Weathering in modern carbonate terrains

Biological controls on redox condition, dissolution and atmospheric CO₂ fluxes

J. Martin, A. Brown, J. Ezell, A. Pain, C. Young

UF FIORIDA

Funding

Global Distribution of Carbonates

- Carbonates cover ~ 20% of ice-free Earth surface; largest global reservoir of C:
 - ~10⁸ Pg vs ~5x10⁴ (ocean) & ~10³ (atmosphere)
- Weathering differs from silicate systems:
 - Congruent versus incongruent dissolution → Void spaces versus regolith

Controls on Dissolution

Largely from microbial and plant metabolism

Redox: OC oxidation with TEAs (DO, NO₃, Fe- & Mn-Oxides, SO₄) Acid dissolution: H_2CO_3 ; H_2SO_4

Fracture and water table caves, Florida

Lake George Blue Hole Rum Cay, Bahamas Angelita Cenote Quintana Roo, Mexico

Significance of different acids

- Carbonic acid dissolution:
- $CO_2 + H_2O + CaCO_3 \leftrightarrow Ca^{2+} + 2HCO_3^{--}$
 - Dissolution reaction: Atmospheric CO₂ sink
 - Precipitation reaction: Atmospheric CO₂ source
- Sulfuric acid dissolution:

 $H_2S + 2O_2 + CaCO_3 \rightarrow SO_4^{2-} + Ca^{2+} + H_2O + CO_2$

Net CO₂ source to atmosphere

Today – some examples

Ink Well Blue Hole, Bahamas

- San Salvador Island
 - Small (~50 km²) island
 - Isolated carbonate platform
- At pycnocline/halocline:
 - Organic carbon trapped
 - Sulfate reduction increases sulfide concentrations
 - Sulfide diffuses upward and is oxidized
 - Decreases pH

Pain et al., in prep.

Ink Well Blue Hole, Bahamas

- Is system static or dynamic?
 - San Salvador Island
 - Small (~50 km²) island
 - Isolated platform
 - At pycnocline/halocline:
 - Organic carbon trapped
 - Sulfate reduction increases sulfide concentrations
 - Sulfide oxidized as diffuses upward to oxic
 - Decreases pH

Pain et al., in prep.

Dynamics at pycnocline

- Low tide increase radiation and photosynthetic DO production
- pH drops follows DO production DO consumption and sulfide oxidation
- Does low pH water exchange with aquifer? What causes head gradient?

Ezell et al., in prep.

Lags between inland water and ocean

- Cross correlations of ocean and surface water elevations:
 - 2 week long time series
- Variable tidal lags reflect heterogeneous permeability (K)
- Variable K = Undulating water table = head gradients

Tidal pumping

At low tide:

- water table > ocean and blue holes elevations
- Water drains from aquifer to blue hole

At high tide:

- Water table < ocean and blue holes elevations
- Water drains from blue hole to aquifer

Martin et al., 2012 J Hydro

Summary

- Dissolution results from interplay of photosynthesis, hydrology, and redox/acid reactions
- What are connections with and impacts to coastal ocean?
- How are coastal solute fluxes, importantly nutrients, affected by these processes?

Discharge End – offshore springs

- Cave system offshore Yucatan Peninsula
- No surface drainage to oceans
- Multiple springs including Pargos Spring:
 - Cave exploration and instrumentation within cave and lagoon
 - Grab samples from within cave and lagoon

e.g., see Null et al., 2014 Cont Shelf Res

Two week time series

- T and S show reversing flow at spring
- Reversal frequency controlled by tides (spring/neap) and winds
 - Discharge when SL < 8 cm above average
 - Recharge when SL > 8 cm above average (20 30 yr SLR)

Reactive components

- DO and pH vary with recharge/discharge cycle
 - OC and sulfide oxidation \rightarrow decrease pH \rightarrow dissolve calcite
 - Release nutrient from OC (N and P)
 - Release P from calcite surfaces

Summary - reefs

- Sulfide-rich and low pH water discharge may degrade corals & seagrasses
- Elevated natural nutrient discharge may enhance corals and seagrasses
- Sea level change will shift distribution of discharge points

Young et al., in review

Conclusions

- Don't forget about carbonate!!
- Solubility → voids not regolith formed
 - Dissolution linked to photosynthesis & respiration & hydrology
 - Even though only voids remain, impacts solute fluxes
 - importantly C, N and P fluxes
 - Solutes important for ecosystem services

• Also important \rightarrow

Conclusions

Don't forget about carbonate!!

Dissolution/ Weathering

pH/pe reactions Solute fluxes

Biological Metabolism

Hydrogeology