H above b(h �(;) i)ending in m0, and use them to de�ne C1(
m0 �) and C2(
m0 �) withC2(
m0 �) < C1(
m0 �).Start playing a game G0;1 where the ar
hite
t starts with R0;10 = �(;)and the builder must use the elements of C1(
m0 �) and m0 to start hisinitial move, R0;11 . Continue to play until the ar
hite
t's last move R0;1pbefore dire
ting the builder to swit
h to the se
ond tree. One 
an identifythis point in the run of the game, sin
e it is the �rst time the ar
hite
t hasstopped on a node, 
all it v0, whose level is one more than min(C1(hm0 i)).Let (S1p�1; C1p�1) be the tree paired with (;; ;) by the builder in his lastmove.Let C2 be the node labeling of S1p�1 with the value of C2(hm0 i) spe
i�edabove, with the empty set assigned for nodes whi
h are not initial segmentsof v0, and for initial segments of v0 longer than the root, are the singletonsneeded to guarantee that v0 is a prepartition node. Then the ar
hite
tdire
ts the builder to extend this node labeled tree to a response R0;21 to�(;) in the se
ond game G0;2. The two players 
ontinue the game until thear
hite
t, in R0;2q , dire
ts the builder to swit
h to the se
ond tree to startwith a node label of size d00 and to go to a de
ision node. Su
h a move is theonly one that will lead to a 
lear pair. Let (S2q�1; C2q�1) be the tree playedby the builder in his previous move.Return to game G0;1 and require the builder to respond to R0;1p with(S1p+1; C1p+1) for S1p+1 = S2q�1 and C1p+1 the node labeling where all new
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ountable partition relation 81nodes that are not initial segments of the largest node are labeled with theempty set and initial segments of the largest node are labeled minimally sothat it is a prepartition node. Let d0 be the size of the node label for theroot of the se
ond tree determined by the ar
hite
t's use of � in responseto this move of the builder.The remaining details are left to the reader. The 
areful reader will notethat there is one possibility in whi
h the ar
hite
t initially 
alls for d = 1,spe
i�es a node label of size 2 at the �rst de
ision node, and after the
ompletion of the �rst full segment, 
alls for an empty node label for theroot of the se
ond tree. The 
onstru
tion pro
eeds as above but is simpler,so these details are also left to the reader.As in the previous 
ases, sin
e � is a winning strategy for the ar
hite
t,the set fS; T; U g we have 
onstru
ted is the required triangle.Case 5: Using �, the ar
hite
t de
lares the pair will be an outside pair,and spe
i�es the initial node label size d > 0 and dire
ts the builder to
onstru
t the �rst tree to a de
ision node.This 
ase is substantially like the previous one, so we give the s
hemati
below to guide the reader and a few 
omments on how to move from onese
tion to the next.S T S T U S U S T U T UWe start by building initial segments of S and T . We begin by 
hoosingd small levels for the intera
tion of S with T and d larger levels for theintera
tion of S with U . We start to build the initial segment of S withrespe
t to its 
onvex partition by U , then extend that start to build theinitial segment of S with respe
t to its 
onvex partition by T . We obtainthe size d0 of the root node label of the se
ond tree in G0;1 by applying �,
hoose d0 small levels for the intera
tion of T with S, and d larger levels forthe intera
tion of T with U . We start building the initial segment of T withrespe
t to U , then extend it to the initial segment of T with respe
t to S.We play the mid-game of G0;1 until the ar
hite
t 
alls for the 
ompletionof S. In the pro
ess we have 
ompleted the initial segments of S and T withrespe
t to U , so we update C2 and D2, and apply � to the 
urrent state ofplay of G0;2 to �nd d00 and to the 
urrent state of play of G1;2 to �nd d000.We 
hoose d00 smaller levels for the intera
tion of U with respe
t to Sand d000 larger levels for the intera
tion of U with respe
t to T . We startbuilding the initial segment of U with respe
t to T , then extend it to theinitial segment of U with respe
t to S.We play the mid-game of G0;2 until the builder has 
ompleted the 
on-stru
tion of S and the ar
hite
t has 
alled for the 
ompletion of U . In thepro
ess we have 
ompleted the initial segment of U with respe
t to T , andthe �nal segment of S with respe
t to T so we update E1 and and C1.



82 I. Partition RelationsThen we play the mid-game of G1;2 and 
omplete the play of that gamewith the �nal segments of T and U . Finally, we update D0 and E0 on thenew elements of T and U whi
h 
omplete the games G0;1 and G0;2.As in the previous 
ases, sin
e � is a winning strategy for the ar
hite
t,the set fS; T; U g we have 
onstru
ted is the required triangle. a10.6. Free SetsOur next goal is the 
onstru
tion of a subset of T (!) of order type !!!whi
h is 0-homogeneous for global pairs.Re
all the 
hara
terization of subsets of G! of order type at least !s thatdates ba
k to the late 1960's or early 1970's. (see [43℄, [42℄, [66℄).10.39 De�nition. A non-empty set S � f� 2 G! : min � = n g is freeabove 
oordinate k if for every x = hx0; x1; : : : ; xn i 2 S, there is anin�nite set N � ! so that for ea
h x0 2 N , the set of extensions ofhx0; x1; : : : ; xk; x0 i in S is non-empty. The set S is free in s 
oordinatesif there are s 
oordinates above whi
h it is free.10.40 Lemma (see Lemma 7.2.2 of [66℄). A set S � f� 2 G! : min� = n ghas ot(S) � !s if and only if there is a subset V � S so that V is free in s
oordinates.We would like to adapt this idea to sets of node labeled trees from T (�).By an abuse of notation, write t 2 (T;D) 2 X to mean that t 2 T for some(T;D) 2 X . The next de�nition fa
ilitates our dis
ussion. Re
all that e�(s)is the ordinal of s.10.41 De�nition. For � � ! and any s 2 (S;C) 2 T �(�), 
all s a signalnode if either jC(s)j > 1 or e�(s) limit and jC(s)j = 1.Re
all De�nition 10.24 of relaxed initial segments of trees in T (�). The�rst three parts of the next de�nition guarantee that lo
ally �-free sets haveni
e regularity properties, and the last three guarantee (1) signal nodesare introdu
ed whenever there is no 
onstraint, (2) signal nodes are givenlarge node labels, and (3) there are arbitrarily large starts for extensions ofrelaxed initial segments of trees in the 
olle
tion. The de�nition of �-freefrom lo
ally �-free guarantees that there are arbitrarily large new starts fortrees as well.10.42 De�nition. Suppose � � ! and 0 =2 � 2 [� + 1℄<!. A non-emptyset X of node labeled trees from T (�) is lo
ally �-free for � if the following
onditions are satis�ed:1. (
ommonality) if � > 0, then every tree in X has a proper relaxedinitial segment and every lo
al pair from X has a 
ommon properrelaxed initial segment and otherwise is disjoint;
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ountable partition relation 832. (
onformity) if r 2 (S;C) 2 X and k 2 C(r) 6= ;, then there is somerelaxed (T;D) v (S;C) so that r � maxT and if the ordinal of r is asu

essor, then ℄(r; T ) = k.3. (�-signality) for any signal node r 2 (S;C) 2 X , either e�(r) 2 � orfor some p � r with e�(p) = !, there is k 2 C(p) so that e�(r) = k.4. (�-fore
asting) for any relaxed (S;C) v (T;D) 2 X , if 
i 2 �, thenthere is some signal node r � maxS with e�(r) = 
i; and if p � maxSis a signal node, k 2 C(p), and e�(p) = ! is a limit ordinal, then thereis some signal node r � maxS with e�(r) = k;5. (signal size) for any signal node r 2 (S;C) 2 X , the inequalityjC(r)j < max r holds, and max t < max r implies max t < jC(r)jfor all t 2 (T;D) 2 X .6. (push-up) for every k < ! and every relaxed initial segment (T;D) �(U;E) 2 X , there is some 
omplete extension (V; F ) A (T;D) in Xwhose new elements start above k, i.e. k < min(S V [ ranF �ST [ranD).We say X is �-free for � if it is lo
ally �-free for �, and for all k < !, thereis some hm i 2 (S;C) 2 X su
h that k < jC(hm i)j if � 2 � and k < motherwise.By an abuse of notation, for a 
olle
tion X of node labeled trees fromT (�), we let otX = ot fS : 9C(S;C) 2 X g.10.43 Lemma. For all � � !, for all 0 =2 � 2 [� +1℄<!, if X is �-free for�, then otX � �(�;�) where�(�;�) :=8>>><>>>:! if � = 0,!2 if � > 0 and � = ;,!!j�j if � > 0 and ! =2 � 6= ;, and!!! otherwise.Proof. Relaxed trees, espe
ially with a spe
i�ed node as an initial segmentof the max, play an important role in the de�nition of free and lo
ally free.Here is some notation to fa
ilitate the dis
ussion. For any set X of nodelabled trees, de�ne X(t) := f (T;D) 2 X : t 2 (T;D) g.10.44 Claim. If X is �-free for � = 0 and 0 =2 � � 1, then otX � !.Proof. Sin
e 0 =2 � � 1, it follows that � = ;. Sin
e any �-free for � = 0set X has arbitrarily large roots, it must have order type at least !. a



84 I. Partition RelationsFor 1 � � � !, � � � + 1, Y a set of node labeled trees from T (�) andm < !, de�ne �(�;�; Y;m) := 0 unless Y (hm i) 6= ; is lo
ally �-free for �and there is some (S;C) 2 Y with hm i 2 (S;C), and in the latter 
ase, set�(�;�; Y;m) :=8><>:1; if � = ;!!` ; if � 6= ; and � = max� limit,!!��`; otherwisewhere, for non-empty �, ` := jC(s)j�1 for s the least signal node of (S;C),� := j�j � 1. This fun
tion is well-de�ned, sin
e if Y (hmi) 6= ; is lo
ally�-free for � with � non-empty, then all elements of Y (hmi) have a properrelaxed initial segment in 
ommon with (S;C) whi
h must in
lude the leastsignal node of (S;C).Let �(�;�) be the following statement.�(�;�): For all lo
ally �-free for � sets Y , if hmi 2 (S;C) 2 Y ,then otY (hmi) � �(�;�; Y;m).10.45 Claim. For all � � 1 and 0 =2 � � � + 1, if X is �-free for � and�(�;�) holds, then otX � �(�;�).Proof. Use indu
tion on n to prove the 
laim for subsets � � ! of size n.To start the indu
tion, 
onsider subsets of size 0. If X is ;-free for � � 1,then by de�nition, X(hmi) is non-empty for in�nitely many m, and by
ommonality and push-up, otX(hmi) � !, so otX � !2 = �(�; ;).Next assume the 
laim is true for subsets of size k and that n = k + 1.If X is �-free for � � 1 and 0 =2 � � � + 1 satis�es ! =2 � and j�j = k + 1,then there are arbitrarily large ` for whi
h there are m 2 (S;C) 2 X with` < jC(hmi)j if � 2 � and with ` < m otherwise. In the latter 
ase, by�-fore
asting and by signal size, there are arbitrarily large ` for whi
h the�rst signal node s 2 (S;C) 2 X has ` < jC(s)j. Sin
e �(�;�) holds, itfollows that there are arbitrarily large ` < m with otX(hmi) � !!k` fork = j�j � 1, hen
e otX � !!k+1 = �(�;�) as desired.Therefore by indu
tion, the 
laim holds for all �nite subsets � � !.To 
omplete the proof, 
onsider � with ! 2 �. Then � = !. Suppose Xis �-free for ! and ! 2 �. Then the root node of every tree in X is a signalnode. Also X has arbitrarily large values for jC(hmi)j by the de�nition of�-free for � = ! 2 �. Hen
e from �(!;�) it follows that otX(hmi) � !!`for ` = jC(hmi)j � 1, so otX = !!! = �(!;�) as required. a10.46 Claim. For all � � 1 and 0 =2 � � �+1, the statement �(�;�) holds.Proof. Suppose Y is lo
ally ;-free for � � 1 and hm i 2 (S;C) 2 Y . Thenby 
ommonality and push-up, otY (hm i) � !, so �(�; ;) holds.
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ountable partition relation 85Use indu
tion on � to show that for all non-empty 0 =2 � � � + 1, thestatement �(�;�) holds. For the basis 
ase, � = 1, the only 
ase to be
onsidered is � = f1g. Suppose Y is lo
ally f1g-free and hm i 2 (S;C) 2 Y .Then hm i is a signal node, and Z := fST : (T;D) 2 Y (hm i) g is freein jC(hm i)j 
oordinates in the sense of De�nition 10.39 by 
onformity andpush-up. Thus Z has order type !jC(hm i)j by Lemma 10.40. Hen
e Y (hm i)has this order type as well, so �(1; f1g) holds.For the indu
tion step, assume �(�0) is true for all �0 with 1 � �0 < �.Suppose � is non-empty with 0 =2 � � � + 1, Y is lo
ally �-free for � andhm i 2 (S;C) 2 Y . It follows that Y (hmi) is also lo
ally �-free for �. Let(S�; C�) be the minimal proper relaxed initial segment of (S;C), requiredby 
ommonality. Then (S�; C�) is a 
ommon initial segment of all trees inY . Let hm;m� i be the unique initial segment of maxS� of length 2.Case 1: max� < � or max� = � = !.For ea
h (T;D) 2 Y , the derived tree (T̂ ; D̂) is de�ned by t̂ 2 T̂ if andonly if hm;m� i v hm i_t̂ 2 T , and D̂(t̂) = D(hm i_t̂).Let Z be the 
olle
tion of derived trees. Note that hm� i is an elementof every tree in Z. Let �0 = � � 1 and �0 = � if � is �nite, and let �0 = mand �0 = (� � f!g) [ C(hmi) otherwise. Then Z = Z(hm� i) is lo
ally�0-free for �0. Also, otY (hm i) � otZ(hm� i), so in this 
ase, the desiredinequality follows by the indu
tion hypothesis.Case 2: � = f� + 1g.Consider the set E � T (1) of hm; k1; k2; : : : ; kmi su
h that there is(T;D) 2 Y su
h that for all 1 � i � m, hm; kii 2 T . By 
onformity andpush-up, the set E is free in ` = jC(hmi)j�1 many 
oordinates, so it has or-der type !`, by Lemma 10.40. Thus ot(Y (hmi)) � otE = !` = �(�; 
; Y;m)as required.Case 3: � + 1 2 � 6= f� + 1g.Noti
e that every tree (T;D) in Y (hmi) may be thought of as a 
olle
tionof m node labeled trees from T (�) extending from the root hmi.Call an initial segment (T;D) of a tree in Y (hmi) large if maxT is aprepartition node with ordinal 0 su
h that ℄(s; T ) = maxC(s) for all propers � t with jsj > 1. Every element of Y (hmi) has exa
tly jC(hmi)j manylarge initial segments.Let �0 = ��f� + 1g and set � = j�0j. Fix attention on a large (T;D) forwhi
h ℄(hmi; T ) < maxC(hmi), and let k be the least element of C(hmi)greater than ℄(hmi; T ). Let E(T;D) be the set of initial segments (T 0; D0)of elements of Y extending (T;D) to a tree with root hmi extended byexa
tly k subtrees from T (�). Then E(T;D) has order type !!� , sin
e the
olle
tion of trees that o

ur for the kth slot are �0-free for �. In fa
t theset of maximal large initial segments of these trees also has order type !!� ,sin
e ea
h has exa
tly ! extensions in E(T;D) and !!� is multipli
atively
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omposable. From this analysis, it follows that otY (hmi) � !!��`,where ` = jC(hmi)j � 1, so �(�;�) holds in this �nal 
ase.Therefore by indu
tion on �, the 
laim follows. aNow the lemma follows from Claims 10.44, 10.45 and 10.46. a10.47 Lemma. Suppose h is a 2-partition of T (!) with 2 
olors and N � !is in�nite with 1 < minN and no two 
onse
utive integers are in N . Furthersuppose a bounding fun
tion b and H � N in�nite are su
h that the builderwins every run of G(h;N) by playing 
onservatively for b and H. Then thereis a set Y � T (!) of order type !!! so that h(S; T ) = 0 for all global pairsfrom Y .Proof. We will use re
ursion to build a f!g-free for ! set X with theproperty that every global pair ((S;C); (T;D)) from X has a 
oarsening((S;C 0); (T;D0)) whi
h is a �nal play in a run of G(h;N) in whi
h thebuilder plays 
onservatively for b and H . (By a 
oarsening, we mean thatC 0(s) � C(s) and D0(t) � D(t) for all s 2 S, t 2 T .) Sin
e the builder winsthe game, h(S; T ) = 0 for su
h pairs. Thus Y = fS : (9C)((S;C) 2 X) g isthe desired set, sin
e, by Lemma 10.43, Y has order type !!! .To start the re
ursion, let X0 be the set with only (;; ;) in it. Forpositive j < !, we enumerate the node labeled trees in Si<j Xi whi
h areproper initial segments, starting with (;; ;) = (S0j;0; C 0j;0) and ending with(S0j;nj ; C 0j;nj ). Speaking generally, in stage j, for ea
h k � nj , we 
onsiderthe kth initial segment, (S0j;k; C 0j;k), use moves of the ar
hite
t and builderin G(h;H) to 
reate a relaxed or 
omplete extension, (Sj;k; Cj;k), usingelements of H larger than anything mentioned up to that point. Then welet Xk be the set of all (Sj;k; Cj;k) for k � nj .A simple indu
tion shows that that there are only �nitely many properinitial segments to be 
onsidered in ea
h stage and they fall into at mostthree types: trivial (i.e. (;; ;)), ready for 
ompletion (i.e. a relaxed initialsegment (T;D) su
h that for all s � maxT whose ordinal is a su

essor,℄(s; T ) = maxD(s)), or relaxed but not ready for 
ompletion.In stage j, for the trivial initial segment, one starts G(h;H) at the begin-ning. Otherwise, for the kth initial segment, one 
ontinues a game in whi
hthe �rst tree is (S0j;k; C 0j;k) and the se
ond tree is the relaxed initial segment
onstru
ted to extend (;; ;) in this stage, namely (Sj;0; Cj;0).In the games played, the ar
hite
t uses the following strategy. She alwaysdire
ts the builder to 
reate or extend the �rst tree. If the ar
hite
t ismaking her �rst move on the kth initial segment and it is relaxed, thenshe de
lares the next node label size to be 0 and 
alls for 
ompletion if(S0j;k; C 0j;k) is ready for 
ompletion, and for de
ision otherwise. Re
all thatif the ar
hite
t 
alls for 
ompletion, then the node label of new elements isthe empty set. Otherwise, the ar
hite
t uses the least element of H larger
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ountable partition relation 87than any used to that point as the size of the next node label, and 
alls for
onstru
tion to the next de
ision node.The builder always responds 
onservatively for H , b, and always playslarge enough to have the play remain 
onservative for any possible gamethat 
ould be 
onstru
ted using 
oarsenings of the given trees.Play stops at the end of the �rst move by the builder in whi
h he 
reatesa tree (Sj;k; Cj;k) whi
h is relaxed or 
omplete.In any stage, with any starting initial segment, after �nitely many stepsof the game, the builder has 
onstru
ted the required relaxed or 
ompleteextension. Sin
e there are only �nitely many trees to extend in a givenround, eventually ea
h round is �nished. Therefore, the 
onstru
tion stopsafter ! rounds with a set X = SXj of trees. Let X be the set of 
ompletetrees in X. By 
onstru
tion, X is f!g-free, so by Lemma 10.43, the setY := fS : (9C)((S;C) 2 X) g has order type !!! .To 
he
k that Y is the required set, suppose that ((S0; C0); (S1; C1)) is aglobal pair from the set X with (S0; C0) < (S1; C1). By the 
onstru
tion,every partition node of (S"; C") is the maximum of some relaxed segment of(S"; C"), and every splitting node r has e�(r) in C(hm" i), where a splittingnode r 2 S" is one of the form s \ t for distin
t partition nodes s; t 2 S".Hen
e there are 
oarsenings (S0; D0) and (S1; D1) so that for all r 2 S",D"(r) =8><>:f ℄(r; S"(;; s℄) : r � s partition node g e!(r) su

essor;f e!(t) : r � t splitting node g e!(r) limit;; otherwiseThus ((S0; D0); (S1; D1)) satis�es De�nition 10.23 and is a global 
lear pair.If maxSS0 > maxSS1, then the pair is inside, and otherwise it is outside.Use this knowledge in the ar
hite
t's initial move; use the values of jD"(r)jfor the sizes of the node labels in the ar
hite
t's moves; and or
hestrate hermoves to 
reate the pair of node labeled trees when the builder is requiredto use the elements of SS0 [ ranD0 [ SS1 [ ranD1. Sin
e the ar
hite
thas no winning strategy, and the builder's plays were large enough for any
oarsening, it follows that this run of the game is a win for the builder.Thus h(S0; S1) = 0 as desired. a10.7. Completion of the proofIn this subse
tion, we 
omplete the proof that !!! ! (!!! ; 3)2 by assem-bling the appropriate lemmas. We start with h : [T (!)℄2 ! 2. We applythe Ramsey Di
hotomy 10.32 to h and N = ! to get H � ! in�nite, abounding fun
tion b and a favored player.If the ar
hite
t has a winning strategy by whi
h she wins G(h;N) whenthe builder plays 
onservatively, then there is a 1-homogeneous triangle byLemma 10.38.



88 I. Partition RelationsOtherwise, the builder wins every run of G(h;N) by playing 
onserva-tively, so by Lemma 10.47, there is a set Y of order type !!! so that allglobal pairs get 
olor 0. Partition Y into sets Yn so that Y0 < Y1 < : : : ,all pairs from Yn are lo
al, and otYn � !!1+2n . Apply Corollary 9.3 toea
h Yn. If for some n, the result is a 1-homogeneous triangle, we are done.Otherwise, we get 0-homogeneous sets Zn � Yn of order type !!1+n , andZ = SZn is the 0-homogeneous set required for 
ompletion of the proof ofthe theorem.
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